WO1991010118A1 - Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus - Google Patents

Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus Download PDF

Info

Publication number
WO1991010118A1
WO1991010118A1 PCT/JP1990/001688 JP9001688W WO9110118A1 WO 1991010118 A1 WO1991010118 A1 WO 1991010118A1 JP 9001688 W JP9001688 W JP 9001688W WO 9110118 A1 WO9110118 A1 WO 9110118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode layer
force
substrate
mechanical deformation
Prior art date
Application number
PCT/JP1990/001688
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Okada
Original Assignee
Wacoh Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27302408&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991010118(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP1343354A external-priority patent/JP2802954B2/ja
Priority claimed from JP2077397A external-priority patent/JPH03276072A/ja
Priority claimed from JP2200449A external-priority patent/JP2892788B2/ja
Application filed by Wacoh Corporation filed Critical Wacoh Corporation
Priority to US07/761,771 priority Critical patent/US5295386A/en
Priority to DE69019343T priority patent/DE69019343T2/de
Priority to EP91900948A priority patent/EP0461265B1/en
Publication of WO1991010118A1 publication Critical patent/WO1991010118A1/ja
Priority to US10/816,548 priority patent/US6894482B2/en
Priority to US11/042,614 priority patent/US7231802B2/en
Priority to US11/788,849 priority patent/US7578162B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/148Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors using semiconductive material, e.g. silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49103Strain gauge making

Definitions

  • the present invention relates to an apparatus for detecting a physical quantity acting as an external force, for example, a force acting on an operating body, an acceleration acting on a weight body, a magnetism acting on a magnetic body, and the like.
  • the present invention relates to a signal processing circuit, a test method, a manufacturing method, and a structure of the force sensor which is a center of such a detection device.
  • a force sensor in which a resistance element having a piezoresistive effect in which electric resistance changes due to mechanical deformation is arranged on a semiconductor substrate, and a force is detected from a change in the resistance value of the resistance element.
  • acceleration sensors or magnetic sensors using this force sensor have been proposed.
  • a partially flexible strain body is used, and the mechanical deformation caused by the strain rest is detected as a change in the electric resistance of the resistance element.
  • Strain body An action body is provided for applying a force to the body. If a weight that responds to acceleration is used as this acting body, it becomes an acceleration sensor, and if a magnetic substance that responds to magnetism is used, it becomes a magnetic sensor.
  • the force sensors disclosed in these documents can detect the direction and magnitude of an external force applied to a predetermined point of action from a change in the resistance value of a resistance element formed on a single crystal substrate. If a weight is formed at this point of action, the acceleration acting on the weight can be detected as a force, and it can be applied as an acceleration sensor. If a magnetic material is formed at the working point, the magnetism acting on the magnetic material can be detected as a force, so that it can be applied as a magnetic sensor.
  • a first object of the present invention is to provide a signal processing circuit capable of obtaining an accurate detection value without interference of other axial components.
  • testing must be performed at the end of the manufacturing process. Testing on the case is relatively easy. That is, a force of a predetermined magnitude is applied to the action point in a predetermined direction, and the detection output at this time may be checked. Testing of acceleration and magnetic sensors is more complicated. Since the sensor body is sealed, it is necessary to check the detection output while actually applying external acceleration or magnetism. In particular, acceleration sensors are currently being tested by applying vibration to the sensor body using a vibration generator, which requires a large-scale test device and only tests for the dynamic acceleration of vibration. There is also the problem of not being able to do so.
  • the present invention provides a simpler test for a sensor having a force acting body such as an acceleration sensor or a magnetic sensor.
  • a second object is to provide a test method capable of performing the test method, and to provide a sensor having a function capable of immediately executing the test method.
  • the sensor using the resistance element proposed conventionally has a problem when performing highly sensitive measurement. For example, it is sufficient to be able to detect acceleration of about 10 G to 100 G at full scale in order to use it for acceleration sensor field stand, vehicle collision detection, etc. In order to perform suspension control and anti-lock braking system control of vehicles, it is necessary to detect an acceleration of 1 G to 10 G. In order to perform such high-sensitivity acceleration detection, it is necessary to increase the weight of an object having a function of generating a force based on acceleration. However, in the case of force ⁇ , it was difficult to increase the size of the actuator with the conventional sensor structure.
  • a high-sensitivity sensor increases the risk of damage to the semiconductor substrate when a large force exceeding a predetermined limit is applied. For this reason, it is necessary to provide a member for limiting the displacement of the working body within a predetermined range around the working body, which causes a problem that the structure becomes complicated.
  • a third object of the present invention is to provide a sensor using a resistive element suitable for more sensitive physical quantity measurement and a method for manufacturing the same. Disclosure of the invention
  • the present invention has the following features.
  • the first feature is that when an external force is applied to a predetermined point of action in the XYZ three-dimensional coordinate system, this external force causes mechanical deformation of the single crystal substrate, and the X of the external force applied to the point of action is applied.
  • Axial component AX, Y-axis component Ay, Z Fortunate direction component Az is detected by a signal processing circuit for a sensor that detects based on electrical signals Vx, Vy, Vz generated due to mechanical deformation. ,
  • Ax K 11 V x + ⁇ 12 V y + ⁇ 13 Vz between A x, A y, A z and V x, V y, V z
  • the coefficients K11, K12, K] 3, ⁇ 21, ⁇ 22, ⁇ 23, ⁇ 31, ⁇ 32, ⁇ ⁇ 33 that satisfy the relation The value of the term on the right-hand side of the relational expression is calculated using a multiplier, and the calculation of each term on the right-hand side of the relational expression is performed using an analog adder / subtracter.From these calculation results, the detection values Ax, Ay, Az are calculated It is configured to obtain.
  • the second feature is that when an external force is applied to a predetermined point of action, the external force causes mechanical deformation of the single crystal substrate, and the X-axis component Ax of the external force applied to the point of action is In a signal processing circuit for an acceleration detection device, which detects a component Ay in the Y-axis direction orthogonal to this based on electric signals Vx and Vy generated due to mechanical deformation,
  • the coefficients K11, K12, K21, and K22 are calculated so that the following relational expression holds, the value of the term on the right side of the relational expression is calculated using an analog multiplier, and the value of the right side of the relational expression is calculated using an analog adder / subtractor.
  • Each inter-term operation is performed, and detection values Ax and A y are obtained from these operation results.
  • the third feature is that a plurality of resistive elements exhibiting the piezoresistive effect, whose electrical resistance changes due to mechanical deformation, are arranged on a single crystal substrate, and external force is applied to a predetermined working point in the XYZ three-dimensional coordinate system. When applied, this external force causes mechanical deformation of the single crystal substrate, and the X-axis component Ax, Y-axis component Ay, and Z-axis component of the external force applied to the point of action
  • a signal processing circuit for a power sensor that detects the component Az based on voltage values Vx, Vy, and Vz obtained based on a bridge circuit configured by a plurality of resistance elements
  • a x K 11 V x + K 12 V y + ⁇ 13 V A between A x, A y, A z and V x, V y, V z
  • a y ⁇ 21 V ⁇ + ⁇ 22 Vy + K 23 V ⁇
  • the coefficients K11, ⁇ 12, ⁇ 13, ⁇ 21, ⁇ 22, ⁇ 23, ⁇ 31, ⁇ 32, ⁇ 33 are obtained such that the following relational expression holds, and the analog right side of the relational expression is calculated using an analog multiplier.
  • the values are calculated, the inter-term operations on the right side of the relational expression are performed using an analog adder / subtracter, and the detection values Ax, Ay, Az are obtained from the results of these operations.
  • the fourth feature is that a plurality of resistive elements exhibiting a piezoresistive effect, whose electrical resistance changes due to mechanical deformation, are arranged on a single crystal substrate, and when an external force acts on a predetermined action point, the external force Mechanical deformation occurs in the single-crystal substrate, and the X-axis component Ax of the external force applied to the point of action and the Y-axis component Ay orthogonal to this are composed of two sets of resistance elements.
  • A K 11 VX + K 12 V y
  • a y K 21 V x + K 22 V y
  • the coefficients K ll, K 12, K 21, and K 22 are calculated such that the following relational expression holds, the value of the term on the right side of the relational expression is calculated using an analog multiplier, and the right side of the relational expression is calculated using an analog adder / subtractor. , And the detection values A x and A y are obtained from the results of these operations.
  • a characteristic matrix indicating the state of interference occurring between the axial components and an inverse characteristic matrix that is an inverse matrix thereof are obtained in advance.
  • the influence of interference can be canceled.
  • the circuit configuration is simplified, and the correction circuit can be realized at low cost.
  • the operation speed is high, and no problem occurs when measuring instantaneous phenomena.
  • the present invention has the following features.
  • the first feature is
  • a flexure element having an action portion that receives the action of a force, a fixed portion fixed to the sensor body, and a flexible portion formed between them;
  • the force acting on the acting body is converted into an electric signal by converting the acting body for transmitting the acting force to the acting portion and the mechanical deformation generated in the strain body by the transmitted force into an electric signal.
  • a method for testing a sensor comprising:
  • the first part and the second part which are located at positions facing each other and cause displacement between them by the action of force, are defined, Coulomb force is applied between them, and the applied Coulomb force and the detection result by the detecting means Based on the above, the sensor is tested.
  • Coulomb force acts between the first part and the second part. Due to this Coulomb force, the first portion is displaced with respect to the second portion, and induces mechanical deformation in the flexure element. Therefore, the same state as when an external force is applied to the working body can be created, and the sensor can be tested without actually applying the external force.
  • a first electrode layer is formed on a first portion
  • a second electrode layer is formed on a second portion
  • voltages of the same polarity are applied to the first electrode layer and the second electrode layer, respectively.
  • a repulsive force is applied between the two
  • an attractive force is applied between the two by applying voltages of different polarities.
  • the test is performed while the test is being performed, and the test is performed.
  • a Coulomb force can be applied by applying a voltage between two opposing electrode layers.
  • the Coulomb force can be used as both a repulsive force and an attractive force, enabling a more flexible test.
  • a flexure element having an action portion subjected to a force action, a fixed portion fixed to the sensor main body, and a flexible portion formed between them, and
  • the force acting on the acting body is converted into an electric signal by converting the acting body that transmits the acting force to the acting portion and the mechanical deformation generated in the strain body by the transmitted force into an electric signal.
  • a method for testing a sensor comprising:
  • a voltage of the first polarity is applied to the electrode layers on the first surface, and a voltage of the first polarity or a voltage of the second polarity opposite thereto is applied to each electrode layer on the second surface.
  • a voltage of the first polarity or a voltage of the second polarity opposite thereto is applied to each electrode layer on the second surface.
  • Selectively apply for each electrode layer between the electrode layer on the first surface and the electrode layer on the second surface.
  • a Coulomb force consisting of a repulsive force or an attractive force is applied to the sensor, and a sensor test is performed based on the applied Coulomb force and the detection result by the detecting means.
  • one electrode layer is composed of a plurality of sub-electrode layers, a test is performed in which the coulomb force is applied in various directions by selecting the polarity of the applied voltage. Will be able to do it.
  • a fourth feature is that the acceleration sensor has an action portion that receives a force action, a fixed portion fixed to the sensor main body, and a flexible portion formed therebetween. Strain body,
  • a weight body for receiving a force action by the acceleration applied to the sensor body, transmitting the applied force to the action section to cause mechanical deformation of the flexure element
  • a first electrode layer formed on a first surface that is displaced by the action of acceleration
  • a second electrode layer formed on a second surface opposite to the first surface
  • Wiring means for connecting the resistance element, the first electrode layer, and the second electrode layer to an external electric circuit
  • the strain body can be mechanically deformed.
  • two electrode layers for performing the test according to the above-described first feature are formed in the acceleration sensor, and wiring is performed for the two electrode layers. Therefore, a test can be performed only by connecting a predetermined electric circuit to the acceleration sensor.
  • the fifth feature is that in the magnetic sensor,
  • a flexure element having an action portion subjected to a force action, a fixed portion identified by the sensor main body, and a flexible portion formed between them, and
  • a magnetic body for receiving a force action by the magnetic field in which the sensor body is placed, transmitting the applied force to the action portion to cause mechanical deformation of the flexure element
  • a first electrode layer formed on a first surface that is displaced by the action of a magnetic force
  • a second electrode layer formed on a second surface opposite to the first surface
  • Wiring means for connecting the resistance element, the first electrode layer, and the second electrode layer to an external electric circuit
  • a predetermined voltage on the first electrode layer and the second electrode layer By applying pressure to cause Coulomba to act between the two electrode layers, it is configured such that mechanical deformation can be caused in the flexure element even when no magnetic force is applied.
  • two electrode layers for performing the test according to the above-described first feature are formed in the magnetic sensor, and wiring is performed for the two electrode layers. Therefore, a test can be performed only by connecting a predetermined electric circuit to this magnetic sensor.
  • a sixth feature is that, in the sensor having the above-described fourth or fifth feature, one of the first electrode layer and the second electrode layer is electrically connected to a single electrode.
  • Layer, and the other electrode layer is composed of a plurality of electrically independent sub-electrode layers.
  • one electrode layer is constituted by a single electrode layer and the other electrode layer is constituted by a plurality of sub-electrode layers, so that the polarity of the electrode to be applied can be selected. This makes it possible to perform tests in which Coulomb force is applied in various directions.
  • a seventh feature is that, in the sensor having the above-described sixth feature, the other electrode layer is composed of two electrically independent sub-electrode layers, and the voltage applied to each sub-electrode layer is Select the polarity of The mechanical deformation in the line direction connecting the centers of the two sub-electrode layers and the mechanical deformation in the direction perpendicular to the layer surface of the two sub-electrode layers cause That's what I did.
  • the seventh feature since two sub-electrode layers are provided, it is possible to perform a test in which a cron force is applied in two directions perpendicular to each other.
  • the eighth feature is that, in the sensor having the above-described sixth feature, the other electrode layer is constituted by four electrically independent sub-electrode layers, and these sub-electrode layers are orthogonal to each other.
  • the two line segments at each end position and selecting the polarity of the voltage applied to each sub-electrode layer, mechanical deformation in the direction of the first line segment of the two line segments and the second line.
  • the mechanical deformation in the split direction and the mechanical deformation in the direction perpendicular to the layer surface of the four sub-electrode layers are caused in the strain body.
  • the eighth feature since four sub-electrode layers are provided in a cross shape, it is possible to perform a test in which a coulomber is applied in three directions perpendicular to each other. .
  • a ninth feature is that, in the sensor having the fourth or fifth feature described above, the first electrode layer and the second electrode layer are formed by a plurality of first sub-electrodes, each of which is electrically independent. And a plurality of electrically independent second sub-electrode layers, By selecting the polarity of the voltage applied to each sub-electrode layer, the mechanical deformation generated in the flexure element is given a direction.
  • the present invention has the following features.
  • the active part is defined at the center of the substrate, the flexible part is defined around it, and the fixed part is further defined around it.
  • a groove is dug in the flexible part on the lower surface of the substrate, or the flexible part of the substrate is defined.
  • a working body for transmitting a force to the working portion is mounted on the lower surface of the working portion
  • a pedestal for supporting this fixed part is joined to the first part on the lower surface of the fixed part,
  • the second portion of the lower surface of the fixed portion and a part of the upper surface of the operating body are configured to face each other with a predetermined gap therebetween.
  • the displacement can be limited within a predetermined range.
  • the central portion of the upper surface of the working body is abutted on the lower surface of the working portion of the substrate, but its side portion extends below the fixed portion of the substrate. Therefore, it is possible to design the volume of the working body large as a whole, and the weight of the working body increases, and the sensitivity can be easily improved.
  • the side of the working body extends below the fixed part of the substrate, the lower surface of the fixed part of the substrate is used as a control member, so that the upward displacement of the working body can be limited. ⁇ Therefore, there is no need to provide a separate upward control member, and the structure can be simplified.
  • the second feature is that in the sensor having the above-described first feature,
  • the inner surface of the pedestal and the outer surface of the working body are configured to face each other with a predetermined gap, and the lateral displacement of the work rest can be limited to a predetermined range by the inner surface of the pedestal. It is like that.
  • the inner surface of the pedestal and the outer surface of the operating body are configured to face each other with a predetermined gap.
  • the inner side surface of the pedestal can be used as a control member to limit the lateral displacement of the working rest. Become like Therefore, there is no need to separately provide a restricting member in the lateral direction, and the structure can be simplified.
  • the third feature is that, in the sensor having the above-described first or second feature,
  • the pedestal is fixed to the control surface so that the predetermined control surface and the lower surface of the operating body face each other with a predetermined gap, and the downward movement of the operating body is limited to a predetermined range by this control surface. It is made possible.
  • a predetermined control surface is further provided, and the pedestal is fixed to the control surface such that the lower surface of the operating body and the control surface face each other with a predetermined gap. .
  • this control surface allows the downward displacement of the working body to be limited within a predetermined range.
  • the fourth feature is that an action part is defined almost at the center of the substrate, a flexible part is defined around the action part, and a fixed part is further defined around the action part.
  • an operating body for transmitting a force to the acting part is joined to a lower surface of the acting part.
  • the fourth feature is based on the fact that the inventor of the present application has found the optimum range of the distance between the action point defined at the center of the upper surface of the substrate and the center of gravity of the action body. This optimum range satisfies the condition that the sensitivity in all directions is almost uniform when detecting physical quantities in three-dimensional directions. For this reason, a sensor with no difference in detection sensitivity depending on the direction can be realized.
  • the fifth feature is that in a method of manufacturing a sensor using a resistance element,
  • a girder-shaped groove is dug on the second surface of the first substrate in accordance with the position of the ring, and a rectangular groove is formed in the flexible region, which is a part of the girder-shaped groove. Providing flexibility;
  • a rectangular groove is formed in the flexible region on the second surface of the first substrate. Since this rectangular groove can be easily formed by digging a girder-shaped groove by mechanical processing, an accurate groove can be efficiently formed.
  • a weight rest or a magnetic material is formed by a part of the second substrate, and a pedestal for supporting the first substrate is formed by another part. That is, before performing the dicing process, it becomes possible to form a weight or a magnetic material and a pedestal on a wafer basis.
  • a sixth feature is that in a method of manufacturing a sensor using a resistance element,
  • a plurality of unit regions are defined on the substrate, and a rectangular flexible region having a width is defined within each unit region, and an action region is provided on either the inside or the outside of the ring, and the other is provided. Defining a fixed region for each,
  • a plurality of grooves are dug in the vertical direction and the horizontal direction, respectively. Or a step in which four grooves are formed on each side of the fixed region, and the grooves make the flexible region flexible.
  • the working body which is joined to the working area of the first substrate and is composed of a part of the second board and the fixed body of the first board is Forming a pedestal that is attached to and is comprised of a portion of the second substrate;
  • FIG. 1 is a sectional view of an acceleration sensor to which the present invention is applied;
  • Fig. 2 is a top view of the semiconductor pellet which is the center of the sensor of Fig. 1,
  • FIG. 3 is a top view of the weight body and the pedestal of the sensor of FIG. 1
  • FIG. 4 is a top view of a lower control member of the sensor of FIG. 1
  • FIG. 5 is a top view of an upper control member of the sensor of FIG. Bottom view
  • Fig. 6a-6c is the bridge circuit diagram assembled for the sensor of Fig. 1,
  • Fig. 7a-7c is a stress distribution diagram when force X in the X-axis direction is applied to the sensor shown in Fig. 1,
  • Fig. 8a-8c is a stress distribution diagram when the force Fy in the Y-axis direction acts on the sensor shown in Fig. 1,
  • Fig. 9a-9c is a stress distribution diagram when a force Fz in the Z-axis direction acts on the sensor shown in Fig. 1,
  • FIG. 10 is a table showing the detection operation of the sensor shown in FIG. 1,
  • FIG. 11 is a block diagram of a signal processing circuit for an acceleration detecting device according to the present invention.
  • FIG. 12 is a block diagram of another signal processing circuit for an acceleration detecting device according to the present invention.
  • FIG. 13 is a diagram showing a multiplier used in the signal processing circuit of the present invention. Physical schematic,
  • FIG. 14 is a specific circuit diagram of an adder used in the signal processing circuit of the present invention.
  • FIG. 15 is a circuit diagram of a specific circuit serving also as a multiplier and an adder used in the signal processing circuit of the present invention
  • FIG. 16 is a specific partial circuit diagram of a signal processing circuit for an acceleration detection device according to the present invention.
  • FIG. 17 is a perspective view showing a state where an electrode layer is formed on the weight body and the pedestal of the sensor of FIG. 1,
  • FIG. 8 is a top view showing a state where an electrode layer is formed on the semiconductor pellet of the sensor of FIG. 1,
  • FIG. 19 is a cross-sectional view showing a state in which electrode layers are formed at various parts of the central part of the sensor of FIG. 1,
  • 20 to 22 are cross-sectional views showing the state of displacement of the central portion of the sensor shown in FIG. 1,
  • FIG. 23 is a top view showing a state where a practical electrode layer is formed on the semiconductor bellet of the sensor of FIG. 1,
  • FIG. 24 is a cross-sectional view showing a state where a practical electrode layer is formed at a predetermined position in the central portion of the sensor of FIG. 1,
  • FIG. 25 is a cross-sectional view showing a state in which an electrode layer according to another embodiment is formed at a predetermined position of a central portion of the sensor of FIG. 1,
  • FIG. 26 is a top view showing a state where an electrode layer according to still another embodiment is formed on the semiconductor pellet of the sensor of FIG. 1, and FIG. 27 is another view of the upper control member of the sensor of FIG.
  • FIG. 28 is a bottom view showing a state where an electrode layer according to an embodiment is formed
  • FIG. 28 is a cross-sectional view showing a state where an electrode layer according to another embodiment is formed at a predetermined portion of a central portion of the sensor in FIG.
  • FIG. 29 is a cross-sectional view showing a state where an electrode layer according to still another embodiment is formed at a predetermined position of a central portion of the sensor of FIG. 1,
  • FIG. 30a is a schematic diagram showing a voltage application method for realizing the same state as when a force in the Z direction acts on the weight rest of the sensor shown in FIG. 1,
  • FIG. 4 is a schematic diagram showing a method of applying a voltage for realizing the same state as when a force in the 1Z direction is applied to the weight of the sensor shown in FIG.
  • FIG. 31 is a structural side sectional view of an acceleration sensor according to one embodiment of the present invention.
  • FIG. 32 is a perspective view of the center of the device of the sensor shown in FIG. 31;
  • FIG. 33 is a detailed side sectional view of the central portion of the apparatus shown in FIG. 32
  • FIG. 34 is a top view of the semiconductor pellet 310 shown in FIG. 33
  • FIG. 35 is a top view of the weight body 320 and the pedestal 330 shown in FIG. 33,
  • FIG. 36 is a top view of the control board 340 shown in FIG. 33, and FIGS. 37 and 38 form the weight body 32 and the pedestal 330 shown in FIG. Auxiliary board that becomes 3 50 side sectional view and top view,
  • FIG. 39 is a diagram showing the position where the weight body 320 is joined to the semiconductor bellet 310 shown in FIG. 33;
  • 40 and 41 are a side sectional view and a top view showing an auxiliary substrate according to another embodiment of the present invention.
  • FIG. 42 and 43 are a side sectional view and a bottom view showing a semiconductor pellet according to still another embodiment of the present invention
  • FIG. 44 is a semiconductor pellet 310 ′ shown in FIG. 43. Figure showing the position where the weight body 320 is joined to
  • FIG. 45 is a structural side sectional view of an acceleration sensor according to another embodiment of the present invention.
  • FIG. 46 and FIG. 47 are side sectional views of a force sensor according to one embodiment of the present invention.
  • FIG. 48 is an explanatory diagram of a conventional air bag system
  • FIG. 49 is an explanatory diagram of an air bag system using the acceleration sensor according to the present invention
  • FIG. 50 is a diagram showing the principle of dimensional design according to the present invention
  • FIG. 51 is a side sectional view showing a structure when a test method specific to the sensor according to the present invention is applied,
  • Fig. 52 is a top view of the control board 340 shown in Fig. 51.
  • the present invention can be widely applied to a device for detecting a physical quantity acting as an external force in general, and can be used not only for a force sensor but also for an acceleration sensor and a magnetic sensor. In other words, all sensors have a common basic structure at the center. Therefore, here, an acceleration sensor is taken as an example, and an application target of the present invention will be briefly described.
  • Fig. 1 is a structural sectional view showing an example of an acceleration sensor.
  • the center unit of this sensor is a semiconductor pellet.
  • FIG. 2 shows a top view of the semiconductor pellet 10.
  • the cross section of the semiconductor pellet 10 shown in the center of FIG. 1 corresponds to a cross section of FIG. 2 cut along the X axis.
  • the semiconductor belt 10 is divided into three regions of an action portion 11, a flexible portion 12, and a fixed portion 13 in order from the inside to the outside.
  • an annular groove is formed on the lower surface of the flexible portion 12. Due to this groove, the thickness of the flexible portion 12 is reduced, and the flexible portion 12 has flexibility. Therefore, when a force is applied to the action section 1 with the fixing section 13 fixed, the flexible section 1 2 Deflects causing mechanical deformation.
  • a weight body 20 is joined below the action section 11, and pedestals 21, 22 are connected below the fixed section 13. Since a silicon substrate is used as the semiconductor pellet 10, it is preferable to use a borosilicate glass such as a pyrex having a thermal expansion coefficient close to that of silicon as the weight body 20. .
  • pedestals 23 and 24 are further arranged in a direction perpendicular to the plane of the paper, and pedestals 21a to 24a are arranged in an oblique direction. This is clearly shown in FIG. 3, which shows the upper surface of only the weight body 20 and the pedestals 21-24, 21a-24a.
  • the cross section shown in FIG. 1 corresponds to a cross section obtained by cutting FIG. 3 along section line 11. It should be noted that the pedestal is arranged in a state as shown in FIG.
  • a control member 30 is connected below the pedestals 21 to 24. This control member
  • FIG. 4 shows the upper surface of 30.
  • a rectangular groove 31 (a hatched portion in FIG. 4: as will be described later, the hatched portion in FIG. Instead, it shows an electrode forming portion. ) Is formed.
  • the cross section shown in FIG. 1 corresponds to a cross section obtained by cutting FIG. 4 along the section line 11.
  • the control member 40 covers the upper surface of the semiconductor pellet 1 ⁇ .
  • the lower surface of the control member 40 is shown in FIG.
  • a rectangular groove 41 (a hatched portion in FIG. 5; as will be described later, the hatched portion in this figure does not show a cross section but shows an electrode forming portion.) are formed.
  • the cross-section shown in FIG. 1 corresponds to a cross-section obtained by cutting FIG. 5 along a section line.
  • the bottom surface of the control member 30 is joined to the inner bottom surface of the package 50, and the semiconductor belt 10 and the weight body 20 are supported by the pedestals 21 to 24 and 21a to 24a. You.
  • the weight 2 ⁇ is suspended inside.
  • the package 50 is covered with a lid 51.
  • the bonding pad 14 provided on the semiconductor pellet 10 is electrically connected to each resistance element within the pellet, and the bonding pad 14 and the external pad provided on the side of the package.
  • the wiring electrodes 52 are connected by bonding wires 15.
  • control members 30 and 40 are provided in the sensor shown in FIG.
  • the control member 30 controls the downward displacement of the weight body 20 so as not to exceed an allowable value
  • the control member 40 controls the weight body 20 (actually, the working portion 11 ) Is controlled so that the upward displacement does not exceed the allowable value.
  • the pedestals 21 to 24 also serve to control the lateral displacement of the weight body so as not to exceed an allowable value. Even if an excessive external force acts on the weight body 20 and attempts to move beyond the allowable value described above, the weight body 20 collides with these members and is prevented from moving. As a result, the semiconductor belt 1 ⁇ is not subjected to mechanical deformation exceeding the allowable value and is protected from damage.
  • a plurality of resistive elements R (Rxl to Rx4, Ryl to Ry4, Rzl to Rz4) are formed.
  • These resistance elements R are resistance elements having a piezoresistive effect in which electric resistance changes due to mechanical deformation, and are arranged on the upper surface of the flexible portion 12 in a predetermined direction.
  • the external wiring electrode 52 is led out from the inside of the package to the outside so as to pass through the wiring hole on the side surface of the package 50.
  • the internal end of the external wiring electrode 52 is connected to a bonding pad 14 (not shown in FIG. 1) provided on the fixing portion 13 of the semiconductor pellet 1 ⁇ by a bonding wire 15.
  • the bonding pad 14 is connected to the resistance element R by a wiring pattern (not shown). Therefore, if the external wiring electrode 52 is electrically connected to an external control device (not shown), the change in the resistance value of the resistance element R can be measured by the external control device.
  • the resistance elements Rzl to Rz4 are A force that can be arranged at any arbitrary point It is preferable to arrange the force at an appropriate position in consideration of the crystal dependence of the piezoresistance coefficient.
  • each of these resistance elements R is electrically connected to an external control device through the external wiring electrode 52.
  • a bridge circuit as shown in FIGS. 6a to 6c is formed for each resistance element R. That is, for the resistance elements Rxl to Rx4, a bridge circuit as shown in Fig. 6a is assembled, and for the resistance elements Ryl to Ry4, a bridge circuit as shown in Fig. 6b is shown.
  • a bridge circuit as shown in FIG. 6c is formed for the resistance elements Rzl to Rz4.
  • a predetermined voltage or current is supplied to each bridge circuit from a power supply 60, and each bridge voltage is measured by voltmeters 61, 62, and 63.
  • the weight body 20 is suspended in a central space surrounded by the surrounding pedestals 21 to 24.
  • an external force acts on the weight body 20 due to the acceleration, and the weight body 20 is displaced from a fixed position. Therefore, the action portion 11 connected to the weight body 20 is also displaced from the fixed position, and the mechanical strain caused by this displacement is absorbed by the mechanical deformation of the flexible portion 12.
  • the electric resistance of the resistive element R formed thereon changes.
  • the equilibrium conditions of the bridge circuit shown in Figs. 6a to 6c are broken, and the needles of voltmeters 61, 62 and 63 move. Will be. This is the basic principle of acceleration detection by this device.
  • the acceleration component in the X-axis direction is measured by the voltmeter 61 and the acceleration component in the The acceleration component in the axial direction can be detected, and the acceleration component in the Z-axis direction can be detected by the voltmeter 63. The reasons for this are explained below.
  • FIG. 7a to 7c are schematic diagrams showing stress strain applied to each resistance element R when the force FX in the X-direction acts on the weight 2 ⁇ in the apparatus shown in FIG. .
  • Fig. 7a shows the stress distribution in the cross section along the resistance elements RX1 to Rx4
  • Fig. 7b shows the stress distribution in the cross section along the resistance elements Ryl to Ry4
  • Fig. 7c The stress distribution in the cross section along the resistance elements Rzl to Rz4 is shown.
  • the direction of extension is indicated by +
  • the direction of contraction is indicated by 1.
  • FIG. 7c shows a stress distribution in a cross section along the resistance elements Rxl to Rx4 when an X-direction force Fx acts on the weight body 20.
  • the force FX acting on the weight body 20 acts as a moment force on the surface of the semiconductor belt 10 and causes mechanical deformation of the resistance elements R and Rx3 in the contracting direction. However, mechanical deformation occurs in the extending direction for the resistance elements Rx2 and Rx4.
  • the resistance elements Ryl to Ry4 as shown in FIG. Does not change. This is because the arrangement direction (Y-axis direction) of the resistance elements Ryl to Ry4 is orthogonal to the direction of the force F x.
  • the resistance elements Rzl to Rz4 the same changes as the resistance elements Rxl to Rx4 occur as shown in FIG. 7c.
  • FIG. 8a to 8c show the distribution of stresses generated in each resistance element R when a force Fy in the Y-axis direction is applied, and each resistance element when a force Fz in the Z-axis direction is applied.
  • Figures 9a to 9c show the stress distribution generated in R.
  • the weight body is used.
  • the relationship between the forces F x, F y, F z acting on 20 and the change in the resistance value of each resistance element is as shown in the table of FIG.
  • the sign + indicates an increase in the resistance value
  • the sign 1 indicates a decrease in the resistance value
  • 0 indicates no change in the resistance value.
  • the voltmeter 61 detects the force FX
  • the voltmeter 62 detects the force F
  • the voltmeter 6 It can be seen that the force F z is detected by 3.
  • the force FX is applied, the resistance of one side of the ridge will increase and the resistance of the other side will decrease in the bridge circuit in Fig. 6a. It will swing.
  • the needle of the voltmeter 62 does not swing because there is no change in any of the resistance values, and in the bridge circuit of Fig.
  • the three-dimensional acceleration detecting device that detects the acceleration direction components of all three axes of XYZ is described.
  • the acceleration direction components of the two axes of XY, YZ, or XZ are described.
  • a two-dimensional acceleration detection device for detecting can be similarly configured. In this case, it is only necessary to prepare a resistor-bridge circuit for 2 mm.
  • an example is shown in which three sets of bridges are used to detect the respective acceleration components in the three-axis direction.However, two sets of bridges are used to detect the respective acceleration components in the three-axis direction.
  • the tree invention can also be applied to a detecting device (for example, US Pat. No. 4,745,812).
  • an acceleration detection device has been described as an example, but if a magnetic material is used instead of the weight body 20, this device can be used as a magnetic detection device that detects magnetism acting on the magnetic material.
  • the structure is such that an external force acts directly on the weight body 20 to provide a force detection device.
  • the force to be detected (or 6a to 6c, the X-axis component is determined by the voltage value Vx at the voltmeter 61, and the Y-axis component is determined by the voltage at the voltmeter 62.
  • the Z-axis direction component is detected by the voltage value V z in the voltmeter 63, respectively.
  • a voltage value obtained by performing an operation based on the bridge voltage rather than the bridge voltage itself is Vx.Vy.Vz It will be used as Each resistance element R is arranged as shown in Fig.
  • each axial component detected in this way is obtained as a completely independent detection value, and no interference occurs.
  • the state of this interference can be measured. That is, a force (or acceleration or magnetism) having a known magnitude is applied in a predetermined direction, and the detected value (readout of each voltmeter) obtained at that time is measured. As a result, the following characteristic matrix is known to be obtained.
  • V x, V y, and V z are the readings of voltmeters 61, 62, and 63, respectively, and Ax, Ay, and Az are the forces (or acceleration or magnetism) actually applied.
  • P11 to P33 are coefficients constituting a characteristic matrix. This determinant can be transformed as follows.
  • the matrix using the coefficients K 11 to K 33 is the inverse matrix of the matrix using the coefficients P] I to P 33.
  • a X K 11 V X + K 12 V y + K 13 Vz
  • Fig. 11 shows the circuit The block diagram is shown.
  • Vx, Vy, and Vz are analog voltages obtained by voltmeters 61 to 63, respectively.
  • Blocks 10 0 to 10 9 displaying coefficients K 11 to K 33 are analog multipliers for multiplying the respective coefficient values, and blocks 1 1 1 to 1 indicated by “+” symbols 13 is an analog adder. If a circuit having such a configuration is used, correct detection values Ax, Ay, and ⁇ can be obtained by the adders 11 :! It is obtained as an output voltage of ⁇ 113. This can be easily understood from the fact that this circuit corresponds to the above-mentioned arithmetic expression.
  • Blocks 201 to 204 are analog computing units that multiply the respective coefficient values, and correct detection values Ax and A are obtained as output voltages of the adders 211 and 212.
  • FIG. 13 is a circuit diagram showing one configuration example of the multiplier.
  • Vout one (R2ZR1) Vin
  • FIG. 14 is a circuit diagram showing a configuration example of the adder.
  • the resistors R may all have the same resistance value.
  • Vout (Vinl + Vin2 + Vin3) ⁇ 2/3. Therefore, the input voltage can be added.
  • Figure 15 shows a circuit that has the functions of both a multiplier and an adder. The voltage V inl,
  • V in2 and V in3 are given, a voltage Vout is obtained at the output side.
  • Vout -((R 4 / R 1) V inl
  • this circuit performs the function of both the multiplier and the adder.
  • FIG. 16 uses the multiplier shown in FIG. 13 and the adder shown in FIG.
  • Ax (KllVx + ⁇ 12Vy + K13Vz) ⁇ 2/3.
  • the voltages Vx, Vy, and Vz are obtained by giving the voltages appearing on the voltmeters 61 to 63 in FIGS. 6a to 6c as they are, respectively, by the operational amplifiers 0P4, 0P5, and 0P6. Amplified to K11 times, K12 times, and K13 times, respectively.
  • the operational amplifiers 0P7 and 0P8 have an amplification factor of 1 and simply sign. It will only perform the function of inversion. Thus, the values of KllVx, K12Vy, and K13Vz are determined, and a voltage corresponding to these values is supplied to the operational amplifier 0P9.
  • the operational amplifier 0 P 9 functions as an adder
  • Vout (K 11 Vx + K 12Vy + K 13Vz) ⁇ 2/3 is output. This output voltage Vout corresponds to the detection value Ax to be obtained.
  • the present invention can be realized using various circuits other than the force ⁇ .
  • the multiplier and the adder according to the present invention any circuits may be used as long as they can perform analog processing of multiplication and addition. Also, it is not necessary to configure the multiplier and the adder with separate circuit elements. For example: No :!
  • the use of a circuit as shown in FIG. 5 is advantageous in that a single operational amplifier 0 P 3 can serve as a multiplier and an adder, and the number of components can be reduced.
  • the sign of the coefficient K must be taken into account and the input voltages V inl, Vin2, and V in3 must be given signs.
  • three resistors may be prepared, these may be connected in a Y-shape such that one end thereof is commonly connected, a voltage may be applied to each other end, and an output may be obtained from the common end.
  • the cost can be reduced and the calculation can be completed at high speed compared to the case where the correction calculation is performed using a digital circuit. This is advantageous when measuring.
  • the acceleration detector There are also applications such as shock detection in collisions. By applying the present invention, a correct measurement value can be obtained instantaneously.
  • the signal processing circuit according to the present invention can be widely applied to an acceleration detecting device having a force detecting device as a base, a magnetic detecting device, and the like.
  • the present invention is widely applicable to force detection devices and magnetic detection devices. 2.4 Advantages of this processing circuit
  • the inverse matrix of the characteristic matrix indicating the state of the interference generated between the ⁇ components is obtained in advance, and the correction operation using the inverse matrix is performed. Since the calculation is performed by the analog arithmetic circuit, it is possible to obtain a correct measurement value instantly with a low-cost circuit while canceling out the influence of interference.
  • the sensor can be placed in the same environment where acceleration was applied without actually applying acceleration.
  • This electrode layer may be any layer made of a conductive material.
  • a metal such as aluminum may be thinly formed at a predetermined position by vapor deposition or sputtering.
  • the upper surface of the aluminum, for the surface protection, S i 0 2 film or S i N is preferred arbitrarily Covering with film.
  • the electrode layer is formed in each of the following parts. First, as shown in FIG. 4, an electrode layer E 1 (indicated by hatching in the figure) is formed in a groove 31 provided in the control member 30 and, as shown in FIG.
  • An electrode layer E 2 (indicated by hatching in the figure) is formed in the provided groove 41. Further, as shown in FIG. 17, the electrode layer E 3 (shown by hatching in the figure: all five sides) The force generated is a single electrically conductive electrode layer), and the electrode layers E4 to E7 (shown as hatching in the figure) are formed on the inner surfaces of the pedestals 21 to 24. To form An electrode layer E 8 (indicated by hatching in the figure) is formed on the upper surface of the semiconductor bellet 10 so as to avoid the resistance element R, as shown in FIG. Thus, in FIG. 4, FIG. 5, FIG. 17, and FIG. 18, an electrode layer is formed in each region to be hatched.
  • FIG. 19 the cross-sectional view of the central part of the sensor in the package is as shown in Fig. 19 (In Fig. 19, the hatched portion indicates the electrode layer, and the hatching indicating the cross-section is complicated. It is omitted because it becomes unnecessary). From FIG. 19, the relative positional relationship between the electrode layers E1 to E8 can be understood. Note that the dashed lines in FIG. 19 indicate wiring for each electrode layer. Such a wiring can be further connected to an external wiring electrode 52 (see FIG. 1) outside the knocking by a bonding wire. In addition, the electrode layer E3 formed on the surface of the weight body 20 is wired by a bonding wire 25.
  • each of the electrode layers E1 to E8 thus formed is that they are formed at positions facing each other for each pair of electrode layers. That is, as shown in Fig. 19, E2: E8, E3: E4, E3: E5, E3: E6, E3: E7, E3: E1, Shape (Electrode layer E 3 has five surfaces facing the opposite electrode layers, respectively).
  • Coulomb force acts between them. That is, a repulsive force acts when a voltage of the same polarity is applied between the two, and an attractive force acts when voltages of different polarities are applied.
  • the sensor can be placed in the same environment where the acceleration in the X direction is acting on the sensor body. (When acceleration is applied to the sensor body, Of inertia force). In this environment, if it is checked whether or not the output indicating the change in the resistance value of the resistance element indicates that the acceleration in the -X direction has been detected, a test relating to the acceleration in the X direction can be performed.
  • FIG. 20 is a sectional view of a central portion of the acceleration sensor. Now, points ⁇ 1 and P2 are set at two places on the semi-suspended pellet 10 and points Q1 and Q2 are set at two places inside the control unit ⁇ 40. The points P 1 and Q ⁇ ⁇ face each other, and the points ⁇ 2 and Q 2 face each other.
  • an acceleration detection test in the ⁇ X direction can be performed. Understand.
  • the acceleration detection test in the soil Y direction can be performed similarly by changing the position of the electrode layer by 90 °.
  • a repulsive force is applied between the points P 1 and Q 1
  • a repulsive force is also applied between the points P 2 and Q 2, as shown in FIG. Force—the same state as when F z is applied. In other words, it is the same state as the acceleration in the + Z direction applied to the sensor body.
  • both sides exert an attractive force, the state becomes the same as that of the acceleration in the Z direction.
  • an acceleration detection test in the Z direction can be performed by forming an electrode layer on a predetermined portion of the upper surface of the semiconductor pellet] 0 and a predetermined portion of the lower surface of the control member 40.
  • Electrodes E9 to E12 are formed on the upper surface of the semiconductor pellet 10 as shown by hatching (not shown in section) in FIG. Each electrode layer is formed so as to avoid the region where the resistance element R is formed, and is connected to bonding pads B9 to B12 by wiring layers W9 to W2, respectively. Bonding wires (not shown) are connected to the bonding pads B9 to B12, and finally, an electrical connection is made to a lead outside the package.
  • each resistance element R is also connected to each bonding pad 14 and is electrically connected to a lead outside the package.
  • a wiring layer made of aluminum or the like is formed on the semiconductor belt 10 for wiring to the resistance element R.
  • the electrode layers E 9 to E 12 and the wiring layers W 9 to W 1 To form 2 it is preferable to use the same mask as the wiring layer made of aluminum or the like. In this way, additional electrode layers E 9 to E 12 and wiring layers W 9 to W 12 for testing can be formed only by adding work that changes the conventional mask pattern. it can.
  • the electrode layers E9 to E12 and the wiring layers W9 to W12 may be formed as diffusion layers using a diffusion process for forming a gauge resistance or the like.
  • an electrode layer E2 shown in FIG. 5 may be formed on the lower surface of the control member 40. This may be achieved by depositing aluminum or the like on the surface by vapor deposition or sputtering.
  • the electrode layer E2 shown in FIG. 5 is a physically single electrode layer, it is physically composed of a plurality of electrodes and electrically connected so that they have the same potential. They may be connected and configured with "a plurality of physical layers but a single electrically conductive electrode layer".
  • FIG. 24 shows a cross-sectional view when the above-described electrode layers are formed. The electrode layer E2 is wired as shown by a broken line in the figure, and further connected to an external lead. As described above, one electrode layer E2 was formed as one electrode layer, and four sub-electrode layers E9 to E12 were formed as the opposite electrode layer. You.
  • a voltage of + V is applied to the electrode layer E2, and an acceleration detection test in all three-dimensional directions can be performed as follows. is there.
  • force + Fz can be applied to the weight body 20, and the acceleration detection test in the 1Z direction can be performed.
  • the acceleration detection test on the X, Y, and Z axes has been described above.According to the acceleration in the directions not on the X, Y, and Z axes, by applying a predetermined voltage to the electrode layers E9 to E12, A detection test can be performed.
  • the applied voltages + V and ⁇ V are set to voltage values that can sufficiently detect a change in the resistance value of the resistance element. This value depends on the thickness and the diameter of the flexible portion 12 forming the annular diaphragm.
  • the above-described embodiment is one embodiment of the present invention, and various other embodiments can be considered. Some of them are described below.
  • the embodiment whose cross section is shown in FIG. An electrode layer E 13 is formed instead of the electrode layer E 2. Since the electrode layer E13 is formed on the upper surface of the control member 40, wiring to the outside is facilitated. However, the Coulomb force acting between the electrodes is slightly weaker than in the above-described embodiment.
  • the electrode layers E14 to E17 are formed instead of the electrode layers E9 to E12 of the above-described embodiment, and the wiring layer W corresponding thereto is formed. 14 to W17 and bonding pads B14 to B17.
  • Such an arrangement has the advantage that it does not hinder the wiring to the resistive element R, but the electrode layer is arranged inside the most flexible position of the semiconductor pellet 10. In addition, since the area of the electrode is reduced, the force acting efficiency is reduced.
  • the embodiment shown in FIG. 27 and FIG. 28 is obtained by reversing the upper and lower relations of the electrode layers of the embodiments described above. That is, four electrode layers E 18 to E 21 (shown by hatching) and their wiring layers W 18 to W 21 are formed in the grooves 41 on the lower surface of the control member 40.
  • the opposite electrode may be, for example, a single electrode E8 formed on a semiconductor blade 10 as shown in FIG.
  • each electrode layer E 18 ′ to ⁇ 21 ′ are formed instead of the electrode layer E 8 of the embodiment shown in FIG.
  • the electrode layers E 18 'to ⁇ 21' are ⁇
  • the electrodes are symmetrical with 18 to E 21, and four pairs of electrodes facing up and down are formed. If the four sets (eight in total) of the electrodes are all electrically independent, it is possible to perform tests in various directions by selectively applying various voltages to them. For example, as shown in FIG. 29, the electrode E 19 is given a charge of “++ J, the electrode E 19 ′ is charged with ⁇ —one”, and the electrode E 21 is
  • the present invention relates to a method for applying a Coulomb force between a first part which is displaced by the action of a force and a second part which is located opposite to the first part. Such a configuration may be adopted.
  • the present invention is directed to an acceleration sensor.
  • the present invention can be applied to a magnetic sensor using a magnetic body instead of a weight, or a force sensor. It is possible to apply.
  • the present invention can be applied not only to a three-dimensional sensor but also to a two-dimensional or one-dimensional sensor.
  • X and Z axes A two-dimensional sensor that detects acceleration and magnetism in the X-direction
  • a one-dimensional sensor that detects acceleration and magnetism in the X-axis direction has four electrodes E9 to E12 shown in Fig. 23 It is only necessary to provide two electrodes E10 and E12.
  • FIG. 30a is a schematic diagram showing a method of applying a voltage for realizing the same state as when a force in the Z direction acts on a weight body (not shown).
  • the power supply V generates a charge of opposite polarity to the electrode E 22 on the control member 4 ⁇ side and the electrodes E 23, E 24 on the semiconductor belt 10 side, and an attractive force acts between them.
  • FIG. 30b is a schematic diagram showing a voltage application method for realizing the same state as when a force in the 1Z direction acts on the weight body.
  • the power supply V generates electric charges of the same polarity to the electrode E22 on the control member 40 side and the electrodes E23, E24 on the semiconductor pellet 10 side, and causes a repulsive force to act between them. ing.
  • another electrode E 25 is formed on the upper surface of the control board 40, and a positive charge is applied to this electrode E 25. That is, by causing polarization across the control substrate 40, a negative charge is generated on the electrode E22.
  • a positive charge is also applied to the main body of the semiconductor pellet 10.
  • the upper surface of the semiconductor pellet 10 is insulated as shown in the figure. (In general, a Sio film or a SiN film) is formed. By causing polarization across the insulating layer 1 ⁇ a, negative charges are generated on the electrodes E23 and E24. O
  • An electrode layer for performing the above test is formed in the acceleration sensor, and wiring is applied to the electrode layer.Therefore, the test is performed only by connecting a predetermined electric circuit to this acceleration sensor. Can be.
  • An electrode layer for performing the above-described test was formed in the magnetic sensor, and wiring was performed for the electrode layer. Therefore, a test can be performed only by connecting a predetermined electric circuit to this magnetic sensor.
  • one electrode layer is formed of a single electrode layer, and the other electrode layer is formed of a plurality of sub-electrode layers.
  • FIG. 31 is a structural sectional view of an acceleration sensor suitable for high-sensitivity measurement according to one embodiment of the present invention.
  • the device center part 300 is composed of four elements: a semiconductor pellet 310, a weight body 320, a pedestal 330, and a control board 340.
  • the central part 300 of this device is joined to the bottom inside the package 4 ⁇ 0.
  • the lid 410 is covered.
  • the lead 420 is led out from the side of the package 400. No.
  • FIG. 32 is a perspective view of the central portion 300 of the device.
  • a plurality of resistance elements R are formed on the upper surface of the semiconductor pellet 310, and each resistance element R is electrically connected to the bonding pad 352. Bonding pad 3 5 2 and lead
  • FIG. 33 is a detailed sectional view of the device center part 300 of the acceleration sensor shown in FIG.
  • the semiconductor pellet 310 is formed of a single crystal silicon substrate in this embodiment, and the resistance element R is formed by diffusing impurities on the upper surface of the semiconductor pellet 31 °.
  • an ion implantation method may be used, or an S 0 I structure in which a gauge resistance is accumulated on a silicon substrate may be used.
  • the resistance element R thus formed has a piezoresistance effect. That is, it exhibits the property that the electrical resistance changes based on mechanical deformation.
  • An annular groove C 1 is formed on the lower surface of the semiconductor bellet 31 ⁇ .
  • the groove portion C 1 has a taper structure in which the width becomes narrower as it goes deeper (upward in FIG. 33).
  • the groove may have the same width up to the deep portion.
  • FIG. 34 is a top view of the semiconductor bellet 310.
  • the groove C 1 dug in the lower surface is indicated by a broken line.
  • the cross section of the semiconductor pellet 310 shown in FIG. 34 cut along the X axis is shown in FIG.
  • the semiconductor pellet 310 can be divided into three parts.
  • the action portion 311 is located at the center of the semiconductor pellet 310
  • the flexible portion 312 is located around the action portion
  • the fixed portion 313 is located around the action portion.
  • the thickness of the flexible portion 312 is smaller than that of the other portions due to the groove portion C1, so that the flexible portion 312 has flexibility.
  • a through hole may be partially formed in the substrate to provide flexibility.
  • a weight body 320 is joined to the lower surface of the working portion 311, and a pedestal 330 is joined to the lower surface of the fixed portion 3113.
  • FIG. 35 is a top view of the weight body 320 and the pedestal 330. A cross section taken along the section line 33-33 in FIG. 35 is shown in FIG.
  • the upper surface of the weight body 320 has a step, and a central part 3 21 of the upper surface of the weight body and a peripheral part 3 22 of the upper surface of the weight body are formed.
  • the center portion 321 of the upper surface of the weight body 321 is a slightly raised portion in the center portion of the upper surface of the weight body 3200, and this portion is joined to the lower surface of the action portion 311.
  • the pedestal 330 is composed of eight members arranged in eight directions around the weight body 320, and a groove C3 and a groove C are provided between the weight body 320 and the pedestal 330. 4 are formed.
  • the weight body 320 and the pedestal 330 are originally members made of the same substrate, and are cut and separated by the groove portions C3 and C4.
  • the groove C 3 has a width L 1 and the groove C 4 has a narrower width L 2, and as is apparent from FIG.
  • the groove C4 is formed below.
  • FIG. 36 shows a top view of the control board 340.
  • a groove C 5 is dug in the control board 340 leaving only its peripheral portion, and the bottom surface of the groove C 5 forms a control surface 341.
  • the cross section along the section line 3 3—33 in FIG. 36 is shown in FIG. As shown in FIG. 33, only the peripheral portion of the control board 340 is joined to the lower surface of the pedestal 330.
  • a semiconductor bellet 310 as shown in FIG. 34 is prepared.
  • the groove C 1 can be formed by, for example, an etching process, and resistance element R can be formed by an impurity implantation process using a predetermined mask.
  • an auxiliary substrate 350 is prepared as shown in the sectional view of FIG. 37 and the top view of FIG. Here, a cross section taken along a cutting line 37-37 in FIG. 38 corresponds to FIG.
  • the material of the auxiliary substrate 35 it is preferable to use the same silicon force and glass as those of the semiconductor pellet 310.
  • a groove C3 having a width L] is dug in a grid pattern, and a gap C2 having a width L3 is formed inside the groove C3.
  • the gap C2 can be formed, for example, by an etching process, and the groove C3 can be formed by cutting using a dicing blade. It should be noted here that the groove C4 shown in FIGS.
  • the auxiliary substrate 350 is a single substrate state.
  • the upper surface of the auxiliary substrate 350 thus prepared is abutted on the lower surface of the semiconductor bellet 31 °.
  • the center part 3 2 1 of the upper surface of the weight body is attached to the lower surface of the action part 3 1 1,
  • the peripheral part of the capture substrate 350 (the part that will later constitute the pedestal 330) is joined to the lower surface of the fixed part 313.
  • the lower surface of the auxiliary substrate 350 is cut with a dicing blade having a width of L2 to form a groove C4.
  • the groove C3 and the groove C4 are connected, and the auxiliary substrate 350 is divided into a weight 320 at the center and a pedestal 330 at the periphery.
  • a control board 340 as shown in FIG. 36 is prepared, a groove C5 is formed by an etching process or the like, and this is mounted on the lower surface of the pedestal 330.
  • a device center part 300 shown in FIG. 33 is obtained.
  • the above-described process is a method of manufacturing one unit unit.
  • manufacturing is performed in units of wafers in which a plurality of such unit units are arranged vertically and horizontally. That is, a wafer in which the unit units shown in FIG. 34 are arranged vertically and horizontally and an auxiliary substrate in which the unit units shown in FIG. 35 are arranged vertically and horizontally are joined together, and the unit unit shown in FIG. 36 is further joined.
  • the gap C2 is formed on the auxiliary substrate 350 side, but the fixed portion of the semiconductor bellet 310 is etched so that the gap C2 is provided on the semiconductor pellet 31 ° side. You may do it.
  • the device center part 300 is fixed to the bottom inside the package 400. Since the control board 340, the pedestal 330, and the fixing portion 313 are fixed to each other, the fixing portion 313 is indirectly fixed to the package 400.
  • the weight body 320 is suspended in the space surrounded by the pedestal 330. That is, as shown in FIG. 33, a groove C5 is formed on the lower surface of the weight rest 320, a groove C3 and a groove C4 are formed on the side surface, and a peripheral portion of the upper surface is formed. A gap C2 is formed. Only the central portion of the upper surface of the weight rest 320 is joined to the action portion 311.
  • the feature of the acceleration sensor described here is that it is suitable for high-sensitivity acceleration measurement.
  • the first reason is that the volume of the weight body 320 can be made as large as possible in a limited space. As shown in FIG. 33, the weight body 3 20 is joined to the action section 3 1 1 only at the center 3 2 1 of the upper surface of the weight body, but the periphery thereof expands horizontally and the groove C It extends to the inside of the fixed part 3 1 3 across the 1. For this reason, the mass of the weight body 320 can be increased, and sufficient force can be transmitted to the working section 31 even when a slight acceleration is applied.
  • the second reason is that a control member that limits the displacement of the weight body 320 within a predetermined range can be configured with a simple structure. In the structure shown in FIG.
  • the upward displacement, the lateral displacement, and the downward displacement of the weight body 320 are all limited to predetermined ranges.
  • the upward displacement it can be understood that a part of the lower surface of the fixed portion 313 functions as a control member.
  • the action part 3111 moves upward due to the bending of the flexible part 312, and the center of the upper surface of the weight body is accordingly moved.
  • Part 3 2 1 also moves upward.
  • the outer peripheral portion of the weight portion upper surface peripheral portion 3 2 2 abuts on the lower surface of the fixed portion 3 13 to hinder movement.
  • the upward displacement of the weight body 320 is limited to the range of the size of the gap C2.
  • FIG. 39 is a bottom view of the semiconductor pellet 310, in which the position of the weight body 320 is indicated by a broken line.
  • the weight body 320 is joined only to the hatched portion (lower surface of the working portion 311) in the center with diagonal lines.
  • the outer portion of the groove portion C1 is the fixed portion 313.
  • the portion hatched by the dot is the surface that functions as a control member.
  • the weight body 320 is in contact with this surface, and its upward movement is restricted.
  • the side surface of the weight body 320 contacts the inner surface of the pedestal 33 ⁇ , and the displacement is within the dimension of the groove C 4. Limited.
  • the lower surface of the weight body 320 contacts the control surface 341 of the control board 340, and the displacement is limited within the range of the dimension of the groove C5.
  • the displacement of the weight body 320 is restricted within a predetermined range for the movement in all directions, it is possible to avoid the danger of the semiconductor pellet 310 being damaged due to excessive displacement. it can.
  • Such displacement control is particularly important for highly sensitive sensors.
  • the upward displacement is controlled by using the semiconductor burette 3] ⁇ , and the lateral displacement is controlled by using the pedestal 330. Therefore, there is no need to provide separate control members, and the structure becomes very simple. Therefore, there is an advantage that mass production can be achieved.
  • the present invention has been described based on an embodiment that illustrates the present invention; the present invention is not limited to this embodiment, but can be implemented in various modes. The following are some other examples.
  • the groove C3 is formed by cutting with a die-sinder blade, and the gap C2 is formed by an etching process.
  • the gap C2 may be formed by cutting with a dicing blade.
  • a dicing blade 361, having a width of L3 is cut, and a cutting process is performed so as to pass through a path indicated by a broken line in FIG. It suffices to form 350 '.
  • a groove having a width L3 may be dug by passing through a dicing plate having a width L3 or less several times. In Fig.
  • auxiliary substrate 350 is taken as one unit, many of which are arranged vertically and horizontally on the wafer, the substrate is processed in wafer units, and then each unit is cut by a dicing process. For such wafer-by-wafer processing, the above-described cutting is very efficient. If the dicing blade 361 is moved in a straight line on the wafer, a large number of auxiliary substrates can be cut at once.
  • the groove C1 dug in the semiconductor pellet 310 was annular as shown in FIG. Forces that can be easily formed by the etching process ⁇ > Such annular grooves are not suitable for forming in the dicing blade cutting process because the dicing blade movement control becomes complicated. It is.
  • the groove formed in the semiconductor belt 310 is not limited to an annular shape.
  • FIG. 42 shows a cross-sectional view of an embodiment in which a cross-shaped groove C6 is formed on the lower surface of the semiconductor pellet 3,0 ′
  • FIG. 43 shows a bottom view thereof. As shown in FIG.
  • FIG. 43 is a bottom view of the semiconductor pellet 310 ′, in which the position of the weight body 320 is indicated by a broken line.
  • the weight body 32 ⁇ is joined only to the hatched portion (the lower surface of the action section 311 ′) hatched by the oblique line in the center.
  • the outer portion of the groove C6 is the fixed portion 313 ', and the portion hatched by the dot is a surface that functions as a control member.
  • This embodiment is also a method suitable for wafer-by-wafer processing.
  • the embodiment shown in FIG. 45 uses a spacer 370 instead of the control board 340.
  • the spacer 370 for example, a glass fiber film may be used. If the spacer 370 is sandwiched between the lower surface of the base 330 and the inner bottom surface of the package 40 ⁇ and fixed by a die bond or the like, the inner bottom surface of the package 400 will become a weight. It can be used as a member for controlling the downward displacement of the body 320. The allowable displacement of the weight body 320 in the downward direction is determined by the thickness of the sensor 370.
  • the lower surface of the weight body 320 (the surface on the bottom side of the package 4 • 0) is etched without using the spacer 370, and when the pedestal is joined to the package, the weight body 3 20 force You may make it float. Or, no. Dig a groove in the inner bottom surface of the package 400 It may be in a floating state.
  • the present invention is applied to an acceleration sensor.
  • the weight 32 is replaced with a general working body
  • the present invention is applied to a magnetic sensor force sensor.
  • some type of acting body (which may be a magnetic body) that responds to magnetism may be used instead of the weight body 32 °.
  • the working body can be applied to the force sensor.
  • Can detect the external force F acting as shown in the figure.
  • FIG. 47 the same applies when the side surfaces of the semiconductor bellet 31 ° and the pedestal 330 are supported by the support member 390.
  • the present invention is applied to an acceleration sensor, it is possible to detect three-dimensional acceleration with high sensitivity.
  • a high-sensitivity acceleration sensor can be used in various fields.
  • airbags have begun to spread as a system to protect passengers from car accidents.
  • the current airbag is a system that assumes a head-on collision. That is, as shown in FIG. 48, when an impact in the direction of the arrow is detected, the air bag 510 is inflated in front of the passenger 500.
  • the passenger 500 is protected by being sandwiched between the seat 505 and the air bag 510. Accordingly, a spherical air bag 5100 is used.
  • the acceleration sensor according to the present invention can detect three-dimensional acceleration with high sensitivity. The impact can be detected even at the place where the collision occurred. Therefore, as shown in FIG. 49, an airbag 52 which has a shape that also covers the side of the passenger 50 [] is prepared, and the detection signal of the acceleration sensor according to the present invention is used. If this is expanded, a feedback system that can deal with side collisions can be introduced.
  • a force capable of detecting three-dimensional force, acceleration, magnetism, and the like is a problem if there is a large difference in the detection sensitivity of these physical quantities in each axial direction.
  • This acceleration sensor applies the acceleration given to the weight body 320 to a point P on the upper surface of the semiconductor pellet 310 (from the center of gravity G of the weight body 320 to the upper surface of the semiconductor pellet 310). This means that it is detected as the force (or moment) acting on the lowered perpendicular foot).
  • the X-axis, Y-axis (perpendicular to the paper), and Z-axis are defined in the directions shown by the arrows in Fig.
  • the inventor of the present application paid attention to the fact that the moments M x and My are quantities having the length L of the perpendicular as a parameter, and by setting L to an appropriate value, the XYZ 3 I noticed that the detection sensitivity in the axial direction could be made almost the same. Then, as a result of the experiment, they found that the detection sensitivity in the three-axis directions became almost equal if L satisfied the following conditions. That is, as shown in Fig.
  • the distance from point P to the inner part of the groove deep in the semiconductor bellet 310 is r1
  • the distance from point P to the outer part of this groove deep is If the distance of r is r 2 and the relation of rl, L, and r 2 holds, the detection sensitivity in the 3 $ direction becomes almost equal.
  • the sensitivities of the X, Y, and z axes are slightly changed depending on the shape of the flexible portion and the action portion. For this reason, there are some platforms that do not completely satisfy the relationship of r1 and L. If at least the relationship of L ⁇ r2 is maintained, the effect of making the detection sensitivity uniform will appear. Therefore, when actually manufacturing the sensor according to the present invention, it is preferable to design the dimensions of each part in consideration of such conditions.
  • Fig. 51 is a sectional side view showing the structure when this test method is applied to the device center part 300 shown in Fig. 33.
  • Fig. 52 is a top view of the control board 340 at this time. (The hatched portion indicates the electrode).
  • One electrode plate E 30 is formed on the bottom surface of the weight body 320, and on the control surface 34 1 of the control substrate 34, the electrode plate E 30 is opposed to the electrode plate E 30.
  • Four electrode plates E 31 to E 34 are formed. Wiring layers are connected to the respective electrode plates, but are not shown here.
  • the volume of the operating body can be designed to be large as a whole, and the weight of the operating body can be reduced. And the sensitivity can be easily improved.
  • the upper surface of the fixed portion of the substrate is used as a control member to limit the upward displacement of the active member, a sensor suitable for highly sensitive physical quantity measurement can be realized with a simple structure.
  • the pedestal is fixed such that the lower surface of the operating body and a predetermined control surface face each other with a predetermined gap therebetween, and the control surface allows a downward displacement of the operating body within a predetermined range. If it can be limited to within, a sensor suitable for highly sensitive physical quantity measurement can be realized with a simple structure.
  • the distance between the point of action defined at the center of the upper surface of the substrate and the center of gravity of the object is set in the optimal range. If it is designed to be enclosed, the detection sensitivity in each of the three-dimensional directions can be made uniform.
  • the force sensor, acceleration sensor, and magnetic sensor according to the present invention can be mounted on any industrial machine and used. Since it is small, low-cost, and can perform high-accuracy measurement, it is expected to be applied to automobiles and industrial robots.
  • the acceleration sensor is mounted on a vehicle as an impact sensor, and is an ideal device for use in generating an operation signal to an airbag.

Description

明 細
外力と して作用する物理量を検出する装置 ならびにこの装置を試験および製造する方法
技 術 分 野 背
本発明は、 外力と して作用する物理量、 たとえば作用 体に作用する力、 重錘体に作用する加速度、 磁性体に作 用する磁気、 などを検出する装置に関するものである。 本発明は特に、 このような検出装術置の中枢をなす力セン ザのための信号処理回路、 試験方法、 製造方法、 そ して この力センサの構造に関するものである。
近年、 機械的変形によって電気抵抗が変化するという ピエゾ抵抗効果の性質を備えた抵抗素子を、 半導体基板 上に配列し、 この抵抗素子の抵抗値の変化から力を検出 する力センサが提案されている。 更に、 この力センサを 応用した加速度センサあるいは磁気センサも提案されて いる。 いずれの装置においても、 部分的に可撓性をもつ た起歪体が用いられ、 この起歪休に生じる機械的変形を 抵抗素子の電気抵抗の変化と して検出している。 起歪体 に力を作用させるために作用体が設けられる。 この作用 体と して、 加速度に反応する重錘体を用いれば加速度セ ンサとなり、 磁気に反応する磁性体を用いれば磁気セン サとなる。
たとえば、 米国特許第 4905523号、 米国特許出 願第 2952 1 0号、 同第 362399号、 同第 470 1 〇 2号、 同第 559381号には、 本願発明者の発明 に係る力 · 加速度 ·磁気のセンサが開示されている。 ま た、 米国特許出願第 526837号には、 この種のセン ザの新規な製造方法が開示されている。
これらに開示された力センサでは、 単結晶基板上に形 成された抵抗素子の抵抗値の変化から、 所定の作用点に 加えられた外力の方向と大きさとを検出することができ る。 この作用点に重錘体を形成しておけば、 重錘体に作 用した加速度を力として検出することもできるため、 加 速度センサと して応用することも可能である。 また、 作 用点に磁性体を形成しておけば、 磁性体に作用した磁気 を力として検出することもできるため、 磁気センサとし て応用することも可能である。
し力、しな力《ら、 従来の力センサ (あるいは同じ原理に 基づく加速度センサ、 磁気センサ) には、 二次元あるい は三次元の各軸方向についての出力特性に干渉が生じる という問題がある。 たとえば、 三次元の加速度センサで は、 所定の作用点に作用する加速度の X軸方向成分、 Y 軸方向成分、 Z軸方向成分、 のそれぞれが独立して検出 されなければならない。 ところ力く、 従来のセンサでは、 これらの各拿由方向成分が互いに干渉しあい、 ある 1軸方 向成分の検出値が他軸方向成分の検出値に多少なり とも 影響されてしまっていた。 このような干渉は、 測定値の 信頼性を低下させるため好ま しく ない。
そこで本発明は、 他軸方向成分の干渉を受けない正確 な検出値を得るこ とのできる信号処理回路を提供するこ とを第 1 の目的とする。
また、 このようなセンサを大量生産して市場に出すた めには、 製造工程の最後に試験を行う必要がある。 カセ ンサについての試験は比較的容易に行う ことができる。 すなわち、 作用点に所定の大きさの力を所定の方向に作 用させ、 このときの検出出力をチェ ッ クすればよい。 と ころ力《、 加速度センサや磁気センサについての試験はよ り複雑になる。 センサ本体は密封された状態となってい るため、 実際に外部から加速度あるいは磁気を作用させ ながら、 検出出力をチェ ッ クする必要がある。 特に、 加 速度センサでは、 振動発生装置を用いてセンサ本体に振 動を与えて試験を行っているのが現状であり、 試験装置 が大掛かりになる上、 振動という動的な加速度について の試験しか行う ことができないという問題もある。
そこで本発明は、 加速度センサや磁気センサのような 力の作用体を有するセンサについて、 より簡単に試験を 行う ことができる試験方法を提供するとともに、 この試 験方法を直ちに実施しうる機能をもったセンサを提供す ることを第 2の目的とする。
更に、 従来提案されている抵抗素子を用いたセンサは、 感度の高い測定を行う場合に問題があった。 たとえば、 加速度センサの場台、 車両の衝突検出などに利用するに は、 フルスケールで 1 0 G〜 1 0 0 Gといった程度の加 速度を検出できれば十分であるが、 カメ ラの手振れ制御、 車両のサスペンシ ョ ン制御、 車両のアンチロ ッ クブレー キシステムの制御などを行うためには、 1 G〜 1 0 Gと いつた程度の加速度を検出する必要がある。 このような 高感度の加速度検出を行うためには、 加速度に基づいて 力を発生させる機能をもつた作用体の重量を増す必要が ある。 ところ力 <、 従来のセンサの構造では、 作用体を大 きくすることが困難であつた。
また、 高感度のセンサでは、 所定限界以上の大きな力 が加わつた場合に、 半導体基板が損傷する危険性が高く なる。 このため、 作用体の変位を所定範囲内に制限する 部材を作用体の周囲に設ける必要があり、 構造が複雑に なるという問題が生じる。
更に、 三次元方向に作用する力、 加速度、 磁気などを 検出する場合には、 半導体基板の基板面に平行な方向と これに垂直な方向との間で、 検出感度に差が生じる。 こ のように検出方向によって感度差が生じることは、 高感 度のセンサでは特に好ま し く ない。
そこで本発明は、 より高感度な物理量測定に適した抵 抗素子を用いたセンサおよびその製造方法を提供するこ とを第 3の'目的とする。 発 明 の 開 示
I . 第 1の目的に関する特徵
他軸方向成分の干渉を受けない正確な検出値を得る こ とのできる信号処理回路を提供するという第 1 の目的 を達成するために、 本発明は以下の各特徴を有する。
(1) 第 1 の特徴は、 X Y Z三次元座標系における所 定の作用点に外力が作用したとき、 この外力によって単 結晶基板に機械的変形が生じるようにし、 作用点に作用 した外力の X軸方向成分 A X 、 Y軸方向成分 Ay 、 Z幸由 方向成分 Az を、 機械的変形に起因して発生する電気信 号 Vx 、 V y 、 V z に基づいて検出するセンサ用の信号 処理回路において、
A x , A y , A z と V x , V y , V z と の間に、 Ax = K 11 V x + Κ 12 V y + Κ 13Vz
A y - K 21 V x + K 22Vy + K 23V z
Az = K 31 V x + K 32V y + K 33 V z
なる関係式が成り立つような係数 K 11, K 12, K】3, Κ 21, Κ 22, Κ 23, Κ 31, Κ 32, Κ 33を求め、 アナログ 乗算器を用いて関係式の右辺の項の値を演算し、 アナ口 グ加減算器を用いて関係式の右辺の各項間演算を行い、 これらの演算結果から検出値 Ax 、 Ay 、 Az を得るよ うに構成したものである。
(2) 第 2の特徴は、 所定の作用点に外力が作用した とき、 この外力によって単結晶基板に機械的変形が生じ るようにし、 作用点に作用した外力の X軸方向成分 Ax と、 これに直交する Y軸方向成分 Ay とを、 機械的変形 に起因して発生する電気信号 Vx と Vy とに基づいて検 出する加速度検出装置用信号処理回路において、
Ax , Ay と Vx , Vy との間に、
Ax = K 11 V + Κ 12V y
Ay = K 21 V x + K 22V y
なる関係式が成り立つような係数 K 11, K 12, K 21, K22を求め、 アナログ乗算器を用いて関係式の右辺の項 の値を演算し、 アナログ加減算器を用いて関係式の右辺 の各項間演算を行い、 これらの演算結果から検出値 Ax および A y を得るように構成したものである。
(3) 第 3の特徴は、 機械的変形によって電気抵抗が 変化する ピエゾ抵抗効果を示す複数の抵抗素子を単結晶 基板上に配置し、 X Y Z三次元座標系における所定の作 用点に外力が作用したとき、 この外力によつて単結晶基 板に機械的変形が生じるようにし、 作用点に作用した外 力の X軸方向成分 Ax 、 Y軸方向成分 Ay 、 Z軸方向成 分 Az を、 複数の抵抗素子によつて構成されるブリ ッ ジ 回路に基づいて得られる電圧値 Vx 、 Vy 、 Vz に基づ いて検出するカセンサ用の信号処理回路において、
A x , A y , A z と V x , V y , V z との間に、 A x = K 11 V x + K 12 V y + Κ 13 V ζ
A y = Κ 21 V χ + Κ 22 Vy + K 23 V ζ
Az = Κ 31 V χ + Κ 32Vy + K 33 Vz
なる関係式が成り立つような係数 K 11, Κ 12, Κ 13, Κ 21, Κ 22, Κ 23, Κ 31, Κ 32, Κ 33を求め、 アナログ 乗算器を用いて関係式の右辺の項の値を演算し、 アナ口 グ加減算器を用いて関係式の右辺の各項間演算を行い、 これらの演算結果から検出値 Ax 、 Ay 、 Az を得るよ うに構成したものである。
(4) 第 4の特徴は、 機械的変形によって電気抵抗が 変化する ピエゾ抵抗効果を示す複数の抵抗素子を単結晶 基板上に配置し、 所定の作用点に外力が作用したとき、 この外力によって単結晶基板に機械的変形が生じるよう にし、 作用点に作用した外力の X軸方向成分 Ax と、 こ れに直交する Y軸方向成分 Ay とを、 複数の抵抗素子に よって構成される 2組のプリ ッ ジ回路のそれぞれのブリ ッ ジ電圧値 Vx と Vy とに基づいて検岀する加速度検出 装置用信号処理回路において、
A , Ay と V x , Vy との間に、
A = K 11 V X + K 12 V y A y = K 21 V x + K 22 V y
なる関係式が成り立つような係数 K l l , K 12 , K 21 , K 22を求め、 アナログ乗算器を用いて関係式の右辺の項 の値を演算し、 アナログ加減算器を用いて関係式の右辺 の各項間演算を行い、 これらの演算結果から検出値 A x および A y を得るように構成したものである。
上述の信号処理回路によれば、 各軸方向成分間に生じ る干渉の様子を示す特性行列とその逆行列である逆特性 行列が予め求められる。 そして、 この逆特性行列を用い た捕正演算を行う ことにより、 干渉の影響を相殺するこ とができる。 しかも、 この補正演算はすべてアナログ演 算回路で行われるため、 回路構成は単純になり、 低コス 卜で補正回路を実現することができる。 また、 アナログ 演算であるため、 演算速度も高速となり、 瞬時の現象を 測定する場合にも支障は生じない。
Π . 第 2の目的に関する特徴
各センサについて、 簡単な試験方法を提供するとい う第 2の目的を達成するために、 本発明は以下の各特徵 を有する。
( 1) 第 1の特徵は、
力の作用を受ける作用部、 センサ本体に固定される固 定部、 およびこれらの間に形成され可撓性をもった可撓 部、 を有する起歪体と、 作用した力を作用部に伝達させるための作用体と、 伝達された力によって起歪体に生じる機械的変形を、 電気信号に変換することにより、 作用体に作用した力を 電気信号と して検出する検出手段と、
を備えるセンサを試験する方法において、
互いに対向した位置にあり、 力の作用により両者間に 変位を生じる第 1 の部位および第 2の部位を定め、 両者 間にクーロン力を作用させ、 この作用させたクーロン力 と検出手段による検出結果とに基づいて、 センサの試験 を行うようにしたものである。
この第 1 の特徴によれば、 第 1 の部位と第 2の部位と の間にクーロン力が働く。 このクーロン力により、 第 1 の部位が第 2の部位に対して変位を生じることになり、 起歪体に機械的変形を誘起させる。 したがって、 作用体 に外力を作用させたのと同じ状態を創り出すこ とができ、 実際に外力を作用させることなしにセンサの試験を行う こ とができるようになる。
(2) 第 2の特徴は、 上述の第 1 の特徴をもった方法 おいて、
第 1 の部位に第 1 の電極層を形成し、 第 2の部位に第 2の電極層を形成し、 第 1 の電極層および第 2の電極層 に、 それぞれ同じ極性の電圧を印加することによ り両者 間に斥力を作用させながら行う試験と、 それぞれ異なる 極性の電圧を印加することにより両者間に引力を作用さ せながら行う試験と、 を行うようにしたものである。 この第 2の特徵によれば、 対向する 2つの電極層間に 電圧を印加することにより、 クーロ ン力を作用させるこ とができる。 しかも、 印加する電圧の極性を選択するこ とにより、 クーロ ン力を斥力と しても引力と しても作用 させることができるようになり、 より自由度をもった試 験が可能になる
(3) 第 3の特徴は、
力の作用を受ける作用部、 センサ本体に固定される固 定部、 およびこれらの間に形成され可撓性を持った可撓 部、 を有する起歪体と、
作用した力を作用部に伝達させるための作用体と、 伝達された力によつて起歪体に生じる機械的変形を、 電気信号に変換することにより、 作用体に作用した力を 電気信号と して検出する検出手段と、
を備えるセンサを試験する方法において、
互いに対向した位置にあり、 力の作用により両者間に 変位を生じる第 1 の面および第 2の面を定め、 第 1 の面 上に電極層を形成し、 第 2の面上の複数箇所にそれぞれ 電気的に独立した複数の電極層を形成し、
第 1 の面上の電極層には第 1の極性の電圧を印加し、 第 2の面上の各電極層には第 1の極性の電圧またはこれ とは逆の第 2の極性の電圧を各電極層ごとに選択的に印 加し、 第 1 の面上の電極層と第 2の面上の電極層との間 に斥力または引力からなるクーロ ン力を作用させ、 この 作用させたクーロ ン力と検出手段による検出結果とに基 づいて、 センサの試験を行うようにしたものである。
この第 3の特徴によれば、 一方の電極層を複数の副電 極層と したため、 印加する電圧の極性を選択することに より、 種々の方向にク一ロン力を作用させた試験を行う ことができるようになる。
(4) 第 4の特徴は、 加速度センサにおいて、 力の作用を受ける作用部、 センサ本体に固定される固 定部、 およびこれらの間に形成され可撓性をもった可撓 部、 を有する起歪体と、
センサ本体に加わる加速度によって力の作用を受け、 この作用した力を作用部に伝達して起歪体に機械的変形 を生じさせるための重錘体と、
起歪体に生じる機械的変形によつて抵抗値が変化する 性質をもつた抵抗素子と、
加速度の作用により変位を生じる第 1の面に形成され た第 1 の電極層と、
第 1の面に対向した第 2の面に形成された第 2の電極 層と、
抵抗素子、 第 1 の電極層、 および第 2の電極層を、 外 部の電気回路と接続させるための配線手段と、
を設け、 第 1の電極層および第 2の電極層に所定の電 圧を印加して両電極層間にクーロ ン力を作用させること により、 加速度が作用していない状態であっても起歪体 に機械的変形を生じさせることができるように構成した ものである。
この第 4の特徴によれば、 加速度センサ内に、 上述の 第 1 の特徴に係る試験を'実施するための 2つの電極層が 形成され、 これに対する配線がなされる。 したがって、 この加速度センサに所定の電気回路を接続するだけで試 験を行う ことができる。
(5) 第 5の特徴は、 磁気センサにおいて、
力の作用を受ける作用部、 センサ本体に同定される固 定部、 およびこれらの間に形成され可撓性をもった可撓 部、 を有する起歪体と、
センサ本体が置かれた磁界によつて力の作用を受け、 この作用した力を作用部に伝達して起歪体に機械的変形 を生じさせるための磁性体と、
起歪体に生じる機械的変形によつて抵抗値が変化する 性質をもつた抵抗素子と、
磁力の作用により変位を生じる第 1 の面に形成された 第 1 の電極層と、
第 1 の面に対向した第 2の面に形成された第 2の電極 層と、
抵抗素子、 第 1の電極層、 および第 2の電極層を、 外 部の電気回路と接続させるための配線手段と、
を設け、 第 1の電極層および第 2の電極層に所定の電 圧を印加して両電極層間にクーロンカを作用させること により、 磁力が作用していない状態であっても起歪体に 機械的変形を生じさせることができるように構成したも のである。
この第 5の特徵によれば、 磁気センサ内に、 上述の第 1 の特徴に係る試験を実施するための 2つの電極層が形 成され、 これに対する配線がなされる。 したがって、 こ の磁気センサに所定の電気回路を接続するだけで試験を 行う ことができる。
( 6) 第 6の特徴は、 上述の第 4または第 5の特徴を もったセンサにおいて、 第 1の電極層と第 2の電極層の うち、 一方の電極層を電気的に単一の電極層で構成し、 他方の電極層を電気的に独立した複数の副電極層で構成 し、 各副電極層に印加する電圧の極性を選択することに より、 起歪体に生じる機械的変形に方向性をもたせうる ようにしたものである。
この第 6の特徵によれば、 一方の電極層を単一の電極 層で構成し、 他方の電極層を複数の副電極層で構成する ようにしたため、 印加する電極の極性を選択することに より、 種々の方向にクーロ ン力を作用させた試験を行う ことができるようになる。
(7 ) 第 7の特徴は、 上述の第 6の特徴をもったセン ザにおいて、 他方の電極層を電気的に独立した 2枚の副 電極層で構成し、 各副電極層に印加する電圧の極性を選 択することにより、 2枚の副電極層の中心を結ぶ線方向 に関する機械的変形と、 2枚の副電極層の層面に対して 垂直な方向に関する機械的変形と、 を起歪体に生じさせ るようにしたものである。
この第 7の特徴によれば、 副電極層を 2枚設けるよう にしたため、 互いに垂直な 2とおりの方向に関してク一 ロン力を作用させた試験を行う ことができるようになる。
(8) 第 8の特徴は、 上述の第 6の特徴をもったセン ザにおいて、 他方の電極層を電気的に独立した 4枚の副 電極層で構成し、 これらの副電極層を直交する 2線分の 各端点位置に配置し、 各副電極層に印加する電圧の極性 を選択するこ とにより、 2線分のうち第〗 の線分方向に 関する機械的変形と、 第 2の線分方向に関する機械的変 形と、 4枚の副電極層の層面に対して垂直な方向に関す る機械的変形と、 を起歪体に生じさせるようにしたもの である。
この第 8の特徵によれば、 副電極層を十字状に 4枚設 けるようにしたため、 互いに垂直な 3とおりの方向に関 してクー ロンカを作用させた試験を行う ことができるよ うになる。
(9) 第 9の特徴は、 上述の第 4または第 5の特徴を もったセンサにおいて、 第 1の電極層および第 2の電極 層を、 それぞれ電気的に独立した複数の第 1 の副電極層 および電気的に独立した複数の第 2の副電極層で構成し、 各副電極層に印加する電圧の極性を選択するこ とによ り 起歪体に生じる機械的変形に方向性をもたせう るように したものである。
この第 9の特徵によれば、 より 自由度をもった選択が 可能になり、 種々の方向にクーロ ン力を作用させた試験 を行う ことができるようになる。 m . 第 3の目的に関する特徴
より高感度な物理量測定に適したセンサおよびその製 造方法を提供するという第 3の目的を達成するために、 本発明は以下の各特徴を有する。
( 1 ) 第:! の特徴は、 基板のほぼ中心に作用部、 その 周囲に可撓部、 更にその周囲に固定部を定義し、 この基 板下面の可撓部に溝を掘るか、 またはこの基板の可撓部 に貫通孔を形成することにより可撓部に可撓性をもたせ、 基板上面の可撓部に機械的変形に基づいて電気抵抗が変 化する抵抗素子を形成し、 作用部の固定部に対する変位 に基づいて生ずる抵抗素子の電気抵抗の変化を検出する ことにより、 作用部に作用した物理量を検出するセンサ において、
作用部下面に、 この作用部に力を伝達させるための作 用体を接台し、
固定部下面の第 1 の部分に、 この固定部を支持するた めの台座を接合し、 かつ、 固定部下面の第 2の部分と、 作用体上面の一部 分とが、 所定の間隙をおいて対向するように構成し、 こ の第 2の部分によつて作用体の上方への変位を所定範囲 内に制限できるようにしたものである。
この第 1の特徵 よれば、 作用体の上面中心部は基板 の作用部下面に接台されるが、 その側部は基板の固定部 下方にまで延びることになる。 したがって、 全体的に作 用体の体積を大き く設計することが可能になり、 作用体 の重量が増し、 感度を向上させることが容易にできる。 また、 作用体の側部が基板の固定部下方にまで延びてい るので、 基板の固定部下面を制御部材として利用し、 作 用体の上方への変位を制限することがてきるようになる < したがつて、 別個に上方への制御部材を設ける必要がな く なり、 構造を単純にすることができるようになる。
(2) 第 2の特徴は、 上述の第 1 の特徴をもったセン サにおいて、
台座の内側面と、 作用体の外側面とが、 所定の間隙を おいて対向するように構成し、 台座の内側面によつて作 用休の横方向への変位を所定範囲内に制限できるように したものである。
この第 2の特徴によれば、 更に、 台座の内側面と作用 体の外側面とが、 所定の間隙をおいて対向するように構 成される。 このため、 台座の内側面を制御部材として利 用し、 作用休の横方向への変位を制限することができる ようになる。 したがって、 別個に横方向への制限部材を 設ける必要がなく なり、 構造を単純にすることができる ようになる。
(3) 第 3の特徴は、 上述の第 1 または第 2の特徴を もったセンサにおいて、
所定の制御面と、 作用体の下面とが、 所定の間隙をお いて対向するように、 台座を制御面に固定し、 この制御 面によって作用体の下方向への変位を所定範囲内に制限 できるようにしたものである。
この第 3の特徴によれば、 更に、 所定の制御面を設け、 作用体の下面とこの制御面とが、 所定の間隙をおいて対 向するように、 台座がこの制御面に固定される。 した力 つて、 この制御面によって作用体の下方向への変位を所 定範囲内に制限できるようになる。
(4) 第 4の特徴は、 基板のほぼ中心に作用部、 その 周囲に可撓部、 更にその周囲に固定部を定義し、 この基 板下面の可撓部に溝を掘るか、 またはこの基板の可撓部 に貫通孔を形成することにより可撓部に可撓性をもたせ、 基板上面の可撓部に機械的変形を電気信号に変換する ト ラ ンスデューサを形成し、 作用部の固定部に対する変位 に基づいて生ずる電気信号の変化を検出することにより、 作用部に作用した物理量を検出するセンサにおいて、 作用部下面に、 この作用部に力を伝達させるための作 用体を接合し、 かつ、 この作用体の重心 Gから、 基板上面に垂線を下 ろしたとき、 この垂線の長さ Lと、 垂線の足 Pから溝の 外側部分までの距離 r と、 の間に、 L < rなる関係が成 り立つように構成したものである。
この第 4の特徴は、 本願発明者が、 基板上面の中心部 に定義された作用点と作用体の重心点との間の距離につ いて、 その最適範囲を発見したことに基づく。 この最適 範囲は、 三次元方向の物理量を検出するときに、 すべて の方向についての感度がほぼ均一になるような条件を満 たすものである。 このため、 方向による検出感度に差の ないセンサが実現できる
(5) 第 5の特徴は、 抵抗素子を用いたセンサの製造 方法において、
第 1 の基板上に幅をもつた方環状の可撓領域を定義し、 この方環の内側または外側のいずれか一方に作用領域を、 他方に固定領域を、 それぞれ定義する段階と、
第 1の基板の第 1の面上の可撓領域内に、 抵抗素子を 形成する段階と、
第 1の基板の第 2の面上に方環位置に合わせて井桁状 の溝を堀り、 可撓領域にこの井桁状の溝の一部からなる 方形状 溝を形成し、 可撓領域に可撓性をもたせる段階 と、
第 1の基板の第 2の面に、 第 2の基板の第 1の面を接 合する段階と、 第 2の基板を切断することにより、 第 1 の基板の作用 領域に接合しており第 2の基板の一部分から構成される 作用体と、 第 1 の基板の固定領域に接合しており第 2の 基板の一部分から構成される台座と、 を形成する段階と、 を行うようにしたものである。
この第 5の特徴によれば、 第 1の基板の第 2の面上の 可撓領域に方形状の溝が形成される。 この方形状の溝は、 機械的加工によつて井桁状の溝を掘ることにより容易に 形成することができるため、 正確な溝を効率的に形成す ることができるようになる。 また、 第 2の基板の一部に よって重錘休あるいは磁性体が形成され、 別な一部によ つて第 1 の基板を支えるための台座が形成される。 すな わち、 ダイ シング工程を行う前に、 ウェハ単位で重錘体 あるいは磁性体、 そして台座の形成が可能になる。
(6) 第 6の特徴は、 抵抗素子を用いたセンサの製造 方法において、
第:! の基板上に複数の単位領域を定義し、 各単位領域 内において、 幅をもった方環状の可撓領域を定義し、 こ の方環の内側または外側のいずれか一方に作用領域を、 他方に固定領域を、 それぞれ定義する段階と、
第 1 の基板の第 1の面上の各可撓領域内に、 抵抗素子 を形成する段階と、
第 1 の基板の第 2の面上に、 縦方向および横方向にそ れぞれ複数の溝を掘り、 各単位領域において、 作用領域 または固定領域の四方にそれぞれ 4つの溝が形成され、 この溝によつて可撓領域に可撓性が生じるようにする段 階と、
第 1の基板の第 2の面に、 第 2の基板の第 1 の面を接 台する段階と、
第 2の基板を切断することにより、 各単位領域におい て、 第 1の基板の作用領域に接合しており第 2の基板の 一部分から構成される作用体と、 第 1 の基板の固定領域 に接台しており第 2の基板の一部分から構成される台座 と、 を形成する段階と、
第 1 の基板および第 2の基板を、 各単位領域ごとに切 り離し、 それぞれ独立したセンサを形成する段階と、 を行うようにしたものである。
この第 6の特徴によれば、 第 1の基板上に複数の単位 領域が定義され、 この複数の単位領域それぞれについて 同時に処理が進行し、 最終的に 1単位領域が 1つのセン サュニッ トを構成することになる。 第: [ の基板の第 2の 面上に、 縦方向および横方向にそれぞれ複数の溝が掘ら れ、 各単位領域において、 作用領域または固定領域の四 方にそれぞれ 4つの溝が形成されるようになる。 この溝 によって可撓領域に可撓性が与えられる。 溝は、 碁盤 状に縦横に形成すればよいので、 機械的加工によって容 易に掘ることができ、 正確な溝を効率的に形成すること ができるようになる。 図面の簡単な説明 第 1図は本発明の適用対象となる加速度センサの断面 図、
第 2図は第 1図のセンサの中枢となる半導体ペレツ ト の上面図、
第 3図は第 1図のセンサの重錘体および台座の上面図、 第 4図は第 1図のセンサの下部制御部材の上面図、 第 5図は第 1図のセンサの上部制御部材の下面図、 第 6 a — 6 c図は第 1図のセンサに関して組まれたブ リ ッ ジ回路図、
第 7 a - 7 c図は第 1図に示すセンサに X軸方向の力 F X が作用したときの応力分布図、
第 8 a — 8 c図は第 1図に示すセンサに Y軸方向の力 F y が作用したときの応力分布図、
第 9 a - 9 c図は第 1図に示すセンサに Z軸方向の力 F z が作用したときの応力分布図、
第 1 0図は第 1図に示すセンサの検出動作を示すため の表、
第 1 1図は本発明による加速度検出装置用信号処理回 路のブ口 ッ ク図、
第 1 2図は本発明による別な加速度検出装置用信号処 理回路のブロ ッ ク図、
第 1 3図は本発明の信号処理回路に用いる乗算器の具 体的な回路図、
第 1 4図は本発明の信号処理回路に用いる加算器の具 体的な回路図、
第 1 5図は本発明の信号処理回路に用いる乗算器およ び加算器を兼ねた具体的な回路の回路図、
第 1 6図は本発明による加速度検出装置用信号処理冋 路の具体的な部分回路図、
第 1 7図は第 1図のセンサの重錘体および台座に電極 層を形成した状態を示す斜視図、
第:! 8図は第 1図のセンサの半導体ペレツ 卜に電極層 を形成した状態を示す上面図、
第 1 9図は第 1図のセンサの中枢部の各部に電極層を 形成した状態を示す断面図、
第 2 0図〜第 2 2図は第 1図のセンサの中枢部の変位 状態を示す断面図、
第 2 3図は第 1図のセンサの半導体べレッ トに実用的 な電極層を形成した状態を示す上面図、
第 2 4図は第 1図のセンサの中枢部の所定箇所に実用 的な電極層を形成した状態を示す断面図、
第 2 5図は第 1図のセンサの中枢部の所定箇所に別な 実施例に係る電極層を形成した状態を示す断面図、
第 2 6図は第 1図のセンサの半導体ペレツ 卜に更に別 な実施例に係る電極層を形成した状態を示す上面図、 第 2 7図は第 1図のセンサの上部制御部材にまた別な 実施例に係る電極層を形成した状態を示す下面図、 第 28図は第 1図のセンサの中枢部の所定箇所にまた 別な実施例に係る電極層を形成した状態を示す断面図、 第 29図は第 1図のセンサの中枢部の所定箇所に更に また別な実施例に係る電極層を形成した状態を示す断面 図、
第 3 0 a図は第 1図に示すセンサの重錘休に Z方向の 力が作用したのと同じ状態を実現するための電圧の印加 方法を示す模式図、
第 3 0 b図は第;! 図に示すセンサの重錘体に一 Z方向 の力が作用したのと同じ状態を実現するための電圧の印 加方法を示す模式図、
第 3 1図は本発明の一実施例に係る加速度センサの構 造側断面図、
第 3 2図は第 3 1図に示すセンサの装置中枢部の斜視 図、
第 3 3図は第 3 2図に示す装置中枢部の詳細側断面図、 第 34図は第 3 3図に示す半導体ペレツ ト 3 1 0の上 面図、
第 3 5図は第 3 3図に示す重錘体 3 2 0および台座 3 3 0の上面図、
第 3 6図は第 3 3図に示す制御基板 34 0の上面図、 第 3 7 図および第 3 8図は第 3 5図に示す重錘体 3 2 ひおよび台座 3 3 0を形成するもとになる補助基板 3 5 0の側断面図および上面図、
第 3 9図は第 3 3図に示す半導体べレッ ト 3 1 0に重 錘体 3 2 0を接合する位置を示す図、
第 4 0図および第 4 1図は本発明の別な実施例に係る 補助基板を示す側断面図および上面図、
第 4 2図および第 4 3図は本発明の更に別な実施例に 係る半導体ペレツ トを示す側断面図および下面図、 第 4 4図は第 4 3図に示す半導体ペレッ ト 3 1 0 ' に 重錘体 3 2 0を接合する位置を示す図、
第 4 5図は本発明のまた別な実施例に係る加速度セン ザの構造側断面図、
第 4 6図および第 4 7図は本発明の一実施例に係る力 センサの側断面図、
第 4 8図は従来のエア一バッグシステムの説明図、 第 4 9図は本発明に係る加速度センサを利用したエア ーバッグシステムの説明図、
第 5 0図は本発明による寸法設計の原理を示す図、 第 5 1図は本発明に係るセンサに特有な試験方法を適 用したときの構造を示す側断面図、
第 5 2図は第 5 1図に示す制御基板 3 4 0の上面図で め o 発明を実施するための最良の形態
§ 1 センサの基本構造
1 . 加速度センサの構造
本発明は、 外力と して作用する物理量を検出する装置 一般に広く適用しうるものであり、 力センサは勿論のこ と、 加速度センサ、 磁気センサにも利用しう る ものであ る。 別言すれば、 いずれのセンサもその中枢部分の基本 構造は共通したものである。 そこで、 こ こでは加速度セ ンサを例にとり、 本発明の適用対象を簡単に説明してお く こ とにする。
第 1図は加速度センサの一例を示す構造断面図である このセンサの中枢ュニッ 卜となるのは、 半導体ペレツ ト
1 0である。 この例では、 シリ コ ンの単結晶基板が用い られている。 この半導体ペレッ ト 1 0の上面図を第 2図 に示す。 第 1図の中央部分に示されている半導体ペレツ ト 1 0の断面は、 第 2図を X軸に沿って切断した断面に 相当する。 この半導体べレッ ト 1 0は、 内側から外側に 向かって順に、 作用部 1 1、 可撓部 1 2、 固定部 1 3の 3つの領域に分けられる。 第 2図に破線で示されている ように、 可撓部 1 2の下面には、 環状に溝が形成されて いる。 この溝によって、 可撓部 1 2は肉厚が薄く なり、 可撓性をもつこ とになる。 したがって、 固定部 1 3を固 定したまま作用部 1 ュ に力を作用させると、 可撓部 1 2 が撓んで機械的変形を生じる。 こう して半導体ペレッ ト
1 0は起歪体と しての機能をもつ。 可撓部 1 2の上面に は、 第 2図に示すように、 抵抗素子 Rxl〜Rx4, R yl~ Ry4, Rzl〜Rz4が所定の向きに形成されている。
第 1 図に示すように、 作用部 1 1 の下方には重錘体 2 0が接合されており、 固定部 1 3の下方には台座 2 1 , 2 2が接続されている。 半導体ペレ ッ ト 1 0と してシ リ コン基板を用いているので、 重錘体 2 0としてはシリ コ ンと熱膨張係数が近いパイ レッ クス等の硼硅酸ガラスを 用いるのが好ま しい。 また、 第 1図には示されていない が、 紙面垂直方向に、 更に台座 2 3, 24が配置されて おり、 斜め方向には台座 2 1 a〜 24 aが配置されてい る。 この様子は、 重錘体 2 0と台座 2 1〜 24, 2 1 a 〜 24 aのみの上面を示す第 3図に明瞭に示されている。 第 1図に示されている断面は、 第 3図を切断線 1 一 1 に 沿って切断した断面に相当する。 なお、 台座が第 3図に 示すような状態で配されているのは、 米国特許出願第 5
2683 7号 (欧州特許出願第 9 0 1 1 0 0 66. 9号) 明細書に開示されている製造工程を実施したためであり、 詳細は同明細書を参照されたい。 台座 2 1〜 24の下方 には、 制御部材 3 0が接続されている。 この制御部材
3 0の上面を第 4図に示す。 制御部材 3 0の上面には、 矩形の溝 3 1 (第 4図でハッチングを施す部分 : 後述す るように、 この図のハツチング部分は断面を示すのでは なく 、 電極形成部を示す。 ) が形成されている。 第 1 図 に示されている断面は、 第 4図を切断線 1 一 1 に沿つて 切断した断面に相当する。 また、 半導体べレツ 卜 1 ϋの 上面には、 制御部材 4 0が被さっている。 この制御部材 4 0の下面を第 5図に示す。 制御部材 4 0の下面には、 矩形の溝 4 1 (第 5図でハッチングを施す部分 : 後述す るように、 この図のハツチング部分は断面を示すのでは なく 、 電極形成部を示す。 ) が形成されている。 第 1 図 に示されている断面は、 第 5図を切断線 ] 一 1 に沿つて 切断した断面に相当する。
制御部材 3 0の底面はパッケージ 5 0の内側底面に接 合されており、 半導体べレッ ト 1 0および重錘体 2 0は 台座 2 1 〜 2 4および 2 1 a ~ 2 4 aによって支持され る。 重錘体 2 ◦は内部で宙吊りの状態となっている。 パ ッケージ 5 0には、 蓋 5 1が被せられる。 半導体ペレツ ト 1 0に設けられたボンディ ングパッ ド 1 4は、 各抵抗 素子に対してペレツ 卜内で電気的に接続されており、 こ のボンディ ングパッ ド 1 4とパッケージ側方に設けられ た外部配線用電極 5 2とは、 ボンディ ングワイヤ 1 5に よって接続されている。
このセンサに加速度が加わると、 重錘体 2 ◦に外力が 作用するこ とになる。 この外力は作用部 1 1 に伝達され、 可撓部 1 2に機械的変形が生じる。 これによつて、 抵抗 素子の電気抵抗に変化が生じ、 この変化はボンディ ング ワイヤ 1 5およびリー ド 5 2を介して外部に取り出すこ とができる。 作用部 1 1 に加わった力の X方向成分は抵 抗素子 Rxl〜Rx4の電気抵抗の変化により、 Y方向成分 は抵抗素子 Ryl〜Ry4の電気抵抗の変化により、 Z方向 成分は抵抗素子 Rzl〜Rz4の電気抵抗の変化により、 そ れぞれ検出される。 この検出方法については後述する。 加速度センサとして実用した場合、 大きな加速度がか かると、 重錘体 2 ◦に過度な外力が作用することになる。 その結果、 可撓部 1 2に大きな機械的変形が生じ、 半導 体ペレッ ト 1 0が破損する可能性がある。 このような破 損を防ぐため、 第 1図に示すセンサでは、 制御部材 3 〇 および 4 0が設けられている。 制御部材 3 0は、 重錘体 2 0の下方向の変位が許容値を越えないように制御する ものであり、 制御部材 4 0は、 重錘体 2 0 (実際には作 用部 1 1 ) の上方向の変位が許容値を越えないように制 御するものである。 また、 台座 2 1〜 24は、 重錘体の 横方向の変位が許容値を越えないように制御する役割を 果たす。 重錘体 2 0に過度の外力が作用して、 上述の許 容値を越えて動こうとしても、 重錘体 2 0はこれらの部 材に衝突してその移動が阻まれることになる。 結局、 半 導体べレッ ト 1 ◦には、 許容値以上の機械的変形が加え られることはなく、 破損から保護される。
第 2図に示されているように、 半導体べレッ ト 1 0の 上面には、 複数の抵抗素子 R (Rxl〜Rx4, Ryl~Ry4, Rzl〜Rz4) が形成されている。 これらの抵抗素子 Rは、 機械的変形によつて電気抵抗が変化するピエゾ抵抗効果 をもった抵抗素子であり、 可撓部 1 2の上面に所定の向 きで配置されている。 パッケージ 50側面の配線孔を通 るようにして、 外部配線用電極 52が、 パッケージ内部 から外部へと導出されている。 この外部配線用電極 52 の内部端は、 ボンディ ングワイヤ 1 5によって、 半導体 ペレツ 卜 1 ◦の固定部 1 3上に設けられたボンディ ング パッ ド 14 (第 1図では図示省略) に接続される。 この ボンディ ングパッ ド 14は、 図示しない配線パターンに よって抵抗素子 Rに接続されている。 したがって、 外部 配線用電極 52を外部の制御装置 (図示省略) と電気的 に接続すれば、 抵抗素子 Rの抵抗値の変化を外部の制御 装置によつて測定することができる。
1. 2 加速度センサの動作
いま、 第 2図の右方向に X軸を、 上方向に Y铀を、 紙 面に対し垂直な方向 (第 1図における図の上方向) に Z 軸を、 それぞれとり、 X Y Z三次元座標系を定義する。 この座標系において、 4つの抵抗素子 Rxl〜Rx4は X軸 上に配され、 X軸方向の加速度成分の検出に用いられ、 4つの抵抗素子 Ryl〜Ry4は Y軸上に配され、 Y軸方向 の加速度成分の検出に用いられ、 4つの抵抗素子 Rzl〜 R z4は X軸近房に X軸に沿うように配され、 Z軸方向の 加速度成分の検出に用いられる。 抵抗素子 Rzl〜Rz4は 任意の牵由上に配置する ことができる力 ピエゾ抵抗係数 の結晶依存性を考慮した適切な位置に配置するのが好ま しい。 前述のように、 これら各抵抗素子 Rは、 外部配線 用電極 5 2を通して外部の制御装置に電気的に接続され ている。 この制御装置内では、 各抵抗素子 Rについて、 第 6 a 〜 6 c図に示すようなプリ ッジ回路が組まれてい る。 すなわち、 抵抗素子 R x l〜R x4については第 6 a図 に示すようなプリ ッ ジ回路が組まれ、 抵抗素子 R y l〜R y4については第 6 b図に示すようなブリ ッ ジ回路が糾ま れ、 抵抗素子 R zl〜R z4については第 6 c図に示すよう なブリ ッ ジ回路が組まれる。 各ブリ ッジ回路には、 電源 6 0から所定の電圧あるいは電流が供給され、 各ブリ ッ ジ電圧が電圧計 6 1 , 6 2 , 6 3によって測定される。 第 1図に示されているように、 重錘体 2 0は、 周囲の 台座 2 1 〜 2 4に囲まれた中央部空間に宙吊りの状態と なっている。 パッケ一ジ 5 0に加速度が加わると、 この 加速度に起因して重錘体 2 0に外力が作用し、 重錘体 2 0が定位置から変位する。 したがって、 この重錘体 2 0に接続された作用部 1 1 も定位置から変位し、 この 変位によって生じた機械的歪みは可撓部 1 2の機械的変 形によって吸収される。 可撓部 1 2に機械的変形が生じ ると、 この上に形成された抵抗素子 Rの電気抵抗が変化 する。 その結果、 第 6 a〜 6 c図に示すブリ ッ ジ回路の 平衡条件がくずれて電圧計 6 1 , 6 2 , 6 3の針が振れ ることになる。 これが、 この装置による加速度検出の基 本原理である。
さて、 抵抗素子 Rを第 2図に示すように配置すると、 第 6 a〜 6 c図のプリ ッ ジ回路において、 電圧計 6 1 に より X軸方向の加速度成分が、 電圧計 6 2により Y軸方 向の加速度成分が、 電圧計 6 3により Z軸方向の加速度 成分が、 それぞれ検出できる。 この理由を以下に説明す o
第 7 a〜 7 c図は、 第 1図に示す装置において、 重錘 体 2 ◦に X 由方向の力 F X が作用したときの、 各抵抗素 子 Rにかかる応力歪みを示す模式図である。 第 7 a図は 抵抗素子 R X 1〜 R x4に沿つた断面における応力分布を示 し、 第 7 b図は抵抗素子 Ryl〜Ry4に沿つた断面におけ る応力分布を示し、 第 7 c図は抵抗素子 Rzl〜Rz4に沿 つた断面における応力分布を示す。 応力分布は、 伸びる 方向を符号 +、 縮む方向を符号一で示してある。 たとえ ば、 第 7 c図は、 重錘体 2 0に X方向の力 F x が作用し たときの抵抗素子 Rxl〜Rx4に沿つた断面における応力 分布を示している。 重錘体 2 0に作用した力 F X は、 半 導体べレッ ト 1 0の表面においてはモーメ ン 卜力と して 作用し、 抵抗素子 R および Rx3に対しては縮む方向の 機械的変形が生じ、 抵抗素子 Rx2および Rx4に対しては 伸びる方向の機械的変形が生じる。 これに対し、 抵抗素 子 Ryl〜Ry4については、 第 7 b図に示すように、 応力 は変化しない。 これは、 抵抗素子 Ryl〜Ry4の配置方向 (Y軸方向) が力 F x の方向に直交しているためである。 抵抗素子 Rzl〜Rz4については、 第 7 c図に示すように、 抵抗素子 Rxl〜Rx4と同じ変化が生じる。 同様に、 Y軸 方向の力 F y が作用した場合の各抵抗素子 Rに生じる応 力分布を第 8 a〜 8 c図に、 Z軸方向の力 F z が作用し た場合の各抵抗素子 Rに生じる応力分布を第 9 a〜 9 c 図に示す。 こ こで、 伸びる方向の機械的変形に対して抵 抗値が増え、 縮む方向の機械的変形に対して抵抗値が減 るような性質をもった抵抗素子を用いたとすれば、 重錘 体 2 0に作用した力 F x , F y , F z と各抵抗素子 の 抵抗値の変化との関係は、 第 1 0図の表のようになる。 こ こで、 符号 +は抵抗値の増加、 符号一は抵抗値の減少 を示し、 0は抵抗値に変化のないことを示す。
この表と、 第 6 a〜 6 c図のプリ ッ ジ回路とを参照す れば、 電圧計 6 1 によって力 F X が検出され、 電圧計 6 2によつて力 F が検出され、 電圧計 6 3によつて力 F z が検出されることが理解できょう。 たとえば、 力 F X が作用した場合、 第 6 a図のプリ ッジ回路では、 一 方の対辺の抵抗値はともに増加、 他方の対辺の抵抗値は ともに減少するため、 電圧計 6 1 の針は振れることにな る。 ところが、 第 6 b図のブリ ッジ回路では、 いずれの 抵抗値にも変化がないため電圧計 6 2の針は振れず、 第 6 c図のプリ ッ ジ回路では、 各対辺を構成する抵抗の一 方は抵抗値増加、 他方は抵抗値減少となり、 結局相互に 相殺しあって、 電圧計 6 3の針は振れない。 こ う して、 この装置本体に作用した加速度の各方向成分が、 電圧計 6 1〜6 3 'の針の振れと して検出される。
なお、 この実施例では、 X Y Zの 3軸すベての加速度 方向成分を検出する三次元加速度検出装置と して説明し たが、 X Y、 Y Z、 あるいは X Zの 2軸についての加速 度方向成分を検出する二次元加速度検出装置も同様に構 成することができる。 この場合、 抵抗素子ゃブリ ッ ジ回 路は 2轴分についてのみ用意すればよい。 また、 こ こで は 3組のブリ ッ ジを用いて 3軸方向のそれぞれの加速度 成分を検出する例を示したが、 2組のブリ ツ ジを用いて 3軸方向のそれぞれの加速度成分を検出する装置 (たと えば、 米国特許第 4 7 4 5 8 1 2号) に対しても木発明 を適用することができる。 また、 こ こでは、 加速度検出 装置を例に.とって説明したが、 重錘体 2 0の代わりに磁 性体を用いれば、 この装置は磁性体に作用する磁気を検 出する磁気検出装置となり、 重錘体 2 0に直接外力が作 用するような構造にすれば力検出装置となる。
§ 2 信号処理回路
2 . 1 信号処理の基本原理
続いて、 本発明に係る信号処理回路についての説明を 行う。 前述のように、 検出対象となる力 (あるいは、 加 速度や磁気) は、 第 6 a〜 6 c図に示すプリ ッ ジ回路に おいて、 その X軸方向成分は電圧計 6 1 における電圧値 Vx により、 Y軸方向成分は電圧計 6 2における電圧値 Vy により、 Z軸方向成分は電圧計 6 3における電圧値 V z により、 それぞれ検出される。 なお、 2組のブリ ツ ジを用いて 3軸方向成分を検出する装置では、 ブリ ツジ 電圧そのものではなく、 ブリ ッ ジ電圧に基づいて演算を 行つて得られた電圧値を Vx. Vy. Vz と して用いること になる。 各抵抗素子 Rを第 2図に示すように配置し、 こ れら各抵抗素子がすべて同じ抵抗値をもち、 すべて同じ 温度特性を有し、 しかも歪による抵抗変化がすべて等し いという条件下では、 理論的には、 こう して検出される 各軸方向成分は全く独立した検出値として得られ、 干渉 は生じない。 しかしながら、 実際に各抵抗素子を形成す る場台、 このような理想的な条件は得られないため、 各 検出値間には干渉が生じてしまう。 この干渉の様子は、 実測することができる。 すなわち、 既知の大きさをもつ た力 (あるいは、 加速度や磁気) を、 所定の方向に作用 させ、 そのときに得られる検出値 (各電圧計の読み) を 実測するのである。 その結果、 次のような特性行列が得 られることが知られている。
V X P 11 P 12 P 13 Ax
Vy P 21 P 22 P 23 Ay
Vz P 31 P 32 P 33 こ こで、 V x , V y , V z は、 それぞれ電圧計 6 1 , 6 2 , 6 3の読みであり、 Ax , Ay , Az は、 実際に 作用させた力 (あるいは、 加速度や磁気) の各方向成分 値である。 また、 P 11〜 P 33は特性行列を構成する係数 である。 この行列式は、 次のように変形できる。
[A X P 11 P 12 P 13 -1 ~V x一
Ay P 21 P 22 P 23 Vy
Az P 31 P 32 P 33 Vz
K 11 K 12 K 13 V x
K 21 K 22 K 23 Vy
K 31 K 32 K 33 V z こ こで、 係数 K 11 ~ K 33を用いた行列は、 係数 P】 I〜 P 33を用いた行列の逆行列である。 この行列式を一般式 で書く と、
A X = K 11 V X + K 12 V y + K 13Vz
Ay = K 21 V x + Κ 22 V y + K 23 V ζ
Az = Κ 31 Vx + Κ 32 V y + K 33 V ζ
となる。 したがって、 電圧計 6 1 〜 6 3で得られた電圧 値 Vx , Vy , Vz に対して、 係数 K 11〜 K 33を用いた 上式の演算を行えば、 干渉のない正しい検出値 A X , Ay , A z が得られることになる。
2. 2 具体的な回路構成
本発明の信号処理回路は、 この演算をアナ口グ回路で 行うようにしたものである。 第 1 1図にこの回路のプロ ック図を示す。 ここで、 Vx , Vy , Vz はそれぞれ電 圧計 6 1 〜 6 3で得られるアナログ電圧である。 係数 K 11 ~ K 33が表示されたブロッ ク 1 0 】 ~ 1 0 9は、 そ れぞれの係数値を乗ずるアナログ乗算器であり、 "+ " 記号で示したブロッ ク 1 1 1 〜 1 1 3はアナ口グ加算器 である。 このような構成の回路を用いれば、 正しい検出 値 Ax , Ay , Αζ が、 加算器 1 1 :! 〜 1 1 3の出力電 圧として得られる。 これは、 この回路が上述の演算式に 対応していることから容易に理解できよう。
以上は三次元の検出装置についての回路であるが、 二 次元の検出装置については、
Ax - K 11 V X + K 12V y
Ay = K 21 V χ + K22Vy
なる演算を行う ことができればよいので、 第 1 2図のプ ロッ ク図に示す回路を用いればよい。 ブロッ ク 2 0 1〜 2 04は、 それぞれの係数値を乗ずるアナログ演算器で あり、 加算器 2 1 1, 2 1 2の出力電圧として、 正しい 検出値 Ax , A が得られる。
なお、 三次元の検出装置では 9つの係数、 二次元の検 出装置では 4つの係数を用いることになる力 、 係数値が 零の場合はこれについての乗算器は不要になる。
続いて、 第 1 1図および第 1 2図のブロッ ク図中に示 された乗算器および加算器の具体的な回路構成例を説明 する。 第 1 3図は乗算器の一構成例を示す回路図である, 演算増幅器 O Ρ Γの入力側に電圧 V inを与えると、 出力 側に電圧 V out が得られる。 こ こで、 R 3 = R 1 //R 2 と しておく と (〃は 2つの抵抗を並列接続したときの抵 抗値を示す) 、
Vout =一 (R 2 Z R 1 ) · V in
となる。 したがって、 係数— (R 2 / R 1 ) を乗ずる乗 算器と して機能する。 一方、 第 1 4図は加算器の一構成 例を示す回路図である。 抵抗 Rはすべて同じ抵抗値のも のを用いればよい。 演算増幅器 0 P 2の入力側に電圧 V inl , V in2 , V in3 を与え る と、 出力側に電圧
V out が得られる。 こ こで、
Vout = ( V inl + V in2 + V in3 ) ♦ 2/3 となる。 したがって、 入力電圧の加算を行う ことができ る。 第 1 5図に、 乗算器と加算器との両方の機能をもつ た回路を示す。 演算増幅器 0 P 3の入力側に電圧 V inl ,
V in2 , V in3 を与えると、 出力側に電圧 Vout が得ら " I
Vout = - ( ( R 4 / R 1 ) · V inl
+ ( R 4 R 2 ) · V in2
+ ( R 4 / R 3 ) · V in3 )
となる。 すなわち、 この回路は、 乗算器と加算器とを兼 ねた機能を果たすことになる。
第 1 6図は、 第 1 3図に示す乗算器と第 1 4図に示す 加算器とを用いて、 Ax = (K llVx + Κ 12V y + K 13Vz) · 2/3 なる演算を行う具体的な回路を示す図である。 こ こでは、 K11〉 0、 Κ12< 0、 Κ 13> 0の場合の回路構成例を示 す。 電圧 Vx , Vy , Vz は、 それぞれ第 6 a ~ 6 c図 の電圧計 6 1〜 6 3に現れる電圧をそのまま与えたもの であり、 演算増幅器 0 P 4 , 0 P 5 , 0 P 6によって、 それぞれ— K 11倍、 — K12倍、 — K 13倍に増幅される。 そのためには、 R 13= R 11//R 12、 R 23 R 21//R 22、 R33= R3 / R32と し、 更に、 I Kil l - R 12ノ R ll、 I K 12 I = R 22/ R 2K I K 13 I = R 32 R 31となるよ うに各抵抗値を設定しておけばよい。 なお、 'この增幅演 算により符号が反転することになる。 Vy については、 K 12く 0であるので符号が反転したままでよいが、 V X および Vz については、 K 11> 0、 Κ 13〉 0であるため、 再び符号を反転させて符号を元に戻す必要がある。 そこ で、 演算増幅器 0 Ρ 7および 0 Ρ 8によって、 この符号 反転を行っている。 こ こで、 R 14= R 15= 2 · R 16、 R 34= R 35= 2 · R36、 とすれば、 演算増幅器 0 P 7お よび 0 P 8は、 増幅倍率が 1 となり、 単に符号を反転す るだけの機能を果たすことになる。 かく して、 KllVx 、 K12Vy 、 K13Vz 、 の各値が求まり、 これらの値に相 当する電圧が演算増幅器 0 P 9に与えられる。 こ こで、 R41= R42= R43= R 4= R45としておけば、 演算増幅 器 0 P 9は加算器として機能し、 Vout = ( K 11 Vx + K 12Vy + K 13Vz) · 2/3 が出力される。 この出力電圧 Vout が求める検出値 Ax に相当する。
2. 3 その他の実施例
以上、 本発明による力検出装置用信号処理回路の一例 を第 1 6図に基づいて説明した力 <、 この他にも種々の回 路を甩いて本発明を実現できる。 本発明における乗算器 および加算器は、 乗算および加算をアナ口グ処理するこ とのできる回路であれば、 どのような回路を用いてもか まわない。 また、 乗算器および加算器をそれぞれ別々の 回路素子で構成する必要もない。 たとえば、 第:! 5図に 示すような回路を用いれば、 1つの演算増幅器 0 P 3に よって、 乗算器と加算器とを兼ねることができ、 部品点 数を減らすことができる点で有利である。 ただし、 この 回路を利用する場合には、 係数 Kの符号を考慮し、 入力 電圧 V inl , Vin2 , V in3 に符号をもたせておく よう にする必要がある。 また、 3本の抵抗を用意し、 これら をその一端が共通接続されるような Y字に結線し、 それ ぞれの他端に電圧を加え、 共通端から出力を取出すよう にしてもよい。 いずれにしても、 このようなアナログ回 路によって補正演算を行うようにすると、 デジタル回路 による補正演算を行う場合に比べ、 コス トダウンが図れ るとともに、 高速で演算が完了するため、 瞬時の現象を 測定するような場合に有利である。 特に、 加速度検出装 置では、 衝突時のショ ッ クを検出するような用途もある 力^ 本発明を適用すれば正しい測定値を瞬時に得ること ができるようになる。 このように、 本発明による信号処 理回路は、 力検出装置を母体とする加速度検出装置ゃ磁 気検出装置などに広く適用しうるものであり、 本願実施 例では加速度検出装置について説明したが、 本発明は力 検出装置や磁気検出装置にも広く適用可能である。 2 . 4 本処理回路の利点
以上のとおり、 本発明の加速度検出装置用信号処理回 路によれば、 各铀方向成分間に生じる干渉の様子を示す 特性行列の逆行列を予め求めておき、 この逆行列を用い た補正演算をアナログ演算回路によって行うようにした ため、 低コス トの回路で、 干渉の影響を相殺した正しい 測定値を瞬時に得ることができるようになる。
§ 3 センサの試験
3 . 1 本発明に係る試験方法の原理
前述の § 1で示したような加速度センサを大量生産す るための方法は、 米国特許出願第 5 2 6 8 3 7号 (欧州 特許出願第 9◦ 1 1 0 0 6 6 . 9号) 明細書に開示され ているが、 これを製品として出荷する前に、 加速度セン ザとしての機能に支障がないか試験を行う必要がある。 この試験方法と して、 振動発生装置によってこの加速度 センサに振動を与え、 そのときのセンサからの出力を検 査することによつて試験を行う ことは可能である力《、 前 述のように、 試験装置が大掛かり となり、 動的特性しか 得る ことができない。 特に、 このセンサは 3次元座標系 における X Y Zのすベての方向についての加速度を検出 するこ とができるため、 3次元の方向を考慮して振動を 与える必要があり、 試験装置はかなり複雑なものとなつ てしま う。
本発明による試験方法では、 実際に加速度を与えるこ となしに、 このセンサを加速度が作用したのと同じ環境 におく ことができるのである。 その基本原理は次のとお りである。 まず、 センサ内部の所定筒所に、 いくつかの 電極層を形成する。 この電極層は導電性の材質からなる 層であればどのようなものでもかまわない。 実際には、 所定箇所にアルミ ニウムのような金属を蒸着あるいはス パッ夕 リ ングによって薄く形成するようにすればよい。 なお、 アルミ ニウムの上面は、 表面保護のために、 S i 0 2 膜あるいは S i N膜で覆うのが好ま しい。 電極層は 次のような各部に形成する。 まず第 4図に示すように、 制御部材 3 0に設けられた溝 3 1 内に電極層 E 1 (図で はハッチングで示す) を、 そして第 5図に示すように、 制御部材 4 0に設けられた溝 4 1内に電極層 E 2 (図で はハッチングで示す) を、 それぞれ形成する。 更に、 第 1 7図に示すように、 重錘体 2 0の全側面および底面に 電極層 E 3 (図ではハッチングで示す : 5面に渡って形 成される力 、 電気的には導通している 1枚の電極層であ る) を形成し、 台座 2 1 〜 24の各内側面に電極層 E 4 〜 E 7 (図ではハッチンゲで示す) を形成する。 また、 半導体べレッ ト 1 0の上面には、 第 1 8図に示すように、 抵抗素子 Rを避けるように電極層 E 8 (図ではハツチン グで示す) を形成する。 こう して、 第 4図、 第 5図、 第 1 7図、 第 1 8図、 において、 ハツチングを施す各領域 にそれぞれ電極層を形成する。 すると、 パッケージ内の センサ中枢部の断面図は第 1 9図のようになる (なお、 第 1 9図においては、 ハッチングを施した部分は電極層 を示し、 断面を示すハッチングは図が繁雑になるため省 略する) 。 第 1 9図によって、 各電極層 E 1〜 E 8の相 対的な位置関係が理解できょう。 なお、 第 1 9図におけ る波線は、 各電極層に対する配線を示す。 このような配 線は、 更にボンディ ングワイヤによって、 ノ ッケージ外 部の外部配線用電極 5 2 (第 1図参照) に接続すること ができる。 また、 重錘体 2 0の表面に形成された電極層 E 3に対しては、 ボンディ ングワイヤ 2 5によって配線 がなされている。
このように形成された各電極層 E 1〜 E 8の特徴は、 それぞれ対となる電極層ごとに対向した位置に形成され ている点である。 すなわち、 第 1 9図に示すように、 E 2 : E 8、 E 3 : E 4、 E 3 : E 5、 E 3 : E 6、 E 3 : E 7、 E 3 : E 1、 がそれぞれ対向した位置に形 成されている (電極層 E 3は、 5面がそれぞれ别な電極 層に対向している) 。 このように対向した電極層に、 そ れぞれ電圧を印加すると両者間にクーロン力が作用する。 すなわち、 両者間に同じ極性の電圧を印加すれば斥力が 作用し、 異なる極性の電圧を印加すれば引力が作用する。 そこで、 E 3 : E 4間に斥力、 E 3 : E 5間に引力、 が 作用するように電圧を印加したとすると、 重錘体 2 0に + X方向の力が作用したのと同じ現象が起こる。 別言す れば、 センサ本体に― X方向の加速度が作用しているの と同じ環境下にこのセンサを置く ことができる (センサ 本体に加速度が作用すると、 重錘体にはこれと逆方向の 慣性力が作用する) 。 この環境下において、 抵抗素子の 抵抗値の変化を示す出力が - X方向の加速度を検出した ことを示しているか否かを調べれば、 一 X方向の加速度 に関する試験を行う ことができる。 引力と斥力とを逆に 作用させれば、 + X方向の加速度に関する試験を行う こ と もでき る。 全く 同様にして、 E 3 : E 6間に引力、 E 3 : E 7間に斥力が作用するように電圧を印加すれば、 - Y方向 (第 1 9図の紙面に垂直上方向) の加速度に関 する試験を行う ことができ、 引力と斥力を逆に作用させ れば、 + Y方向 (第 1 9図の紙面に垂直下方向) の加速 度に関する試験を行う ことができる。 更に、 E 2 : E 8 間に引力、 E 3 : E 1間に斥力が作用するように電圧を 印加すれば、 一 Z方向の加速度に関する試験を行う こと ができ、 引力と斥力を逆に作用させれば、 + Z方向の加 速度に関する試験を行う ことができる。 前述のように各 電極層も、 加速度検出用の各抵抗素子も、 いずれもボン ディ ングワイ ヤによってパッケ一ジ外部のリ 一 ド 5 2 (第 1図参照) に電気的に接続されているので、 上述の 試験は、 ^に所定のリー ド端子に所定の電 U を印加しな がら、 所定のリー ド端子から出力される加速度検出 i 号 をモニターするだけの操作ですむ。 このように、 本発叨 による試験方法によれば、 非常に簡中.に、 3次元のすベ ての方向に関する加速度検出試験を行う ことが可能にな る o
3 . 2 より実用的な実施例
第〗 9図に示す実施例では、 電極層をかなり多く の筒 所に形成する必要があるため、 あま り実川的ではない。 できれば、 必要最小限の筒所に設けた電極層によって、 3次元のすべての方向に関する加速度検出試験を行うの が好ま しい。 そ こで、 次のようなモデルを考える。 第 2 0図は、 この加速度センサの中枢部の断面図である。 いま、 半導休ペレツ ト 1 0上の 2か所に点 Γ 1 および P 2をとり、 制御部衬 4 0の内側の 2か所に点 Q 1 およ び Q 2をとる。 点 P 1 と Q ϋ とが対向し、 点 Ρ 2 と Q 2 とが対向する。 ここで、 点 P 1 : Q 1 間に引力を作川さ せ、 点 Ρ 2 : Q 2間に斥力を作 ΓΠさせると、 点 Ρ 1 , Ρ 2は点 Q "1 , Q 2に対して変位し、 第 2 1 図に示すよ うに半導体ペレッ ト 1 ◦が機械的変形を生じる。 この状 態は、 重錘体 2 0に + X方向の力 F Xが作用したのと同 じ状態である。 別言すれば、 センサ本体に— X方向の加 速度が作用したのと同じ状態である。 また、 引力と斥力 とを逆に作用させれば、 + X方向の加速度が作用したの と同じ状態になる。 これで、 半導体ペレツ ト 1 0の上面 の所定箇所と、 制御部材 4 0の下面の所定箇所と、 に電 極層を形成しておけば、 ± X方向の加速度検出試験が可 能なことがわかる。 土 Y方向の加速度検出試験も、 電極 層の位置を 9 0 ° 変えれば同様に行う ことができる。 次 に、 点 P 1 : Q 1間に斥力を作用させ、 点 P 2 : Q 2間 にも斥力を作用させると、 第 2 2図に示すように、 重錘 体 2 0に一 Z方向の力— F zが作用したのと同じ状態に なる。 別言すれば、 センサ本体に + Z方向の加速度が作 用したのと同じ状態になる。 また、 両者ともに引力を作 用させれば、 — Z方向の加速度が作用したのと同じ状態 になる。 これで、 半導体ペレツ ト 】 0の上面の所定箇所 と、 制御部材 4 0の下面の所定箇所と、 に電極層を形成 しておけば、 士 Z方向の加速度検出試験も可能なことが わかる。
以上のとおり、 結局は、 半導体べレッ ト 1 0の上面の 所定箇所と、 制御部材 4 0の下面の所定箇所と、 に電極 層を形成しておけば、 3次元のすべての方向に関する加 速度検出試験を行う ことが可能である。 更に具体的な電 極層配置の例を以下に説明してみる。 まず、 半導体ペレ ッ ト 1 0の上面には、 第 2 3図にハッチング (断面を示 すものではない) を施して示すように、 4つの電極層 E 9〜 E 1 2を形成する。 各電極層は、 抵抗素子 Rの形成 領域を避けるようにして形成されており、 それぞれ配線 層 W 9〜 W】 2によってボンディ ングパッ ド B 9〜 B 1 2に接続されている。 ボンディ ングパッ ド B 9 ~ B 1 2 には、 ボンディ ングワイヤ (図示されていない) が接続 され、 最終的にはパッケージ外部のリー ドに対する電気 的接続がなされる。 なお、 第 2 3図には図示されていな いが、 各抵抗素子 Rも各ボンディ ングパッ ド 1 4に対し て接続されており、 パッケージ外部のリー ドに対して電 気的に接続されている。 半導体べレッ ト 1 0には、 この 抵抗素子 Rに対する配線を行うために、 アルミ ニウムな どによる配線層が形成されているが、 電極層 E 9〜 E 1 2や配線層 W 9〜W 1 2を形成するには、 このアルミ二 ゥムなどによる配線層と同じマスクを用いるようにする のが好ま しい。 こうすれば、 従来のマスクパターンを変 更するだけの作業を追加するだけで、 試験用の付加的な 電極層 E 9〜 E 1 2や配線層 W 9〜W 1 2を形成するこ とができる。 もちろん電極層 E 9〜 E 1 2や配線層 W 9 〜W 1 2は、 ゲージ抵抗等を形成するための拡散工程を 利用して拡散層として形成してもよい。 半導体ペレッ 卜 1 ◦の製造プロセスは従来と全く 同じプロセスですむ。 一方、 制御部材 4 0の下面には、 第 5図に示す電極層 E 2を形成しておけばよい。 これは、 アルミニウムなどを 蒸着あるいはスパッタ リ ングによって表面に付着させれ ばよい。 第 5図に示す電極層 E 2は物理的に単一な電極 層となっているが、 これを物理的に複数枚の電極から構 成し、 これらが同一の電位となるように電気的に接続し、 「物理的には複数だが電気的には単一な電極層」 によつ て構成してもかまわない。 以上のような電極層を形成し たときの断面図を第 2 4図に示す。 電極層 E 2について は、 図の波線で示すような配線がなされ、 更に外部のリ ー ドへと接続される。 このように、 一方の電極層と して 舉一の電極層 E 2を形成し、 これに対向する他方の電極 層と して 4枚の副電極層 E 9〜 E 1 2を形成したことに る。
このような加速度センサについて試験を行うには、 電 極層 E 2に + Vなる電圧を印加しておき、 次のようにす れば、 3次元のすべての方向についての加速度検出試験 が可能である。
( 1 ) E 1 0に + V、 E 1 2に— Vを印加すれば、 重錘体 2 0に力 + F Xを作用させることができ、 一 X方向の加 速度検出試験を行う こ とができる。
(2 ) E 1 C^ — V、 E I 2に + Vを印加すれば、 重錘体 2 0にカー F xを作用させることができ、 + X方向の加 速度検出試験を行う ことができる。 (3) E 1 1 に + V、 E 9 に— Vを印加すれば、 重錘体 2 0に力 + F yを作用させることができ、 — Y方向の加 速度検出試験を行う こ とができる。
(4) E 1 1 に— V、 E 9 に + Vを印加すれば、 重錘体 2 0にカー F yを作用させることができ、 + Y方向の加 速度検出試験を行う ことができる。
(5) E 9〜 E 1 2のすべてに一 Vを印加すれば、 重錘体 2 0に力 + F zを作用させることができ、 一 Z方向の加 速度検出試験を行う ことができる。
(6 ) E 9〜 E 1 2のすべてに + Vを印加すれば、 重錘体 2 0にカー F zを作用させることができ、 + Z方向の加 速度検出試験を行うことができる。
以上、 X , Y , Z軸上の加速度検出試験について述べ たが、 X , Y , Z軸上にない方向の加速度についても、 電極層 E 9〜E 1 2に所定の電圧を印加することにより 検出試験を行う ことができる。
なお、 印加する電圧 + Vおよび— Vは、 抵抗素子 の 抵抗値の変化が十分検出できるような電圧値にする。 こ の値は環状のダイャフラムを形成している可撓部 1 2の 厚さゃ径に依存する。
3 . 3 他の実施例
上述の実施例は、 本発明の一態様であり、 この他にも 種々の実施例が考えられる。 以下にそのいくつかを説明 する。 第 2 5図に断面を示す実施例は、 上述の実施例の 電極層 E 2の代わりに、 電極層 E 1 3を形成したもので ある。 電極層 E 1 3は制御部材 4 0の上面に形成されて いるため、 外部への配線が容易になる。 ただし、 電極間 に作用するクーロン力は前述の実施例より もやや弱く な る。
第 2 6図に示す実施例は、 上述の実施例の電極層 E 9 〜 E 1 2の代わりに、 電極層 E 14〜 E 1 7 (ハツチン グで示す) を形成 し、 れに対する配線層 W 1 4 〜 W 1 7およびボンディ ングパッ ド B 1 4〜 B 1 7を形成 したものである。 このよ うな配置は、 抵抗素子 Rに対す る配線の妨げになることが少ないという利点はあるが、 半導体ペレツ ト 1 0のもっ と も可撓性をもった位置より も内側に電極層が配置されており、 また電極の面積が小 さ く なるため、 力の作用効率は低下する。
第 2 7図および第 28図に示す実施例は、 いままで述 ベてきた実施例の電極層の上下の関係を逆にしたもので ある。 すなわち、 制御部材 4 0の下面の溝 4 1 内に、 4 つの電極層 E 1 8〜 E 2 1 (ハツチングで示す) および その配線層 W 1 8〜W 2 1が形成されている。 これに対 向する電極は、 たとえば第 1 8図に示すような半導体べ レツ ド 1 0上に形成された単一の電極 E 8でよい。
第 2 9図に示す実施例は、 第 28図に示す実施例の電 極層 E 8の代わりに、 4枚の電極層 E 1 8' 〜 Ε 2 1 ' を形成したものである。 電極層 E 1 8' 〜 Ε 2 1 ' は Ε 1 8〜 E 2 1 と対称の電極であり、 上下で向いあつた 4 組の電極対が形成されることになる。 4組 (合計 8枚) の電極を、 いずれも電気的に独立したものにしておく と、 これらに選択的に種々の電圧を印加する ことにより、 種々の方向についての試験が可能になる。 たとえば、 第 2 9図に示すように、 電極 E 1 9に 「 + + J 、 電極 E 1 9 ' に Γ— 一」 の電荷を与え、 同時に、 電極 E 2 1 に
「+ + + +」 、 電極 E 2 1 ' に 「 」 の電荷を与 えれば (+や一の数は電荷の大きさを示す) 、 上下の電 極対間では、 いずれも引力が作用するものの、 図の右側 の電極対間の引力の方が大きく なるため、 全体としては、 図のような方向の力 F x z ( F x と F z との合力) が作用 したのと同じ状態の試験を行う ことができる。
この他にも種々の実施例が考えられる。 要するに本発 明は、 力の作用により変位を生じる第 .1 の部位と、 この 第 1 の部位に対向した位置にある第 2の部位と、 の間に クーロン力を作用させるようにできれば、 どのような構 成をとつてもかまわない。
また、 上述の実施例は、 いずれも加速度センサについ てのものであるが、 重錘体の代わりに磁性体を用いた磁 気センサについても、 あるいは力センサについても、 全 く 同様に本発明を適用することが可能である。 更に、 3 次元のセンサだけでなく 、 2次元あるいは 1次元のセン サについても適用可能である。 たとえば、 Xおよび Z軸 方向の加速度や磁気を検岀する 2次元のセンサゃ X軸方 向の加速度や磁気を検出する 1次元のセ ンサでは、 第 2 3図に示す 4つの電極 E 9 ~ E 1 2のうち、 E 1 0 , E 1 2の 2つの電極を設けるだけですむ。
3. 4 電圧の印加方法
最後に、 本試験方法を実施するための電圧の印加方法 の一例を示しておく。 第 3 0 a図は、 重錘体 (図示ざれ ていない) に Z方向の力が作用したのと同じ状態を実現 するための電圧の印加方法を示す模式図である。 制御部 材 4 ◦側の電極 E 2 2と、 半導体べレ ッ ト 1 0側の電極 E 2 3 , E 24 と、 に電源 Vにより逆極性の電荷を発生 させ、 両者間に吸引力を作用させている。
—方、 第 3 0 b図は、 重錘体に一 Z方向の力が作用し たのと同じ状態を実現するための電圧の印加方法を示す 模式図である。 制御部材 4 0側の電極 E 2 2と、 半導体 ペレ ッ ト 1 0側の電極 E 2 3, E 24と、 に電源 Vによ り同極性の電荷を発生させ、 両者間に斥力を作用させて いる。 この実施例では、 より効率良い電圧印加を行うた めに、 制御基盤 4 0上面に別な電極 E 2 5を形成し、 こ の電極 E 2 5に正の電荷を与えるようにしている。 すな わち、 制御基板 4 0を挟んで分極を起こさせることによ り、 電極 E 2 2に負の電荷を発生させている。 また、 半 導体ペレツ ト 1 0の本体にも正の電荷を与えている。 半 導体ペレ ツ ト 1 0の上面には、 図のように絶縁廇 1 0 a (一般に S i 0膜あるいは S i N膜) が形成されている ので、 この絶縁層 1 ◦ aを挟んで分極を起こさせること により、 電極 E 2 3 , E 2 4に負の電荷を発生させてい る o
3 . 5 本試験方法の利点
上述の試験方法の利点を以下に述べる。
( 1 ) 第 1の部位とこれに対向した第 2の部位との間 にクーロンカを作用させて起歪体に機械的変形を誘起さ せ、 作用体に外力を作用させたのと同じ状態を創り出す ようにしたため、 実際に外力を作用させることなしにセ ンサの試験を行う ことができるようになる。
(2) 対向する 2つの電極層間に所定の極性の電圧を 印加することにより クーロン力を作用させるようにした ため、 より自由度をもった試験が可能になる。
(3) 一方の電極層を単一の電極層とし、 他方の電極 層を複数の副電極層としておけば、 印加する電圧の極性 を選択することにより、 種々の方向にクーロン力を作用 させた試験を行う ことができるようになる。
(4) 加速度センサ内に、 上述の試験を実施するため の電極層を形成し、 これに対する配線を施すようにした ため、 この加速度センサに所定の電気回路を接続するだ けで試験を行う ことができる。
(5) 磁気センサ内に、 上述の試験を実施するための 電極層を形成し、 これに対する配線を施すようにしたた め、 この磁気センサに所定の電気回路を接続するだけで 試験を行う こ とができる。
(6) 上述の加速度または磁気のセンサにおいて、 一 方の電極層を単一の電極層で構成し、 他方の電極層を複 数の副電極層で構成するようにしたため、 印加する電極 の極性を選択することにより、 種々の方向にクーロン力 を作用させた試験を行う ことができるようになる。
(7) 上述の加速度または磁気のセンサにおいて、 副 電極層を 2枚設けるようにしたため、 互いに垂直な 2と おりの方向に関してクーロン力を作用させた試験を行う ことができるようになる。
(8) 上述の加速度または磁気のセンサにおいて副電 極層を十字状に 4枚設けるようにしたため、 互いに垂直 な 3とおりの方向に関してクー ロンカを作用させた試験 を行う ことができるようになる。
§ 4 高感度測定に適したセンサ
4 . 1 センサの構造
第 3 1図は、 本発明の一実施例に係る高感度の測定に 適した加速度セ ンサの構造断面図である。 装置中枢部 3 0 0は、 半導体ペレ ツ ト 3 1 0、 重錘体 3 2 0、 台座 3 3 0、 制御基板 3 4 0、 の 4つの要素から構成されて いる。 この装置中枢部 3 0 0は、 パッケージ 4 ◦ 0内部 の底面に接合されている。 パッケージ 4 0 0の上部には 蓋 4 1 0が被せられている。 また、 パッケージ 4 0 0の 側部からは、 リー ド 4 2 0が外部に導出されている。 第
3 2図は装置中枢部 3 0 0の斜視図である。 半導体ペレ ッ ト 3 1 0の上面には複数の抵抗素子 Rが形成されてお り、 各抵抗素子 Rはボンディ ングパッ ド 3 5 2に電気的 に接続されている。 ボンディ ングパッ ド 3 5 2と リー ド
4 2 0との間は、 ボンディ ングワイヤ 3 5 1 によって接 続されている。
第 3 3図は、 第 3 1図に示す加速度センサの装置中枢 部 3 0 0の断面詳細図である。 半導体べレツ 卜 3 1 0は、 この実施例では単結晶シリ コン基板からなり、 抵抗素子 Rは、 この半導体ペレッ ト 3 1 ◦の上面に不純物を拡散 することにより形成されている。 もちろんイオン打込み 法を用いてもよいし、 シリ コン基板上にゲージ抵抗を推 積させる S 0 I構造にしてもよい。 このようにして形成 した抵抗素子 Rは、 ピエゾ抵抗効果を有する。 すなわち、 機械的変形に基づいて電気抵抗が変化する性質を示す。 半導体べレッ ト 3 1 ◦の下面には、 円環状の溝部 C 1 が 形成されている。 この実施例では、 溝部 C 1 は深部 (第 3 3図の上方) にゆく ほど幅が狭く なるようなテー パー 構造をとつている力 <、 深部まで同一幅の溝にしてもかま わない。 第 3 4図は、 この半導体べレッ ト 3 1 0の上面 図である。 下面に掘られた溝部 C 1 は破線で示されてい る。 いま、 第 3 3図および第 3 4図に矢印で示すような 座標軸 X, Y, Ζを定義すれば、 第 34図に示す半導体 ペレッ ト 3 1 0を X軸に沿って切断した断面が、 第 3 3 図に示されていることになる。 この溝部 C 1の形成によ り、 半導体ペレツ ト 3 1 0を 3つの部分に分けること力く できる。 すなわち、 溝部 C 1の内側に位置する作用部 3 1 1 、 溝部 C 1のちよ うど上方に位置する可撓部 3 1 2、 そして溝部 C 1 の外側に位置する固定部 3 1 3、 の 3つ の部分である。 別言すれば、 半導体ペレツ 卜 3 1 0の中 心部分に作用部 3 1 1、 その周囲に可撓部 3 1 2、 更に その周囲に固定部 3 1 3、 がそれぞれ位置する。 可撓部 3 1 2は溝部 C 1 によつて肉厚が他の部分より薄く なつ ており、 このため可撓性をもつことになる。 このような 溝を形成するかわりに、 基板に部分的に貫通孔を形成し て可撓性をもたせるようにしてもよい。
作用部 3 1 1 の下面には重錘体 3 2 0が接合されてお り、 固定部 3 1 3の下面には台座 3 3 0が接合されてい る。 第 3 5図は、 重錘体 3 2 0および台座 3 3 0の上面 図である。 第 3 5図の切断線 3 3 - 3 3に沿った断面が 第 3 3図に示されていることになる。 重錘体 3 2 0の上 面には段差がついており、 重錘体上面中心部 3 2 1 と重 錘体上面周囲部 3 2 2とが形成されている。 重錘体上面 中心部 3 2 1は、 重錘体 3 2 0の上面の中心部分におい てやや隆起した部分であり、 この部分が作用部 3 1 1の 下面に接合されている。 したがって、 重錘体上面周囲部 3 2 2と半導体ペレッ ト 3 1 0の下面との間には、 間隙 部 C 2が形成されることになる。 台座 3 3 0は、 この重 錘体 3 2 0の周囲 8方に配置された 8つの部材から成り、 重錘体 3 2 0と台座 3 3 0との間には、 溝部 C 3および 溝部 C 4が形成されている。 後述するように、 もともと 重錘体 3 2 0と台座 3 3 0とは、 同一基板から構成され ていた部材であり、 溝部 C 3および溝部 C 4によって切 断分離されたものである。 第 3 5図に示されているよう に、 溝部 C 3は幅 L 1、 溝部 C 4はこれより狭い幅 L 2 をもつており、 第 3 3図から明らかなように、 溝部 C 3 は上方、 溝部 C 4は下方に形成されている。 もちろん、 加工上、 L 1 = L 2としてもかまわない。
台座 3 3 0の下面には、 制御基板 3 4 0が接合されて いる。 第 3 6図にこの制御基板 3 4 0の上面図を示す。 制御基板 3 4 0にはその周囲部分だけを残して溝部 C 5 が掘られており、 この溝部 C 5の底面が制御面 3 4 1を 形成している。 第 3 6図の切断線 3 3— 3 3に沿った断 面が第 3 3図に示されているこ とになる。 第 3 3図に示 すように、 台座 3 3 0の下面には、 制御基板 3 4 0の周 囲部分だけが接合されている。
4 . 2 センサの製造方法
この装置中枢部 3 0 0の構造の理解を助けるために、 その製造方法を簡単に説明する。 まず、 第 3 4図に示す ような半導体べレッ ト 3 1 0を用意する。 こ こで、 溝部 C 1 は、 たとえばェツチングプロセスにより形成するこ とができ、 抵抗素子 Rは所定のマスクを用いた不純物注 入プロセスにより形成することができる。 続いて、 第 3 7図に断面図が、 第 3 8図に上面図が、 それぞれ示され るような補助基板 3 5 0を用意する。 ここで、 第 3 8図 の切断線 3 7 - 3 7に沿った断面が第 3 7図に相当する。 補助基板 3 5 ϋの材質と しては、 半導体ペレ ッ ト 3 1 0 と同じシリ コン力、、 ガラスを用いるのが好ま しい。 これ は、 半導体べレッ ト 3 1 0と補助基板 3 5 0とは後に接 台されるので、 両者の熱膨脹係数を等しく しておく こと により クラ ッ クの発生を抑制し、 温度特性を改善するた めである。 この補助基板 3 5 0の上面には、 幅 L ] をも つ溝部 C 3が井桁状に掘られており、 その内側に幅 L 3 をもった間隙部 C 2が形成されている。 この結果、 重錘 体上面中心部 3 2 1 と重錘体上面周囲部 3 2 2との間で 段差が生じている。 間隙部 C 2は、 たとえばエッチング プロセスにより形成することができ、 溝部 C 3はダイ シ ングブレー ドを用いた切削加工により形成することがで きる。 こ こで注意すべき点は、 第 3 3図や第 3 5図に示 した溝部 C 4は、 まだ形成されていない点である。 した がって、 補助基板 3 5 0はあく までも 1枚の基板の状態 である。 このよ うに して用意した補助基板 3 5 0の上面 を、 半導体べレッ ト 3 1 ◦の下面に接台する。 このとき、 重錘体上面中心部 3 2 1を作用部 3 1 1 の下面に接台し、 捕助基板 3 5 0の周囲の部分 (後に台座 3 3 0を構成す ることになる部分) を固定部 3 1 3下面に接合する。 こ のような接合を完了した後に、 補助基板 3 5 0の下面を 幅 L 2のダイ シングブレ一ドで切削加工し、 溝部 C 4を 形成する。 こ う して、 溝部 C 3と溝部 C 4とが繋がり、 補助基板 3 5 0は中央部分の重錘体 3 2 0と、 周囲部分 の台座 3 3 0 とに分割される こ とになる。 この後、 第 3 6図に示すような制御基板 3 4 0を用意し、 エツチン グプロセスなどで溝部 C 5を形成し、 これを台座 3 3 0 の下面に接台する。 以上の製造工程を経ることにより、 第 3 3図に示す装置中枢部 3 0 0が得られる。
なお、 上述のプロセスは、 1つの単位ユニッ トを製造 する方法であり、 実際にはこのような単位ュニッ トが縦 横に複数個並べられた状態のウェハ単位で製造が行われ る。 すなわち、 第 3 4図に示す単位ュニッ トを縦横に配 列したウェハと、 第 3 5図に示す単位ュニッ トを縦横に 配列した補助基板とを接合し、 更に第 3 6図に示す単位 ユニッ トを縦横に配列した補助基板をこれに接合した後、 最終的に各ュニッ トごとに切断することになる。 なお、 こ こでは間隙部 C 2を補助基板 3 5 0側に形成したが、 半導体べレッ ト 3 1 0の固定部をェツチングし、 間隙部 C 2を半導体ペレツ ト 3 1 ◦側に設けるようにしてもよ い。 4 . 3 センサの動作
続いて、 この装置の動作を説明する。 第 3 1 図に示す ように、 装置中枢部 3 0 0はパッケージ 4 0 0の内部の 底面に固着される。 制御基板 3 4 0、 台座 3 3 0、 そし て固定部 3 1 3は、 互いに固着された状態となっている ので、 固定部 3 1 3は間接的にバッケージ 4 0 0に固着 される。 一方、 重錘体 3 2 0は台座 3 3 0によつて周囲 を囲まれた空間内で、 宙吊りの状態となっている。 すな わち、 第 3 3図に示すように、 重錘休 3 2 0の下面には 溝部 C 5が形成され、 側面には溝部 C 3および溝部 C 4 が形成され、 上面周囲部には間隙部 C 2が形成されてい る。 そして、 この重錘休 3 2 0の上面中心部だけが作用 部 3 1 1 に接合されている。 このような宙吊りの状態に ある重錘体 3 2 〔〕に加速度が作用すると、 この加速度に より作用部 3 1 1 に力が作用することになる。 前述のよ うに、 可撓部 3 1 2は可撓性をもった部分であるから、 作用部 3 1 1 に力が作用すると、 可撓部 3 1 2が橈みを 生じ、 作用部 3 1 1が固定部 3 1 3に対して変位を生じ るようになる。 この可撓部 3 1 2の撓みは、 抵抗素子 R に機械的変形をもたら し、 抵抗素子 Rの電気抵抗に変化 が生じる。 この電気抵抗の変化は、 第 3 1図に示すよう に、 ボンディ ングワイヤ 3 5 1およびリー ド 4 2 0を禾 IJ 用して、 装置外部で検出することができる。 この実施例 の装置は、 第 3 4図に示すような位置に抵抗素子 Rを配 置するこ とにより、 図の Χ Υ Ζ各軸方向についての加速 度成分を独立して検出することができる。 この検出原理 は § 1で述べたとおりである。
4 . 4 センサの特徴
こ こに述べた加速度センサの特徵は、 高感度の加速度 測定に適しているという点である。 その第 1の理由は、 限られたスペース内で、 重錘体 3 2 0の体積をできる限 り大きく とることができるためである。 第 3 3図に示す ように、 重錘体 3 2 0は重錘体上面中心部 3 2 1 でのみ 作用部 3 1 1 に接合されているが、 その周囲は横に広が り、 溝部 C 1を跨いで固定部 3 1 3の内側部分にまで延 びている。 このため、 重錘体 3 2 0の質量を大きくする ことができ、 わずかな加速度が加わっても十分な力を作 用部 3 1 に伝達することができる。 そして第 2の理由 は、 単純な構造で重錘体 3 2 0の変位を所定範囲内に制 限する制御部材を構成することができるためである。 第 3 3図に示す構造において、 重錘体 3 2 0の上方向への 変位、 横方向への変位、 下方向への変位、 のそれぞれが いずれも所定範囲内に制限されている。 まず、 上方向の 変位については、 固定部 3 1 3の下面の一部が制御部材 として機能することが理解できょう。 第 3 3図において、 重錘体 3 2 0が上方向に動こうとした場合、 可撓部 3 1 2の撓みにより、 作用部 3 1 1が上方向に動き、 それに 伴い重錘体上面中心部 3 2 1 も上方向に動く。 ところ力《、 重錘体上面周囲部 3 2 2の外周部分は、 固定部 3 1 3の 下面に当接して動きが妨げられる。 別言すれば、 重錘体 3 2 0の上方向の変位は、 間隙部 C 2の寸法の範囲内に 制限される。 この制限作用は、 第 3 9図を参照するとよ り明瞭になろう。 第 3 9図は半導体ペレッ ト 3 1 0の下 面図であり、 重錘体 3 2 0の位置を破線で示してある。 重錘体 3 2 0は、 中央の斜線によるハツチングを施した 部分 (作用部 3 1 1 の下面) にのみ接合されている。 溝 部 C 1 の外側の部分が固定部 3 1 3となるが、 このう ち、 ドッ トによるハッチングを施した部分が、 制御部材と し ての機能を果たす面である。 重錘体 3 2 0はこの面に当 接し上方への動きが制限される。 一方、 横方向の動きに ついては、 第 3 3図から明らかなように、 台座 3 3 〇の 内側面に重錘体 3 2 0の側面が当接し、 溝部 C 4の寸法 の範囲内に変位は制限される。 また、 下方向の動きにつ いては、 制御基板 3 4 0の制御面 3 4 1 に重錘体 3 2 0 の下面が当接し、 溝部 C 5の寸法の範囲内に変位は制限 される。 このように、 すべての方向の動きについて、 重 錘体 3 2 0の変位が所定範囲内に制限されているため、 過度な変位により半導体ペレッ ト 3 1 0が破損する危険 を回避するこ とができる。 このような変位の制御は、 高 感度のセンサの場合は特に重要である。 木発明の構造に よれば、 上方向の変位を半導体べレッ ト 3 ] ϋを利用し て制御し、 横方向の変位を台座 3 3 0を利用して制御し ているため、 それぞれ別途制御部材を設ける必要がなく なり、 構造が非常に単純になる。 したがって、 量産化を 図れるというメ リ ッ トも生じる。
4 . 5 他の実施例
以上、 本発明を図示する一実施例に基づいて説明した 力;'、 本発明はこの実施例のみに限定されるものではなく 、 種々の態様で実施可能である。 以下に、 別な実施例をい くつか示す。
第 3 7図および第 3 8図に示す補助基板 3 5 ◦を形成 する方法として、 前述の実施例では、 ダイ シンダブレー ドによる切削加工により溝部 C 3を形成し、 エツチング プロセスにより間隙部 C 2を形成する方法を一例として 示したが、 ダイ シングブレー ドによる切削加ェにより間 隙部 C 2を形成してもかまわない。 これは、 たとえば、 第 4 0図に示すように、 幅 L 3のダイ シングブレー ド 3 6 1を ffl意し、 第 4 1 図の破線で示す経路を通るよう にして切削加工を行って補助基板 3 5 0 ' を形成すれば よい。 もちろん、 幅 L 3以下のダイ シングプレー ドを何 回か通過させて幅 L 3の溝を掘るようにしてもかまわな い。 第 4 1図で、 ハッチングを施した領域だけが、 切削 加工を受けなかった部分である。 このような切削加工を 行うと、 台座 3 3 ◦となる部分も一部切削されてしまう が、 台座 3 3 0としての機能に何ら支障は生じない。 一 般に、 補助基板を大量生産する場台、 第 4 1図に示すよ うな補助基板 3 5 0 ' を 1 単位と し、 これをウェハ上に 縦横に多数配置し、 ウェハ単位で基板の加工を行つた後、 ダイ シング工程により各単位を切断することになる。 こ のようなウェハ単位の加工には、 上述した切削加工は非 常に効率的である。 ダイ シングブレー ド 3 6 1をゥェハ 上で一直線に移動させれば、 多数の補助基板に対する切 削加工を一度に行う ことができるのである。
前述の実施例では、 半導体ペレツ ト 3 1 0に掘られた 溝部 C 1 は、 第 3 4図に示すように円環状のものであつ た。 このような円環状の溝は、 エッチングプロセスによ つて容易に形成することができる力 <、 ダイ シングブレ一 ドによる切削工程で形成するには、 ダイ シングブレ一 ド の移動制御が複雑になり不適当である。 本発明では、 半 導体べレッ ト 3 1 0に形成する溝部は円環状に限定され る ものではない。 こ こでは、 半導体ペレッ ト 3 】 0 ' の 下面に井桁状の溝部 C 6を形成した実施例の断面図を第 4 2図に、 下面図を第 4 3図にそれぞれ示す。 第 4 3図 に示すように、 幅 L 4のダイ シングブレー ド 3 6 2を用 意し、 破線で示す経路を通るようにして切削加工を行え ばよい。 もちろん、 幅 L 4以下のダイ シングブレー ドを 何回か通過させて幅 L 4の溝を掘るようにしてもかまわ ない。 第 4 3図で、 ハッチングを施した領域だけが、 切 削加工を受けなかった部分である。 このような切削加工 を行う と、 作用部 3 1 1 ' 、 可撓部 3 1 2 ' 、 固定部 3 1 3 ' の形状は、 前述の実施例とは若干異なってく る が、 各部の機能については何ら支障は生じない。 第 4 4 図は、 この半導体ペレッ ト 3 1 0 ' の下面図であり、 重 錘体 3 2 0の位置を破線で示してある。 重錘体 3 2◦は、 中央の斜線によ るハ ッ チ ングを施した部分 (作用部 3 1 1 ' の下面) にのみ接合されている。 溝部 C 6の外 側の部分が固定部 3 1 3 ' となるが、 このうち、 ドッ ト によるハッチングを施した部分が、 制御部材としての機 能を果たす面となる。 この実施例も、 ウェハ単位での加 ェに適した方法となる。
第 4 5図に示す実施例は、 制御基板 3 4 0の代わりに スぺ一サ 3 7 0を用いたものである。 このスぺーサ 3 7 0と しては、 たとえば、 ガラス繊維のフィ ルムなどを用 いればよい。 このスぺーサ 3 7 0を台座 3 3 0の下面と パッケージ 4 0 ◦の内部底面との間に挟み、 ダイボン ド などの方法により固着すれば、 パッケージ 4 0 0の内部 底面自体を、 重錘体 3 2 0の下方向の変位を制御する部 材として利用することができる。 重錘体 3 2 0の下方向 の許容変位は、 ス 一サ 3 7 0の厚みによつて決定され る。 この他、 スぺ一サ 3 7 0を用いずに、 重錘体 3 2 0 の下面 (パッケージ 4◦ 0の底面側の面) をエッチング し、 台座をパッケージに接合したときに重錘体 3 2 0力 浮いている状態になるようにしてもよい。 あるいは、 ノ、。 ッケージ 4 0 0の内部底面に溝を掘り、 重錘体 3 2 0を 浮かす状態にしてもよい。
以上の実施例は、 いずれも加速度センサに本発明を適 用したものであるが、 前述の重錘体 3 2 ◦を一般的な作 用体に置き換えれば、 本発明は磁気センサゃ力センサに も適用可能である。 たとえば、 磁気センサに適用する場 合は、 重錘体 3 2 ◦の代わりに磁気に反応する何らかの 作用体 (磁性体でよい) を用いればよい。 また、 力セン ザに適用する場台は、 たとえば、 第 4 6図に示ォように、 半導体べレッ ト 3 1 0を支持部材 3 8 0によつて支持す れば、 作用体 3 2 0 ' に図のように作用する外力 Fを検 出することができる。 あるいは、 第 4 7図に示すように、 半導体べレッ ト 3 1 ◦および台座 3 3 0の側面を支持部 材 3 9 0によって支持しても同様である。
4 . 6 加速度センサの利用例
以上述べたように、 本発明を加速度センサに適用すれ ば、 三次元方向の加速度を高感度で検出することが可能 になる。 このような高感度加速度センサは種々の分野で 利用可能である。 たとえば、 自動車事故から搭乗者を保 護するためのシステムと して、 エアバッグが普及しはじ めている。 ところ力 <、 いまのところ、 一次元方向の加速 度センサしか実用化されていないため、 現在のエアバッ グは正面衝突を想定したシステムとなっている。 すなわ ち、 第 4 8図に示すように、 矢印方向の衝撃を検出した ときに、 搭乗者 5 0 0の正面でエア一バッグ 5 1 0を膨 らませ、 搭乗者 5 0 0をシー ト 5 0 5 とエア一バッ グ 5 1 0との間に挟むようにして保護している。 したがつ て、 エア一バッグ 5 1 0は球状のものが用いられている c これに対し、 本発明による加速度センサは、 三次元方向 の加速度を高感度で検出することができるので、 側面衝 突が起こった場台でも衝撃を検出することができる。 し たがって、 第 4 9図に示すように、 搭乗者 5 0 〔)の側方 をも覆うような形状のエアーバッグ 5 2 0を用意してお き、 本発明による加速度センサの検出信号でこれを膨ら ませるようにすれば、 側面衝突についても対処できるェ ァーバッ グシステムが導入できる。
4 . 7 三次元の各軸方向の検出感度
本発明のセンサによれば、 三次元方向の力、 加速度、 磁気、 を検出することができる力《、 各軸方向についての これらの物理量の検出感度に大きな差があると問題であ る。 いま、 第 5 0図に示すような加速度センサの単純な モデルを考える。 この加速度センサは、 重錘体 3 2 0に 与えられた加速度を、 半導体ペレツ ト 3 1 0の上面の点 P (重錘体 3 2 0の重心 Gから半導体べレッ ト 3 1 0の 上面に下ろした垂線の足) に作用する力 (あるいはモー メ ン ト) と して検出している こ とになる。 こ こで、 第 5 0図の矢印に示すような方向に、 X軸, Y軸 (紙面に 垂直な方向) , Z軸を定義し、 質量 mの重錘体 3 2 0に 作用する加速度を、 重心 Gに作用する加速度として考え ることにする。 すると、 重心 Gに作用する Z拳由方向の加 速度 α ζ は、 点 Ρにおいて Ζ軸方向に作用する力 F ζ ( = m · α ζ ) と して検出される。 これに対し、 重心 G に作用する X軸方向の加速度 α Xは、 点 Ρにおける Υ軸 まわりのモーメ ン ト M y ( - m * な x ' L ) と して検出 され、 重心 Gに作用する Y軸方向の加速度 a yは、 点 P における X車由まわりのモ一メ ン ト M x ( = m · y · L ) と して検出される。 したがって、 半導体ペレツ 卜 3 1 0 を平面的にシ ンメ ト リ ッ クな構造と しておけば、 X軸方 向に作用する加速度の検出感度と Y軸方向に作用する加 速度の検出感度とは、 ほぼ等しくできる。 ところが、 こ れらと Z軸方向に作用する加速度の検出感度とは一般に 異なる。
本願発明者は、 モーメ ン 卜 M xおよび M yが、 垂線の 長さ Lをパラメ一夕と してもつ量であることに着目 し、 Lを適当な値に定めてやることにより、 X Y Z 3軸方向 の検出感度をほぼ同じにできることに気が付いた。 そし て、 実験の結果、 Lが次のような条件を満たせば、 3軸 方向の検出感度がほぼ等しく なることを発見した。 すな わち、 第 5 0図に示すように、 点 Pから半導体べレッ ト 3 1 0に掘られた溝深部の内側部分までの距離を r 1 、 点 Pからこの溝深部の外側部分までの距離を r 2と した とき、 r l く Lく r 2なる関係が成り立つようにすれば、 3 $由方向の検出感度がほぼ等しく なるのである。 ただし、 X , Y , z各軸の感度は可撓部や作用部などの形状によ つても多少変化を受ける。 このため r 1 く Lなる関係を 完全に満たさない場台もあり、 少なく とも L < r 2なる 関係が保たれていれば検出感度を均一にする効果があら われる。 したがって、 本発明に係るセンサを実際に製造 する場合は、 このような条件を考慮して各部の寸法設計 を行うのが好ま しい。
4 . 8 センサの試験方法
本発明に係るセンサを大量生産する場合、 各センサを 出荷前に試験する必要が生じる。 このような試験を容易 に行う ための方法は、 § 3で述べたとおりである。 第 5 1 図は、 この試験方法を第 3 3図に示す装置中枢部 3 0 0に適用したときの構造を示す側断面図、 第 5 2図 はこのときの制御基板 3 4 0の上面図 (ハツチング部分 は電極を示す) である。 重錘体 3 2 0の底面には、 1枚 の電極板 E 3 0が形成され、 制御基板 3 4 〔)の制御面 3 4 1上には、 この電極板 E 3 0に対向するように 4枚 の電極板 E 3 1 ~ E 3 4が形成される。 各電極板に対し ては、 それぞれ配線層が接続されるが、 こ こでは図示を 省略する。 このような電極層を形成しておき、 各電極層 に所定の極性の電圧を印加すると、 対向する電極層間に クーロン力が作用し、 加速度が作用していないにもかか わらず重錘体 3 2 0に力を作用させることができる。 各 電極層に印加する電圧の極性を変えることにより、 種々 の方向へ力を加えることが可能になる。 各電極層に印加 した電圧と、 そのときのセンサ本来の出力とを比較すれ ば、 このセンサが正常に動作するか否かを試験すること ができる。
4 . 本センサの利点
( 1 ) 上述のセンサによれば、 作用体の側部を基板の 固定部下方にまで延ばすようにしたため、 全体的に作用 体の体積を大きく設計することが可能になり、 作用体の 重量が増し、 感度を向上させることが容易にできる。 ま た、 基板の固定部下面を制御部材として利用し、 作用休 の上方への変位を制限することができるようになるため、 高感度な物理量測定に適したセンサを単純な構造で実現 できる。
(2) 上述のセンサにおいて、 台座の内側面を制御部 材と して利用し、 作用体の横方向への変位を制限するよ うにすれば高感度な物理量測定に適したセンサを単純な 構造で実現できる。
(3 ) 上述のセンサにおいて、 作用体の下面と所定の 制御面とが、 所定の間隙をおいて対向するように台座を 固定し、 この制御面によって作用体の下方向への変位を 所定範囲内に制限できるようにすれば、 高感度な物理量 測定に適したセンサを単純な構造で実現できる。
(4) 上述のセンサにおいて、 基板上面の中心部に定 義された作用点と作用体の重心点との間の距離を最適範 囲に設計するようにすれば、 三次元の各蚰方向の検出感 度を均一にすることができる。 産業上の利用可能性 本発明に係る力センサ、 加速度センサ、 磁気センサは. あらゆる産業機械に搭載して利用することができる。 小 型で、 低コス 卜で、 高精度の測定が可能であるため、 自 動車や産業用ロボッ トへの適用が期待される。 特に、 加 速度セ ンサは、 実施例として述べたように、 Θ動車に衝 撃センサとして搭載し、 エアバッグへの動作信号を発生 させる用途には理想的な装置となる。

Claims

請求 の 範 囲
1. X Y Z三次元座標系における所定の作用点に外 力 ( F X , F y , F z ) が作用したとき、 この外力によ つて機械的変形が生じるようにし、 前記作用点に作用し た外力の X铀方向成分 Ax 、 Y蚰方向成分 Ay 、 Z軸方 向成分 Az を、 前記機械的変形に起因して発生する電気 信号 Vx 、 Vy 、 Vz に基づいて検出するセンサ用の信 号処理回路において、
前記 Ax , Ay , Az と前記 Vx , Vy , Vz との間 にヽ
Ax = K 11 V X + K 12 V y + K 13V z
Ay = K 21 V x + K 22V y + K 28V z
Az = K 31Vx + K 32V y + K 33 V z
なる関係式が成り立つような係数 K U, K 12, Κ 13, Κ 21, 22, Κ 23, Κ 31, Κ 32, Κ 33を求め、 アナログ 乗算器(101-109) を用いて前記関係式の右辺の項の値を 演算し、 アナログ加減算器(111- 113) を用いて前記関係 式の右辺の各項間演算を行い、 これらの演算結果から、 検出値 Ax 、 Ay 、 Az を得るように構成したことを特 徴とするセンサ用の信号処理回路。
2 , 所定の作用点に外力 ( F X , F y , F z ) が作 用したとき、 この外力によって機械的変形が生じるよう にし、 前記作用点に作用した外力の X軸方向成分 Ax と、 これに直交する Y軸方向成分 Ay とを、 前記機械的変形 に起因して発生する電気信号 Vx と Vy とに基づいて検 出するセンサ用の信号処理回路において、
前記 Ax , Ay と前記 Vx , Vy との間に、
Ax = K 11 V + K 12V y
Ay = K 21Vx + K 22 V y
なる関係式が成り立つような係数 K 11, Κ 12, Κ 21, Κ 22を求め、 アナログ乗算器 ( 201- 204)を用いて前記関 係式の右辺の項の値を演算し、 アナログ加減算器(211, 212〉を用いて前記関係式の右辺の各項間演算を行い、 こ れらの演算結果から検出値 Ax および Ay を得るように 構成したことを特徴とするセンサ用の信号処理回路。
3. 機械的変形によって電気抵抗が変化するピエゾ 抵抗効果を示す複数の抵抗素子(R) を単結晶基板(10)上 に配置し、 X Y Z三次元座標系における所定の作用点に 外力 ( F X, F y , F z ) が作用したとき、 この外力に よつて前記単結晶基板に機械的変形が生じるようにし、 前記作用点に作用した外力の X軸方向成分 Ax 、 Y軸方 向成分 Ay 、 Z軸方向成分 Az を、 前記複数の抵抗素子 によつて構成されるブリ ッジ回路に基づいて得られる電 圧値 Vx 、 Vy 、 Vz に基づいて検出するセンサ用の信 号処理回路において、 前記 Ax , Ay , Az と前記 Vx , Vy , Vz との間 に、
Ax = K 11 V X + K 12 V y + K 13 V z
Ay = K 21 V x + Κ 22 V y + Κ 23 Vz
A z = K 31 V x + K 32Vy + K 33Vz
なる関係式が成り立つような係数 K 11, K 12, K 13, K 21, K 22, K 23, K 31, K 32, K33を求め、 アナログ 乗算器(101-109) を用いて前記関係式の右辺の項の値を 演算し、 アナログ加減算器(U1-113) を用いて前記関係 式の右辺の各項間演算を行い、 これらの演算結果から、 検出値 Ax 、 Ay 、 Az を得るように構成したことを特 徴とするセンサ用の信号処理回路。
4. 機械的変形によって電気抵抗が変化する ピエゾ 抵抗効果を示す複数の抵抗素子(R) を単結晶基板(10)上 に配置し、 所定の作用点に外力 ( F X , F y , F z ) が 作用したとき、 この外力によつて前記単結晶基板に機械 的変形が生じるようにし、 前記作用点に作用した外力の X軸方向成分 Ax と、 これに直交する Y軸方向成分 Ay とを、 前記複数の抵抗素子によって構成される 2組のブ リ ッ ジ回路のそれぞれのブリ ッジ電圧値 V X と V y とに 基づいて検出するセンサ用の信号処理回路において、 前記 Ax , Ay と前記 V x , Vy との間に、
A = K 11 V X + K 12 V y Ay = K 21 V x + K 22Vy
なる関係式が成り立つような係数 Κ 11, Κ 12, Κ 21, Κ22を求め、 アナログ乗算器 ( 201- 204)を用いて前記関 係式の右辺の項の値を演算し、 アナログ加減算器(211, 212)を用いて前記関係式の右辺の各項間演算を行い、 こ れらの演算結果から検出値 Ax および Ay を得るように 構成したことを特徵とするセンサ用の信号処理回路。
5. 力の作用を受ける作用部(11)、 センサ本体に固 定される固定部(13)、 およびこれらの間に形成され可撓 性をもった可撓部(12)、 を有する起歪体(10)と、
作用 した力を前記作用部に伝達させるための作用体 (20)と、
伝達された力によつて莳記起歪体に生じる機械的変形 を、 電気信号に変換することにより、 前記作用体に作'用 した力を電気信号として検出する検出手段(60-63) と、 を備えるセンサを試験する方法において、
互いに対向した位置にあり、 力の作用により両者間に 変位を生じる第 1 の部位および第 2の部位を定め、 両者 間にクーロ ン力を作用させ、 この作用させたクーロ ン力 と前記検出手段による検出結果とに基づいて、 センサの 試験を行う ことを特徴とする力の作用体を有するセンサ の試験方法。
6 . 請求項 5に記載の試験方法において、 第】 の部 位に第 1 の電極層(E3)を形成し、 第 2の部位に第 2の電 極層(E4- E8 ) を形成し、 前記第 1の電極層および前記第 2の電極層に、 それぞれ同じ極性の電圧を印加すること により両者間に斥力を作用させながら行う試験と、 それ ぞれ異なる極性の電圧を印加するこ とにより両者間に引 力を作用させながら行う試験と、 を行うようにしたこと を特徴とする力の作用体を有するセンサの試験方法。
7 . 力の作用を受ける作用部(U )、 センサ本休に固 定される固定部( 1 3 )、 およびこれらの間に形成され可撓 性をもった可撓部(12)、 を有する起歪体(10)と、
作用 した力を前記作用部に伝達させるための作用体 (20)と、
伝達された力によって前記起歪体に生じる機械的変形 を、 電気信号に変換することにより、 前記作用体に作用 した力を電気信号と して検出する検出手段(60 - 63 ) を備えるセンサを試験する方法において、
互いに対向した位置にあり、 力の作用により両者間に 変位を生じる第 1 の面および第 2の面を定め、 前記第:! の面上に電極層(E2 )を形成し、 前記第 2の面上の複数箇 所にそれぞれ電気的に独立した複数の電極層( E 9 - E 12 )を 形成し、
前記第 ] の面上の電極層には第 1 の極性の電圧を印加 し、 前記第 2の面上の各電極層には前記第 1の極性の電 圧またはこれとは逆の第 2の極性の電圧を各電極層ごと に選択的に印加し、 前記第 1の面上の電極層と前記第 2 の面上の電極層との間に斥力または引力からなるクー π ンカを作用させ、 この作用させたクーロン力と前記検出 手段による検出锆果とに基づいて、 センサの試験を行う ことを特徵とする力の作用体を有するセンサの試験方法
8 . 力の作用を受ける作用部(11 )、 センサ本体に固 定される固定部(13)、 およびこれらの間に形成され可撓 性をもった可撓部(12)、 を有する起歪体(1 0)と、
センサ本体に加わる加速度によって力の作用を受け、 この作用した力を前記作用部に伝達して前記起歪体に機 械的変形を生じさせるための重錘体(20)と、
前記起歪体に生じる機械的変形によつて抵抗値が変化 する性質を持った抵抗素子(R) と、
加速度の作用により変位を生じる第〗 の面に形成され た第 1の電極層(E8)と、
前記第 1の面に対向した第 2の面に形成された第 2の 電極層(E18-E21 ) と、
前記抵抗素子、 前記第: I の電極層、 および前記第 2の 電極層を、 外部の電気回路と接続させるための配線手段 (14 , 15 , 52)と、
を備え、 前記第 1の電極層および前記第 2の電極層に 所定の電圧を印加して両電極層間にクーロン力を作用さ せることにより、 加速度が作用していない状態であつて も前記起歪体に機械的変形を生じさせることができるよ うに構成したことを特徵とする加速度センサ。
9. 力の作用を受ける作用部 ϋΐ)、 セ ンサ本体に固 定される固定部(13)、 およびこれらの間に形成され可撓 性をもった可撓部(12)、 を有する起歪体(10)と、
セ ンサ本体が置かれた磁界によって力の作用を受け、 この作用した力を前記作用部に伝達して前記起歪体に機 械的変形を生じさせるための磁性体(20)と、
前記起歪体に生じる機械的変形によつて抵抗値が変化 する性質をもった抵抗素子 0 と、
磁力の作用により変位を生じる第 ] の面に形成された 第ュ の電極層(Ε8)と、
前記第 ] の面に対向した第 2の面に形成された第 2の 電極層(E18- E21) と、
前記抵抗素子、 前記第 1の電極層、 および前記第 2の 電極層を、 外部の電気回路と接続させるための配線手段 (14, 15, 52)と、
を備え、 前記第 1の電極層および前記第 2の電極層に 所定の電圧を印加して両電極層間にクーロンカを作用さ せることにより、 磁力が作用していない状態であっても 前記起歪体に機械的変形を生じさせることができるよう に構成したことを特徴とする磁気センサ。
1 0. 請求項 8に記載のセンサにおいて、 第 1 の電 極層と第 2 'の電極層のうち、 一方の電極層を電気的に単 一の電極層(E8)で構成し、 他方の電極層を電気的に独立 した複数の副電極層(E18 - E21) で構成し、 各副電極層に 印加する電圧の極性を選択することにより、 起歪休に生 じる機械的変形に方向性をもたせうるようにしたことを 特徴とするセンサ。
1 1. 請求項 9に記載のセンサにおいて、 第 1の電 極層と第 2の電極層のうち、 一方の電極層を電気的に単 一の電極層(E8)で構成し、 他方の電極層を電気的に独立 した複数の副電極層(E18-E21) で構成し、 各副電極層に 印加する電圧の極性を選択することにより、 起歪休に生 じる機械的変形に方向性をもたせうるようにしたことを 特徴とするセンサ。
1 2. 請求項 1 0に記載のセンサにおいて、 他方の 電極層を電気的に独立した 2枚の副電極層(E18.E21) で 構成し、 各副電極層に印加する電圧の極性を選択するこ とにより、 前記 2枚の副電極層の中心を結ぶ線方向 (X) に関する機械的変形と、 前記 2枚の副電極層の層面に対 して垂直な方向 ( Z ) に関する機械的変形と、 を起歪体 に生じさせるようにしたことを特徴とするセンサ ,
1 3. 請求項 1 1 に記載のセンサにおいて、 他方の 電極層を電気的に独立した 2枚の副電極層(E18.E21) で 構成し、 各副電極層に印加する電圧の極性を選択するこ とにより、 前記 2枚の副電極層の中心を結ぶ線方向 (X) に関する機械的変形と、 前記 2枚の副電極層の層面に対 して垂直な方向 ( Z ) に関する機械的変形と、 を起歪体 に生じさせるようにしたことを特徵とするセンサ。
1 4 . 請求項 1 0に記載のセンサにおいて、 他方の 電極層を電気的に独立した 4枚の副電極層(E18- E21) で 構成し、 これらの副電極層を直交する 2線分の各端点位 置に配置し、 各副電極層に印加する電圧の極性を選択す るこ とにより、 前記 2線分のうちの第 ] の線分方向 ( X ) に関する機械的変形と、 第 2の線分方向 (Y) に関する 機械的変形と、 前記 4枚の副電極層の層面に対して垂直 な方向 ( Z ) に関する機械的変形と、 を起歪体に生じさ せるようにしたことを特徴とするセンサ。
1 5. 請求項 1 1 に記載のセンサにおいて、 他方の 電極層を電気的に独立した 4枚の副電極層(E18- E21) で 構成し、 これらの副電極層を直交する 2線分の各端点位 置に配置し、 各副電極層に印加する電圧の性を選択する ことにより、 前記 2線分のうちの第 1 の線分方向 (X) に関する機械的変形と、 第 2の線分方向 (Y) に関する 機械的変形と、 前記 4枚の副電極層の層面に対して垂直 な方向 ( Z) に関する機械的変形と、 を起歪体に生じさ せるようにしたことを特徵とするセンサ。
1 6. 請求項 8に記載のセンサにおいて、 第 1 の電 極層および第 2の電極層を、 それぞれ電気的に独立した 複数の第】 の副電極層(E18- E21) および電気的に独立し た複数の第 2の副電極層(Ε18'- Ε2Γ) で構成し、 各副電 極層に印加する電圧の極性を選択することによ り、 起歪 体に生じる機械的変形に方向性をもたせうるようにした ことを特徵とするセンサ。
1 7. 請求項 9に記載のセンサにおいて、 第 1の電 極層および第 2の電極層を、 それぞれ電気的に独立した 複数の第 1 の副電極層(E18- E21) および電気的に独立し た複数の第 2の副電極層(Ε18'- Ε2Γ) で構成し、 各副電 極層に印加する電圧の極性を選択することにより、 起歪 体に生じる機械的変形に方向性をもたせうるようにした ことを特徴とするセンサ。
1 8. 基板(310) のほぼ中心に作用部(311) 、 その 周囲に可撓部(312) 、 更にその周囲に固定部(313) を定 義し、 この基板下面の前記可撓部に溝(CI)を掘るか、 ま たはこの基板の前記可撓部に貫通孔を形成することによ り前記可撓部に可撓性をもたせ、 前記基板上面の前記可 撓部に機械的変形に基づいて電気抵抗が変化する抵抗素 子(R) を形成し、 前記作用部の前記固定部に対する変位 に基づいて生ずる前記抵抗素子の電気抵抗の変化を検出 するこ とにより、 前記作用部に作用した物理量を検出す るセンサにおいて、
前記作用部下面に、 この作用部に力を伝達させるため の作用体(320) を接台し、
前記固定部下面の第 1 の部分に、 この固定部を支持す るための台座を接合し、
かつ、 前記固定部下面の第 2の部分と、 前記作用体上 面の一部分とが、 所定の間隙(C2)をおいて対向するよう に構成し、 前記第 2の部分によって前記作用体の上方へ の変位を所定範囲内に制限できるようにしたことを特徴 とする抵抗素子を用いたセンサ。
1 9 . 請求項 1 8に記載の抵抗素子を用いたセンサ において、
台座(330) の内側面と、 作用体(320) の外側面とが、 所定の間隙(C4)をおいて対向するように構成し、 前記台 座の内側面によって前記作用体の横方向への変位を所定 範囲内に制限できるようにしたことを特徴とする抵抗素 子を用いたセンサ,
2 0 . 請求項 1 8に記載の抵抗素子を用いたセンサ において、
所定の制御面(34U と、 作用体(320) の下面とが、 所 定の間隙をおいて対向するように、 台座を前記制御面に 固定し、 前記制御面によって前記作用体の下方向への変 位を所定範囲内に制限できるようにしたことを特徴とす る抵抗素子を用いたセンサ。
2 1 . 基板(310) のほぼ中心に作用部(31 1) 、 その 周囲に可撓部(312) 、 更にその周囲に固定部(313 ) を定 義し、 この基板下面の前記可撓部に溝(C1)を掘るか、 ま たはこの基板の前記可撓部に貫通孔を形成することによ り前記可撓部に可撓性をもたせ、 前記基板上面の前記可 撓部に機械的変形を電気信号に変換する トランスデュー サを形成し、 前記作用部の前記固定部に対する変位に基 づいて生ずる前記電気信号の変化を検出することにより . 前記作用部に作用した物理量を検出するセンサにおいて 前記作用部下面に、 この作用部に力を伝達させるため の作用体(320) を接台し、
かつ、 前記作用体の重心 Gから、 前記基板上面に垂線 を下ろしたとき、 この垂線の長さ と、 前記垂線の足 P から前記溝(C 1 )の外側部分までの距離 r と、 の間に、 L く rなる関係が成り立つように構成したことを特徴とす る抵抗素子を用いたセンサ。
2 2. 第 1の基板(310' )上に幅 (L4)をもつた方環状 の可撓領域(312')を定義し、 この方環の内側または外側 のいずれか一方に作用領域(31Γ)を、 他方に固定領域 (313')を、 それぞれ定義する段階と、
前記第 1 の基板の第 1の面上の前記可撓領域内に、 抵 抗素子(R) を形成する段階と、
前記第 1の基板の第 2の面上に前記方環位置に合わせ て井桁状の溝(C6〉を掘り、 前記可撓領域に前記井桁状の 溝の一部からなる方形状の溝を形成し、 この可撓領域に 可撓性をもたせる段階と、
前記第〗 の基板の第 2の面に、 第 2の基板(350, 350') の第:! の面を接合する段階と、
前記第 2の基板を切断することにより、 前記第 1 の基 板の前記作用領域に接合しており前記第 2の基板の一部 分から構成される作用体(320) と、 前記第 1の基板の前 記固定領域に接合しており前記第 2の基板の一部分から 構成される台座(330) と、 を形成する段階と、
を有することを特徴とする抵抗素子を用いたセンサの 製造方法。
2 3. 第 1の基板上に複数の単位領域を定義し、 各 単位領域内において、 幅(L4)をもつた方環状の可撓領域 (312 ' )を定義し、 この方環の内側または外側のいずれか 一方に作用領域(31 1 ' )を、 他方に固定領域(3 1 3 ' )を、 そ れぞれ定義する段階と、
前記第 1の基板の第 1 の面上の前記各可撓領域内に、 抵抗素子(R) を形成する段階と、
前記第 1 の基板の第 2の面上に、 縦方向および横方向 にそれぞれ複数の溝を掘り、 各単位領域において、 作用 領域または固定領域の四方にそれぞれ 4つの溝(C6)が形 成され、 この溝によって可撓領域に可撓性が生じるよう にする段階と、
前記第 1 の基板の第 2の面に、 第 2の基板の第 1 の面 を接合する段階と、
前記第 2の基板を切断するこ とにより、 各単位領域に おいて、 前記第 1 の基板の前記作用領域に接合しており 前記第 2の基板の一部分から構成される作用体(320) と . 前記第 1の基板の前記固定領域に接合しており前記第 2 の基板の一部分から構成される台座(330) と、 を形成す る段階と、
前記第 1 の基板および前記第 2の基板を、 各単位領域 ごとに切り離し、 それぞれ独立したセンサを形成する段 階と、
を有することを特徴とする抵抗素子を用いたセンサの 製造方法。
PCT/JP1990/001688 1989-12-28 1990-12-26 Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus WO1991010118A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US07/761,771 US5295386A (en) 1989-12-28 1990-12-26 Apparatus for detecting acceleration and method for testing this apparatus
DE69019343T DE69019343T2 (de) 1989-12-28 1990-12-26 Beschleunigungssensoren.
EP91900948A EP0461265B1 (en) 1989-12-28 1990-12-26 Acceleration sensors
US10/816,548 US6894482B2 (en) 1989-12-28 2004-04-01 Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
US11/042,614 US7231802B2 (en) 1989-12-28 2005-01-25 Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing the apparatus
US11/788,849 US7578162B2 (en) 1989-12-28 2007-04-20 Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP1/343354 1989-12-28
JP1343354A JP2802954B2 (ja) 1989-12-28 1989-12-28 力の作用体を有するセンサの試験方法およびこの方法を実施しうるセンサ
JP2/77397 1990-03-27
JP2077397A JPH03276072A (ja) 1990-03-27 1990-03-27 加速度検出装置用信号処理回路
JP2/200449 1990-07-27
JP2200449A JP2892788B2 (ja) 1990-07-27 1990-07-27 物理量を検出するセンサの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US07761771 A-371-Of-International 1990-12-26
US08/168,024 Division US6474133B1 (en) 1989-12-28 1993-12-15 Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus

Publications (1)

Publication Number Publication Date
WO1991010118A1 true WO1991010118A1 (en) 1991-07-11

Family

ID=27302408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001688 WO1991010118A1 (en) 1989-12-28 1990-12-26 Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus

Country Status (4)

Country Link
US (4) US5295386A (ja)
EP (1) EP0461265B1 (ja)
DE (1) DE69019343T2 (ja)
WO (1) WO1991010118A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538899A2 (en) * 1991-10-25 1993-04-28 OKADA, Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US8037760B2 (en) 2007-04-03 2011-10-18 Sony Corporation Inertial sensor and electrical or electronic device
CN112114166A (zh) * 2020-10-17 2020-12-22 武汉城市职业学院 一种混合拓扑式加速度计标定系统

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681215B2 (ja) * 1989-05-29 1997-11-26 株式会社ワコー 積層基板を用いたセンサの製造方法
US6864677B1 (en) * 1993-12-15 2005-03-08 Kazuhiro Okada Method of testing a sensor
US5531092A (en) * 1989-12-28 1996-07-02 Okada; Kazuhiro Device for moving a suspended weight body
WO1991010118A1 (en) * 1989-12-28 1991-07-11 Wacoh Corporation Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus
US5421213A (en) * 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
US6314823B1 (en) 1991-09-20 2001-11-13 Kazuhiro Okada Force detector and acceleration detector and method of manufacturing the same
DE69124377T2 (de) * 1991-03-30 1997-06-12 Kazuhiro Okada Beschleunigungssensor mit Selbsttest
US5646346A (en) * 1994-11-10 1997-07-08 Okada; Kazuhiro Multi-axial angular velocity sensor
US6282956B1 (en) 1994-12-29 2001-09-04 Kazuhiro Okada Multi-axial angular velocity sensor
JP3391841B2 (ja) * 1993-05-26 2003-03-31 松下電工株式会社 半導体加速度センサ
JP2549815B2 (ja) * 1993-06-03 1996-10-30 富士通テン株式会社 半導体加速度センサおよびその試験方法
JP3256346B2 (ja) * 1993-07-29 2002-02-12 和廣 岡田 圧電素子を用いた力・加速度・磁気のセンサ
JP3549590B2 (ja) * 1994-09-28 2004-08-04 和廣 岡田 加速度・角速度センサ
JP3585980B2 (ja) * 1995-02-21 2004-11-10 株式会社ワコー 角速度センサ
US6003371A (en) 1995-02-21 1999-12-21 Wacoh Corporation Angular velocity sensor
JPH0949856A (ja) * 1995-05-31 1997-02-18 Wako:Kk 加速度センサ
JPH09119943A (ja) * 1995-10-24 1997-05-06 Wako:Kk 加速度センサ
US6367326B1 (en) 1996-07-10 2002-04-09 Wacoh Corporation Angular velocity sensor
DE69634571D1 (de) * 1996-07-10 2005-05-12 Wako Kk Drehgeschwindigkeitssensor
US6293149B1 (en) 1997-02-21 2001-09-25 Matsushita Electric Works, Ltd. Acceleration sensor element and method of its manufacture
JP3311633B2 (ja) * 1997-04-04 2002-08-05 日本碍子株式会社 センサユニット
JP4176849B2 (ja) * 1997-05-08 2008-11-05 株式会社ワコー センサの製造方法
US6712274B2 (en) * 1998-03-26 2004-03-30 Symbol Technologies, Inc. Permanent visual shock indicator
JP4295883B2 (ja) 1999-12-13 2009-07-15 株式会社ワコー 力検出装置
US6467361B2 (en) * 2001-03-20 2002-10-22 Cts Corporation Strain gage sensor having an unstrained area
US6809529B2 (en) * 2001-08-10 2004-10-26 Wacoh Corporation Force detector
US20070121423A1 (en) * 2001-12-20 2007-05-31 Daniel Rioux Head-mounted display apparatus for profiling system
CA2366030A1 (en) * 2001-12-20 2003-06-20 Global E Bang Inc. Profiling system
JP2003329444A (ja) * 2002-03-07 2003-11-19 Alps Electric Co Ltd 静電容量式センサ
JP3642054B2 (ja) * 2002-03-25 2005-04-27 日立金属株式会社 ピエゾ抵抗型3軸加速度センサ
US6763719B2 (en) * 2002-03-25 2004-07-20 Hitachi Metals, Ltd. Acceleration sensor
JP4216525B2 (ja) 2002-05-13 2009-01-28 株式会社ワコー 加速度センサおよびその製造方法
US6810738B2 (en) * 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
JP4125931B2 (ja) * 2002-08-26 2008-07-30 株式会社ワコー 回転操作量の入力装置およびこれを利用した操作装置
JP4422395B2 (ja) * 2002-10-04 2010-02-24 北陸電気工業株式会社 半導体加速度センサの製造方法
JP4907050B2 (ja) * 2003-03-31 2012-03-28 株式会社ワコー 力検出装置
JP4271475B2 (ja) * 2003-03-31 2009-06-03 株式会社ワコー 力検出装置
JP4387691B2 (ja) * 2003-04-28 2009-12-16 株式会社ワコー 力検出装置
JP4192084B2 (ja) * 2003-06-17 2008-12-03 ニッタ株式会社 多軸センサ
JP2005029142A (ja) * 2003-06-17 2005-02-03 Yokohama Rubber Co Ltd:The アンチロック・ブレーキ・システム及びそのセンサユニット
JP2005035523A (ja) * 2003-06-26 2005-02-10 Yokohama Rubber Co Ltd:The 車両駆動制御システム及びそのセンサユニット
US7772657B2 (en) * 2004-12-28 2010-08-10 Vladimir Vaganov Three-dimensional force input control device and fabrication
US9034666B2 (en) 2003-12-29 2015-05-19 Vladimir Vaganov Method of testing of MEMS devices on a wafer level
US7554167B2 (en) * 2003-12-29 2009-06-30 Vladimir Vaganov Three-dimensional analog input control device
US8350345B2 (en) 2003-12-29 2013-01-08 Vladimir Vaganov Three-dimensional input control device
US7367232B2 (en) * 2004-01-24 2008-05-06 Vladimir Vaganov System and method for a three-axis MEMS accelerometer
GB0417683D0 (en) * 2004-08-09 2004-09-08 C13 Ltd Sensor
US20060049001A1 (en) * 2004-09-09 2006-03-09 Mark Streitman Driven pendulum apparatus and method of operation thereof
JP4559178B2 (ja) * 2004-10-06 2010-10-06 Okiセミコンダクタ株式会社 半導体加速度センサおよびその製造方法
US20060162421A1 (en) * 2005-01-21 2006-07-27 Brady Worldwide, Inc. Shock indicator
JP2006250581A (ja) * 2005-03-08 2006-09-21 Mitsumi Electric Co Ltd 3軸加速度センサモジュールおよびその製造方法
US7114378B1 (en) * 2005-04-14 2006-10-03 Agilent Technologies, Inc. Planar resonant tunneling sensor and method of fabricating and using the same
US7337671B2 (en) 2005-06-03 2008-03-04 Georgia Tech Research Corp. Capacitive microaccelerometers and fabrication methods
US7318349B2 (en) * 2005-06-04 2008-01-15 Vladimir Vaganov Three-axis integrated MEMS accelerometer
TWI292034B (en) * 2006-01-18 2008-01-01 Analog Integrations Corp Single-chip device for micro-array inertial system
US7578189B1 (en) * 2006-05-10 2009-08-25 Qualtre, Inc. Three-axis accelerometers
JP4687577B2 (ja) * 2006-06-16 2011-05-25 ソニー株式会社 慣性センサ
US7543473B2 (en) * 2006-08-01 2009-06-09 Analog Devices, Inc. Sensor self-test transfer standard
JP2008190931A (ja) * 2007-02-02 2008-08-21 Wacoh Corp 加速度と角速度との双方を検出するセンサ
JP2008249390A (ja) * 2007-03-29 2008-10-16 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
US7520170B2 (en) * 2007-07-10 2009-04-21 Freescale Semiconductor, Inc. Output correction circuit for three-axis accelerometer
JP2009097932A (ja) * 2007-10-15 2009-05-07 Freescale Semiconductor Inc 容量型検出装置
US8102101B2 (en) * 2008-01-25 2012-01-24 University Of South Carolina Piezoelectric sensors
WO2010054099A1 (en) 2008-11-07 2010-05-14 Greenray Industries, Inc. Crystal oscillator with reduced acceleration sensitivity
US9854995B2 (en) * 2009-06-05 2018-01-02 Toyota Motor Engineering & Manufacturing North America, Inc. Non-invasive, non contact system, electronic control unit, and associated methodology for minimizing muscle stress and improving circulation
JP5439068B2 (ja) * 2009-07-08 2014-03-12 株式会社ワコー 力検出装置
US8984942B2 (en) * 2012-02-10 2015-03-24 Hewlett-Packard Development Company, L.P. Suspended masses in micro-mechanical devices
JP5904019B2 (ja) * 2012-06-05 2016-04-13 セイコーエプソン株式会社 センサーユニット,運動計測システム、およびテニスラケット
US10272307B2 (en) 2012-11-27 2019-04-30 Group One Limited Tennis net tension system including service let indication feature
US11738248B2 (en) 2012-11-27 2023-08-29 Group One Limited Tennis net tension system including service let indication feature
JP5529328B1 (ja) 2013-09-04 2014-06-25 株式会社トライフォース・マネジメント 発電素子
JP6053247B1 (ja) 2015-01-26 2016-12-27 株式会社ワコーテック 力覚センサ
JP6002868B1 (ja) 2015-04-07 2016-10-05 株式会社トライフォース・マネジメント 力覚センサおよびこれに用いる構造体
JP5996078B1 (ja) 2015-10-19 2016-09-21 株式会社トライフォース・マネジメント 発電素子
US20170199217A1 (en) * 2016-01-13 2017-07-13 Seiko Epson Corporation Electronic device, method for manufacturing electronic device, and physical-quantity sensor
CN107271724A (zh) * 2017-05-18 2017-10-20 中北大学 单片集成的压阻式三轴加速度计及制备方法
CN107290567A (zh) * 2017-05-18 2017-10-24 中北大学 具有抗过载能力的压阻式三轴加速度传感器及制备方法
CN110608824A (zh) * 2019-07-17 2019-12-24 台州中清科技有限公司 一种六维力传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166939A (ja) * 1984-09-11 1986-04-05 Chinkou Higashijima 多分力計測装置
JPS6385461A (ja) * 1986-09-30 1988-04-15 Aisin Seiki Co Ltd 加速度センサの校正方法と加速度センサ
JPS63169078A (ja) * 1987-01-06 1988-07-13 Nippon Denso Co Ltd 半導体振動・加速度センサ
JPS63266325A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 力検出装置
JPS63266359A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 加速度・傾斜度検出装置
JPS6410665U (ja) * 1987-07-10 1989-01-20

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120622A (en) 1960-03-29 1964-02-04 Gulton Ind Inc Self-calibrating accelerometer
US3190129A (en) 1961-07-10 1965-06-22 Bosch Arma Corp Accelerometer and parts therefor
FR2495328B1 (fr) 1980-11-28 1986-04-11 Onera (Off Nat Aerospatiale) Perfectionnements aux accelerometres electrostatiques
FR2544865B1 (fr) 1983-04-21 1985-10-04 Onera (Off Nat Aerospatiale) Accelerometres a suspension electrostatique
JPS6034295A (ja) * 1983-08-03 1985-02-21 株式会社日立製作所 皮膚感覚センサ
US4891985A (en) 1985-07-22 1990-01-09 Honeywell Inc. Force sensor with attached mass
US4836034A (en) 1986-07-15 1989-06-06 Ricoh Company, Ltd. Force sensing apparatus
DE3625411A1 (de) * 1986-07-26 1988-02-04 Messerschmitt Boelkow Blohm Kapazitiver beschleunigungssensor
WO1988008522A1 (en) 1987-04-24 1988-11-03 Kabushiki Kaisha Nexy Kenkyusho Detector for force, acceleration and magnetism using resistor element
US5182515A (en) 1987-04-24 1993-01-26 Wacoh Corporation Detector for magnetism using a resistance element
EP0311695B1 (en) 1987-04-24 1994-11-30 Enplas Laboratories, Inc. Force and moment detector using resistor
US4851080A (en) * 1987-06-29 1989-07-25 Massachusetts Institute Of Technology Resonant accelerometer
JPS6410665A (en) * 1987-07-03 1989-01-13 Sony Corp Solid-state image sensing device
US4789803A (en) 1987-08-04 1988-12-06 Sarcos, Inc. Micropositioner systems and methods
US5263375A (en) 1987-09-18 1993-11-23 Wacoh Corporation Contact detector using resistance elements and its application
EP0333872B1 (en) 1987-09-18 1995-08-23 Wacoh Corporation Gripper for a robot
GB8728442D0 (en) * 1987-12-04 1988-01-13 Russell M K Triaxial accelerometers
DE3742385A1 (de) * 1987-12-14 1989-06-22 Siemens Ag Beschleunigungsempfindliches elektronisches bauelement
JPH0677052B2 (ja) 1988-04-14 1994-09-28 株式会社ワコー 磁気検出装置
US4882933A (en) * 1988-06-03 1989-11-28 Novasensor Accelerometer with integral bidirectional shock protection and controllable viscous damping
US5060504A (en) * 1988-09-23 1991-10-29 Automotive Systems Laboratory, Inc. Self-calibrating accelerometer
EP0542719A3 (en) * 1988-09-23 1993-06-02 Automotive Systems Laboratory Inc. A method for establishing a value for the sensitivity of an acceleration sensor
US5163325A (en) * 1988-09-23 1992-11-17 Automotive Systems Laboratory, Inc. Self-compensating accelerometer
US5035148A (en) 1989-02-01 1991-07-30 Wacoh Corporation Force detector using resistance elements
JP2681215B2 (ja) 1989-05-29 1997-11-26 株式会社ワコー 積層基板を用いたセンサの製造方法
US5103667A (en) * 1989-06-22 1992-04-14 Ic Sensors, Inc. Self-testable micro-accelerometer and method
JPH0344713A (ja) 1989-07-12 1991-02-26 Omron Corp 静電駆動装置および静電駆動装置の制御回路
WO1991010118A1 (en) 1989-12-28 1991-07-11 Wacoh Corporation Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus
US5531092A (en) 1989-12-28 1996-07-02 Okada; Kazuhiro Device for moving a suspended weight body
US5051643A (en) 1990-08-30 1991-09-24 Motorola, Inc. Electrostatically switched integrated relay and capacitor
US5421213A (en) 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
DE69124377T2 (de) 1991-03-30 1997-06-12 Kazuhiro Okada Beschleunigungssensor mit Selbsttest
US5169571A (en) * 1991-04-16 1992-12-08 The C.A. Lawton Company Mat forming process and apparatus
JP3141954B2 (ja) 1991-07-17 2001-03-07 株式会社ワコー 圧電素子を用いた力・加速度・磁気のセンサ
JP3027457B2 (ja) 1991-10-25 2000-04-04 和廣 岡田 多次元方向に関する力・加速度・磁気の検出装置
JPH05215627A (ja) 1992-02-04 1993-08-24 Kazuhiro Okada 多次元方向に関する力・加速度・磁気の検出装置
US5646346A (en) 1994-11-10 1997-07-08 Okada; Kazuhiro Multi-axial angular velocity sensor
JP3256346B2 (ja) 1993-07-29 2002-02-12 和廣 岡田 圧電素子を用いた力・加速度・磁気のセンサ
US5447051A (en) * 1993-08-05 1995-09-05 Hewlett-Packard Company Method and apparatus for testing a piezoelectric force sensor
JP3549590B2 (ja) 1994-09-28 2004-08-04 和廣 岡田 加速度・角速度センサ
JP3585980B2 (ja) 1995-02-21 2004-11-10 株式会社ワコー 角速度センサ
US6003371A (en) 1995-02-21 1999-12-21 Wacoh Corporation Angular velocity sensor
JPH0949856A (ja) 1995-05-31 1997-02-18 Wako:Kk 加速度センサ
JPH09119943A (ja) 1995-10-24 1997-05-06 Wako:Kk 加速度センサ
US5757481A (en) * 1995-11-17 1998-05-26 Honeywell Inc. Method for testing a turbidity sensor
DE69634571D1 (de) 1996-07-10 2005-05-12 Wako Kk Drehgeschwindigkeitssensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166939A (ja) * 1984-09-11 1986-04-05 Chinkou Higashijima 多分力計測装置
JPS6385461A (ja) * 1986-09-30 1988-04-15 Aisin Seiki Co Ltd 加速度センサの校正方法と加速度センサ
JPS63169078A (ja) * 1987-01-06 1988-07-13 Nippon Denso Co Ltd 半導体振動・加速度センサ
JPS63266325A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 力検出装置
JPS63266359A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 加速度・傾斜度検出装置
JPS6410665U (ja) * 1987-07-10 1989-01-20

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0461265A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538899A2 (en) * 1991-10-25 1993-04-28 OKADA, Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
EP0538899A3 (en) * 1991-10-25 1993-07-07 Kazuhiro Okada Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US5343765A (en) * 1991-10-25 1994-09-06 Kazuhiro Okada Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US5392658A (en) * 1991-10-25 1995-02-28 Okada; Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US8037760B2 (en) 2007-04-03 2011-10-18 Sony Corporation Inertial sensor and electrical or electronic device
CN112114166A (zh) * 2020-10-17 2020-12-22 武汉城市职业学院 一种混合拓扑式加速度计标定系统

Also Published As

Publication number Publication date
US5295386A (en) 1994-03-22
US6474133B1 (en) 2002-11-05
DE69019343D1 (de) 1995-06-14
US6185814B1 (en) 2001-02-13
EP0461265B1 (en) 1995-05-10
US6512364B1 (en) 2003-01-28
EP0461265A4 (en) 1993-03-17
DE69019343T2 (de) 1996-02-15
EP0461265A1 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
WO1991010118A1 (en) Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
US5744718A (en) Sensor using a resistance element
US4967605A (en) Detector for force and acceleration using resistance element
US5182515A (en) Detector for magnetism using a resistance element
US7500406B2 (en) Multiaxial sensor
US7360456B2 (en) Six-axis sensor
JP3141954B2 (ja) 圧電素子を用いた力・加速度・磁気のセンサ
JP3391841B2 (ja) 半導体加速度センサ
WO1996038732A1 (fr) Detecteur d&#39;acceleration
JP3265641B2 (ja) 半導体加速度センサ
JP3043477B2 (ja) 静電容量の変化を利用したセンサ
JPH01263576A (ja) 磁気検出装置
JP2802954B2 (ja) 力の作用体を有するセンサの試験方法およびこの方法を実施しうるセンサ
JPH0584870B2 (ja)
JPH03202778A (ja) 加速度検出装置
JP3171970B2 (ja) 力/加速度の検出装置
JPS62108161A (ja) 加速度センサ
JPH03214064A (ja) 加速度センサ
JPH04279867A (ja) 三次元加速度センサ
JP2923286B2 (ja) 試験機能を備えた力・加速度・磁気のセンサ
JPH06258340A (ja) 多次元加速度検出器
JP2587255B2 (ja) 力検出装置
JPH06163937A (ja) 半導体加速度センサー
JPH09269335A (ja) 加速度センサおよびそれに用いる振動子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991900948

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991900948

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991900948

Country of ref document: EP