US20170290333A1 - Picolinamide compounds with fungicidal activity - Google Patents

Picolinamide compounds with fungicidal activity Download PDF

Info

Publication number
US20170290333A1
US20170290333A1 US15/036,314 US201515036314A US2017290333A1 US 20170290333 A1 US20170290333 A1 US 20170290333A1 US 201515036314 A US201515036314 A US 201515036314A US 2017290333 A1 US2017290333 A1 US 2017290333A1
Authority
US
United States
Prior art keywords
compound according
hydrogen
compounds
chosen
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/036,314
Other languages
English (en)
Inventor
Karla Bravo-Altamirano
Yu Lu
Brian A. Loy
Zachary A. Buchan
David M. Jones
Jeremy Wilmot
Jared W. RIGOLI
Kyle A. DeKorver
John F. Daeuble, SR.
Jessica Herrick
Xuelin Wang
Chenglin Yao
Kevin G. Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corteva Agriscience LLC
Original Assignee
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow AgroSciences LLC filed Critical Dow AgroSciences LLC
Priority to US15/036,314 priority Critical patent/US20170290333A1/en
Assigned to DOW AGROSCIENCES LLC reassignment DOW AGROSCIENCES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LU, YU, BRAVO-ALTAMIRANO, Karla, BUCHAN, ZACHARY A., DAEUBLE, JOHN F., SR., HERRICK, Jessica, JONES, DAVID M., LOY, BRIAN A., MEYER, KEVIN G., RIGOLI, JARED W., WANG, XUELIN, WILMOT, JEREMY, YAO, CHENGLIN, DEKORVER, Kyle A.
Publication of US20170290333A1 publication Critical patent/US20170290333A1/en
Assigned to CORTEVA AGRISCIENCE LLC reassignment CORTEVA AGRISCIENCE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DOW AGROSCIENCES LLC
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/12Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, neither directly attached to a ring nor the nitrogen atom being a member of a heterocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/10Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/20Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/52Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Fungicides are compounds, of natural or synthetic origin, which act to protect and/or cure plants against damage caused by agriculturally relevant fungi. Generally, no single fungicide is useful in all situations. Consequently, research is ongoing to produce fungicides that may have better performance, are easier to use, and cost less.
  • the present disclosure relates to picolinamides and their use as fungicides.
  • the compounds of the present disclosure may offer protection against ascomycetes, basidiomycetes, deuteromycetes and oomycetes.
  • X is hydrogen or C(O)R 5 ;
  • V is hydrogen, C(O)R 5 , or Q;
  • Z is N or CH
  • R 1 is hydrogen or alkyl, each optionally substituted with 0, 1 or multiple R 8 ;
  • R2 is methyl
  • R 3 is chosen from aryl or heteroaryl, each optionally substituted with 0, 1 or multiple R 8 ;
  • R 4 is chosen from hydrogen, halo, hydroxyl, alkyl or alkoxy
  • R 5 is chosen from alkoxy or benzyloxy, each optionally substituted with 0, 1, or multiple R 8 ;
  • R 6 is chosen from hydrogen, alkoxy, or halo, each optionally substituted with 0,1, or multipleR 8 ;
  • R 7 is chosen from hydrogen, —C(O)R 9 , or —CH 2 OC(O)R 9 ;
  • R 8 is chosen from hydrogen, alkyl, aryl, acyl, halo, alkenyl, alkenyl, alkoxy, cyano or heterocyclyl, each optionally substituted with 0, 1, or multiple R 10 ;
  • R 9 is chosen from alkyl, alkoxy, or aryl, each optionally substituted with 0, 1, or multiple R 8 ;
  • R 10 is chosen from hydrogen, alkyl, aryl, acyl,halo, alkenyl, alkoxy, or heterocyclyl;
  • R 11 is chosen from hydrogen or alkyl, substituted with 0, 1, or multiple R 8 ;
  • R 12 is chosen from aryl or heteroaryl, each optionally substituted with 0, 1 or multiple R 8 .
  • Another embodiment of the present disclosure may include a fungicidal composition for the control or prevention of fungal attack comprising the compounds described above and a phytologically acceptable carrier material.
  • Yet another embodiment of the present disclosure may include a method for the control or prevention of fungal attack on a plant, the method including the steps of applying a fungicidally effective amount of one or more of the compounds described above to at least one of the fungus, the plant, and an area adjacent to the plant.
  • alkyl refers to a branched, unbranched, or saturated cyclic carbon chain, including, but not limited to, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, tertiary butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • alkenyl refers to a branched, unbranched or cyclic carbon chain containing one or more double bonds including, but not limited to, ethenyl, propenyl, butenyl, isopropenyl, isobutenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like.
  • alkynyl refers to a branched or unbranched carbon chain containing one or more triple bonds including, but not limited to, propynyl, butynyl, and the like.
  • aryl and “Ar” refer to any aromatic ring, mono- or ci-cyclic, containing 0 heteroatoms.
  • heterocyclyl refers to any aromatic or non-aromatic ring, mono- or bi-cyclic, containing one or more heteroatoms.
  • alkoxy refers to an —OR substituent.
  • acyloxy refers to an —OC(O)R substituent.
  • cyano refers to a —C ⁇ N substituent.
  • hydroxyl refers to an —OH substituent.
  • amino refers to a —N(R) 2 substituent.
  • arylalkoxy refers to —O(CH 2 ) n Ar where n is an integer selected from the list 1, 2, 3, 4, 5, or 6.
  • haloalkoxy refers to an ORX substituent, wherein X is Cl, F, Br, or I, or any combination thereof.
  • haloalkyl refers to an alkyl, which is substituted with Cl, F, I, or Br or any combination thereof.
  • halogen refers to one or more halogen atoms, defined as F, Cl, Br, and I.
  • nitro refers to a —NO 2 substituent.
  • thioalkyl refers to an —SR substituent.
  • Formula I is read as also including all stereoisomers, for example diastereomers, enantiomers, and mixtures thereof.
  • Formula I is read as also including salts or hydrates thereof.
  • Exemplary salts include, but are not limited to: hydrochloride, hydrobromide, hydroiodide, trifluoroacetate, and trifluoromethane sulfonate.
  • Another embodiment of the present disclosure is a use of a compound of Formula I, for protection of a plant against attack by a phytopathogenic organism or the treatment of a plant infested by a phytopathogenic organism, comprising the application of a compound of Formula I, or a composition comprising the compound to soil, a plant, a part of a plant, foliage, and/or roots.
  • composition useful for protecting a plant against attack by a phytopathogenic organism and/or treatment of a plant infested by a phytopathogenic organism comprising a compound of Formula I and a phytologically acceptable carrier material.
  • the compounds of the present disclosure may be applied by any of a variety of known techniques, either as the compounds or as formulations comprising the compounds.
  • the compounds may be applied to the roots or foliage of plants for the control of various fungi, without damaging the commercial value of the plants.
  • the materials may be applied in the form of any of the generally used formulation types, for example, as solutions, dusts, wettable powders, flowable concentrate, or emulsifiable concentrates.
  • the compounds of the present disclosure are applied in the form of a formulation, comprising one or more of the compounds of Formula I with a phytologically acceptable carrier.
  • Concentrated formulations may be dispersed in water, or other liquids, for application, or formulations may be dust-like or granular, which may then be applied without further treatment.
  • the formulations can be prepared according to procedures that are conventional in the agricultural chemical art.
  • the present disclosure contemplates all vehicles by which one or more of the compounds may be formulated for delivery and use as a fungicide.
  • formulations are applied as aqueous suspensions or emulsions.
  • Such suspensions or emulsions may be produced from water-soluble, water-suspendible, or emulsifiable formulations which are solids, usually known as wettable powders; or liquids, usually known as emulsifiable concentrates, aqueous suspensions, or suspension concentrates.
  • any material to which these compounds may be added may be used, provided it yields the desired utility without significant interference with the activity of these compounds as antifungal agents.
  • Wettable powders which may be compacted to form water-dispersible granules, comprise an intimate mixture of one or more of the compounds of Formula I, an inert carrier and surfactants.
  • concentration of the compound in the wettable powder may be from about 10 percent to about 90 percent by weight based on the total weight of the wettable powder, more preferably about 25 weight percent to about 75 weight percent.
  • the compounds may be compounded with any finely divided solid, such as prophyllite, talc, chalk, gypsum, Fuller's earth, bentonite, attapulgite, starch, casein, gluten, montmorillonite clays, diatomaceous earths, purified silicates or the like.
  • the finely divided carrier and surfactants are typically blended with the compound(s) and milled.
  • Emulsifiable concentrates of the compounds of Formula I may comprise a convenient concentration, such as from about 1 weight percent to about 50 weight percent of the compound, in a suitable liquid, based on the total weight of the concentrate.
  • the compounds may be dissolved in an inert carrier, which is either a water-miscible solvent or a mixture of water-immiscible organic solvents, and emulsifiers.
  • the concentrates may be diluted with water and oil to form spray mixtures in the form of oil-in-water emulsions.
  • Useful organic solvents include aromatics, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, for example, terpenic solvents, including rosin derivatives, aliphatic ketones, such as cyclohexanone, and complex alcohols, such as 2-ethoxyethanol.
  • Emulsifiers which may be advantageously employed herein may be readily determined by those skilled in the art and include various nonionic, anionic, cationic and amphoteric emulsifiers, or a blend of two or more emulsifiers.
  • nonionic emulsifiers useful in preparing the emulsifiable concentrates include the polyalkylene glycol ethers and condensation products of alkyl and aryl phenols, aliphatic alcohols, aliphatic amines or fatty acids with ethylene oxide, propylene oxides such as the ethoxylated alkyl phenols and carboxylic esters solubilized with the polyol or polyoxyalkylene.
  • Cationic emulsifiers include quaternary ammonium compounds and fatty amine salts.
  • Anionic emulsifiers include the oil-soluble salts (e.g., calcium) of alkylaryl sulfonic acids, oil-soluble salts or sulfated polyglycol ethers and appropriate salts of phosphated polyglycol ether.
  • organic liquids which may be employed in preparing the emulsifiable concentrates of the compounds of the present disclosure are the aromatic liquids such as xylene, propyl benzene fractions; or mixed naphthalene fractions, mineral oils, substituted aromatic organic liquids such as dioctyl phthalate; kerosene; dialkyl amides of various fatty acids, particularly the dimethyl amides of fatty glycols and glycol derivatives such as the n-butyl ether, ethyl ether or methyl ether of diethylene glycol, the methyl ether of triethylene glycol, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soybean oil, rapeseed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tuna oil and the like; esters of
  • Organic liquids include xylene, and propyl benzene fractions, with xylene being most preferred in some cases.
  • Surface-active dispersing agents are typically employed in liquid formulations and in an amount of from 0.1 to 20 percent by weight based on the combined weight of the dispersing agent with one or more of the compounds.
  • the formulations can also contain other compatible additives, for example, plant growth regulators and other biologically active compounds used in agriculture.
  • Aqueous suspensions comprise suspensions of one or more water-insoluble compounds of Formula I, dispersed in an aqueous vehicle at a concentration in the range from about 1 to about 50 weight percent, based on the total weight of the aqueous suspension.
  • Suspensions are prepared by finely grinding one or more of the compounds, and vigorously mixing the ground material into a vehicle comprised of water and surfactants chosen from the same types discussed above.
  • Other components such as inorganic salts and synthetic or natural gums, may also be added to increase the density and viscosity of the aqueous vehicle.
  • the compounds of Formula I can also be applied as granular formulations, which are particularly useful for applications to the soil.
  • Granular formulations generally contain from about 0.5 to about 10 weight percent, based on the total weight of the granular formulation of the compounds), dispersed in an inert carrier which consists entirely or in large part of coarsely divided inert material such as attapulgite, bentonite, diatomite, clay or a similar inexpensive substance.
  • Such formulations are usually prepared by dissolving the compounds in a suitable solvent and applying it to a granular carrier which has been preformed to the appropriate particle size, in the range of from about 0.5 to about 3 mm.
  • a suitable solvent is a solvent in which the compound is substantially or completely soluble.
  • Such formulations may also be prepared by making a dough or paste of the carrier and the compound and solvent, and crushing and drying to obtain the desired granular particle.
  • Dusts containing the compounds of Formula I may be prepared by intimately mixing one or more of the compounds in powdered form with a suitable dusty agricultural carrier, such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1 to about 10 weight percent of the compounds, based on the total weight of the dust.
  • a suitable dusty agricultural carrier such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1 to about 10 weight percent of the compounds, based on the total weight of the dust.
  • the formulations may additionally contain adjuvant surfactants to enhance deposition, wetting, and penetration of the compounds onto the target crop and organism.
  • adjuvant surfactants may optionally be employed as a component of the formulation or as a tank mix.
  • the amount of adjuvant surfactant will typically vary from 0.01 to 1.0 percent by volume, based on a spray-volume of water, preferably 0.05 to 0.5 volume percent.
  • Suitable adjuvant surfactants include, but are not limited to ethoxylated nonyl phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulfosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines, blends of surfactants with mineral or vegetable oils, crop oil concentrate (mineral oil (85%)+emulsifiers (15%)); nonylphenol ethoxylate, benzylcocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; C 9 -C 11 alkylpolyglycoside; phosphated alcohol ethoxylate; natural primary alcohol (C 12 -C 16 ) ethoxylate; di-sec-butylphenol EO-PO block copolymer; polysiloxane-methyl cap; nonylphenol ethoxylate+urea ammoni
  • the formulations may optionally include combinations that contain other pesticidal compounds.
  • additional pesticidal compounds may be fungicides, insecticides, herbicides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds.
  • the other pesticidal compound is employed as a supplemental toxicant for the same or for a different pesticidal use.
  • the compounds of Formula I and the pesticidal compound in the combination can generally be present in a weight ratio of from 1:100 to100:1.
  • the compounds of the present disclosure may also be combined with other fungicides to form fungicidal mixtures and synergistic mixtures thereof.
  • the fungicidal compounds of the present disclosure are often applied in conjunction with one or more other fungicides to control a wider variety of undesirable diseases.
  • the presently claimed compounds may be formulated with the other fungicide(s), tank-mixed with the other fungicide(s) or applied sequentially with the other fungicide(s).
  • Such other fungicides may include 2-(thiocyanatomethylthio)-benzothiazole, 2-phenylphenol, 8-hydroxyquinoline sulfate, ametoctradin, amisulbrom, antimycin, Ampelomyces quisqualis , azaconazole, azoxystrobin, Bacillus subtilis, Bacillus subtilis strain QST713, benalaxyl, benomyl, benthiavalicarb-isopropyl, benzovindiflupyr, benzylaminobenzene-sulfonate (BABS) salt, bicarbonates, biphenyl, bismerthiazol, bitertanol, bixafen, blasticidin-S, borax, Bordeaux mixture, boscalid, bromuconazole, bupirimate, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, carvone, chlazafen
  • the compounds described herein may be combined with other pesticides, including insecticides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds to form pesticidal mixtures and synergistic mixtures thereof.
  • the fungicidal compounds of the present disclosure may be applied in conjunction with one or more other pesticides to control a wider variety of undesirable pests.
  • the presently claimed compounds may be formulated with the other pesticide(s), tank-mixed with the other pesticide(s) or applied sequentially with the other pesticide(s).
  • Typical insecticides include, but are not limited to: 1,2-dichloropropane, abamectin, acephate, acetamiprid, acethion, acetoprole, acrinathrin, acrylonitrile, afidopyropen, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosarnidin, allyxycarb, alpha-cypermethrin, alpha-ecdysone, alpha-endosulfan, amidithion, aminocarb, amiton, amiton oxalate, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensul
  • the compounds described herein may be combined with herbicides that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds to form pesticidal mixtures and synergistic mixtures thereof.
  • the fungicidal compounds of the present disclosure may be applied in conjunction with one or more herbicides to control a wide variety of undesirable plants.
  • the presently claimed compounds may be formulated with the herbicide(s), tank-mixed with the herbicide(s) or applied sequentially with the herbicide(s).
  • Typical herbicides include, but are not limited to: 4-CPA; 4-CPB; 4-CPP; 2,4-D; 3,4-DA; 2,4-DB; 3,4-DB; 2,4-DEB; 2,4-DEP; 3,4-DP; 2,3,6-TBA; 2,4,5-T; 2,4,5-TB; acetochlor, acifluorfen, aclonifen, acrolein, alachlor, allidochlor, alloxydim, allyl alcohol, alorac, ametridione, ametryn, amibuzin, amicarbazone, amidosulfuron, aminocyclopyrachlor, aminopyralid, amiprofos-methyl, amitrole, ammonium sulfamate, anilofos, anisuron, asulam, atraton, atrazine, azafenidin, azimsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, ben
  • Another embodiment of the present disclosure is a method for the control or prevention of fungal attack.
  • This method comprises applying to the soil, plant, roots, foliage, or locus of the fungus, or to a locus in which the infestation is to be prevented (for example applying to cereal or grape plants), a fungicidally effective amount of one or more of the compounds of Formula I.
  • the compounds are suitable for treatment of various plants at fungicidal levels, while exhibiting low phytotoxicity.
  • the compounds may be useful both in a protectant and/or an eradicant fashion.
  • the compounds have been found to have significant fungicidal effect particularly for agricultural use. Many of the compounds are particularly effective for use with agricultural crops and horticultural plants.
  • the compounds have broad ranges of activity against fungal pathogens.
  • exemplary pathogens may include, but are not limited to, causing agent of wheat leaf blotch ( Zymoseptoria tritici ), wheat brown rust ( Puccinia triticina ), wheat stripe rust ( Puccinia straformis ), scab of apple ( Venturia inaequalis ), powdery mildew of grapevine ( Uncinula necator ), barley scald ( Rhynchosporium secalis ), blast of rice ( Pyricularia oryzae ), rust of soybean ( Phakopsora pachyrhizi ), glume blotch of wheat ( Leptosphaeria nodorum ), powdery mildew of wheat ( Blumeria graminis f.
  • the exact amount of the active material to be applied is dependent not only on the specific active material being applied, but also on the particular action desired, the fungal species to be controlled, and the stage of growth thereof, as well as the part of the plant or other product to be contacted with the compound. Thus, all the compounds, and formulations containing the same, may not be equally effective at similar concentrations or against the same fungal species.
  • the compounds are effective in use with plants in a disease-inhibiting and phytologically acceptable amount.
  • disease-inhibiting and phytologically acceptable amount refers to an amount of a compound that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. This amount will generally be from about 0.1 to about 1000 ppm (parts per million), with 1 to 500 ppm being preferred.
  • concentration of compound required varies with the fungal disease to be controlled, the type of formulation employed, the method of application, the particular plant species, climate conditions, and the like.
  • a suitable application rate is typically in the range from about 0.10 to about 4 pounds/acre (about 0.01 to 0.45 grams per square meter, g/m 2 ).
  • the compounds of Formula I may be made using well-known chemical procedures. Intermediates not specifically mentioned in this disclosure are either commercially available, may be made by routes disclosed in the chemical literature, or may be readily synthesized from commercial starting materials utilizing standard procedures.
  • Compounds of Formula 1.1 wherein R 3 and R 12 are as originally defined and are equivalent, can be prepared by the methods shown in Scheme 1, step a.
  • the compound of Formula 1.0 can be treated with an organometallic nucleophile such as phenylmagnesium bromide (PhMgBr) in a polar aprotic solvent such as tetrahydrofuran (THF) at a temperature of about 0° C. to 23° C. to afford compounds of Formula 1.1, wherein R 3 and R 12 are as previously defined, as shown in a.
  • organometallic nucleophile such as phenylmagnesium bromide (PhMgBr)
  • a polar aprotic solvent such as tetrahydrofuran (THF)
  • Compounds of Formula 2.2, wherein R 3 is as originally defined and may or may not be equal to R 12 can be prepared by the methods shown in Scheme 2, steps a-c.
  • Compounds of Formula 2.2, wherein R 3 and R 12 are as previously defined but not an electron-deficient aryl or heteroaryl group and may or may not be equivalent can be obtained by treating the compounds of Formula 2.0, wherein R 3 and R 12 are as previously defined but not an electron-deficient aryl or heteroaryl group and may or may not be equivalent, with a mixture of a hydride reagent, such as triethylsilane (Et 3 SiH), and an acid, such as 2,2,2-trifluoroacetic acid (TFA) in a halogenated solvent such as dichloromethane (DCM) at a temperature of about 0° C.
  • a hydride reagent such as triethylsilane (Et 3 SiH)
  • an acid such as 2,2,2-trifluoroacetic acid
  • compounds of Formula 2.1 wherein R 3 and R 12 are an electron-deficient aryl or heteroaryl group and may or may not be equivalent, can be obtained by treating the compounds of Formula 2.0, wherein R 3 and R 12 are an electron-deficient aryl or heteroaryl group and may or may not be equivalent, with a base, such as sodium hydride (NaH), and a catalyst, such as imidazole, in a polar aprotic solvent such as THF at a temperature of about 23° C., followed by sequential addition of carbon disulfide (CS 2 ) and an alkyl iodide, such as iodomethane (MeI), as depicted in b.
  • a base such as sodium hydride (NaH)
  • a catalyst such as imidazole
  • Compounds of Formula 2.2, wherein and R 12 are an electron-deficient aryl or heteroaryl group and may or may not be equivalent, can be obtained by treating the compounds of Formula 2.1, wherein R 3 and R 12 are as previously defined and may or may not be equivalent, with a tin reagent, such as tributyltin hydride, and a radical initiator, such as azobisisobutyronitriie (AlBN), in a nonpolar solvent such as toluene at a temperature of about 115° C., as depicted in c.
  • a tin reagent such as tributyltin hydride
  • a radical initiator such as azobisisobutyronitriie (AlBN)
  • Compounds of Formula 3.1, wherein R 3 and R 12 are as originally defined and may or may not be equivalent, can be prepared according to the method outlined in Scheme 3, step a.
  • Compounds of Formula 3.1, wherein R 3 and R 12 are as originally defined and may or may not be equivalent can be prepared from compounds of Formula 3.0, wherein R 3 and R 12 are as previously defined and may or may not be equivalent, by treating with a base, such as NaH and an alkyl halide, such as MeI, in a polar aprotic solvent like N,N-dimethylformamide (DMF) at a temperature of about 0° C. to 23° C., as depicted in a
  • a base such as NaH
  • an alkyl halide such as MeI
  • Compounds of Formula 4.1, wherein R 3 and R 12 are as originally defined and may or may not be equivalent, can be prepared according to the method outlined in Scheme 4, step a.
  • Compounds of Formula 4.1, wherein R 3 and R 12 are as originally defined and may or may not be equivalent can be prepared from compounds of Formula 4.0, wherein R 3 and R 12 are as previously defined and may or may not be equivalent, by treating with a fluorination reagent, such as (diethylamino)sulfur trifluoride (DAST), in a halogenated solvent such as DCM at a temperature of about 0° C. to 23° C., as depicted in a.
  • a fluorination reagent such as (diethylamino)sulfur trifluoride (DAST)
  • Compounds of Formula 5.3, wherein R 3 , R 4 , and R 12 are as originally defined and R 3 may or may not be equivalent to R 12 can be prepared according to the methods outlined in Scheme 5, steps a-c.
  • Compounds of Formula 5.3, wherein R 3 , R 4 , and R 12 are as originally defined and R 3 may or may not be equivalent to R 12 can be prepared from compounds of Formula 5.0, wherein R 3 , R 4 , and R 12 are as originally defined and R3 may or may not be equivalent to R 12 , by treating with a catalyst such as palladium on carbon (Pd/C) in a mixture of an unsaturated hydrocarbon solvent, such as cyclohexene, and a polar protic solvent, such as ethanol (EtOH), at an elevated temperature of about 65° C., as shown in a.
  • a catalyst such as palladium on carbon (Pd/C) in a mixture of an unsaturated hydrocarbon solvent, such as cyclohexene, and
  • compounds of Formula 5,3, wherein R 3 and R 12 are an electron-deficient aryl or heteroaryl group and may or may not be equivalent and R 4 is hydroxyl (OH) or alkoxy can be obtained by treating compounds of Formula 5.1, wherein R 3 , R 4 , and R 12 are as previously defined and R 3 may or may not be equivalent to R 12 , with a mixture of a hydride reagent, such as Et 3 SiH, and an acid, such as TFA in a halogenated solvent such as DCM at a temperature of about 0° C. to 23° C., as indicated in b.
  • a hydride reagent such as Et 3 SiH
  • an acid such as TFA
  • a halogenated solvent such as DCM
  • compounds of Formula 5.3 wherein R 3 , and R 12 are as originally defined but not an electron-deficient aryl or heteroaryl group and may or may not be equivalent, and R 4 is a proton (H), can be obtained by treating the compounds of Formula 5.2, wherein R 3 , R 4 , and R 12 are as previously defined and R 3 may or may not be equivalent to R 12 , with a mixture of a hydride reagent, such as Et 3 SiH and an acid, such as TFA in a halogenated solvent such as DCM at a temperature of about 0° C. to 23° C., as depicted in c.
  • a hydride reagent such as Et 3 SiH
  • an acid such as TFA
  • a halogenated solvent such as DCM
  • Compounds of Formula 6.2, wherein R 3 and R 12 are an electron-deficient aryl or heteroaryl group and equivalent, can be prepared according to the methods outlined in Scheme 6, steps a-b.
  • Compounds of Formula 6.1, wherein R 3 and R 12 are as described previously, can be prepared from compound of Formula 6.0, by treating with an aryl bromide, such as 4-bromobenzonitrile, in the presence of a Pd catalyst, such as XPhos Pd G3 (CAS # 1445085-55-1, commercially available from Sigma-Aldrich), in a polar aprotic solvent such as THF at a temperature of about 55° C., as indicated in a.
  • a Pd catalyst such as XPhos Pd G3 (CAS # 1445085-55-1, commercially available from Sigma-Aldrich)
  • a polar aprotic solvent such as THF
  • Compounds of Formula 6.2, wherein R 3 and R 12 are as described previously, can be prepared from compound of Formula 6.1, wherein R 3 and R 12 are as described previously, by treating with a hydride reagent, such as borane dimethyl sulfide complex, in the presence of a catalyst, such as (R)-(+)-2-Methyl-CBS-oxazaborolidine, in a polar protic solvent, such as methanol (MeOH), at a temperature of about 0° C., as indicated in b.
  • a hydride reagent such as borane dimethyl sulfide complex
  • a catalyst such as (R)-(+)-2-Methyl-CBS-oxazaborolidine
  • a polar protic solvent such as methanol (MeOH)
  • Compounds of Formula 7.2, wherein R 3 and R 12 are as originally defined and equivalent, can be prepared according to the methods outlined in Scheme 7, steps a-b.
  • Compounds of Formula 7.1, wherein R 3 and R 12 are as described previously, can be prepared from compounds of Formula 7.0, by treating with a catalyst, such as Sbl 5 , in a halogenated solvent such as DCM at a temperature of about 23° C., as indicated in a.
  • Compounds of Formula 7.2, wherein R 3 and R 12 are as described previously, can be prepared from compound of Formula 7.1, wherein R 3 and R 12 are as described previously, by treating with a hydride reagent, such as borane dimethyl sulfide complex, in the presence of a catalyst, such as (R)-(+)-2-Methyl-CBS-oxazaborolidine, in a polar protic solvent, such as methanol (MeOH), at a temperature of about 23° C., as indicated in b.
  • a hydride reagent such as borane dimethyl sulfide complex
  • a catalyst such as (R)-(+)-2-Methyl-CBS-oxazaborolidine
  • a polar protic solvent such as methanol (MeOH)
  • Compounds of Formula 8.1, wherein n is either 0 or 1, and W is either CH 2 or O can be prepared according to the method outlined in Scheme 8, step a.
  • Compounds of Formula 8.1, wherein n is either 0 or 1, and W is either CH 2 or O can be prepared from compounds of Formula 8.0, wherein n is either 0 or 1, and W is either CH 2 or O, by treating with a base, such as n-butyllithium (n-BuLi), and an aldehyde, such as acetaldehyde, in a polar aprotic solvent such as THF at a temperature of about ⁇ 78° C., to 23° C., as indicated in a.
  • a base such as n-butyllithium (n-BuLi)
  • an aldehyde such as acetaldehyde
  • Compounds of Formula 9.1, wherein R 3 and R 12 are as originally defined can be prepared according to the method outlined in Scheme 9, step a.
  • Compounds of Formula 9.1, wherein R 3 and R 12 are as originally defined can be prepared from compounds of Formula 9J0, wherein R 3 is as originally defined (Formula 9.0 is either commerically available, or could be prepared from asymmetric Shi epoxidation of the corresponding E-olefin precursor, as reported in Wang, Z.-X,; Tu, Y.; Frohn, M.; Zhang, Shi, Y. J. Am. Chem. Soc.
  • Compounds of Formula 10.2, wherein R 1 , R 2 , R 3 , R 4 and R 12 are as originally defined, can be prepared according to the method outlined in Scheme 10, step a.
  • Compounds of Formula 10.0, wherein R 1 is as originally defined can be treated with alcohols of Formula 10.1, wherein R 2 , R 3 , R 4 and R 12 are as originally defined, and a coupling reagent such as 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine hydrochloride (EDC), and a catalyst such as N,N-dimethylpyridin-4-amine (DMAP) in a halogenated solvent like DCM to afford compounds of Formula 10.2, wherein R 1 , R 2 , R 3 , R 4 and R 12 are as previously defined, as shown in a.
  • a coupling reagent such as 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine hydrochloride (ED
  • Compounds of Formula 11.0 wherein R 1 , R 2 , R 3 , R 4 and R 12 are as originally defined, can be treated with compounds of Formula 11.1, wherein R 6 and Z are as originally defined, in the presence of a base, such as diisopropylethylamine (DIPEA), and a peptide coupling reagent, such as benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), in an halogenated solvent like DCM, to afford compounds of Formula 11.2, wherein R 1 , R 2 , R 3 , R 4 , R 6 , R 12 and Z are as originally defined, as shown in b.
  • DIPEA diisopropylethylamine
  • PyBOP benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
  • enantiomer of 2-((tert-butoxycarbonyl)amino)propanoic acid Boc-Ala-OH
  • protected PMB or Bn
  • unprotected enantiomer of ethyl lactate
  • Example 2D Step 1: Preparation of (S)-O-(2-(benzyloxy)-1,1-bis(3,4,5-trifluorophenyl)propyl) S-methyl carbonodithioate.
  • the reaction mixture was diluted with Et 2 O (5 mL) and quenched with sat. aq. NH 4 Cl (10 mL). The layers were separated, and the aq. layer was extracted with Et 2 O (3 ⁇ 10 mL). The combined organic layers were dried over magnesium sulfate (MgSO 4 ), filtered and concentrated to afford an orange/brown oil.
  • AIBN azobisisobutyronitrile
  • Example 3I Step 1: Preparation of (S)-1,1-bis(2,3-dimethyoxyphenyl)propane-1,2-diol.
  • Example A Evaluation of Fungicidal Activity: Leaf Blotch of Wheat ( Zymoseptoria tritici; Bayer code SEPTTR)
  • Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore suspension of Zymoseptoria tritici either prior to or after fungicide treatments. After inoculation the plants were kept in 100% relative humidity (one day in a dark dew chamber followed by two to three days in a lighted dew chamber at 20° C.) to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. When disease symptoms were fully expressed on the 1 st leaves of untreated plants, infection levels were assessed on a scale of 0 to 100 percent disease severity. Percent disease control was calculated using the ratio of disease severity on treated plants relative to untreated plants.
  • Example B Evaluation of Fungicidal Activity: Wheat Brown Rust ( Puccinia triticina ; Synonym: Puccinia recondita f. sp. tritici ; Bayer code PUCCRT)
  • Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore suspension of Puccinia triticina either prior to or after fungicide treatments. After inoculation the plants were kept in a dark dew room at 22° C. with 100% relative humidity overnight to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 24° C. for disease to develop. Fungicide formulation, application and disease assessment followed the procedures as described in the Example A.
  • Example C Evaluation of Fungicidal Activity: Wheat Glume Blotch ( Leptasphaeria nodorum; Bayer code LEPTNO)
  • Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore suspension of Leptosphaeria nodorum 24 h after fungicide treatments. After inoculation the plants were kept in 100% relative humidity (one day in a dark dew chamber followed by two days in a lighted dew chamber at 20° C.) to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment followed the procedures as described in the Example A.
  • Example D Evaluation of Fungicidal Activity: Apple Scab ( Venturia inaequalis ; Bayer code VENTIN)
  • Apple seedlings (variety McIntosh) were grown in soil-less Metro mix, with one plant per pot. Seedlings with two expanding young leaves at the top (older leaves at bottom of the plants were trimmed) were used in the test. Plants were inoculated with a spore suspension of Venturia inaequalis 24 h after fungicide treatment and kept in a 22° C. dew chamber with 100% relative humidity for 48 h, and then moved to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.
  • Example E Evaluation of Fungicidal Activity: Leaf Spot of Sugar Beets ( Cercospora beticola; Bayer code CERCBE)
  • Sugar beet plants (variety 1-11-188) were grown in soil-less Metro mix and trimmed regularly to maintain a uniform plant size prior to test. Plants were inoculated with a spore suspension 24 h after fungicide treatments. Inoculated plants were kept in a dew chamber at 22° C. for 48 h then incubated in a greenhouse set at 24° C. under a clear plastic hood with bottom ventilation until disease symptoms were fully expressed. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.
  • Example F Evaluation of Fungicidal Activity: Asian Soybean Rust ( Phakopsora pachyrhizi; Bayer code PHAKPA)
  • Soybean plants (variety Williams 82) were grown in soil-less Metro mix, with one plant per pot. Two weeks old seedlings were used for testing. Plants were inoculated either 3 days prior to or 1 day after fungicide treatments. Plants were incubated for 24 h in a dark dew room at 22° C. and 100% relative humidity then transferred to a growth room at 23° C. for disease to develop. Disease severity was assessed on the sprayed leaves.
  • Example G Evaluation of Fungicidal Activity: Barley Scald ( Rhyncosporium secalis ; Bayer code RHYNSE)
  • Barley seedlings (variety Harrington) were propagated in soil-less Metro mix, with each pot having 8 to 12 plants, and used in the test when the first leaf was fully emerged.
  • Test plants were inoculated by an aqueous spore suspension of Rhyncosporium secalis 24 h after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 h. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.
  • Example H Evaluation of Fungicidal Activity: Rice Blast ( Pyricularia oryzae ; Bayer code PYRIOR)
  • Rice seedlings (variety Japonica) were propagated in soil-less Metro mix, with each pot having 8 to 14 plants, and used in the test when 12 to 14 days old.
  • Test plants were inoculated with an aqueous spore suspension of Pyricularia oryzae 24 h after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 h to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 24° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.
  • Example I Evaluation of Fungicidal Activity: Tomato Early Blight ( Alternaria solani ; Bayer code ALTESO)
  • Tomato plants (variety Outdoor Girl) were propagated in soil-less Metro mix, with each pot having one plant, and used when 12 to 14 days Old. Test plants were inoculated with an aqueous spore suspension of Alternaria solani 24 h after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 h to permit spores to germinate and infect the leaf. The plants were then transferred to a growth room at 22° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.
  • Example J Evaluation of Fungicidal Activity: Cucumber Anthracnose ( Colletotrichum lagenarium ; Bayer code COLLLA):
  • Cucumber seedlings (variety Bush Pickle) were propagated in soil-less Metro mix, with each pot having one plant, and used in the test when 12 to 14 days old. Test plants were inoculated with an aqueous spore suspension of Colletotrichum lagenarium 24 hr after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 hr to permit spores to germinate and infect the leaf. The plants were then transferred to a growth room set at 22° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Toxicology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Catching Or Destruction (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
US15/036,314 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity Abandoned US20170290333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/036,314 US20170290333A1 (en) 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462098122P 2014-12-30 2014-12-30
US201462098120P 2014-12-30 2014-12-30
US15/036,314 US20170290333A1 (en) 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity
PCT/US2015/066760 WO2016122802A1 (en) 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/066760 A-371-Of-International WO2016122802A1 (en) 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/953,394 Continuation US10588318B2 (en) 2014-12-30 2018-04-13 Picolinamide compounds with fungicidal activity

Publications (1)

Publication Number Publication Date
US20170290333A1 true US20170290333A1 (en) 2017-10-12

Family

ID=56284918

Family Applications (7)

Application Number Title Priority Date Filing Date
US15/036,316 Active US10182568B2 (en) 2014-12-30 2015-12-18 Use of picolinamide compounds as fungicides
US15/036,314 Abandoned US20170290333A1 (en) 2014-12-30 2015-12-18 Picolinamide compounds with fungicidal activity
US15/953,394 Active US10588318B2 (en) 2014-12-30 2018-04-13 Picolinamide compounds with fungicidal activity
US16/176,664 Active US10595531B2 (en) 2014-12-30 2018-10-31 Use of picolinamide compounds as fungicides
US16/722,451 Active US11284620B2 (en) 2014-12-30 2019-12-20 Picolinamide compounds with fungicidal activity
US17/666,685 Active US11751568B2 (en) 2014-12-30 2022-02-08 Picolinamide compounds with fungicidal activity
US18/359,316 Pending US20230371516A1 (en) 2014-12-30 2023-07-26 Picolinamide compounds with fungicidal activity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/036,316 Active US10182568B2 (en) 2014-12-30 2015-12-18 Use of picolinamide compounds as fungicides

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/953,394 Active US10588318B2 (en) 2014-12-30 2018-04-13 Picolinamide compounds with fungicidal activity
US16/176,664 Active US10595531B2 (en) 2014-12-30 2018-10-31 Use of picolinamide compounds as fungicides
US16/722,451 Active US11284620B2 (en) 2014-12-30 2019-12-20 Picolinamide compounds with fungicidal activity
US17/666,685 Active US11751568B2 (en) 2014-12-30 2022-02-08 Picolinamide compounds with fungicidal activity
US18/359,316 Pending US20230371516A1 (en) 2014-12-30 2023-07-26 Picolinamide compounds with fungicidal activity

Country Status (28)

Country Link
US (7) US10182568B2 (es)
EP (3) EP3808181A1 (es)
JP (5) JP6687625B2 (es)
KR (4) KR20230086808A (es)
CN (4) CN113173838A (es)
AU (5) AU2015380298B2 (es)
BR (6) BR112017013641B8 (es)
CA (2) CA2972401C (es)
CL (2) CL2017001710A1 (es)
CO (2) CO2017006857A2 (es)
CR (3) CR20170307A (es)
DK (1) DK3240773T3 (es)
EC (2) ECSP17044745A (es)
ES (2) ES2838774T3 (es)
GT (2) GT201700147A (es)
HK (2) HK1245236A1 (es)
IL (3) IL253106B (es)
MX (3) MX2017008440A (es)
NZ (2) NZ732641A (es)
PH (2) PH12017501196A1 (es)
PL (2) PL3240424T3 (es)
PT (1) PT3240773T (es)
RU (2) RU2708392C2 (es)
TW (2) TWI734678B (es)
UA (2) UA121561C2 (es)
UY (2) UY36481A (es)
WO (2) WO2016122802A1 (es)
ZA (2) ZA201704558B (es)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173981B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10173971B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10172358B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10173982B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10182568B2 (en) 2014-12-30 2019-01-22 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10188109B2 (en) 2014-12-30 2019-01-29 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10244754B2 (en) 2016-08-30 2019-04-02 Dow Agrosciences Llc Picolinamide N-oxide compounds with fungicidal activity
US10246417B2 (en) 2017-01-05 2019-04-02 Dow Agrosciences Llc Picolinamides as fungicides
US10334852B2 (en) 2016-08-30 2019-07-02 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10433555B2 (en) 2014-12-30 2019-10-08 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
WO2020081382A1 (en) * 2018-10-15 2020-04-23 Dow Agrosciences Llc Methods for sythesis of oxypicolinamides
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides
US11191269B2 (en) 2017-05-02 2021-12-07 Dow Agrosciences Llc Use of an acyclic picolinamide compound as a fungicide for fungal diseases on turfgrasses
US11206828B2 (en) 2017-05-02 2021-12-28 Corteva Agriscience Llc Synergistic mixtures for fungal controls in cereals
US11771085B2 (en) 2017-05-02 2023-10-03 Corteva Agriscience Llc Synergistic mixtures for fungal control in cereals

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019000329A (es) * 2016-07-07 2019-09-10 Dow Agrosciences Llc Procesos para la preparación de 4-alcoxi-3-(acil o alquil) oxipicolinamidas.
TW201808893A (zh) * 2016-08-30 2018-03-16 美商陶氏農業科學公司 作為殺真菌劑之吡啶醯胺
AR110212A1 (es) * 2016-11-22 2019-03-06 Viamet Pharmaceuticals Inc Compuestos y mezclas fungicidas para el control de hongos en cereales
US20180192688A1 (en) 2017-01-11 2018-07-12 Banana Bros, Llc System utilizing compressed smokeable product
US10440986B2 (en) 2017-01-11 2019-10-15 Banana Bros, Llc System utilizing compressed smokeable product
UY37623A (es) 2017-03-03 2018-09-28 Syngenta Participations Ag Derivados de oxadiazol tiofeno fungicidas
KR102615161B1 (ko) 2017-03-31 2023-12-15 신젠타 파티서페이션즈 아게 살진균 조성물
WO2018185013A1 (en) 2017-04-03 2018-10-11 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
TWI801381B (zh) * 2017-05-02 2023-05-11 美商科迪華農業科技有限責任公司 非環狀吡啶醯胺化合物作為殺真菌劑以防治行栽作物中具植物病原性的真菌之用途
TWI801380B (zh) * 2017-05-02 2023-05-11 美商科迪華農業科技有限責任公司 一種非環狀吡啶醯胺化合物作為殺真菌劑以防治在果園、葡萄藤園及農園作物中的植物病原性真菌之用途
TW201902357A (zh) * 2017-05-02 2019-01-16 美商陶氏農業科學公司 用作種子處理之無環吡啶醯胺
TWI774760B (zh) * 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 用於蔬菜中的真菌防治之協同性混合物
TWI774762B (zh) * 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 非環狀吡啶醯胺作為一種殺真菌劑以防治蔬菜中植物病原性真菌的用途
EP3675638A1 (en) 2017-08-29 2020-07-08 Basf Se Pesticidal mixtures
US11241011B2 (en) 2017-09-13 2022-02-08 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
US11584740B2 (en) 2017-09-13 2023-02-21 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
CN111107745B (zh) 2017-09-13 2021-12-07 先正达参股股份有限公司 杀真菌组合物
WO2019053015A1 (en) 2017-09-13 2019-03-21 Syngenta Participations Ag MICROBIOCIDE DERIVATIVES OF QUINOLINE (THIO) CARBOXAMIDE
BR112020004934A2 (pt) 2017-09-13 2020-09-15 Syngenta Participations Ag derivados de (tio)carboxamida de quinolina microbiocidas
CN111164076A (zh) 2017-09-13 2020-05-15 先正达参股股份有限公司 杀微生物的喹啉(硫代)甲酰胺衍生物
US11178869B2 (en) 2017-09-13 2021-11-23 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
CN111094247A (zh) 2017-09-13 2020-05-01 先正达参股股份有限公司 杀微生物的喹啉(硫代)甲酰胺衍生物
UY37912A (es) * 2017-10-05 2019-05-31 Syngenta Participations Ag Derivados de picolinamida fungicidas que portan grupos terminales heteroarilo o heteroariloxi
UY37913A (es) * 2017-10-05 2019-05-31 Syngenta Participations Ag Derivados de picolinamida fungicidas que portan un grupo terminal cuaternario
WO2019068819A1 (en) 2017-10-06 2019-04-11 Syngenta Participations Ag PYRROLE DERIVATIVES ACTIVE ON THE PESTICIDE PLAN
EP3710429B1 (en) 2017-11-15 2023-04-05 Syngenta Participations AG Microbiocidal picolinamide derivatives
WO2019097054A1 (en) 2017-11-20 2019-05-23 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
EP3713416A1 (en) 2017-11-21 2020-09-30 Syngenta Participations AG Fungicidal compositions
MX2020005425A (es) 2017-11-29 2020-08-27 Syngenta Participations Ag Derivados de tiazol microbiocidas.
EP3728191B1 (en) * 2017-12-19 2022-07-13 Syngenta Participations Ag Microbiocidal picolinamide derivatives
EP3530118A1 (en) 2018-02-26 2019-08-28 Basf Se Fungicidal mixtures
WO2019207062A1 (en) 2018-04-26 2019-10-31 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
BR112020023915A2 (pt) 2018-05-25 2021-02-09 Syngenta Participations Ag derivados de picolinamida microbiocidas
BR112020026877A2 (pt) 2018-06-29 2021-04-06 Syngenta Crop Protection Ag Derivados de oxadiazol microbiocidas
WO2020007658A1 (en) 2018-07-02 2020-01-09 Syngenta Crop Protection Ag 3-(2-thienyl)-5-(trifluoromethyl)-1,2,4-oxadiazole derivatives as agrochemical fungicides
EP3823966A1 (en) 2018-07-16 2021-05-26 Syngenta Crop Protection AG Microbiocidal oxadiazole derivatives
BR112021005142A2 (pt) 2018-09-19 2021-06-15 Syngenta Crop Protection Ag derivados microbiocidas de quinolinocarboxamida
WO2020064696A1 (en) 2018-09-26 2020-04-02 Syngenta Crop Protection Ag Fungicidal compositions
JP2022504304A (ja) 2018-10-06 2022-01-13 シンジェンタ パーティシペーションズ アーゲー 殺微生物性キノリンジヒドロ-(チアジン)オキサジン誘導体
WO2020070132A1 (en) 2018-10-06 2020-04-09 Syngenta Participations Ag Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
TW202035404A (zh) 2018-10-24 2020-10-01 瑞士商先正達農作物保護公司 具有含亞碸亞胺的取代基之殺有害生物活性雜環衍生物
US20220061324A1 (en) 2018-12-31 2022-03-03 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2020141135A1 (en) 2018-12-31 2020-07-09 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
AU2020226609A1 (en) 2019-02-20 2021-09-02 Basf Se Pesticidal mixtures comprising a pyrazole compound
EP3698633A1 (en) 2019-02-25 2020-08-26 Basf Se Pesticidal mixtures
KR20210150468A (ko) * 2019-04-10 2021-12-10 신젠타 크롭 프로텍션 아게 살진균 조성물
WO2020208095A1 (en) * 2019-04-10 2020-10-15 Syngenta Crop Protection Ag Microbiocidal picolinamide derivatives
IT201900006543A1 (it) 2019-05-06 2020-11-06 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
JP2022539244A (ja) * 2019-07-05 2022-09-07 シンジェンタ クロップ プロテクション アクチェンゲゼルシャフト 殺微生物性ピコリンアミド誘導体
IT201900011127A1 (it) 2019-07-08 2021-01-08 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
IT201900021960A1 (it) 2019-11-22 2021-05-22 Isagro Spa Composti ad attività fungicida, loro composizioni agronomiche e relativo metodo di preparazione
CA3167647A1 (en) * 2020-01-15 2021-07-22 Fmc Corporation Fungicidal amides
IT202000007234A1 (it) 2020-04-06 2021-10-06 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
EP4214203A1 (en) 2020-09-15 2023-07-26 PI Industries Ltd. Novel picolinamide compounds for combating phytopathogenic fungi
AR123501A1 (es) 2020-09-15 2022-12-07 Pi Industries Ltd Nuevos compuestos de picolinamida para combatir hongos fitopatógenos
CN116916752A (zh) * 2021-12-08 2023-10-20 江苏龙灯化学有限公司 一种包含吡啶酰胺类化合物的杀菌组合物及其防治植物致病菌的方法
WO2023110928A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Fungicidal compositions
WO2023117625A1 (en) 2021-12-22 2023-06-29 Syngenta Crop Protection Ag Fungicidal compositions
WO2024107910A1 (en) 2022-11-18 2024-05-23 Fmc Corporation Mixtures of succinate dehydrogenase inhibitors and picolinamides

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051173A (en) 1974-04-02 1977-09-27 Merck Patent Gesellschaft Mit Beschrankter Haftung Phenoxyalkanol derivatives
US4451484A (en) * 1981-04-30 1984-05-29 Fmc Corporation Insecticidal 2,2'-bridged[1,1'-biphenyl]-3-ylmethyl esters
US4588735A (en) 1983-02-28 1986-05-13 Chevron Research Company Fungicidal (trihalophenoxy or trihalophenthio) alkylaminoalkyl pyridines and pyrroles
JPS6087237A (ja) 1983-10-19 1985-05-16 Toyo Sutoufuaa Chem:Kk 光学活性なケトンの製造方法
JPS6279419A (ja) * 1985-10-03 1987-04-11 Fuji Photo Film Co Ltd 光シヤツタアレイ電極の配線接続方法
ES2039369T3 (es) 1986-06-14 1993-10-01 Kumiai Chemical Industry Co., Ltd. Un procedimiento para la produccion de nuevos derivados de acido picolinico.
DE3720572A1 (de) 1987-06-22 1989-01-05 Basf Ag Amorphes pulverfoermiges siliciumnitrid
FR2649699A1 (fr) 1989-07-13 1991-01-18 Rhone Poulenc Agrochimie 4-phenyl pyrimidine fongicides
IL91418A (en) 1988-09-01 1997-11-20 Rhone Poulenc Agrochimie (hetero) cyclic amide derivatives, process for their preparation and fungicidal compositions containing them
US5399564A (en) 1991-09-03 1995-03-21 Dowelanco N-(4-pyridyl or 4-quinolinyl) arylacetamide and 4-(aralkoxy or aralkylamino) pyridine pesticides
JPH0626884A (ja) 1992-07-07 1994-02-04 San Tesuto Kk 位置検出装置
EP0612754B1 (de) 1993-02-25 1998-08-19 Th. Goldschmidt AG Organopolysiloxanpolyether und deren Verwendung als hydrolysestabile Netzmittel in wässrigen Systemen
NZ536355A (en) 1993-11-30 2006-08-31 Searle & Co Method of treating inflammation using substituted pyrazolyl benzenesulfonamides
US5466823A (en) 1993-11-30 1995-11-14 G.D. Searle & Co. Substituted pyrazolyl benzenesulfonamides
DE4434637A1 (de) 1994-09-28 1996-04-04 Hoechst Schering Agrevo Gmbh Substituierte Pyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
AU5678496A (en) 1995-05-10 1996-11-29 Littelfuse, Inc. Ptc circuit protection device and manufacturing process for same
EP0828713A2 (en) 1995-05-24 1998-03-18 Ciba-Geigy Ag Pyridine-microbicides
WO1997019908A1 (en) 1995-11-29 1997-06-05 Nihon Nohyaku Co., Ltd. Phenylalanine derivatives, optically active substances, salts or coordination compounds thereof, and their use as fungicides
JP2000509047A (ja) 1996-04-30 2000-07-18 ヘキスト・アクチエンゲゼルシヤフト 3―アルコキシピリジン―2―カルボキサミドエステル類、その製法および薬剤としてのその使用
JPH1045747A (ja) 1996-08-06 1998-02-17 Pola Chem Ind Inc アンチマイシンa系化合物の混合物
JPH1053583A (ja) 1996-08-09 1998-02-24 Mitsubishi Chem Corp ピラゾール化合物およびこれを有効成分とする殺菌、殺虫、殺ダニ剤
GB9622636D0 (en) 1996-10-30 1997-01-08 Scotia Holdings Plc Presentation of bioactives
EP0862856B1 (en) 1997-03-03 2003-06-18 Rohm And Haas Company Pesticide compositions
EP1013169A4 (en) 1997-08-29 2001-07-04 Meiji Seika Kaisha RICE PIRICULARIASIS CONTROL AGENT AND WHEAT SCREW AGENT
TW491686B (en) 1997-12-18 2002-06-21 Basf Ag Fungicidal mixtures based on amide compounds and tetrachloroisophthalonitrile
AU751098B2 (en) 1998-02-06 2002-08-08 Meiji Seika Kaisha Ltd. Novel antifungal compounds and process for producing the same
CN1213658C (zh) 1998-11-04 2005-08-10 明治制果株式会社 吡啶甲酰胺衍生物、含有其作为有效成分的有害生物防除剂
AU5073100A (en) * 1999-06-09 2001-01-02 Bayer Aktiengesellschaft Pyridine carboxamides and their use as plant protection agents
JP2003528806A (ja) 1999-07-20 2003-09-30 ダウ・アグロサイエンス・エル・エル・シー 殺菌・殺カビ性複素環式芳香族アミドおよびそれらの組成物、使用および製造方法
US20030018052A1 (en) 1999-07-20 2003-01-23 Ricks Michael J. Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
US6355660B1 (en) 1999-07-20 2002-03-12 Dow Agrosciences Llc Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
EP1516875A1 (en) 1999-07-20 2005-03-23 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
AU781272B2 (en) 1999-08-20 2005-05-12 Fred Hutchinson Cancer Research Center Compositions and methods for modulating apoptosis in cells over-expressing Bcl-2 family member proteins
US20050239873A1 (en) 1999-08-20 2005-10-27 Fred Hutchinson Cancer Research Center 2 Methoxy antimycin a derivatives and methods of use
PT1204643E (pt) 1999-08-20 2008-09-15 Dow Agrosciences Llc Amidas aromáticas heterocíclicas fungicidas e suas composições, métodos de utilização e preparação
US6812238B1 (en) * 1999-11-02 2004-11-02 Basilea Pharmaceutica Ag N-substituted carbamoyloxyalkyl-azolium derivatives
CA2388320C (en) * 1999-11-02 2009-12-15 Basilea Pharmaceutica Ag N-substituted carbamoyloxyalkyl-azolium derivatives
FR2803592A1 (fr) 2000-01-06 2001-07-13 Aventis Cropscience Sa Nouveaux derives de l'acide 3-hydroxypicolinique, leur procede de preparation et compositions fongicides les contenant.
US7241804B1 (en) 2000-08-18 2007-07-10 Fred Hutchinson Cancer Research Center Compositions and methods for modulating apoptosis in cells over-expressing Bcl-2 family member proteins
US20020119979A1 (en) 2000-10-17 2002-08-29 Degenhardt Charles Raymond Acyclic compounds and methods for treating multidrug resistance
EP1275653A1 (en) 2001-07-10 2003-01-15 Bayer CropScience S.A. Oxazolopyridines and their use as fungicides
FR2827286A1 (fr) 2001-07-11 2003-01-17 Aventis Cropscience Sa Nouveaux composes fongicides
CA2453577A1 (en) 2001-07-31 2003-02-13 Richard Brewer Rogers Reductive cleavage of the exocyclic ester of uk-2a or its derivatives and products formed therefrom
WO2003031403A2 (en) 2001-10-05 2003-04-17 Dow Agrosciences Llc Process to produce derivatives from uk-2a derivatives
AR037328A1 (es) 2001-10-23 2004-11-03 Dow Agrosciences Llc Compuesto de [7-bencil-2,6-dioxo-1,5-dioxonan-3-il]-4-metoxipiridin-2-carboxamida, composicion que lo comprende y metodo que lo utiliza
WO2004052916A2 (en) * 2002-12-06 2004-06-24 Adaptive Therapeutics, Inc. Novel cyclic peptides comprising cis-3 aminocycloalkanecarboxylic acids
ITMI20030479A1 (it) 2003-03-13 2004-09-14 Adorkem Technology S P A Procedimento per la preparazione di un ciano-isobenzofurano.
CA2526206A1 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Fungicidal mixtures for controlling rice pathogens
WO2005014569A1 (en) 2003-07-17 2005-02-17 Akzo Nobel N.V. 1,2,4,-trioxepanes as precursors for lactones
DE10347090A1 (de) 2003-10-10 2005-05-04 Bayer Cropscience Ag Synergistische fungizide Wirkstoffkombinationen
WO2005121069A1 (en) 2004-06-04 2005-12-22 Xenoport, Inc. Levodopa prodrugs, and compositions and uses thereof
GB0419694D0 (en) 2004-09-06 2004-10-06 Givaudan Sa Anti-bacterial compounds
JP4589959B2 (ja) 2005-02-04 2010-12-01 三井化学アグロ株式会社 植物病害防除組成物及びその防除方法
CN101160047B (zh) 2005-04-18 2012-06-13 巴斯福股份公司 含有至少一种康唑杀真菌剂、其他杀真菌剂和稳定性共聚物的制剂
WO2007054835A2 (en) 2005-06-21 2007-05-18 Cheminova Agro A/S Synergistic combination of a glyphosate herbicide and a triazole fungicide
RS53673B1 (en) 2005-08-05 2015-04-30 Basf Se FUNGICID MIXTURES CONTAINING SUBSTITUTED ANILIDES 1-METHYL-PIRAZOL-4-IL CARBOXYLIC ACIDS
US8008231B2 (en) 2005-10-13 2011-08-30 Momentive Performance Materials Inc. Extreme environment surfactant compositions comprising hydrolysis resistant organomodified disiloxane surfactants
US7829592B2 (en) 2006-12-21 2010-11-09 Xenoport, Inc. Catechol protected levodopa diester prodrugs, compositions, and methods of use
US7458581B1 (en) 2007-01-18 2008-12-02 Donnalee Balosky Stairway to heaven
WO2008105964A1 (en) 2007-02-26 2008-09-04 Stepan Company Adjuvants for agricultural applications
WO2009040397A1 (en) 2007-09-26 2009-04-02 Basf Se Ternary fungicidal compositions comprising boscalid and chlorothalonil
RU2527029C2 (ru) * 2008-05-30 2014-08-27 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи СПОСОБ КОНТРОЛЯ QoI РЕЗИСТЕНТНЫХ ПАТОГЕННЫХ ГРИБОВ
WO2010042682A1 (en) 2008-10-08 2010-04-15 Bristol-Myers Squibb Company Azolotriazinone melanin concentrating hormone receptor-1 antagonists
TWI504598B (zh) 2009-03-20 2015-10-21 Onyx Therapeutics Inc 結晶性三肽環氧酮蛋白酶抑制劑
US8465562B2 (en) 2009-04-14 2013-06-18 Indiana University Research And Technology Corporation Scalable biomass reactor and method
CN101530104B (zh) 2009-04-21 2013-07-31 上虞颖泰精细化工有限公司 一种含有磺酰脲类、吡啶类、氰氟草酯的除草剂组合物及其应用
IN2012DN00692A (es) * 2009-08-07 2015-06-19 Dow Agroscience Llc
UA112284C2 (uk) 2009-08-07 2016-08-25 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Похідні 5-фторпіримідинону
NZ598809A (en) 2009-09-01 2014-02-28 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
US20110070278A1 (en) 2009-09-22 2011-03-24 Humberto Benito Lopez Metconazole compositions and methods of use
UA109416C2 (xx) 2009-10-06 2015-08-25 Стабільні емульсії типу "масло в воді"
US20110082162A1 (en) 2009-10-07 2011-04-07 Dow Agrosciences Llc Synergistic fungicidal composition containing 5-fluorocytosine for fungal control in cereals
EP3153021B1 (en) 2009-10-07 2018-11-28 Dow AgroSciences LLC Synergistic fungicidial mixtures for fungal control in cereals
EP2528445A1 (en) 2009-12-08 2012-12-05 Basf Se Pesticidal mixtures
US9156816B2 (en) 2010-02-26 2015-10-13 Nippon Soda Co., Ltd. Tetrazolyloxime derivative or salt thereof and fungicide
EP2563771B1 (en) 2010-04-24 2015-11-25 Viamet Pharmaceuticals, Inc. Metalloenzyme inhibitor compounds
KR101466838B1 (ko) * 2010-06-18 2014-11-28 주식회사 녹십자 Sglt2 억제제로서의 티아졸 유도체 및 이를 포함하는 약학 조성물
UA111593C2 (uk) 2010-07-07 2016-05-25 Баєр Інтеллекчуел Проперті Гмбх Аміди антранілової кислоти у комбінації з фунгіцидами
WO2012016989A2 (en) 2010-08-03 2012-02-09 Basf Se Fungicidal compositions
UA111167C2 (uk) 2010-08-05 2016-04-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Пестицидні композиції мезорозмірних частинок з підсиленою дією
EP3058822A1 (en) 2010-08-05 2016-08-24 Bayer Intellectual Property GmbH Active compound combinations comprising prothioconazole and fluxapyroxad for controlling beet diseases
JP2012036143A (ja) 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd 植物病害防除組成物およびその用途
EP2643300A1 (en) 2010-11-24 2013-10-02 Stemergie Biotechnology SA Inhibitors of the activity of complex iii of the mitochondrial electron transport chain and use thereof for treating diseases
CN103228645A (zh) 2010-11-25 2013-07-31 先正达参股股份有限公司 杀微生物杂环
JP6013032B2 (ja) 2011-07-08 2016-10-25 石原産業株式会社 殺菌剤組成物及び植物病害の防除方法
CA2861341A1 (en) 2012-01-20 2013-07-25 Viamet Pharmaceuticals, Inc. Metalloenzyme inhibitor compounds against fungal infection induced plant diseases and method of use thereof
TWI568721B (zh) 2012-02-01 2017-02-01 杜邦股份有限公司 殺真菌之吡唑混合物
CN102617289A (zh) * 2012-02-24 2012-08-01 广西三晶化工科技有限公司 一种手性芳香醇对映体的制备方法
ITMI20120405A1 (it) 2012-03-15 2013-09-16 Chemtura Corp "composizioni sinergiche ad attivita' fungicida e relativo uso"
CN104470910B (zh) 2012-05-07 2017-03-29 陶氏益农公司 作为杀真菌剂的大环吡啶‑2‑酰胺
CA2872022A1 (en) 2012-05-07 2013-11-14 Dow Agrosciences Llc Use of pro-fungicides of uk-2a for control of soybean rust
MX2014013642A (es) * 2012-05-07 2015-03-03 Dow Agrosciences Llc Picolinamidas macrociclicas como fungicidas.
IN2014DN09090A (es) 2012-05-07 2015-05-22 Dow Agrosciences Llc
EP2847187A4 (en) 2012-05-07 2015-10-28 Dow Agrosciences Llc MACROCYCLIC PICOLINAMIDE AS FUNGICIDES
CN104768933A (zh) 2012-11-02 2015-07-08 赢创工业集团股份有限公司 用于对胺进行酰化的方法
US8900625B2 (en) 2012-12-15 2014-12-02 Nexmed Holdings, Inc. Antimicrobial compounds and methods of use
ES2666144T3 (es) 2012-12-28 2018-05-03 Dow Agrosciences Llc Mezclas fungicidas sinérgicas para control fúngico en cereales
CL2015001862A1 (es) 2012-12-28 2015-10-02 Dow Agrosciences Llc Derivados de n-(sustitutos)-5-fluoro-4-imino-3-metil-2-oxo-3, 4-dihidropirimidon-1 (2h)-carboxilato
PL2938194T3 (pl) 2012-12-28 2020-09-21 Adama Makhteshim Ltd. Pochodne n-podstawionego 5-fluoro-4-imino-3-metylo-2-okso-3,4-dihydropirymidyno-1(2h)-karboksylanu
JP6336480B2 (ja) 2012-12-28 2018-06-06 アダマ・マクテシム・リミテッド 1−(置換ベンゾイル)−5−フルオロ−4−イミノ−3−メチル−3,4−ジヒドロピリミジン−2(1h)−オンの誘導体
AU2013370490B2 (en) 2012-12-28 2018-05-10 Adama Makhteshim Ltd. N-(substituted)-5-fluoro-4-imino-3-methyl-2-oxo-3,4-dihydropyrimidine-1 (2H)-carboxamide derivatives
US9750248B2 (en) 2012-12-31 2017-09-05 Dow Agrosciences Llc Synergistic fungicidal compositions
PL2938190T3 (pl) 2012-12-31 2018-05-30 Dow Agrosciences Llc Makrocykliczne pikolinamidy jako fungicydy
US9482661B2 (en) 2012-12-31 2016-11-01 Dow Agrosciences Llc Synthesis and use of isotopically labeled macrocyclic compounds
JP6192098B2 (ja) 2013-06-17 2017-09-06 国立研究開発法人情報通信研究機構 対訳フレーズ学習装置、統計的機械翻訳装置、対訳フレーズ学習方法、およびプログラム
JP6539205B2 (ja) 2013-07-10 2019-07-03 Meiji Seikaファルマ株式会社 ピコリン酸誘導体を含んでなる相乗性植物病害防除用組成物
UA117375C2 (uk) 2013-09-04 2018-07-25 Медівір Аб Інгібітори полімерази hcv
EP3052488A4 (en) 2013-10-01 2017-05-24 Dow AgroSciences LLC Macrocyclic picolinamide compounds with fungicidal activity
US9179674B2 (en) 2013-10-01 2015-11-10 Dow Agrosciences Llc Macrocyclic picolinamide compounds with fungicidal activity
WO2015100184A1 (en) 2013-12-26 2015-07-02 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
WO2015100182A1 (en) 2013-12-26 2015-07-02 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
CN106061260A (zh) 2013-12-31 2016-10-26 美国陶氏益农公司 用于谷类中真菌防治的协同杀真菌混合物
WO2015171408A1 (en) 2014-05-06 2015-11-12 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
CN106470983A (zh) 2014-07-08 2017-03-01 美国陶氏益农公司 作为杀真菌剂的大环吡啶酰胺
CN106470982A (zh) 2014-07-08 2017-03-01 美国陶氏益农公司 作为杀真菌剂的大环吡啶酰胺
WO2016007525A1 (en) 2014-07-08 2016-01-14 Dow Agrosciences Llc Macrocyclic picolinamides as a seed treatment
US20160037774A1 (en) 2014-08-08 2016-02-11 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
CN107427000A (zh) 2014-12-30 2017-12-01 美国陶氏益农公司 具有杀真菌活性的吡啶酰胺化合物的用途
AU2015374379B2 (en) 2014-12-30 2018-10-04 Dow Agrosciences Llc Picolinamides as fungicides
JP6603720B2 (ja) 2014-12-30 2019-11-06 ダウ アグロサイエンシィズ エルエルシー 殺真菌活性を有するピコリンアミド化合物の使用
AU2015374375B2 (en) 2014-12-30 2019-03-21 Dow Agrosciences Llc Picolinamides with fungicidal activity
CN113173838A (zh) * 2014-12-30 2021-07-27 美国陶氏益农公司 具有杀真菌活性的吡啶酰胺化合物
EP3240417A4 (en) 2014-12-30 2018-06-06 Dow Agrosciences LLC Macrocyclic picolinamide compounds with fungicidal activity
EP3240418A4 (en) 2014-12-30 2018-07-04 Dow Agrosciences LLC Use of macrocyclic picolinamides as fungicides
DK3240415T3 (da) 2014-12-30 2022-10-03 Corteva Agriscience Llc Fungicide sammensætninger
EP3141118A1 (en) 2015-09-14 2017-03-15 Bayer CropScience AG Compound combination for controlling control phytopathogenic harmful fungi
WO2017116949A1 (en) 2015-12-30 2017-07-06 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
WO2017116939A1 (en) 2015-12-30 2017-07-06 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
MX2019000329A (es) * 2016-07-07 2019-09-10 Dow Agrosciences Llc Procesos para la preparación de 4-alcoxi-3-(acil o alquil) oxipicolinamidas.
WO2018044991A1 (en) * 2016-08-30 2018-03-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
WO2018045006A1 (en) * 2016-08-30 2018-03-08 Dow Agrosciences Llc Picolinamide n-oxide compounds with fungicidal activity

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252989B2 (en) 2014-12-30 2019-04-09 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10173971B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10173981B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US11751568B2 (en) 2014-12-30 2023-09-12 Corteva Agriscience Llc Picolinamide compounds with fungicidal activity
US10182568B2 (en) 2014-12-30 2019-01-22 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10188109B2 (en) 2014-12-30 2019-01-29 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10595531B2 (en) 2014-12-30 2020-03-24 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10588318B2 (en) 2014-12-30 2020-03-17 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10433555B2 (en) 2014-12-30 2019-10-08 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10172358B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10244754B2 (en) 2016-08-30 2019-04-02 Dow Agrosciences Llc Picolinamide N-oxide compounds with fungicidal activity
US10231452B2 (en) 2016-08-30 2019-03-19 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10214490B2 (en) 2016-08-30 2019-02-26 Dow Agrosciences Llc Picolinamides as fungicides
US10173982B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10334852B2 (en) 2016-08-30 2019-07-02 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10246417B2 (en) 2017-01-05 2019-04-02 Dow Agrosciences Llc Picolinamides as fungicides
US11771085B2 (en) 2017-05-02 2023-10-03 Corteva Agriscience Llc Synergistic mixtures for fungal control in cereals
US11191269B2 (en) 2017-05-02 2021-12-07 Dow Agrosciences Llc Use of an acyclic picolinamide compound as a fungicide for fungal diseases on turfgrasses
US11206828B2 (en) 2017-05-02 2021-12-28 Corteva Agriscience Llc Synergistic mixtures for fungal controls in cereals
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides
WO2020081382A1 (en) * 2018-10-15 2020-04-23 Dow Agrosciences Llc Methods for sythesis of oxypicolinamides
US11639334B2 (en) 2018-10-15 2023-05-02 Corteva Agriscience Llc Methods for synthesis of oxypicolinamides

Also Published As

Publication number Publication date
US10588318B2 (en) 2020-03-17
KR102586670B1 (ko) 2023-10-11
IL253106B (en) 2020-03-31
EP3240773A1 (en) 2017-11-08
BR112017013641B8 (pt) 2022-08-23
ECSP17044745A (es) 2017-11-30
JP6684810B2 (ja) 2020-04-22
US20180228159A1 (en) 2018-08-16
PL3240424T3 (pl) 2021-03-22
EP3808181A1 (en) 2021-04-21
TWI703116B (zh) 2020-09-01
AU2018206798B2 (en) 2020-06-11
CA2972405A1 (en) 2016-07-07
GT201700147A (es) 2018-11-23
TW201627287A (zh) 2016-08-01
HK1245019A1 (zh) 2018-08-24
GT201700148A (es) 2018-11-23
AU2015380298B2 (en) 2019-02-21
US20190059383A1 (en) 2019-02-28
BR122021009853B1 (pt) 2021-12-21
KR20230086808A (ko) 2023-06-15
UY36481A (es) 2016-07-29
AU2021200664A1 (en) 2021-03-04
JP2023088932A (ja) 2023-06-27
MX2017008422A (es) 2017-10-02
PH12017501197A1 (en) 2017-10-18
AU2019201931B2 (en) 2020-11-05
IL253120B (en) 2021-02-28
IL253120A0 (en) 2017-08-31
NZ732820A (en) 2018-12-21
EP3240773A4 (en) 2018-06-20
JP2018502103A (ja) 2018-01-25
RU2017123622A3 (es) 2019-01-31
US11751568B2 (en) 2023-09-12
CR20170307A (es) 2017-08-10
US20220159962A1 (en) 2022-05-26
DK3240773T3 (da) 2020-09-07
BR122019023756B1 (pt) 2022-01-25
AU2021200664B2 (en) 2023-04-13
PL3240773T3 (pl) 2020-11-16
RU2017123819A (ru) 2019-01-31
BR122021009864B1 (pt) 2022-08-30
JP6687625B2 (ja) 2020-04-22
AU2018206798A1 (en) 2018-08-09
BR112017013676A2 (pt) 2018-01-09
CA2972401A1 (en) 2016-08-04
US10595531B2 (en) 2020-03-24
CL2017001711A1 (es) 2018-01-26
CA2972401C (en) 2023-09-05
AU2015374427A1 (en) 2017-06-29
ZA201704558B (en) 2018-11-28
AU2015374427C1 (en) 2018-11-08
EP3240424B1 (en) 2020-09-16
ZA201704554B (en) 2018-11-28
US20200120936A1 (en) 2020-04-23
KR20170102260A (ko) 2017-09-08
MX2017008440A (es) 2017-10-25
IL253106A0 (en) 2017-08-31
KR102541601B1 (ko) 2023-06-08
IL273591A (en) 2020-05-31
EP3240773B9 (en) 2021-01-13
ECSP17044702A (es) 2017-11-30
TW201627274A (zh) 2016-08-01
JP2022003033A (ja) 2022-01-11
UY36480A (es) 2016-07-29
BR122019026066B1 (pt) 2022-01-18
EP3240424A1 (en) 2017-11-08
RU2017123819A3 (es) 2019-06-21
JP2020121983A (ja) 2020-08-13
EP3240773B1 (en) 2020-06-03
CN113615696A (zh) 2021-11-09
US10182568B2 (en) 2019-01-22
AU2019201931A1 (en) 2019-04-11
PH12017501196A1 (en) 2017-10-18
RU2708392C2 (ru) 2019-12-06
CO2017006857A2 (es) 2017-11-30
CN107207414A (zh) 2017-09-26
AU2015374427B2 (en) 2018-04-19
BR112017013641A2 (pt) 2018-03-13
JP2018505864A (ja) 2018-03-01
WO2016122802A1 (en) 2016-08-04
KR20230146120A (ko) 2023-10-18
CN107205405A (zh) 2017-09-26
WO2016109257A1 (en) 2016-07-07
CR20220034A (es) 2022-02-11
CO2017006845A2 (es) 2017-11-30
CL2017001710A1 (es) 2018-01-26
AU2015380298A1 (en) 2017-06-29
EP3240424A4 (en) 2018-06-20
PT3240773T (pt) 2020-09-10
TWI734678B (zh) 2021-08-01
KR20170102259A (ko) 2017-09-08
NZ732641A (en) 2018-12-21
CN113173838A (zh) 2021-07-27
NZ748767A (en) 2023-08-25
BR112017013641B1 (pt) 2021-08-17
RU2702088C2 (ru) 2019-10-03
HK1245236A1 (zh) 2018-08-24
CR20170308A (es) 2017-08-10
UA121562C2 (uk) 2020-06-25
ES2838774T3 (es) 2021-07-02
US20230371516A1 (en) 2023-11-23
US20170295792A1 (en) 2017-10-19
MX2022012275A (es) 2022-10-27
CN107207414B (zh) 2021-03-30
CN107205405B (zh) 2021-08-24
RU2017123622A (ru) 2019-01-31
UA121561C2 (uk) 2020-06-25
US11284620B2 (en) 2022-03-29
ES2815673T3 (es) 2021-03-30
RU2019138183A (ru) 2019-12-20

Similar Documents

Publication Publication Date Title
US11751568B2 (en) Picolinamide compounds with fungicidal activity
US10188109B2 (en) Picolinamide compounds with fungicidal activity
US8263603B2 (en) N3-substituted-N1-sulfonyl-5-fluoropyrimidinone derivatives
WO2019173665A1 (en) Picolinamides as fungicides
WO2016109304A1 (en) Picolinamides as fungicides
US20160007602A1 (en) Macrocyclic picolinamides as fungicides
US20180057463A1 (en) Picolinamide n-oxide compounds with fungicidal activity
US10172358B2 (en) Thiopicolinamide compounds with fungicidal activity
WO2018045012A1 (en) Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US8859558B2 (en) Pyrazinyl carboxamides as fungicides
EP3506751A1 (en) Thiopicolinamide compounds with fungicidal activity
WO2017116949A1 (en) Macrocyclic picolinamides as fungicides
WO2017116956A1 (en) Macrocyclic picolinamides as fungicides

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW AGROSCIENCES LLC, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, YU;LOY, BRIAN A.;BUCHAN, ZACHARY A.;AND OTHERS;SIGNING DATES FROM 20160813 TO 20160927;REEL/FRAME:039902/0141

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CORTEVA AGRISCIENCE LLC, INDIANA

Free format text: CHANGE OF NAME;ASSIGNOR:DOW AGROSCIENCES LLC;REEL/FRAME:058044/0184

Effective date: 20210101