US20150004421A1 - Inorganic polysilazane resin - Google Patents
Inorganic polysilazane resin Download PDFInfo
- Publication number
- US20150004421A1 US20150004421A1 US14/377,001 US201314377001A US2015004421A1 US 20150004421 A1 US20150004421 A1 US 20150004421A1 US 201314377001 A US201314377001 A US 201314377001A US 2015004421 A1 US2015004421 A1 US 2015004421A1
- Authority
- US
- United States
- Prior art keywords
- inorganic polysilazane
- film
- polysilazane resin
- resin
- polysilazane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920001709 polysilazane Polymers 0.000 title claims abstract description 115
- 239000011347 resin Substances 0.000 title claims abstract description 93
- 229920005989 resin Polymers 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 71
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000008199 coating composition Substances 0.000 claims abstract description 27
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims abstract description 25
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- 125000001302 tertiary amino group Chemical group 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- 239000010408 film Substances 0.000 description 120
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 46
- 239000000243 solution Substances 0.000 description 29
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 26
- 230000008569 process Effects 0.000 description 24
- 229910021529 ammonia Inorganic materials 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 18
- 238000003756 stirring Methods 0.000 description 18
- 239000002904 solvent Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 13
- 238000009413 insulation Methods 0.000 description 13
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- -1 silicon halide Chemical class 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 150000003512 tertiary amines Chemical group 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000005915 ammonolysis reaction Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 0 *N([H])[Si](*)([H])N[Si](*)([H])N(*)[H] Chemical compound *N([H])[Si](*)([H])N[Si](*)([H])N(*)[H] 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012295 chemical reaction liquid Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 150000003222 pyridines Chemical class 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000005046 Chlorosilane Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910003828 SiH3 Inorganic materials 0.000 description 2
- UCATWPBTYLBGTQ-UHFFFAOYSA-N [H]N(C)[Si]([H])([H])C Chemical compound [H]N(C)[Si]([H])([H])C UCATWPBTYLBGTQ-UHFFFAOYSA-N 0.000 description 2
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- VGIVLIHKENZQHQ-UHFFFAOYSA-N n,n,n',n'-tetramethylmethanediamine Chemical compound CN(C)CN(C)C VGIVLIHKENZQHQ-UHFFFAOYSA-N 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- CFJYNSNXFXLKNS-UHFFFAOYSA-N p-menthane Chemical compound CC(C)C1CCC(C)CC1 CFJYNSNXFXLKNS-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- OLRJXMHANKMLTD-UHFFFAOYSA-N silyl Chemical compound [SiH3] OLRJXMHANKMLTD-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- IFNWESYYDINUHV-OLQVQODUSA-N (2s,6r)-2,6-dimethylpiperazine Chemical compound C[C@H]1CNC[C@@H](C)N1 IFNWESYYDINUHV-OLQVQODUSA-N 0.000 description 1
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 description 1
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 1
- OXEZLYIDQPBCBB-UHFFFAOYSA-N 4-(3-piperidin-4-ylpropyl)piperidine Chemical compound C1CNCCC1CCCC1CCNCC1 OXEZLYIDQPBCBB-UHFFFAOYSA-N 0.000 description 1
- LMCPBPORPHIMKS-UHFFFAOYSA-N C.C.C.C.C.Cl.N.[H][Si]([H])(Cl)Cl.[H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])Cl Chemical compound C.C.C.C.C.Cl.N.[H][Si]([H])(Cl)Cl.[H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])Cl LMCPBPORPHIMKS-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NVQZDRFPBJXSHP-UHFFFAOYSA-N Cl.[H]N([Si]([H])([H])C)[Si]([H])([H])C.[H][Si]([H])(C)Cl.[H][Si]([H])(C)N([Si]([H])([H])C)[Si]([H])([H])C Chemical compound Cl.[H]N([Si]([H])([H])C)[Si]([H])([H])C.[H][Si]([H])(C)Cl.[H][Si]([H])(C)N([Si]([H])([H])C)[Si]([H])([H])C NVQZDRFPBJXSHP-UHFFFAOYSA-N 0.000 description 1
- LCBLDAKBLYRYNX-UHFFFAOYSA-N ClCNCCl.ClCNCNCCl.ClCNCNCNCCl Chemical compound ClCNCCl.ClCNCNCCl.ClCNCNCNCCl LCBLDAKBLYRYNX-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RTKWXMICRARTGS-UHFFFAOYSA-N [H][Si]([H])(C)N([Si]([H])([H])C)[Si]([H])([H])C Chemical compound [H][Si]([H])(C)N([Si]([H])([H])C)[Si]([H])([H])C RTKWXMICRARTGS-UHFFFAOYSA-N 0.000 description 1
- MJLHFUSJXMQDNA-UHFFFAOYSA-N [H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])Cl.[H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])N([Si]([H])([H])Cl)[Si]([H])([H])N([Si]([H])([H])Cl)[Si]([H])([H])N[Si]([H])([H])N[Si]([H])([H])Cl Chemical compound [H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])Cl.[H][Si]([H])(Cl)N[Si]([H])([H])N[Si]([H])([H])N([Si]([H])([H])Cl)[Si]([H])([H])N([Si]([H])([H])Cl)[Si]([H])([H])N[Si]([H])([H])N[Si]([H])([H])Cl MJLHFUSJXMQDNA-UHFFFAOYSA-N 0.000 description 1
- LDRAWJLGXXELQI-UHFFFAOYSA-N [SiH3]N([SiH3])CN([SiH2]N([SiH3])[SiH3])[SiH2]N([SiH3])[SiH3] Chemical compound [SiH3]N([SiH3])CN([SiH2]N([SiH3])[SiH3])[SiH2]N([SiH3])[SiH3] LDRAWJLGXXELQI-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910000074 antimony hydride Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PQZTVWVYCLIIJY-UHFFFAOYSA-N diethyl(propyl)amine Chemical compound CCCN(CC)CC PQZTVWVYCLIIJY-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Polymers [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229930004008 p-menthane Natural products 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- QJMMCGKXBZVAEI-UHFFFAOYSA-N tris(trimethylsilyl) phosphate Chemical compound C[Si](C)(C)OP(=O)(O[Si](C)(C)C)O[Si](C)(C)C QJMMCGKXBZVAEI-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/087—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/126—Preparation of silica of undetermined type
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/62—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/16—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/16—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1212—Zeolites, glasses
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1225—Deposition of multilayers of inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
- H01L21/02222—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02323—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02323—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
- H01L21/02326—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Definitions
- the present invention relates to an inorganic polysilazane resin, more specifically, to an inorganic polysilazane resin which can be suitably used for forming an insulation film, a passivation film, a planarization film, a protective film, a hard mask, a stress adjusting film, a sacrifice film, and the like of electronic devices such as a semiconductor element, etc.
- the present invention also relates to a coating composition containing the inorganic polysilazane resin, a method for forming a siliceous film by use of the inorganic polysilazane resin, and a siliceous film formed by the method.
- a polysilazane is well known as a compound useful for a precursor of silicon nitride (for example, see Patent literature 1 below).
- it has also attracted attention as a material for forming an insulation film such as an interlayer insulation film, a passivation film, a protective film, a planarization film, and the like of the electronic device such as a semiconductor device.
- These films are formed by applying a coating liquid containing a polysilazane to an appropriate substrate, followed by baking to transform the polysilazane to a siliceous film (for example, see Patent literatures 2 to 5 below).
- a semiconductor element such as a transistor, a resistor, etc. are arranged on a substrate and for electrically isolating and separating these elements, an isolation region which is composed of an insulation film is formed between the elements by using a polysilazane, Furthermore, in the field of the electronic devices, densification and high integration of the elements have been proceeded and in order to cope with these densification and high integration, a trench isolation structure, which is produced by forming a fine groove on a surface of a semiconductor substrate and filling the groove with an insulating material to electrically separate between elements formed at both sides of the groove, has been adopted.
- a coating liquid containing a polysilazane is used also in the aforementioned trench isolation structure.
- a polysilazane used for forming insulation films including the trench isolation structure, passivation films, planarization films, protective films etc. there is exemplified, in Patent document 1, an inorganic polysilazane having a repeating unit represented by the following formula;
- Patent document 1 discloses a method in which adducts of dihalosilane with a base are reacted with ammonia.
- various other methods have been proposed for synthesizing a polysilazane, for example, (a) a method of reacting a silicon halide such as SiCl 4 , SiH 2 Cl 2 or the like with an amine, (b) a method of producing a polysilazane from a silazane by use of a dehydrogenating catalyst consisting of an alkali metal hydride such as KH, (c) a method of synthesizing a silazane by a dehydrogenation reaction of a silane compound with an amine compound by use of a transition metal complex catalyst, (d) a method of performing an amine exchange of aminosilane with ammonia by use of an acid catalyst such as CF 4 SO 3 H, (e) a method of performing an amine exchange of aminosilane with ammonia by use of an acid catalyst such
- various properties such as an insulation property, a flatness of a film, a resistance for an acid, an alkali, a solvent, and the like, a high barrier property, and so on are required for the insulation film, the passivation film, the protective film, the planarization film, and the like in the electronic device such as the semiconductor device.
- a film fulfilling these properties can be produced by the aforementioned method for forming a siliceous film with a coating liquid containing a polysilazane, shrinkage of the film and a generation of a residual stress arise upon baking a polysilazane to convert into a siliceous film.
- the present invention was made under the situation above and an object of the present invention is to provide an inorganic polysilazane resin which can form a siliceous film having the same properties as those of the conventional siliceous film, i.e. a good insulation property, a good film planarity property, a high resistance to an acid, an alkaline and a solvent etc. and a high barrier property, as well as form a siliceous film with a small shrinkage and a small residual stress.
- Another object of the present invention is to provide a coating composition containing the inorganic polysilazane resin, a method for forming a siliceous film by using the inorganic polysilazene resin, and a siliceous film formed by the method for forming a siliceous film.
- the present invention was accomplished based on these findings.
- the present invention therefore, relates to an inorganic polysilazane resin, a coating composition containing the inorganic polysilazane resin, a method for forming a siliceous film by using the inorganic polysilazene resin, and a siliceous film formed by the method, as mentioned below.
- An inorganic polysilazane resin wherein a ratio of containing silicon atoms to containing nitrogen atoms, Si/N is 1.30 or more, preferably 1.32 or more.
- a method for forming a siliceous film wherein the coating composition described in (7) above is applied to a substrate and oxidized by contacting with a water vapor under a heated condition after drying.
- the inorganic polysilazane resin of the present invention has a high content of silicon, a siliceous film formed by using this resin can form a higher density siliceous film in comparison with a film formed by using a conventional polysilazane resin. By this reason, a siliceous film having a smaller shrinkage and a smaller residual stress than those of conventional siliceous films can be produced. Therefore, the inorganic polysilazane resin of the present invention is effective on eliminating cracks in the film and crystal defect of the substrate because the shrinkage and residual stress of the film are small, when using to form an insulation film, a passivation film, a protective film, a planarization film, and the like of the elements used in the field of electronic devices.
- the inorganic polysilazane resin of the present invention is an inorganic polysilazane resin in which the ratio of containing silicon atoms to containing nitrogen atoms (Si/N) is made to 1.30 or more as described above.
- the ratio of containing silicon atoms to containing nitrogen atoms (Si/N) is preferably 1.32 or more, more preferably 1.40 or more.
- One solution for obtaining such inorganic polysilazane resin having a high silicon atom ratio such as 1.30 or more is to introduce a trifunctional nitrogen atom into the resin, wherein all of atomic bonds of a nitrogen atom are connected to silicon atoms as mentioned below.
- an inorganic polysilazane resin produced by ammonolysis of dichlorosilane according to the method described in Patent literature 1 has usually a repeating unit represented by the following formula (I) mainly. Namely, it contains essentially a bifunctional nitrogen.
- the ratio of silicon atoms to nitrogen atoms (Si/N) of the polysilazane resin consisting of the following repeating unit is 1.0.
- a polymer containing a trifunctional nitrogen atom is represented by the following formula (III).
- the ratio of silicon atoms to nitrogen atoms (Si/N) of this repeating unit becomes 1.5.
- SiH 3 exists at the terminal as shown in the following formula (X)
- the ratio of silicon atoms to nitrogen atoms (Si/N) does not fall below 2.0 though the value of the ratio may be changed by the molecular weight.
- the polysilazane resin having a trifunctional nitrogen atom has a higher content by percentage of silicon atom in the repeating unit than that of the polysilazane resin having a bifunctional nitrogen atom. Accordingly, when the trench insulation film having a trench isolation structure is formed by using a polysilazane containing the trifunctional nitrogen atom, a film having a higher density will be able to be produced due to a larger amount of silicon will be introduced into the trench as compared with a case an insulation film is formed by using a polysilazane resin containing mainly a bifunctional nitrogen atom.
- the inorganic polysilazane resin of the present invention wherein the ratio of silicon atoms to nitrogen atoms is 1.30 or more, may be produced by an arbitrary method.
- the number of the nitrogen atom having a trifunction linkage should be increased in the production of a polysilazane resin.
- a method comprising the steps of;
- a method using a dihalosilane as a halosilane is mentioned but the halosilane may be a trihalosilane or a tetrahalosilane.
- a catalyst may be added in the process of the step (b), if needed.
- a preferred compound as the catalyst is a tertiary amine.
- step (a) which is a step producing the oligomer
- arbitrary methods including conventionally known ⁇ methods can be adopted.
- the amount of ammonia introduced is suitably 2 ⁇ 3 mol relative to 1 mol of halosilane such as dichlorosilane, but is not limited to this.
- halosilane such as dichlorosilane
- a polysilazane compound containing both Si—NH and Si—Cl in a molecular is formed.
- a polysilazane resin in which a ratio of silicon atoms to nitrogen atoms, Si/N is 1.30 or more, preferably 1.32 or more can be easily produced as shown below.
- the heat-polymerization step will be described in detail in the explanation of the step (b).
- a polysilazane resin in which a ratio of silicon atoms to nitrogen atoms, Si/N is 1.30 or more, preferably 1.32 or more can be also produced by synthesizing a polymer with no Si—Cl bond, adding a halosilane such as dichlorosilane to this, and then heat-reacting these.
- the method comprising the steps of;
- a catalyst may be added, if necessary.
- a preferred compound as the catalyst is a tertiary amine.
- a method of reacting a dihalosilane represented by the formula: SiH 2 X 2 (wherein, X represents F, Cl, Br or I) with a base to form adducts of dihalosilane and then reacting the adducts with ammonia will be explained hereinafter.
- a dihalosilane used in the reaction dichlorosilane is particularly preferred from the point of view of reactivity and price of a raw material.
- the halosilane is acidic generally and can be reacted with a base to form adducts.
- the adducts-forming rate and the stability of adducts depend on the degree of an acidity of halosilane and the basicity degree and steric factor of the basic material. Therefore, by selecting the kinds of the halosilane and the base suitably, there can be produced stable adducts by which an inorganic polysilazane resin can be easily produced.
- This stability of adducts does not necessarily mean a stability of such a degree that can be isolated as adducts. It includes all the cases such as a case that adducts exist stably in a solvent and a case that adducts function substantially as a reaction intermediate.
- the base examples include a Lewis base, tertiary amines, pyridine, picoline and derivatives thereof, secondary amines having a steric hindrance group, phosphine, stibine, and derivatives thereof.
- bases having a low boiling point and a smaller basicity than ammonia are preferred and pyridine and picoline are particularly preferred from the point of view of handling and economic efficiency.
- the base should be used in a stoichiometric excessive amount to the silane.
- the ammonolysis is conducted in a reaction solvent, for example, a light solvent such as hexane, benzene, pyridine, methylene chloride, ether, and acetonitrile.
- the oligomer is formed by adding a dihalosilane to excessive pyridine, followed by injecting ammonia into the solution to ammonolysis, from the point of view of simplicity of reaction processes and the like.
- This reaction is proceeded by, for example, the following processes. That is, dichlorosilane having a purity of 99% or more is injected into dehydrated pyridine adjusted to the temperature of ⁇ 40° C. to 20° C. under stirring, and in continuation, ammonia having a purity of 99% or more is injected into the solution adjusted to the temperature of ⁇ 40° C. to 20° C. under stirring.
- the amount of ammonia is suitably made to an amount of 2 ⁇ 3 moles relative to 1 mole of dihalosilane as described above.
- a crude polysilazane and ammonium chloride which is a by-product are produced.
- the ammonium chloride produced by the reaction can be removed by a filtration, if needed.
- the step (b) is a step in which a (condensation) polymerization of the oligomer produced in the step (a) is carried out by heating.
- the oligomer is heated in the dissolved state in a reaction solvent.
- a reaction solvent for example, when the oligomer was produced by adding a dihalosilane to an excessive amount of pyridine followed by adding ammonia to the reaction liquid obtained as described above, an organic solvent is optionally added to the reaction liquid obtained in the step (a) and then the reaction liquid is heated to remove ammonia. At this time, the reaction temperature, reaction time etc.
- the regulation of the molecular weight may be conducted by other methods such as regulating the concentration of the reaction system, the reaction pressure, and the stirring speed.
- a trifunctional resin of nitrogen atom is formed by reacting NH in one oligomer with terminal Si—Cl in another oligomer as shown in the following formula, by heating.
- the temperature of the system is preferably 40° C. to 200° C. The higher the temperature becomes, the faster the reaction rate becomes. However, the loads of the apparatus are increased as the reaction temperature becomes higher.
- an inorganic polysilazane having a weight-average molecular weight of 1,200 to 20,000 in terms of polystyrene is produced by the reaction at 100° C. to 200° C. for 2 hours to 10 hours.
- solvent examples include: (A) aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, and decahydronaphthalene; (B) liner saturated hydrocarbons such as n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, n-octane, i-octane, n-nonane, i-nonane, n-decane, and i-decane; (C) cyclic saturated hydrocarbons such as cyclohexane, ethylcyclohexane, methylcyclohexane, and p-menthane; (D) cyclic unsaturated hydrocarbons such as cyclohexene and dipentene
- a catalyst may be added for proceeding the reaction of Si—NH with Si—Cl.
- tertiary amines are effective.
- the tertiary amines include tertiary lower-alkylamines, for example, having 1 to 5 carbon atoms such as triethylamine, trimethylamine, diethylpropylamine, and N-ethyldiisopropylamine.
- the tertiary amines may contain plural amino groups in a molecular and examples thereof include N,N,N′,N′-tetramethyldiaminomethane, N,N,N′,N′-tetramethylethylenediamine, and the like.
- tertiary amines having a cyclic structure 1-ethylpyrroridine, 2,6-lutidine, 4-methylmorpholine, 1-ethylpiperidine, and the like are cited.
- the amount of the catalyst is usually 0.01 to 20 times moles the amount of the oligomer, preferably 0.1 to 5 times moles, though it is varied by a catalyst used and so on.
- an inorganic polysilazane having a polystyrene conversion weight-average molecular weight of 1,200 to 20,000 is produced by reacting usually for 30 minutes to 5 hours at 60° C. to 150° C., though the reaction temperature and the reaction time are varied depend on the catalyst used.
- the step (e) is a step which is conducted for removing Si—Cl in the resin produced in the aforementioned step (b).
- the step (c) is to terminate Si—Cl by reacting with ammonia.
- Si—Cl remains in the resin, Cl will be easily dissociated in the later steps and it causes various failures. This step, therefore, is required.
- excessive NH 3 can be supplied to, for example, a reaction liquid obtained in the step (b) or a liquid in which an inorganic polysilazane resin obtained in the step (b) is dissolved in a solvent. Unreacted Si—Cl reacts with NH 3 to form a hydrochloric acid salt. The hydrochloric acid salt is precipitated and the precipitate is removed using a filter.
- the obtained inorganic polysilazane-containing solution is distilled under a reduced pressure to obtain an inorganic polysilazane resin.
- the reaction liquid includes pyridine and other organic solvents as described above, pyridine is usually removed by distillation and the organic solvents are removed, as needed.
- the concentration of the polysilazane resin in the organic solvent solution is adjusted to, for example, 5 to 30 weight % by a vacuum distillation, the polysilazane-containing solution obtained can be used as a coating liquid as it is or a base liquid for a coating composition.
- a coating composition may be formed by adding other additives or solvents to the base liquid of a coating composition if needed.
- an inorganic polysilazane resin having a ratio of silicon atoms to nitrogen atoms (Si/N) of 1.30 or more, preferably 1.32 or more is obtained.
- the weight-average molecular weight in terms of polystyrene of the inorganic polysilazane resin of the present invention is preferably 1.200 to 20.000.
- the inorganic polysilazane resin of the present invention is dissolved in an organic solvent and made to a solution, namely, a coating composition.
- the coating composition is applied to a substrate.
- the coated film is dried, then subjected to an oxidation step, and, if necessary, annealed to form an insulation film, a planarization film, a protective film, a passivation film, a hard mask, a stress adjusting film, a sacrifice film, and the like.
- the isolation region may be formed by filling the trench with the coating composition, drying it, and then subjecting to an oxidation process.
- the coating composition containing the inorganic polysilazane resin of the present invention will be described hereinafter.
- the coating composition of the present invention comprises an organic solvent other than the aforementioned inorganic polysilazane resin.
- the organic solvent may be any one which can dissolve the inorganic polysilazane resin of the present invention and additives if used, and does not react with the inorganic polysilazane resin and the additives. Preferred examples thereof include, but are not limited to, the same organic solvents as those exemplified in the step (b) described above.
- the inorganic polysilazane resin solution used for the coating composition may be prepared by dissolving a solid resin in an organic solvent as described above, or by using an inorganic polysilazane solution as it is, which is obtained without isolating the inorganic polysilazane resin at the synthesis of the polysilazane resin, or by diluting the inorganic polysilazane solution, or by further concentrating the inorganic polysilazane solution by a vacuum distillation.
- the coating composition containing an inorganic polysilazane resin of the present invention may further comprise a compound which promotes a silica conversion reaction.
- the compound which promotes a silica conversion reaction means a compound promoting a reaction in which polysilazane is converted to a siliceous material by an interaction with polysilazane.
- Various compounds has been known as the compound which promotes a silica conversion reaction, for example, compounds described in JP 06-299118 A can be used as the compound. More specifically, compounds (i) to (iii) described below can be represented.
- metal carboxylates metal carboxylates containing nickel, titanium, platinum, rhodium, cobalt, iron, ruthenium, osmium, palladium, iridium, or aluminum are particularly preferred.
- the amount thereof are made to usually 0.01 to 20 weight-%, preferably 0.1 to 10 weight-%, more preferably 0.5 to 5 weight-% relative to the weight of the polysilazane compound.
- the amount used exceeds 20 weight %, the composition can be gelled and when the amount used is smaller than 0.01 weight %, the effect of the present invention cannot be obtained. It is, therefore, necessary to be careful for the amount used.
- N-heterocyclic compounds which do not show aromaticity are preferred. Specific examples thereof include 1,3-di-4-piperidylpropane, 4,4′-trimethylenebis(1-methylpiperydine), diazabicyclo-[2,2,2]octane, and cis-2,6-dimethylpiperazine.
- the amount used is made to usually 0.01 to 50 weight %, preferably 0.1 to 10 weight % relative to the weight of the inorganic polysilazane compound. It is preferable that a larger amount of N-heterocyclic compound promotes a conversion to silica. However, when a larger amount of the N-heterocyclic compound is used, it should be careful as the density of a siliceous film may decrease or the handleability of the composition may become worse by deterioration of stability of the polysilazane.
- amine compounds there are exemplified amine compounds represented by the following formula (A) or (B).
- R A s represent each independently a hydrogen atom or a C 1 -C 3 hydrocarbon group and two R A s attached to the same nitrogen atom are not a hydrogen atom simultaneously
- L 1 and L 2 are each independently —CH 2 —, —NR A1 — (whereas R A1 is a hydrogen atom or a C 1 -C 4 hydrocarbon group) or —O—
- p 1 and p 3 are each independently an integer of 0 to 4
- p 2 is an integer of 1 to 4.
- R B s represent each independently a hydrogen atom or a C 1 -C 4 hydrocarbon group, and q 1 and q 2 are each independently an integer of 1 to 4.
- the blending amount of the amine compound is usually 1 to 20%, preferably 3 to 10%, more preferably 4 to 8%, further more preferably 4 to 6% relative to the weight of the polysilazane compound.
- the blending amount of the amine compound is preferably a given amount or more for obtaining a maximum effect of improving a promotion of the reaction and a density of a film, but on the other hand, the amount is preferably a given amount or less for maintaining the solubility of the composition and preventing the film unevenness detection when forming a film.
- additives may be added if needed.
- additives are a viscosity adjusting agent, a crosslinking promoter etc.
- Phosphorus compounds such as tris(trimethylsilyl)phosphate may also be contained in the coating composition containing the polysilazane resin for a gettering effect of sodium when used in a semiconductor device.
- the inorganic polysilazane resin-containing solution obtained are preferably circulating-filtered using a filter having a pore size of 0.1 ⁇ m or less to reduce coarse particles having a particle size of 0.2 ⁇ m or more to 50 particles/cc or less.
- the solid content of each element described above is varied by application conditions, baking conditions, and so on.
- the solid content of the inorganic polysilazane resin is preferably 0.1 to 40 weight %, more preferably 0.2 to 30 weight %, further more preferably 0.3 to 25 weight % relative to the total weight of the coating composition.
- the contents of various kinds of additives other than the inorganic polysilazane resin are preferably 0.001 to 40 weight %, more preferably 0.005 to 30 weight %, further more preferably 0.01 to 20 weight % relative to the weight of the polysilazane compound, though those are varied by the kinds of the additives etc.
- Coating methods of the inorganic polysilazane resin-containing composition are, a spin coat method, a dip coat method, a spray coat method, a roll coat method, a transfer method, a slit coat method, and so on.
- the spin coat method is particularly preferred.
- the coated film having the desired film thickness can be formed by one application action or 2 or more of repeating application actions, if necessary. Examples of the substrate to which the coating composition is applied including a silicon substrate, a glass substrate, a resin film, etc.
- the coating composition may be applied to a substrate on which a semiconductor film, a circuit, or the like was formed in a production process of a semiconductor element, if necessary.
- the thickness of the coated film is usually 10 to 2,000 nm, preferably 20 to 1,000 nm in a dried film thickness though it is varied by the purpose of the use of film.
- the coated film of the polysilazane resin is formed by application of the coating composition as described above, the coated film is preferably prebaked (heat-treated) for drying. This process is performed for complete removal of solvent contained in the coated film and precure of the coated film in the final step of the application process.
- the baking temperature is held at a substantially constant temperature.
- the baking temperature in the prebake process may be controlled as is raised with time during the prebake process for preventing a formation of concave in the substrate, which is occurred by shrinkage of the coated film, and occurrence of voids in the trench.
- the temperature in the prebake process is usually in the range of 50° C. to 300° C., preferably 70° C. to 200° C.
- the required time for the prebake process is usually 10 seconds to 30 minutes, preferably 30 seconds to 5 minutes.
- a treatment liquid containing an oxidation accelerator (a cure accelerator) may be applied to the coated polysilazane film, if necessary.
- any treatment methods conventionally known in the oxidation process of the polysilazane may be adopted.
- the polysilazane is oxidized by the method to form a siliceous film having excellent properties.
- the oxidation is conducted using a curing oven or a hot plate.
- there are exemplified methods of conducting heat treatments under an inert gas or oxygen atmosphere which contains water vapor there are exemplified methods of conducting heat treatments under an inert gas or oxygen atmosphere which contains water vapor, a method of conducting a heat treatment under a water vapor atmosphere containing hydrogen peroxide vapor, etc.
- the concentration of water vapor in the water vapor oxidation is an important factor for converting the polysilazane resin to a siliceous film (silicon dioxide) and is preferably 1% or more, more preferably 10% or more, most preferably 20% or more. Particularly, when the content of water vapor is 20% or more, the conversion of polysilazane resin to a siliceous film proceeds easily, defects of the film such as voids is suppressed, and properties of the siliceous film are improved. When an inert gas is used as the atmosphere gas, nitrogen gas, argon gas, helium gas, and the like are used.
- the treatment temperature is varied by the composition of the coating liquid and, generally, the conversion rate to a siliceous film tends to become faster in a higher temperature.
- adverse influences to device properties by oxidation of a silicon substrate or change of the crystal structure tend to become smaller in a lower temperature.
- the heating rate to the target temperature is generally 0.1 to 100° C./minute and the curing time at the target temperature is generally 1 minute to 10 hours, preferably 15 minutes to 3 hours.
- the treating temperature and the composition of the treatment atmosphere may be changed gradually, if necessary.
- the coated film can be oxidized by exposing it to a hydrogen peroxide vapor.
- the coated film may be placed under a hydrogen peroxide vapor atmosphere at a temperature of 50° C. to 200° C. for one minute to 2 hours.
- other vapor such as water vapor or dilution gas may be contained in the hydrogen peroxide vapor atmosphere.
- concentration of hydrogen peroxide the faster the oxidation rate of the coated film becomes.
- the inorganic polysilazane resin in the coated film is converted to a siliceous film (silicon dioxide).
- the converted film may be further subjected to an annealing treatment process in which the whole of the substrate is heated for completely converting and curing all of the polysilazane-coated film to silica, if necessary.
- the annealing treatment is usually conducted by putting and heating the whole of the substrate in a curing oven and the like, generally.
- the annealing treatment may be conducted under a non-oxidizing atmosphere or an oxidizing atmosphere.
- the annealing temperature is usually 300° C. to 1,100° C., preferably 400° C. to 1,000° C. and the treatment time is usually 10 minutes to 5 hours, preferably 30 minutes to 2 hours.
- one or more of thin coated films may be further formed on the coated film by repeating these processes, if needed.
- the thickness of each formed film can be reduced.
- the sufficient diffusion and supply of oxygen from the surface of the film can be carried out at any portion of the depth direction of the coated thin film and a siliceous film having more excellent properties can be formed.
- the weight-average molecular weight was measured using a GPC apparatus manufactured by Shimadzu Corporation with a THF eluent.
- the oligomer obtained contains following compounds and the like, and the total number of NH and the total number of Cl in the oligomer are the same.
- HCl was generated but most of it was reacted immediately with excessive pyridine to form pyridine hydrochloride and the pyridine hydrochloride formed was precipitated.
- the pyridine hydrochloride was removed with a glass filter.
- a silazane oligomer solution containing unreacted Si—Cl was prepared by the same process as Example 1.
- 2 moles (204 g) of N,N,N′,N′-tetramethyldiaminomethane were added and this reaction system was heated gradually to 80° C. under stirring and held at this temperature for one hour, followed by cooling down gradually to the room temperature.
- 1 mole (17 g) of ammonia gas having a purity of 99.9% was injected again to the mixture under stirring and then the mixture was allowed to stand for 30 minutes.
- the obtained slurry reaction mixture was filtered with a glass filter to remove pyridine hydrochloride to obtain a filtrate.
- Solution B having a concentration of 20% by weight, which contains a resin (Resin B) having a weight-average molecular weight of 4,450, was obtained.
- a polysilazane polymer was prepared by the same process as Example 3. That is, 3 moles (303 g) of dichlorosilane having a purity of 99% or more were injected into a mixed solvent consisting of 300 g of dehydrated pyridine and 3 kg of dibutyl ether under stirring at 0° C. While maintaining the temperature of the solution at 0° C., 3 moles (51 g) of ammonia gas were injected to the mixture under stirring. The mixture was reacted for 2 hours under stirring while maintaining the temperature at 0° C. The slurry reaction mixture obtained was filtered with a glass filter to remove pyridine hydrochloride and a filtrate was obtained.
- Solution D having a concentration of 20% by weight, which contains a resin (Resin D) having a weight-average molecular weight of 2,400, was obtained.
- base film thickness was defined as a film thickness after drying at 150° C. for 3 minutes.
- Shrinkage(%) ⁇ [(base film thickness) ⁇ (film thickness after anneal treatment)]/(base film thickness) ⁇ 100
- the film thickness was measured using the reflecting spectrographic film thickness meter made by OTSUKA ELECTRONICS CO. LTD.
- the residual stress was measured using FLX-2320 made by Tencor.
- the measuring theory is as follows. When a film applied on a silicon wafer has a residual stress, the substrate (silicon wafer) will bend. The curvature radius of the substrate is measured and a stress value is calculated from the value of the measured curvature radius.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electromagnetism (AREA)
- Formation Of Insulating Films (AREA)
- Silicon Polymers (AREA)
- Paints Or Removers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-025066 | 2012-02-08 | ||
JP2012025066A JP5970197B2 (ja) | 2012-02-08 | 2012-02-08 | 無機ポリシラザン樹脂 |
PCT/JP2013/052312 WO2013118642A1 (ja) | 2012-02-08 | 2013-02-01 | 無機ポリシラザン樹脂 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052312 A-371-Of-International WO2013118642A1 (ja) | 2012-02-08 | 2013-02-01 | 無機ポリシラザン樹脂 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/591,796 Division US10494261B2 (en) | 2012-02-08 | 2017-05-10 | Inorganic polysilazane resin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150004421A1 true US20150004421A1 (en) | 2015-01-01 |
Family
ID=48947406
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/377,001 Abandoned US20150004421A1 (en) | 2012-02-08 | 2013-02-01 | Inorganic polysilazane resin |
US15/591,796 Active 2033-10-13 US10494261B2 (en) | 2012-02-08 | 2017-05-10 | Inorganic polysilazane resin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/591,796 Active 2033-10-13 US10494261B2 (en) | 2012-02-08 | 2017-05-10 | Inorganic polysilazane resin |
Country Status (9)
Country | Link |
---|---|
US (2) | US20150004421A1 (ja) |
EP (1) | EP2813467B1 (ja) |
JP (1) | JP5970197B2 (ja) |
KR (1) | KR101840187B1 (ja) |
CN (1) | CN104114483B (ja) |
IL (1) | IL233919B (ja) |
SG (1) | SG11201404181UA (ja) |
TW (1) | TWI558658B (ja) |
WO (1) | WO2013118642A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9580304B2 (en) * | 2015-05-07 | 2017-02-28 | Texas Instruments Incorporated | Low-stress low-hydrogen LPCVD silicon nitride |
US9593210B1 (en) * | 2015-06-03 | 2017-03-14 | General Electric Company | Methods of preparing polysilazane resin with low halogen content |
US9771654B2 (en) * | 2011-09-26 | 2017-09-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multilayer structure offering improved impermeability to gases |
US9793109B2 (en) | 2013-12-09 | 2017-10-17 | AZ Electronic Materials (Luxembourg) S.à.r.l. | Perhydropolysilazane, composition containing same, and method for forming silica film using same |
WO2018107155A1 (en) | 2016-12-11 | 2018-06-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | N-h free and si-rich perhydridopolysilzane compositions, their synthesis, and applications |
US20190144332A1 (en) * | 2017-11-14 | 2019-05-16 | Samsung Electronics Co., Ltd. | Cover glass and electronic device with the same and method for manufacturing cover glass |
US10364372B2 (en) * | 2017-01-13 | 2019-07-30 | Tokyo Ohka Kogyo Co., Ltd. | Composition and method of producing siliceous film |
JP2022064372A (ja) * | 2020-10-14 | 2022-04-26 | 信越化学工業株式会社 | 電子材料保護用コーティング剤 |
US11396547B2 (en) | 2016-10-11 | 2022-07-26 | Beijing Dongfang Biotech Co., Ltd. | Anti-EGFR and anti-CD3 bispecific antibody and uses thereof |
US11739220B2 (en) | 2018-02-21 | 2023-08-29 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Perhydropolysilazane compositions and methods for forming oxide films using same |
US11993725B2 (en) | 2015-03-11 | 2024-05-28 | Samsung Electronics Co., Ltd. | Barrier films and quantum dot polymer composite articles including the same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101556672B1 (ko) * | 2012-12-27 | 2015-10-01 | 제일모직 주식회사 | 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법 |
CN105518835B (zh) * | 2013-07-31 | 2017-05-10 | 株式会社日立国际电气 | 衬底处理方法、衬底处理装置及半导体器件的制造方法 |
US10020185B2 (en) | 2014-10-07 | 2018-07-10 | Samsung Sdi Co., Ltd. | Composition for forming silica layer, silica layer, and electronic device |
KR101833800B1 (ko) | 2014-12-19 | 2018-03-02 | 삼성에스디아이 주식회사 | 실리카계 막 형성용 조성물, 실리카계 막의 제조방법 및 상기 실리카계 막을 포함하는 전자 소자 |
KR101837971B1 (ko) | 2014-12-19 | 2018-03-13 | 삼성에스디아이 주식회사 | 실리카계 막 형성용 조성물, 실리카계 막, 및 전자 디바이스 |
KR20170014946A (ko) | 2015-07-31 | 2017-02-08 | 삼성에스디아이 주식회사 | 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막 |
JP6704167B2 (ja) * | 2015-12-11 | 2020-06-03 | 株式会社Flosfia | 無機酸化膜の成膜方法 |
KR101991696B1 (ko) * | 2016-01-13 | 2019-09-30 | 삼성에스디아이 주식회사 | 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막 |
CN107502929A (zh) * | 2017-06-20 | 2017-12-22 | 阜阳市晨曦货架展柜有限公司 | 一种超市耐刮擦货架的表面处理方法 |
TWI793262B (zh) * | 2018-02-21 | 2023-02-21 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | 全氫聚矽氮烷組成物和用於使用其形成氮化物膜之方法 |
CN109135189B (zh) * | 2018-09-20 | 2020-06-23 | 福建师范大学 | 一种环氧树脂用含P/N/Si多元素聚磷硅氮烷阻燃剂及其制备方法 |
CN109627447B (zh) * | 2019-01-31 | 2021-11-02 | 大晶信息化学品(徐州)有限公司 | 一种聚硅氮烷材料的制备方法及应用 |
KR102432933B1 (ko) | 2019-05-17 | 2022-08-12 | 삼성에스디아이 주식회사 | 실리카 막 형성용 조성물, 그로부터 형성된 실리카 막, 및 상기 실리카 막을 포함하는 전자 소자 |
KR102157442B1 (ko) * | 2019-07-24 | 2020-09-17 | 숭실대학교산학협력단 | 내산화성이 향상된 면상발열체의 제조방법 및 이에 의하여 제조된 면상발열체 |
RU2745823C1 (ru) * | 2020-07-17 | 2021-04-01 | Общество с ограниченной ответственностью "Фирма "ХОРСТ" | Способ получения раствора неорганического полисилазана в дибутиловом эфире |
KR20220169776A (ko) * | 2021-06-21 | 2022-12-28 | 삼성에스디아이 주식회사 | 실리카 막 형성용 조성물, 실리카 막, 및 전자소자 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535007A (en) * | 1984-07-02 | 1985-08-13 | Dow Corning Corporation | Silicon nitride-containing ceramics |
US5145812A (en) * | 1988-02-29 | 1992-09-08 | Toa Nenryo Kogyo Kabushiki Kaisha | Molded articles formed of silicon nitride based ceramic and process for producing same |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721812A (en) * | 1952-04-01 | 1955-10-25 | Du Pont | Quaternary ammonium organo silanolate, process of treating a siliceous material therewith and product thereby |
US5319121A (en) * | 1979-02-16 | 1994-06-07 | Sri International | Hydridosiloxanes as precursors to ceramic products |
JPS60145903A (ja) | 1983-12-29 | 1985-08-01 | Toa Nenryo Kogyo Kk | 無機ポリシラザン及びその合成方法 |
JPH04240107A (ja) * | 1991-01-24 | 1992-08-27 | Denki Kagaku Kogyo Kk | ポリシラザンの変性方法 |
JPH04252420A (ja) * | 1991-01-29 | 1992-09-08 | Tonen Corp | 磁気ディスク基板 |
WO1993002472A1 (en) * | 1991-07-16 | 1993-02-04 | Catalysts & Chemicals Industries Co., Ltd. | Semiconductor device and production thereof |
JPH05319959A (ja) * | 1991-10-21 | 1993-12-03 | Tonen Corp | 高密度セラミックスの製造方法 |
JP3330643B2 (ja) * | 1992-08-26 | 2002-09-30 | 触媒化成工業株式会社 | シリカ系被膜形成用塗布液および被膜付基材 |
JPH06275135A (ja) | 1993-03-24 | 1994-09-30 | Hitachi Cable Ltd | 薄肉絶縁電線 |
JP3385060B2 (ja) | 1993-04-20 | 2003-03-10 | 東燃ゼネラル石油株式会社 | 珪素−窒素−酸素−(炭素)−金属系セラミックス被覆膜の形成方法 |
JP3517800B2 (ja) | 1995-06-29 | 2004-04-12 | コニカミノルタホールディングス株式会社 | 感光材料用包装材料 |
KR100317569B1 (ko) * | 1995-07-13 | 2001-12-24 | 다마호리 다메히코 | 세라믹스질 물질 형성용 조성물 및 세라믹스질 물질의제조 방법 |
JP4070828B2 (ja) | 1995-07-13 | 2008-04-02 | Azエレクトロニックマテリアルズ株式会社 | シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜 |
JPH09157594A (ja) * | 1995-12-07 | 1997-06-17 | Tonen Corp | ポリシラザン塗布液 |
EP0812871B1 (en) | 1995-12-28 | 2000-04-05 | Tonen Corporation | Process for producing polysilazane |
JP2904110B2 (ja) * | 1996-04-02 | 1999-06-14 | 日本電気株式会社 | 半導体装置の製造方法 |
JP3516815B2 (ja) * | 1996-08-06 | 2004-04-05 | 触媒化成工業株式会社 | シリカ系被膜形成用塗布液および被膜付基材 |
KR100499171B1 (ko) | 2003-07-21 | 2005-07-01 | 삼성전자주식회사 | 스핀온글래스에 의한 산화실리콘막의 형성방법 |
JP2007142155A (ja) * | 2005-11-18 | 2007-06-07 | Sony Corp | 酸化処理方法および半導体装置の製造方法 |
US20090305063A1 (en) * | 2006-09-08 | 2009-12-10 | Masanobu Hayashi | Composition for forming siliceous film and process for producing siliceous film from the same |
US8084186B2 (en) * | 2009-02-10 | 2011-12-27 | Az Electronic Materials Usa Corp. | Hardmask process for forming a reverse tone image using polysilazane |
JP5410207B2 (ja) | 2009-09-04 | 2014-02-05 | AzエレクトロニックマテリアルズIp株式会社 | シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液 |
JP5172867B2 (ja) * | 2010-01-07 | 2013-03-27 | AzエレクトロニックマテリアルズIp株式会社 | ポリシラザンを含むコーティング組成物 |
-
2012
- 2012-02-08 JP JP2012025066A patent/JP5970197B2/ja active Active
-
2013
- 2013-02-01 CN CN201380008388.3A patent/CN104114483B/zh active Active
- 2013-02-01 KR KR1020147025259A patent/KR101840187B1/ko active IP Right Grant
- 2013-02-01 US US14/377,001 patent/US20150004421A1/en not_active Abandoned
- 2013-02-01 WO PCT/JP2013/052312 patent/WO2013118642A1/ja active Application Filing
- 2013-02-01 EP EP13746247.9A patent/EP2813467B1/en active Active
- 2013-02-01 SG SG11201404181UA patent/SG11201404181UA/en unknown
- 2013-02-07 TW TW102104812A patent/TWI558658B/zh active
-
2014
- 2014-07-31 IL IL233919A patent/IL233919B/en active IP Right Grant
-
2017
- 2017-05-10 US US15/591,796 patent/US10494261B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535007A (en) * | 1984-07-02 | 1985-08-13 | Dow Corning Corporation | Silicon nitride-containing ceramics |
US5145812A (en) * | 1988-02-29 | 1992-09-08 | Toa Nenryo Kogyo Kabushiki Kaisha | Molded articles formed of silicon nitride based ceramic and process for producing same |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9771654B2 (en) * | 2011-09-26 | 2017-09-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multilayer structure offering improved impermeability to gases |
US9793109B2 (en) | 2013-12-09 | 2017-10-17 | AZ Electronic Materials (Luxembourg) S.à.r.l. | Perhydropolysilazane, composition containing same, and method for forming silica film using same |
US11993725B2 (en) | 2015-03-11 | 2024-05-28 | Samsung Electronics Co., Ltd. | Barrier films and quantum dot polymer composite articles including the same |
CN107533974B (zh) * | 2015-05-07 | 2022-03-18 | 德克萨斯仪器股份有限公司 | 低应力低氢型lpcvd氮化硅 |
CN107533974A (zh) * | 2015-05-07 | 2018-01-02 | 德克萨斯仪器股份有限公司 | 低应力低氢型lpcvd氮化硅 |
US9580304B2 (en) * | 2015-05-07 | 2017-02-28 | Texas Instruments Incorporated | Low-stress low-hydrogen LPCVD silicon nitride |
US10026817B2 (en) | 2015-05-07 | 2018-07-17 | Texas Instruments Incorporated | Low-stress low-hydrogen LPCVD silicon nitride |
US9593210B1 (en) * | 2015-06-03 | 2017-03-14 | General Electric Company | Methods of preparing polysilazane resin with low halogen content |
US11396547B2 (en) | 2016-10-11 | 2022-07-26 | Beijing Dongfang Biotech Co., Ltd. | Anti-EGFR and anti-CD3 bispecific antibody and uses thereof |
WO2018107155A1 (en) | 2016-12-11 | 2018-06-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | N-h free and si-rich perhydridopolysilzane compositions, their synthesis, and applications |
EP4293085A2 (en) | 2016-12-11 | 2023-12-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | N-h free and si-rich perhydridopolysilzane compositions, their synthesis, and applications |
US11203528B2 (en) | 2016-12-11 | 2021-12-21 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | N—H free and Si-rich per-hydridopolysilzane compositions, their synthesis, and applications |
US10647578B2 (en) | 2016-12-11 | 2020-05-12 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | N—H free and SI-rich per-hydridopolysilzane compositions, their synthesis, and applications |
JP2020513392A (ja) * | 2016-12-11 | 2020-05-14 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | N−Hを含まずSiを多く含むペルヒドロポリシラザン組成物、その合成、および利用 |
JP2022088450A (ja) * | 2016-12-11 | 2022-06-14 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | コーティング組成物、および基板上へのSi含有膜の形成方法 |
JP7390421B2 (ja) | 2016-12-11 | 2023-12-01 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | コーティング組成物、および基板上へのSi含有膜の形成方法 |
JP7198751B2 (ja) | 2016-12-11 | 2023-01-04 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | N-Hを含まず、Cを含まず、かつSiを多く含むペルヒドロポリシラザン、その合成、および利用 |
US10364372B2 (en) * | 2017-01-13 | 2019-07-30 | Tokyo Ohka Kogyo Co., Ltd. | Composition and method of producing siliceous film |
US11905204B2 (en) * | 2017-11-14 | 2024-02-20 | Samsung Electronics Co., Ltd. | Cover glass and electronic device with the same and method for manufacturing cover glass |
US20190144332A1 (en) * | 2017-11-14 | 2019-05-16 | Samsung Electronics Co., Ltd. | Cover glass and electronic device with the same and method for manufacturing cover glass |
US11739220B2 (en) | 2018-02-21 | 2023-08-29 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Perhydropolysilazane compositions and methods for forming oxide films using same |
JP2022064372A (ja) * | 2020-10-14 | 2022-04-26 | 信越化学工業株式会社 | 電子材料保護用コーティング剤 |
JP7495862B2 (ja) | 2020-10-14 | 2024-06-05 | 信越化学工業株式会社 | 電子材料保護用コーティング剤 |
Also Published As
Publication number | Publication date |
---|---|
JP5970197B2 (ja) | 2016-08-17 |
TW201336778A (zh) | 2013-09-16 |
US20170240423A1 (en) | 2017-08-24 |
KR101840187B1 (ko) | 2018-03-20 |
EP2813467A4 (en) | 2015-10-14 |
EP2813467B1 (en) | 2021-09-15 |
US10494261B2 (en) | 2019-12-03 |
SG11201404181UA (en) | 2014-09-26 |
CN104114483B (zh) | 2019-04-30 |
TWI558658B (zh) | 2016-11-21 |
IL233919B (en) | 2018-10-31 |
EP2813467A1 (en) | 2014-12-17 |
KR20140127313A (ko) | 2014-11-03 |
CN104114483A (zh) | 2014-10-22 |
WO2013118642A1 (ja) | 2013-08-15 |
IL233919A0 (en) | 2014-09-30 |
JP2013162072A (ja) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10494261B2 (en) | Inorganic polysilazane resin | |
US10093831B2 (en) | Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same | |
US10000386B2 (en) | Method for forming of siliceous film and siliceous film formed using same | |
US9793109B2 (en) | Perhydropolysilazane, composition containing same, and method for forming silica film using same | |
US20130316515A1 (en) | Method for producing silicon dioxide film | |
JP3015104B2 (ja) | 半導体装置およびその製造方法 | |
US10913852B2 (en) | Siloxazane compound and composition comprising the same, and method for producing silceous film using the same | |
JPH1160957A (ja) | 前駆体ポリマー組成物及び低誘電率絶縁材料 | |
JP2004285274A (ja) | 膜形成組成物およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AZ ELECTRONIC MATERIALS USA CORP., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJIWARA, TAKASHI;GROTTENMUELLER, RALF;KANDA, TAKASHI;AND OTHERS;SIGNING DATES FROM 20140722 TO 20140801;REEL/FRAME:039339/0005 |
|
AS | Assignment |
Owner name: EMD PERFORMANCE MATERIALS CORP., NEW JERSEY Free format text: CHANGE OF NAME;ASSIGNOR:AZ ELECTRONIC MATERIALS USA CORP.;REEL/FRAME:039642/0483 Effective date: 20160810 |
|
AS | Assignment |
Owner name: AZ ELECTRONIC MATERIALS (LUXEMBOURG) S.A.R.L., LUX Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMD PERFORMANCE MATERIALS CORP.;REEL/FRAME:039670/0671 Effective date: 20160810 |
|
AS | Assignment |
Owner name: AZ ELECTRONIC MATERIALS (LUXEMBOURG) S.A R.L., LUX Free format text: CHANGE OF ADDRESS;ASSIGNOR:AZ ELECTRONIC MATERIALS (LUXEMBOURG) S.A R.L.;REEL/FRAME:041345/0585 Effective date: 20161001 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |