CN107533974A - 低应力低氢型lpcvd氮化硅 - Google Patents

低应力低氢型lpcvd氮化硅 Download PDF

Info

Publication number
CN107533974A
CN107533974A CN201680028363.3A CN201680028363A CN107533974A CN 107533974 A CN107533974 A CN 107533974A CN 201680028363 A CN201680028363 A CN 201680028363A CN 107533974 A CN107533974 A CN 107533974A
Authority
CN
China
Prior art keywords
silicon nitride
nitride layer
microelectronic component
substrate
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680028363.3A
Other languages
English (en)
Other versions
CN107533974B (zh
Inventor
N·S·德拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN107533974A publication Critical patent/CN107533974A/zh
Application granted granted Critical
Publication of CN107533974B publication Critical patent/CN107533974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0022Protection against electrostatic discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0161Controlling physical properties of the material
    • B81C2201/0163Controlling internal stress of deposited layers
    • B81C2201/0166Controlling internal stress of deposited layers by ion implantation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0176Chemical vapour Deposition
    • B81C2201/0177Epitaxy, i.e. homo-epitaxy, hetero-epitaxy, GaAs-epitaxy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0181Physical Vapour Deposition [PVD], i.e. evaporation, sputtering, ion plating or plasma assisted deposition, ion cluster beam technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Micromachines (AREA)

Abstract

在所描述的示例中,一种微电子器件(102)包含高性能氮化硅层,此氮化硅层的化学计量在2原子百分比(at%)内,具有低应力为600MPa到1000MPa,并且具有小于5原子百分比的低氢含量,由LPCVD工艺形成。LPCVD工艺使用氨气NH3和二氯甲硅烷DCS气体,其比率为4比6,压力为150毫托至250毫托,并且温度为800℃至820℃。

Description

低应力低氢型LPCVD氮化硅
技术领域
本发明通常涉及微电子器件,且更具体地,涉及在微电子器件中的氮化硅层。
背景技术
在微电子器件中,期望形成化学计量的氮化硅层,其同时具有低于1000兆帕(MPa)的低应力(stress)和小于5原子百分比(at%)的低氢含量。这种薄膜将用于各种微电子应用中。通过等离子体增强化学气相沉积(PECVD)形成的氮化硅薄膜可具有低应力但是具有15at%以上的高氢含量,其能引起可靠性问题和差的抗蚀刻性。通过低压化学气相沉积(LPCVD)形成的薄膜具有低氢气含量但是具有1000MPa以上的高应力,其能引起器件性能问题。
发明内容
在描述的示例中,微电子器件包含高性能氮化硅层,其化学计量在2原子百分比(at%)以内,具有600MPa至1000MPa的低应力,并且具有小于5at%的低氢含量。通过LPCVD工艺形成高性能氮化硅层。LPCVD工艺使用氨气和二氯甲硅烷气体,其比率为4比6,压力为150毫托至250毫托,且温度为800℃至820℃。
附图说明
图1描述在微电子器件上形成高性能氮化硅的示例过程中的LPCVD炉(furnace),并且图1A为在图1的炉内的微电子器件上形成的氮化硅层的扩展视图。
图2是具有高性能氮化硅层的示例半导体器件的横截面图。
图3A和图3B是图2的半导体器件的横截面图,在形成的关键阶段中描述的。
图4是具有高性能氮化硅层的示例集成电路的横截面图。
图5A和图5B是图4的集成电路的横截面图,在制造的关键阶段中描述的。
图6A和图6B是具有高性能氮化硅层的示例微机电系统(MEMS)器件的横截面图,在制造的关键阶段中描述的。
具体实施方式
附图不按照比率绘制。一些动作(act)可能以不同的顺序发生和/或与其他的动作或事件同时发生。并非所有说明的动作或事件都需要根据示例实施例来实现方法。
通过LPCVD工艺形成高性能氮化硅层,其化学计量在2原子百分比以内,具有600MPa到1000MPa的低应力,并且具有小于5原子百分比的低氢含量。LPCVD工艺使用氨气和二氯甲硅烷气体,其比率为4比6,压力为150毫托到250毫托,且温度为800℃到820℃。没有预期通过公开的工艺条件提供化学计量、低应力和低氢含量的组合,而该组合在LPCVD工艺研究中发现。针对本公开的目的,化学计量的氮化硅具有3:4的硅:氮的原子比。
图1描述在微电子器件上形成高性能氮化硅的示例过程中的LPCVD炉。LPCVD炉100包含(hold)在舟(boat)104中的衬底(例如半导体晶片)上的微电子器件102。舟104包含在LPCVD炉100的反应室106中。通过放置在反应室106周围的LPCVD炉100的加热元件108加热反应室106至800℃到820℃的温度。以4:6的比率将氨气(NH3)和二氯甲硅烷(DCS)气体引进到反应室106。在反应室106内部的压力通过排气系统110(例如包括排气泵和可调节排气阀的结合)维持在150毫托到250毫托。如图1A的扩展视图中所示,通过氨气中的氮与二氯甲硅烷中的硅的反应,在微电子器件102上形成高性能氮化硅层112。高性能氮化硅层112的形成继续进行,直到达到所需厚度。随后,停止氨气和二氯甲硅烷的气流,并且从LPCVD炉100中提取微电子器件102。
通过维持温度在800℃到820℃,氨气和二氯甲硅烷的比率为4比6,以及150毫托至250毫托的压力的高性能氮化硅层112的形成有利地提供在2%以内的硅:氮原子比,其具有3:4的比率,600MPa到1000MPa的低应力,和小于5原子百分比的低氢含量。通过参照图1所描述的工艺形成的高性能氮化硅层112可具有2.0到2.1的折射率。此外,高性能氮化硅层112可具有大于12兆伏每厘米(MV/cm)的介电击穿强度,这可有利地促进微电子器件102的更高的可靠性。增加氨气和二氯甲硅烷的比率降低化学计量和介电击穿强度,这可能不利地导致较低的可靠性。减小氨气和二氯甲硅烷的比率不利地增大应力。减小温度和增加压力也不利地增大应力。
图2是具有高性能氮化硅层的示例半导体器件的横截面图。在半导体衬底202(例如堆叠的氮化镓和氮化铝镓外延层,且可能地其他的Ⅲ-Ⅴ层)上形成半导体器件200。在衬底202上布置氮化镓的盖层(cap layer)204。在半导体器件200的氮化镓场效应晶体管(GaNFET)的栅极208的两侧上以及源极210和漏极212之间的盖层204上布置高性能氮化硅层206。栅极208可与高性能氮化硅层206部分重叠。例如,高性能氮化硅层206可能是10纳米到20纳米厚。
在衬底202上,在源极210和漏极212中布置触点金属216。围绕触点金属216在栅极208和高性能氮化硅层206上方布置场板介电层218。源极金属220与源极210中的触点金属216电连接,并且与栅极208重叠,并中途延伸到场板介电层218上方的漏极212,以为GaNFET 214提供场板。漏极金属222与漏极212中的触点金属216电连接。可以形成附加的介电层和金属层以提供与GaN FET 214的低电阻连接。
高性能氮化硅层206的低应力与具有高应力的氮化硅层的GaN FET相比有利地改善GaN FET 214中的开态(on-state)电流。高性能氮化硅层206的低氢含量与具有高氢含量的氮化硅层的GaN FET相比有利地减小电荷陷阱(trapping)和改善GaN FET 214的可靠性。
图3A和图3B是图2的半导体器件的横截面图,在形成的关键阶段中描述的。参照图3A,通过外延工艺在衬底202上形成盖层204。可移除盖层204的一部分和衬底202,以为GaNFET 214提供横向隔离边界224。通过LPCVD工艺在盖层204上形成高性能氮化硅层206,如参考图1所述。在高性能氮化硅层206上方形成蚀刻掩膜226来覆盖图2中完成的GaN FET 214的高性能氮化硅层206的区域。蚀刻掩膜226可包括通过光刻工艺形成的光刻胶,并且也可能包括抗反射层。
参考图3B,含氟(F)的反应离子刻蚀(RIE)过程228将在由蚀刻掩膜226暴露处的高性能氮化硅层206移除。可调整在RIE过程228中的反应气体流量和压力,以在高性能氮化硅层206上提供斜边/倾斜边缘,如图3B中描述的。随后,移除蚀刻掩膜226,例如通过灰化工艺。半导体器件200的制造被继续用于提供图2的结构。参照图3A和图3B中描述的方法有利地提供了具有低应力和低氢含量的期望性能的图案化高性能氮化硅层206。
图4是具有高性能氮化硅层的示例集成电路的横截面图。在半导体衬底402如硅晶片上形成集成电路400。集成电路400包括p-沟道金属氧化物半导体(PMOS)晶体管404和/或n-沟道金属氧化物半导体(NMOS)晶体管406。在衬底402中布置场氧化物408来横向隔离PMOS晶体管404和NMOS晶体管406。
在n型阱410中布置PMOS晶体管404,其在场氧化物408下面延伸。PMOS晶体管404包括在n型阱410上的栅极介电层412和在栅极介电层412上的栅极414。在栅极414的横向表面上布置偏移隔离层(offset spacer)416。在栅极414的两侧上在n型阱410中布置p型源极和漏极区418。源极和漏极区418包括源极/漏极扩展420和临近栅极414的深源极/漏极区422,源极/漏极扩展420在栅极414下方延伸。
在偏移隔离层416上邻近栅极414布置栅极侧壁隔离层424。栅极侧壁隔离层424包括具有低应力和低氢含量的高性能氮化硅的一个或更多个层。在源极和漏极区418上邻近栅极侧壁隔离层424以及可能在栅极414上布置金属硅化物426。栅极侧壁隔离层424在栅极介电层412正下方的沟道层和深源极/漏极区422之间,及在沟道层和源极/漏极区418上的金属硅化物426之间提供横向分离。栅极侧壁隔离层424中的高性能氮化硅可在半导体衬底402的10纳米以内。栅极侧壁隔离层424的低应力可有利地减小沟道层中的应力,并且因此改善PMOS晶体管404的开态电流和/或关态电流。栅极侧壁隔离层424的低氢含量有利地改善PMOS晶体管404的可靠性。
类似地,在p型阱428内布置NMOS晶体管406,其在场氧化物408下面延伸。NMOS晶体管406包括在p型阱428上的栅极介电层430和在栅极介电层430上的栅极432。在栅极432的横向表面上布置偏移隔离层434。在栅极432的两侧上在p型阱428内布置n型源极和漏极区436。源极和漏极区436包括源极/漏极扩展438和临近栅极432的深源极/漏极区440,源极/漏极扩展438在栅极432下方延伸。邻近栅极432布置栅极侧壁隔离层442,栅极侧壁隔离层442包括一个或更多个高性能氮化硅层。PMOS晶体管404的栅极侧壁隔离层424和NMOS晶体管406的栅极侧壁隔离层424可能由于同时形成而具有相同的层结构。邻近栅极侧壁隔离层442在源极和漏极区436上,也可能在栅极432上布置金属硅化物444。与参考PMOS晶体管404描述的类似,NMOS晶体管可以从栅极侧壁隔离层442的低应力和低氢含量获得优势。
图5A和图5B是图4的集成电路的横截面图,在制造的关键阶段中描述的。参照图5A,通过使用PMOS晶体管404的栅极414和偏移隔离层416作为注入掩膜将p-型掺杂剂注入到n-型阱410中形成p-型源极/漏极扩展420,使得源极/漏极扩展420不完全在栅极414下延伸。类似地,通过使用NMOS晶体管406的栅极432和偏移隔离层434作为注入掩膜将n-型掺杂剂注入到p-型阱428中形成n-型源极/漏极扩展438,使得源极/漏极扩展438不完全在栅极432下延伸。随后将衬底402退火以激活注入的掺杂剂。
高性能氮化硅层450在PMOS晶体管404的栅极414、偏移隔离层416、源极/漏极扩展420上和在NMOS晶体管406的栅极432、偏移隔离层434、源极/漏极扩展438上形成。通过如参照图1描述的LPCVD工艺形成高性能氮化硅层450,其至少部分提供如图5A中描述的共形层,使得在偏移隔离层416和434的垂直表面上的高性能氮化硅层450的厚度足以分别形成图4的栅极侧壁隔离层424和442。
参照图5B,含氟(F)的各向异性RIE过程452移除图5A中的在PMOS晶体管404的栅极414和源极/漏极扩展420的水平表面上、以及NMOS晶体管406的栅极432和源极/漏极扩展438上的高性能氮化硅层450,留下的高性能氮化硅层450来形成PMOS晶体管404的偏移隔离层416的垂直表面上的栅极侧壁隔离层424和形成NMOS晶体管406的偏移隔离层434的垂直表面上的栅极侧壁隔离层442。LPCVD过程的共形方面形成高性能氮化硅层450,使得在没有光刻操作的条件下形成栅极侧壁隔离层424和442,这样有利地减少集成电路400的制造成本和复杂性。
图6A和图6B是具有高性能氮化硅层的示例微机电系统(MEMS)器件的横截面图,在制造的关键阶段中描述的。参照图6A,在硅衬底602(例如单晶硅晶片)中形成MEMS器件600。在衬底602中形成腔604,其以悬臂式元件606的形式在腔604上方留下衬底602的材料,例如穿孔膜(perforated membrane)606。穿孔膜606可以是传感器(如热传感器或麦克风)的部分,或可以是致动器(如扬声器)的部分。可期望将穿孔膜606与衬底602的邻近区608部分隔离。在穿孔膜606、腔604的内部表面和衬底602的邻近区608上形成高性能氮化硅层610。通过参考如图1所描述的LPCVD工艺形成高性能氮化硅层610,此高性能氮化硅层具有低应力和低氢含量,其提供至少部分共形层,使得高性能氮化硅层610覆盖如图6A所描述的穿孔膜606所有暴露的表面。由于通过穿孔膜606进入腔604受限制,高性能氮化硅层610在腔604外侧的穿孔膜606的顶部表面上比在面对腔604的穿孔膜606的底部表面上更厚。高性能氮化硅层610的低应力有利地降低由于在穿孔膜606的顶部和底部表面上的不等厚度造成的穿孔膜606的形变。
参照图6B,在邻近穿孔膜606的区608中从衬底602的一部分移除高性能氮化硅层610。将MEMS器件600浸没在晶体学湿法刻蚀溶液612中,例如氢氧化钾溶液,其沿着衬底602的晶面将在由高性能氮化硅层610暴露的区域中的硅从衬底602移除,来形成邻近穿孔膜606的隔离腔614。高性能氮化硅层610的低氢含量以期望的厚度有利地提供对晶体学湿法刻蚀溶液612的抗蚀刻性。接着冲洗和干燥MEMS器件600。高性能氮化硅层610可留在已完成的MEMS器件600中的适当位置或者可在随后的制造过程中被移除。
在权力要求的范围内,在描述的实施例中修改是可能的,并且其他实施例也是可能的。

Claims (20)

1.一种微电子器件,其包括:
衬底;以及
布置在所述衬底上的氮化硅层,所述氮化硅层具有以下特性:硅:氮原子比在2%以内,其比率为3:4;应力为600兆帕至1000兆帕即600MPa至1000MPa;并且氢含量小于5原子百分比。
2.根据权利要求1所述的微电子器件,其中所述氮化硅层小于25纳米厚。
3.根据权利要求1所述的微电子器件,其中所述氮化硅层具有的折射率是2.0至2.1。
4.根据权利要求1所述的微电子器件,其中所述氮化硅层具有的介电击穿强度大于12兆伏每厘米即12MV/cm。
5.根据权利要求1所述的微电子器件,其中所述微电子器件包括半导体材料,并且所述氮化硅层是10纳米以内的所述半导体材料。
6.根据权利要求1所述的微电子器件,其中所述半导体材料包括Ⅲ-Ⅴ半导体材料。
7.根据权利要求1所述的微电子器件,其中所述微电子器件包括氮化镓场效应晶体管即GaN FET。
8.根据权利要求7所述的微电子器件,其中所述氮化硅层接触Ⅲ-Ⅴ半导体材料并且接触所述GaN FET的栅极。
9.根据权利要求1所述的微电子器件,其中所述微电子器件包括n-沟道金属氧化物半导体晶体管即NMOS晶体管,其中第一栅极侧壁隔离层邻近所述NMOS晶体管的第一栅极,并且所述第一栅极侧壁隔离层包括所述氮化硅层。
10.根据权利要求9所述的微电子器件,其中所述微电子器件包括p-沟道金属氧化物半导体晶体管即PMOS晶体管,其中第二栅极侧壁隔离层邻近所述PMOS晶体管的第二栅极,并且所述第二栅极侧壁隔离层包括所述氮化硅层。
11.根据权利要求1所述的微电子器件,其中所述微电子器件是包含悬臂式元件的微机电系统器件即MEMS器件,并且所述氮化硅层布置在所述悬臂式元件的顶部表面上和所述悬臂式元件的底部表面上。
12.一种形成微电子器件的方法,其包括:
提供衬底;
将所述衬底放置在低压化学气相沉积炉即LPCVD炉中;
在所述LPCVD炉中将所述衬底加热至800℃到820℃的温度;
以4比6的比率和150毫托至250毫托的压力将氨气和二氯甲硅烷气体提供至反应室,以在所述衬底上形成氮化硅层;并且
从所述LPCVD炉中移除所述衬底。
13.根据权利要求12所述的方法,其包括:
在所述氮化硅层上形成蚀刻掩膜;
通过反应离子刻蚀过程即RIE过程用氟自由基将由所述蚀刻掩膜暴露的所述氮化硅层移除;以及
随后移除所述蚀刻掩膜。
14.根据权利要求13所述的方法,包括形成至少部分覆盖所述氮化硅层的导电元件。
15.根据权利要求14所述的方法,其中导电元件为GaN FET的栅极,并且所述氮化硅层布置在所述衬底上的盖层上。
16.根据权利要求12所述的方法,其中形成所述氮化硅层作为共形层,并且所述方法包括通过各向异性RIE过程用氟自由基将所述氮化硅层从所述衬底的水平表面移除,留下所述衬底的垂直表面上的所述氮化硅层。
17.根据权利要求16所述的方法,其中所述微电子器件是包含NMOS晶体管的集成电路,且所述氮化硅层在所述NMOS晶体管的栅极上形成,并且其中在所述各向异性RIE过程后剩下的所述氮化硅层提供邻近所述NMOS晶体管的所述栅极的栅极侧壁隔离层。
18.根据权利要求12所述的方法,其中所述微电子器件是包含悬臂式元件的MEMS器件,且所述氮化硅层形成为共形层,以在所述悬臂式元件的顶部表面上和所述悬臂式元件的底部表面上形成。
19.根据权利要求12所述的方法,其中所述氮化硅层在湿法刻蚀过程中保护所述衬底,其中将在由所述氮化硅层暴露的区域中的材料从所述衬底移除。
20.一种形成微电子器件的方法,其包括:
提供包括氮化镓的衬底;
在所述衬底上形成氮化镓的盖层;
把所述衬底放在LPCVD炉中;
在所述LPCVD炉中将所述衬底加热至800℃到820℃的温度;
以4比6的比率和150毫托至250毫托的压力将氨气和二氯甲硅烷气体提供至反应室,以在所述盖层上形成氮化硅层,所述氮化硅层有以下特性:硅:氮原子比在2%以内,其比率为3:4;应力为600兆帕至1000兆帕即600MPa至1000MPa;并且氢含量小于5原子百分比;
从所述LPCVD炉中移除所述衬底;
在所述氮化硅层上形成蚀刻掩膜;
通过反应离子刻蚀过程即RIE过程用氟自由基将由所述蚀刻掩膜暴露的所述氮化硅层移除;
随后移除所述蚀刻掩膜;并且
在所述氮化硅层的部分之间且部分重叠所述氮化硅层的所述部分的所述盖层上形成GaN FET的栅极。
CN201680028363.3A 2015-05-07 2016-05-09 低应力低氢型lpcvd氮化硅 Active CN107533974B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/706,941 US9580304B2 (en) 2015-05-07 2015-05-07 Low-stress low-hydrogen LPCVD silicon nitride
US14/706,941 2015-05-07
PCT/US2016/031509 WO2016179596A1 (en) 2015-05-07 2016-05-09 Low-stress low-hydrogen lpcvd silicon nitride

Publications (2)

Publication Number Publication Date
CN107533974A true CN107533974A (zh) 2018-01-02
CN107533974B CN107533974B (zh) 2022-03-18

Family

ID=57218409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680028363.3A Active CN107533974B (zh) 2015-05-07 2016-05-09 低应力低氢型lpcvd氮化硅

Country Status (4)

Country Link
US (2) US9580304B2 (zh)
JP (1) JP6931208B2 (zh)
CN (1) CN107533974B (zh)
WO (1) WO2016179596A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429024A (zh) * 2019-08-08 2019-11-08 京东方科技集团股份有限公司 层间绝缘层及薄膜晶体管的制备方法
CN113782420A (zh) * 2021-08-05 2021-12-10 华虹半导体(无锡)有限公司 晶圆加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834709B2 (ja) * 2017-04-03 2021-02-24 住友電気工業株式会社 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
JP6984456B2 (ja) * 2018-02-05 2021-12-22 住友電気工業株式会社 電界効果トランジスタの製造方法
CN110120347B (zh) * 2018-02-05 2023-11-17 住友电气工业株式会社 形成场效应晶体管的方法
JP6997002B2 (ja) 2018-02-19 2022-01-17 住友電気工業株式会社 半導体装置及びその製造方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538343A (en) * 1984-06-15 1985-09-03 Texas Instruments Incorporated Channel stop isolation technology utilizing two-step etching and selective oxidation with sidewall masking
JPH056890A (ja) * 1990-10-15 1993-01-14 Seiko Epson Corp パツシベーシヨン多層膜を備えた半導体装置及びその製造方法
US5326649A (en) * 1991-03-27 1994-07-05 Shin-Etsu Chemical Co., Ltd. X-ray transmitting membrane for mask in x-ray lithography and method for preparing the same
US6211033B1 (en) * 1996-01-23 2001-04-03 Micron Technology, Inc. Integrated capacitor bottom electrode for use with conformal dielectric
US6214697B1 (en) * 1997-12-18 2001-04-10 Micron Technology, Inc Trench isolation for semiconductor devices
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US20050112817A1 (en) * 2003-11-25 2005-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high drive current and method of manufacture thereof
CN1819121A (zh) * 2005-02-13 2006-08-16 联华电子股份有限公司 制作超高伸张应力膜以及应变硅晶体管的方法
JP2009164300A (ja) * 2007-12-28 2009-07-23 Fujitsu Ltd 半導体装置及びその製造方法
US20110079822A1 (en) * 2009-10-02 2011-04-07 Fujitsu Limited Compound semiconductor device and manufacturing method
US20110187798A1 (en) * 2007-07-19 2011-08-04 Rogers John A High Resolution Electrohydrodynamic Jet Printing for Manufacturing Systems
US8063434B1 (en) * 2007-05-25 2011-11-22 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US20110297961A1 (en) * 2010-05-02 2011-12-08 Visic Technologies Ltd. Field effect power transistors
US20120104505A1 (en) * 2010-10-28 2012-05-03 International Business Machines Corporation Structure and method for using high-k material as an etch stop layer in dual stress layer process
CN102446840A (zh) * 2011-11-02 2012-05-09 上海华力微电子有限公司 一种增加双大马士革结构介质阻挡层薄膜击穿电压的方法
US20120255932A1 (en) * 2010-07-15 2012-10-11 Massood Tabib-Azar Nanofabrication device and method for manufacture of a nanofabrication device
US20130178031A1 (en) * 2007-05-25 2013-07-11 Cypress Semiconductor Corporation Integration of non-volatile charge trap memory devices and logic cmos devices
JP2013175726A (ja) * 2012-02-23 2013-09-05 Efficient Power Conversion Corp ゲートスペーサを備えたエンハンスメントモードGaNHEMTデバイス、及びその製造方法
US20150004421A1 (en) * 2012-02-08 2015-01-01 Az Electronic Materials Usa Corp. Inorganic polysilazane resin

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
DE69834847T2 (de) * 1998-09-24 2007-02-15 Reflectivity Inc., Santa Clara Reflektierender räumlicher lichtmodulator mit doppelsubstrat und selbstbeschränkenden mikromechanischen elementen
JP2005286135A (ja) * 2004-03-30 2005-10-13 Eudyna Devices Inc 半導体装置および半導体装置の製造方法
EP1801865A4 (en) * 2004-08-27 2009-11-04 Nat Inst Inf & Comm Tech GALLIUM-NITRIDE FIELD EFFECT TRANSISTOR AND METHOD FOR PRODUCING THE SAME
CN101976686A (zh) * 2005-06-10 2011-02-16 日本电气株式会社 场效应晶体管
US7855401B2 (en) * 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
JP2008034522A (ja) * 2006-07-27 2008-02-14 Oki Electric Ind Co Ltd 電界効果トランジスタ
JP5345328B2 (ja) * 2008-02-22 2013-11-20 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
WO2010079574A1 (ja) * 2009-01-09 2010-07-15 パナソニック株式会社 Memsデバイス
JP5685020B2 (ja) * 2010-07-23 2015-03-18 住友電気工業株式会社 半導体装置の製造方法
US9111868B2 (en) * 2012-06-26 2015-08-18 Freescale Semiconductor, Inc. Semiconductor device with selectively etched surface passivation
JP2014029908A (ja) * 2012-07-31 2014-02-13 Toyota Central R&D Labs Inc 半導体装置および半導体装置の製造方法
US9018050B2 (en) * 2012-10-11 2015-04-28 The Board Of Trustees Of The University Of Illinois Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)
JP6339762B2 (ja) * 2013-01-17 2018-06-06 富士通株式会社 半導体装置及びその製造方法、電源装置、高周波増幅器
US9035318B2 (en) * 2013-05-03 2015-05-19 Texas Instruments Incorporated Avalanche energy handling capable III-nitride transistors

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538343A (en) * 1984-06-15 1985-09-03 Texas Instruments Incorporated Channel stop isolation technology utilizing two-step etching and selective oxidation with sidewall masking
JPH056890A (ja) * 1990-10-15 1993-01-14 Seiko Epson Corp パツシベーシヨン多層膜を備えた半導体装置及びその製造方法
US5326649A (en) * 1991-03-27 1994-07-05 Shin-Etsu Chemical Co., Ltd. X-ray transmitting membrane for mask in x-ray lithography and method for preparing the same
US6211033B1 (en) * 1996-01-23 2001-04-03 Micron Technology, Inc. Integrated capacitor bottom electrode for use with conformal dielectric
US6214697B1 (en) * 1997-12-18 2001-04-10 Micron Technology, Inc Trench isolation for semiconductor devices
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US20050112817A1 (en) * 2003-11-25 2005-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high drive current and method of manufacture thereof
CN1819121A (zh) * 2005-02-13 2006-08-16 联华电子股份有限公司 制作超高伸张应力膜以及应变硅晶体管的方法
US8063434B1 (en) * 2007-05-25 2011-11-22 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US20130178031A1 (en) * 2007-05-25 2013-07-11 Cypress Semiconductor Corporation Integration of non-volatile charge trap memory devices and logic cmos devices
US20110187798A1 (en) * 2007-07-19 2011-08-04 Rogers John A High Resolution Electrohydrodynamic Jet Printing for Manufacturing Systems
JP2009164300A (ja) * 2007-12-28 2009-07-23 Fujitsu Ltd 半導体装置及びその製造方法
US20110079822A1 (en) * 2009-10-02 2011-04-07 Fujitsu Limited Compound semiconductor device and manufacturing method
US20110297961A1 (en) * 2010-05-02 2011-12-08 Visic Technologies Ltd. Field effect power transistors
US20120255932A1 (en) * 2010-07-15 2012-10-11 Massood Tabib-Azar Nanofabrication device and method for manufacture of a nanofabrication device
US20120104505A1 (en) * 2010-10-28 2012-05-03 International Business Machines Corporation Structure and method for using high-k material as an etch stop layer in dual stress layer process
CN102446840A (zh) * 2011-11-02 2012-05-09 上海华力微电子有限公司 一种增加双大马士革结构介质阻挡层薄膜击穿电压的方法
US20150004421A1 (en) * 2012-02-08 2015-01-01 Az Electronic Materials Usa Corp. Inorganic polysilazane resin
JP2013175726A (ja) * 2012-02-23 2013-09-05 Efficient Power Conversion Corp ゲートスペーサを備えたエンハンスメントモードGaNHEMTデバイス、及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B C JOSHI等: "《LPCVD and PECVD silicon nitride for microelectronics technology》", 《INDIAN HOURNAL OF ENGINEERING & MATERIALS SCIENCES》 *
J. G. E. GARDENIERS等: "《LPCVD silicon-rich silicon nitride films for applications in micromechanics,》", 《JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A VACUUM SURFACES AND FILMS 》 *
JIN HAO等: "《Characterization of low pressure chemical vapour deposited Si3N4 films 》", 《PROCEEDINGS OF THE CONFERENCE OF THE AUSTRALIA AND NEW ZEALAND SOLAR ENERGY SOCIETY》 *
S TONNBERG: "《Optimisation and characterisation of LPCVD silicon nitride thin film growth》", 31 December 2006 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429024A (zh) * 2019-08-08 2019-11-08 京东方科技集团股份有限公司 层间绝缘层及薄膜晶体管的制备方法
CN110429024B (zh) * 2019-08-08 2022-04-15 京东方科技集团股份有限公司 层间绝缘层及薄膜晶体管的制备方法
CN113782420A (zh) * 2021-08-05 2021-12-10 华虹半导体(无锡)有限公司 晶圆加工方法
CN113782420B (zh) * 2021-08-05 2024-07-19 华虹半导体(无锡)有限公司 晶圆加工方法

Also Published As

Publication number Publication date
US10026817B2 (en) 2018-07-17
US20160325987A1 (en) 2016-11-10
US9580304B2 (en) 2017-02-28
JP6931208B2 (ja) 2021-09-01
JP2018515926A (ja) 2018-06-14
CN107533974B (zh) 2022-03-18
US20170133472A1 (en) 2017-05-11
WO2016179596A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
CN107533974A (zh) 低应力低氢型lpcvd氮化硅
US10199494B2 (en) Laterally diffused metal-oxide-semiconductor devices and fabrication methods thereof
TWI458096B (zh) 半導體裝置及其製造方法
TWI484567B (zh) 半導體結構與其製造方法
CN104124174A (zh) 半导体结构及其形成方法
US9041076B2 (en) Partial sacrificial dummy gate with CMOS device with high-k metal gate
US9362402B2 (en) Semiconductor devices and fabrication method thereof
CN105990440A (zh) 半导体器件结构的结构和形成方法
TWI661555B (zh) 增強型高電子遷移率電晶體元件
CN107403721B (zh) 功率金氧半导体场效晶体管的制造方法
CN101286478A (zh) 互补式金属氧化物半导体晶体管及其制造方法
CN106158957A (zh) 横向扩散金属氧化物半导体场效应管及其制造方法
WO2019109924A1 (zh) Ldmos器件及其制备方法
CN103681846A (zh) 半导体装置及其制造方法
CN104752205A (zh) 半导体器件及其形成方法
CN105609469B (zh) 半导体器件的形成方法
CN108206206B (zh) 半导体装置及其制造方法
US9496256B2 (en) Semiconductor device including a vertical gate-all-around transistor and a planar transistor
CN111370306A (zh) 晶体管的制作方法及全包围栅极器件结构
JP6308049B2 (ja) 半導体装置の製造方法
JP5784652B2 (ja) 半導体装置
CN108122757B (zh) 半导体结构及其制造方法
JP2015070192A (ja) 半導体装置の製造方法、半導体装置
JP2017162920A (ja) 半導体装置及びその製造方法
WO2014071666A1 (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant