CN106158957A - 横向扩散金属氧化物半导体场效应管及其制造方法 - Google Patents

横向扩散金属氧化物半导体场效应管及其制造方法 Download PDF

Info

Publication number
CN106158957A
CN106158957A CN201510169433.4A CN201510169433A CN106158957A CN 106158957 A CN106158957 A CN 106158957A CN 201510169433 A CN201510169433 A CN 201510169433A CN 106158957 A CN106158957 A CN 106158957A
Authority
CN
China
Prior art keywords
trap
well
isolation structure
semiconductor field
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510169433.4A
Other languages
English (en)
Other versions
CN106158957B (zh
Inventor
黄枫
韩广涛
孙贵鹏
林峰
赵龙杰
林华堂
赵兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Corp
Original Assignee
Wuxi CSMC Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi CSMC Semiconductor Co Ltd filed Critical Wuxi CSMC Semiconductor Co Ltd
Priority to CN201510169433.4A priority Critical patent/CN106158957B/zh
Priority to JP2018503704A priority patent/JP6464313B2/ja
Priority to PCT/CN2016/072853 priority patent/WO2016161842A1/zh
Priority to US15/564,181 priority patent/US10290705B2/en
Publication of CN106158957A publication Critical patent/CN106158957A/zh
Application granted granted Critical
Publication of CN106158957B publication Critical patent/CN106158957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及一种横向扩散金属氧化物半导体场效应管及其制造方法,所述方法包括:提供形成有第一N阱、第一P阱以及浅槽隔离结构的晶圆;在晶圆表面淀积形成高温氧化膜;对高温氧化膜进行光刻和干法刻蚀,并留下一薄层作为刻蚀缓冲层;进行湿法腐蚀,将未被光刻胶覆盖区域的刻蚀缓冲层去除,形成迷你氧化层;进行光刻和离子注入在第一N阱内形成第二N阱,以及在第一P阱内形成第二P阱;在所述晶圆表面形成多晶硅栅和栅氧层;光刻并注入N型离子,形成漏极和源极。本发明通过在STI结构LDMOS的沟道区靠近漂移区一侧增加一块迷你氧化层,可以在不增加LDMOS面积的情况下,大幅度地提高LDMOS的off-BV。

Description

横向扩散金属氧化物半导体场效应管及其制造方法
技术领域
本发明涉及半导体工艺,特别是涉及一种横向扩散金属氧化物半导体场效应管,还涉及一种横向扩散金属氧化物半导体场效应管的制造方法。
背景技术
对于横向扩散金属氧化物半导体场效应管(LDMOSFET),其中的一种结构在漏极与源极之间形成有浅槽隔离结构(STI),我们称之为STI结构横向扩散金属氧化物半导体场效应管。由于该器件在部分应用中需要具有较高的击穿耐压(off-BV),因此如何在不增加LDMOS面积的前提下提高器件的off-BV,是需要解决的一个问题。
发明内容
基于此,有必要提供一种具有高off-BV的STI结构横向扩散金属氧化物半导体场效应管。
一种横向扩散金属氧化物半导体场效应管的制造方法,包括步骤:提供形成有第一N阱、第一P阱以及浅槽隔离结构的晶圆;所述浅槽隔离结构包括沟道区浅槽隔离结构;在所述晶圆表面淀积形成高温氧化膜;对所述高温氧化膜进行光刻和干法刻蚀,刻蚀掉的厚度小于所述高温氧化膜的厚度,使未被光刻胶覆盖的区域也得以保留一层高温氧化膜作为刻蚀缓冲层;进行湿法腐蚀,将未被光刻胶覆盖区域的刻蚀缓冲层去除,其余的高温氧化膜在所述光刻胶下方形成迷你氧化层;进行第二N阱和第二P阱的光刻和离子注入从而在所述第一N阱内形成第二N阱,以及在所述第一P阱内形成第二P阱;所述沟道区浅槽隔离结构从所述第二N阱表面向下延伸至内部,所述迷你氧化层位于所述第二N阱上,且迷你氧化层一端搭接于所述沟道区浅槽隔离结构的第一端上,所述沟道区浅槽隔离结构的第一端为靠近所述第一P阱的一端;在所述晶圆表面形成多晶硅栅和栅氧层;所述多晶硅栅和栅氧层一端搭接于所述第二P阱上,另一端延伸至所述沟道区浅槽隔离结构的第一端且覆盖所述迷你氧化层;光刻并注入N型离子,在所述第二N阱内靠近所述沟道区浅槽隔离结构与第一端相对的第二端旁边的位置形成漏极,同时在所述第二P阱内形成源极。
在其中一个实施例中,所述对所述高温氧化膜进行光刻和干法刻蚀的步骤中,保留的刻蚀缓冲层的厚度为70~150埃。
在其中一个实施例中,所述进行湿法腐蚀的步骤后,所述沟道区浅槽隔离结构的边缘比所述第一N阱的表面高出200~400埃。
在其中一个实施例中,所述在所述晶圆表面淀积形成高温氧化膜的步骤是在750~850摄氏度下淀积形成二氧化硅。
在其中一个实施例中,所述在所述晶圆表面淀积形成高温氧化膜的步骤的反应气体是N2O和SiH2Cl2
在其中一个实施例中,所述在晶圆表面淀积形成高温氧化膜的步骤之后,所述进行湿法腐蚀的步骤之前,还包括对晶圆进行热推阱的步骤。
在其中一个实施例中,所述进行湿法腐蚀的步骤是采用固定腐蚀时间的方法进行腐蚀。
在其中一个实施例中,所述在晶圆表面淀积形成高温氧化膜的步骤之前,还包括对晶圆表面进行化学机械研磨的步骤。
还有必要提供一种具有高off-BV的STI结构横向扩散金属氧化物半导体场效应管的制造方法。
横向扩散金属氧化物半导体场效应管,包括衬底,衬底内的第一N阱、第一P阱,第一N阱表面的第二N阱,第一P阱表面的第二P阱,衬底上的浅槽隔离结构,所述浅槽隔离结构包括从第二N阱表面向下延伸至内部的沟道区浅槽隔离结构,所述横向扩散金属氧化物半导体场效应管还包括设于所述第二P阱表面的源极,设于所述第二N阱表面、且位于沟道区浅槽隔离结构远离所述第二P阱一端旁边的位置的漏极,栅极、包括多晶硅栅和栅氧层,所述栅极的一端搭接于所述第二P阱上,另一端延伸至所述沟道区浅槽隔离结构上,还包括迷你氧化层,所述迷你氧化层一端搭接于所述沟道区浅槽隔离结构靠近所述第二P阱的一端上,另一端延伸至所述第二N阱上,且所述迷你氧化层被所述多晶硅栅极所覆盖。
上述横向扩散金属氧化物半导体场效应管及其制造方法,通过在STI结构LDMOS的沟道区靠近漂移区一侧增加一块迷你氧化层,可以在不增加LDMOS面积的情况下,大幅度地提高LDMOS的off-BV。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1是一实施例中横向扩散金属氧化物半导体场效应管的剖面示意图;
图2是一实施例中横向扩散金属氧化物半导体场效应管的制造方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“竖直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1是一实施例中横向扩散金属氧化物半导体场效应管的剖面示意图。图示的是一个NLDMOS,包括衬底10,衬底10内的第一N阱22、第一P阱24,第一N阱22表面的第二N阱32,第一P阱24表面的第二P阱34,衬底10上的浅槽隔离结构,其中浅槽隔离结构包括从第二N阱32表面向下延伸至内部的沟道区浅槽隔离结构42;横向扩散金属氧化物半导体场效应管还包括设于第二P阱34表面的源极74,设于第二N阱32表面、且位于沟道区浅槽隔离结构42远离第二P阱34一端旁边的位置的漏极72,栅极、包括多晶硅栅62和栅氧层(图1中未示),栅极的一端搭接于第二P阱34上,另一端延伸至沟道区浅槽隔离结构42上。横向扩散金属氧化物半导体场效应管还包括迷你氧化层52(mini-oxide)。迷你氧化层52一端搭接于沟道区浅槽隔离结构42靠近第二P阱34的一端(即远离漏极72的一端),另一端延伸至第二N阱32上,且迷你氧化层52被多晶硅栅极52所覆盖。图1中所示横向扩散金属氧化物半导体场效应管为一个左右对称的结构。横向扩散金属氧化物半导体场效应管还包括位于第二P阱34内、源极74远离栅极一侧的P型重掺杂区76。
上述横向扩散金属氧化物半导体场效应管,通过在STI结构LDMOS的沟道区靠近漂移区一侧增加一块迷你氧化层52,可以在不增加LDMOS面积的情况下,大幅度地提高LDMOS的off-BV。
本发明还提供一种前述LDMOSFET的制造方法。图2是一实施例中横向扩散金属氧化物半导体场效应管的制造方法的流程图,包括下列步骤:
S210,提供形成有第一N阱、第一P阱以及浅槽隔离结构的晶圆。
在本实施例中,是提供硅衬底晶圆后,通过本领域技术人员习知的工艺形成浅槽隔离结构,再通过光刻及离子注入形成第一N阱和第一P阱。其中,横向扩散金属氧化物半导体场效应管为STI结构LDMOS,因此浅槽隔离结构包括设于源极和漏极间的沟道区浅槽隔离结构。第一N阱和第一P阱分别是高压N阱(HV Nwell)和高压P阱(HV Pwell)。
S220,在晶圆表面淀积形成高温氧化膜。
在本实施例中,高温氧化膜(High Temperature Oxide,HTO)是采用低温炉管在750~850摄氏度淀积形成的二氧化硅(可能会同时生产其他价态的硅氧化物),采用SiH2Cl2和N2O作为反应气体。
在本实施例中,执行步骤S220之前,还包括对晶圆表面进行平坦化处理的步骤。具体可以是进行化学机械研磨(CMP),CMP完成后应保证沟道区浅槽隔离结构的边缘比于周围的衬底(有源区)高200-400埃。
S230,对高温氧化膜进行光刻和干法刻蚀,并留下一薄层作为刻蚀缓冲层。
采用两步刻蚀的方案,步骤S230中先进行干法刻蚀,刻蚀掉的厚度小于高温氧化膜的厚度,未被光刻胶覆盖的区域残留的高温氧化膜作为刻蚀缓冲层,留至第二步刻蚀即湿法腐蚀的时候再去除干净。在本实施例中,留下的刻蚀缓冲层的厚度为70~150埃。
S240,进行湿法腐蚀,将未被光刻胶覆盖区域的刻蚀缓冲层去除,形成迷你氧化层。
湿法腐蚀完成后,沟道区浅槽隔离结构的边缘应该比其周围的有源区的表面高出200~400埃,否则容易对低压器件的性能造成负面影响。
在本实施例中,湿法腐蚀采用固定腐蚀时间(by-time)的方法进行腐蚀,避免造成过腐蚀将STI也腐蚀掉。
S250,进行光刻和离子注入在第一N阱内形成第二N阱,以及在第一P阱内形成第二P阱。
沟道区浅槽隔离结构从第二N阱表面向下延伸至内部,迷你氧化层位于第二N阱上,且迷你氧化层一端搭接于沟道区浅槽隔离结构的第一端。该第一端为沟道区浅槽隔离结构靠近第一P阱的那一端。
S260,在晶圆表面形成多晶硅栅和栅氧层。
多晶硅栅和栅氧层一端搭接于第二P阱上,另一端延伸至沟道区浅槽隔离结构的第一端且覆盖迷你氧化层。
S270,光刻并注入N型离子,形成漏极和源极。
在第二N阱内靠近沟道区浅槽隔离结构与第一端相对的第二端旁边的位置形成漏极,同时在第二P阱内形成源极。注入时多晶硅栅对离子形成阻挡,故源极仅延伸至多晶硅栅下方边缘位置。
在本实施例中,注入形成的漏极和源极为N+区域。
步骤S270完后之后再光刻、注入P型离子,在第二P阱内、源极远离栅极的一侧形成P型重掺杂区。
上述横向扩散金属氧化物半导体场效应管的制造方法,采用两步刻蚀的方案,先通过干法刻蚀去除大部分的高温氧化膜,再通过湿法腐蚀去除剩余的高温氧化膜。相对于单独采用湿法腐蚀,由于干法刻蚀是各向异性刻蚀,相对于各向同性的湿法腐蚀,对HTO腐蚀量可以控制得比较稳定、精准。干法刻蚀后残留的HTO经过轻微的湿法腐蚀去除,轻微的湿法腐蚀对横向HTO腐蚀量可以忽略。而相对于单独干法刻蚀,不会由于过刻蚀将沟道区浅槽隔离结构也刻蚀掉一部分,避免了对低压器件的负面影响。
在其中一个实施例中,对第一P阱和第一N阱的热推阱可以放在步骤S220之后、S240之前,高温过程可以使得高温氧化膜变致密,能够地降低高温氧化膜的湿法腐蚀速率,保证了高温氧化膜刻蚀后保留下来的mini-oxide在后续清洗过程中的腐蚀量可以得到稳定的控制,确保了量产的稳定性。在其中一个实施例中,热推阱的温度为1000摄氏度以上,时间为60分钟以上,
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种横向扩散金属氧化物半导体场效应管的制造方法,包括步骤:
提供形成有第一N阱、第一P阱以及浅槽隔离结构的晶圆;所述浅槽隔离结构包括沟道区浅槽隔离结构;
在所述晶圆表面淀积形成高温氧化膜;
对所述高温氧化膜进行光刻和干法刻蚀,刻蚀掉的厚度小于所述高温氧化膜的厚度,使未被光刻胶覆盖的区域也得以保留一层高温氧化膜作为刻蚀缓冲层;
进行湿法腐蚀,将未被光刻胶覆盖区域的刻蚀缓冲层去除,其余的高温氧化膜在所述光刻胶下方形成迷你氧化层;
进行第二N阱和第二P阱的光刻和离子注入,从而在所述第一N阱内形成第二N阱,以及在所述第一P阱内形成第二P阱;所述沟道区浅槽隔离结构从所述第二N阱表面向下延伸至内部,所述迷你氧化层位于所述第二N阱上,且迷你氧化层一端搭接于所述沟道区浅槽隔离结构的第一端上,所述沟道区浅槽隔离结构的第一端为靠近所述第一P阱的一端;
在所述晶圆表面形成多晶硅栅和栅氧层;所述多晶硅栅和栅氧层一端搭接于所述第二P阱上,另一端延伸至所述沟道区浅槽隔离结构的第一端且覆盖所述迷你氧化层;
光刻并注入N型离子,在所述第二N阱内靠近所述沟道区浅槽隔离结构与第一端相对的第二端旁边的位置形成漏极,同时在所述第二P阱内形成源极。
2.根据权利要求1所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,所述对所述高温氧化膜进行光刻和干法刻蚀的步骤中,保留的刻蚀缓冲层的厚度为70~150埃。
3.根据权利要求1或2所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,所述进行湿法腐蚀的步骤后,所述沟道区浅槽隔离结构的边缘比所述第一N阱的表面高出200~400埃。
4.根据权利要求1所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,所述在晶圆表面淀积形成高温氧化膜的步骤是在750~850摄氏度下淀积形成二氧化硅。
5.根据权利要求4所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,所述在所述晶圆表面淀积形成高温氧化膜的步骤的反应气体是N2O和SiH2Cl2
6.根据权利要求1所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,在所述晶圆表面淀积形成高温氧化膜的步骤之后,所述进行湿法腐蚀的步骤之前,还包括对晶圆进行热推阱的步骤。
7.根据权利要求1所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,所述进行湿法腐蚀的步骤是采用固定腐蚀时间的方法进行腐蚀。
8.根据权利要求1所述的横向扩散金属氧化物半导体场效应管的制造方法,其特征在于,在所述晶圆表面淀积形成高温氧化膜的步骤之前,还包括对晶圆表面进行化学机械研磨的步骤。
9.一种横向扩散金属氧化物半导体场效应管,包括衬底,衬底内的第一N阱、第一P阱,第一N阱表面的第二N阱,第一P阱表面的第二P阱,及衬底上的浅槽隔离结构,所述浅槽隔离结构包括从第二N阱表面向下延伸至内部的沟道区浅槽隔离结构,所述横向扩散金属氧化物半导体场效应管还包括设于所述第二P阱表面的源极,设于所述第二N阱表面、且位于沟道区浅槽隔离结构远离所述第二P阱一端旁边的位置的漏极,及栅极、包括多晶硅栅和栅氧层,所述栅极的一端搭接于所述第二P阱上,另一端延伸至所述沟道区浅槽隔离结构上,其特征在于,还包括迷你氧化层,所述迷你氧化层一端搭接于所述沟道区浅槽隔离结构靠近所述第二P阱的一端上,另一端延伸至所述第二N阱上,且所述迷你氧化层被所述多晶硅栅极所覆盖。
10.根据权利要求9所述的横向扩散金属氧化物半导体场效应管,其特征在于,所述横向扩散金属氧化物半导体场效应管为N沟道横向扩散金属氧化物半导体场效应管。
CN201510169433.4A 2015-04-10 2015-04-10 横向扩散金属氧化物半导体场效应管及其制造方法 Active CN106158957B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510169433.4A CN106158957B (zh) 2015-04-10 2015-04-10 横向扩散金属氧化物半导体场效应管及其制造方法
JP2018503704A JP6464313B2 (ja) 2015-04-10 2016-01-29 横方向拡散金属酸化物半導体電界効果トランジスタ及びその製造方法
PCT/CN2016/072853 WO2016161842A1 (zh) 2015-04-10 2016-01-29 横向扩散金属氧化物半导体场效应管及其制造方法
US15/564,181 US10290705B2 (en) 2015-04-10 2016-01-29 Laterally diffused metal oxide semiconductor field-effect transistor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510169433.4A CN106158957B (zh) 2015-04-10 2015-04-10 横向扩散金属氧化物半导体场效应管及其制造方法

Publications (2)

Publication Number Publication Date
CN106158957A true CN106158957A (zh) 2016-11-23
CN106158957B CN106158957B (zh) 2019-05-17

Family

ID=57072980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510169433.4A Active CN106158957B (zh) 2015-04-10 2015-04-10 横向扩散金属氧化物半导体场效应管及其制造方法

Country Status (4)

Country Link
US (1) US10290705B2 (zh)
JP (1) JP6464313B2 (zh)
CN (1) CN106158957B (zh)
WO (1) WO2016161842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309865A (zh) * 2019-08-01 2021-02-02 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483758B (zh) 2015-09-02 2019-08-20 无锡华润上华科技有限公司 光学邻近效应修正方法和系统
CN106653842B (zh) 2015-10-28 2019-05-17 无锡华润上华科技有限公司 一种具有静电释放保护结构的半导体器件
CN106816468B (zh) 2015-11-30 2020-07-10 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管
CN107465983B (zh) 2016-06-03 2021-06-04 无锡华润上华科技有限公司 Mems麦克风及其制备方法
KR102227666B1 (ko) * 2017-05-31 2021-03-12 주식회사 키 파운드리 고전압 반도체 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130170A (zh) * 2010-01-20 2011-07-20 上海华虹Nec电子有限公司 高压隔离n型晶体管及高压隔离p型晶体管
CN102769037A (zh) * 2011-05-06 2012-11-07 汉磊科技股份有限公司 减少表面电场的结构及横向扩散金氧半导体元件
CN102790089A (zh) * 2012-07-24 2012-11-21 华中科技大学 一种漏极下具有埋层的射频ldmos器件
US20120313166A1 (en) * 2010-01-14 2012-12-13 Broadcom Corporation Semiconductor Device Having A Modified Shallow Trench Isolation (STI) Region And A Modified Well Region
CN103151386A (zh) * 2013-03-27 2013-06-12 上海宏力半导体制造有限公司 横向扩散金属氧化物半导体器件及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015741A (ja) * 1999-06-30 2001-01-19 Toshiba Corp 電界効果トランジスタ
US6262459B1 (en) * 2000-01-18 2001-07-17 United Microelectronics Corp. High-voltage device and method for manufacturing high-voltage device
JP3831602B2 (ja) * 2000-12-07 2006-10-11 三洋電機株式会社 半導体装置の製造方法
DE102004018153B9 (de) * 2004-04-08 2012-08-23 Austriamicrosystems Ag Hochvolt-Sperrschicht-Feldeffekttransistor mit retrograder Gatewanne und Verfahren zu dessen Herstellung
CN101375404A (zh) * 2005-12-19 2009-02-25 Nxp股份有限公司 具有sti区的非对称场效应半导体器件
US7851314B2 (en) * 2008-04-30 2010-12-14 Alpha And Omega Semiconductor Incorporated Short channel lateral MOSFET and method
CN102254946B (zh) * 2011-01-11 2013-07-10 苏州英诺迅科技有限公司 一种射频横向扩散n型mos管及其制造方法
JP5994238B2 (ja) * 2011-11-25 2016-09-21 トヨタ自動車株式会社 半導体装置の製造方法
JP2014107302A (ja) * 2012-11-22 2014-06-09 Renesas Electronics Corp 半導体装置
CN105810583B (zh) * 2014-12-30 2019-03-15 无锡华润上华科技有限公司 横向绝缘栅双极型晶体管的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313166A1 (en) * 2010-01-14 2012-12-13 Broadcom Corporation Semiconductor Device Having A Modified Shallow Trench Isolation (STI) Region And A Modified Well Region
CN102130170A (zh) * 2010-01-20 2011-07-20 上海华虹Nec电子有限公司 高压隔离n型晶体管及高压隔离p型晶体管
CN102769037A (zh) * 2011-05-06 2012-11-07 汉磊科技股份有限公司 减少表面电场的结构及横向扩散金氧半导体元件
CN102790089A (zh) * 2012-07-24 2012-11-21 华中科技大学 一种漏极下具有埋层的射频ldmos器件
CN103151386A (zh) * 2013-03-27 2013-06-12 上海宏力半导体制造有限公司 横向扩散金属氧化物半导体器件及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309865A (zh) * 2019-08-01 2021-02-02 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法

Also Published As

Publication number Publication date
JP2018515939A (ja) 2018-06-14
US10290705B2 (en) 2019-05-14
US20180130877A1 (en) 2018-05-10
JP6464313B2 (ja) 2019-02-06
CN106158957B (zh) 2019-05-17
WO2016161842A1 (zh) 2016-10-13

Similar Documents

Publication Publication Date Title
CN106158957A (zh) 横向扩散金属氧化物半导体场效应管及其制造方法
US9698248B2 (en) Power MOS transistor and manufacturing method therefor
CN103295907A (zh) 半导体装置及其制造方法
CN101364535A (zh) 可调整栅极氧化层厚度的半导体器件制造方法
CN104037225A (zh) 具有延伸的栅极介电层的金属氧化物半导体场效应晶体管
CN104347422A (zh) 带静电释放保护电路的沟槽式mos晶体管的制造方法
CN102956492B (zh) 半导体结构及其制作方法、mos晶体管及其制作方法
CN103632942A (zh) Cmos工艺中集成sonos器件和ldmos器件的方法
CN112242355A (zh) 半导体器件及其形成方法
US20150325671A1 (en) Transistor device
CN103295899A (zh) FinFET器件制造方法
CN105810583A (zh) 横向绝缘栅双极型晶体管的制造方法
CN104183500A (zh) 在FinFET器件上形成离子注入侧墙保护层的方法
CN106033727B (zh) 场效应晶体管的制作方法
CN104576732A (zh) 一种寄生FinFET的横向双扩散半导体器件
CN103531592A (zh) 高迁移率低源漏电阻的三栅控制型无结晶体管
CN107305868A (zh) 一种半导体器件的制造方法
CN105990139A (zh) 横向扩散金属氧化物半导体场效应管的制造方法
CN108281485A (zh) 半导体结构及其形成方法
CN103123899A (zh) FinFET器件制造方法
CN102263034A (zh) Bcd工艺中的高压mos晶体管结构及其制造方法
CN105870021A (zh) 金属氧化物半导体晶体管的制作方法
KR20100072405A (ko) 반도체 소자, 이의 제조방법 및 플래시 메모리 소자
CN106206693A (zh) 鳍式场效应晶体管的形成方法
CN104167363A (zh) 在FinFET器件上形成离子注入侧墙保护层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171019

Address after: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8

Applicant after: Wuxi Huarun Shanghua Technology Co., Ltd.

Address before: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8

Applicant before: Wuxi CSMC Semiconductor Co., Ltd.

GR01 Patent grant
GR01 Patent grant