CN104037225A - 具有延伸的栅极介电层的金属氧化物半导体场效应晶体管 - Google Patents

具有延伸的栅极介电层的金属氧化物半导体场效应晶体管 Download PDF

Info

Publication number
CN104037225A
CN104037225A CN201310233806.0A CN201310233806A CN104037225A CN 104037225 A CN104037225 A CN 104037225A CN 201310233806 A CN201310233806 A CN 201310233806A CN 104037225 A CN104037225 A CN 104037225A
Authority
CN
China
Prior art keywords
gate dielectric
electrode
gate electrode
substrate
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310233806.0A
Other languages
English (en)
Other versions
CN104037225B (zh
Inventor
林炫政
程世伟
朱则荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN104037225A publication Critical patent/CN104037225A/zh
Application granted granted Critical
Publication of CN104037225B publication Critical patent/CN104037225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66689Lateral DMOS transistors, i.e. LDMOS transistors with a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种金属氧化物半导体场效应晶体管(MOSFET),包括:衬底、衬底中的源极和漏极、在源极和漏极之间设置在衬底上方的栅电极以及设置在衬底和栅电极之间的栅极介电层。至少一部分的栅极介电层朝向源极和漏极中的至少一个延伸超过栅电极。本发明还提供了具有延伸的栅极介电层的金属氧化物半导体场效应晶体管。

Description

具有延伸的栅极介电层的金属氧化物半导体场效应晶体管
技术领域
本发明一般地涉及集成电路,更具体地,涉及金属氧化物半导体场效应晶体管(MOSFET)。
背景技术
一些MOSFET被设计为维持高工作电压。具有更宽范围Vbd(称作“拖尾”)的一些MOSFET的栅极介电层击穿电压(Vbd)具有可靠性问题。例如,具有多指结构的高电压(HV)MOSFET器件通常具有这种Vbd拖尾。先前设计的增加Vbd的一些器件会导致较大的器件间距、变大的阈值电压Vt或角部处的栅极氧化物薄化,从而导致不稳定或不希望的器件性能。
发明内容
为了解决现有技术中所存在的缺陷,根据本发明的一方面,提供了一种金属氧化物半导体场效应晶体管(MOSFET),包括:衬底;源极,位于所述衬底中;漏极,位于所述衬底中;栅电极,在所述源极和所述漏极之间设置在所述衬底上方;以及栅极介电层,设置在所述衬底和所述栅电极之间,其中,至少部分所述栅极介电层朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极。
在该MOSFET中,所述栅极介电层延伸超过所述栅电极的长度至少为所述栅极介电层的厚度的0.5倍。
在该MOSFET中,所述栅极介电层延伸超过所述栅电极的长度在0.03μm至0.3μm的范围内。
在该MOSFET中,所述栅极介电层包括二氧化硅。
在该MOSFET中,所述栅电极包括多晶硅或金属。
该MOSFET进一步包括:邻近所述栅电极设置在所述衬底中的轻掺杂区。
该MOSFET进一步包括:邻近所述栅电极并且至少部分地位于所述栅极介电层上方的间隔件。
在该MOSFET中,所述间隔件包括氮化硅或二氧化硅。
在该MOSFET中,所述栅极介电层的朝向所述漏极的部分比朝向所述源极的部分厚。
根据本发明的另一方面,提供了一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法,包括:在衬底上方形成栅极介电层;在所述栅极介电层上方形成栅电极,至少一部分所述栅极介电层没有被所述栅电极所覆盖;以及在所述衬底中形成源极和漏极,所述栅极介电层朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极。
在该方法中,所述栅极介电层延伸超过所述栅电极的长度至少为所述栅极介电层的厚度的0.5倍。
在该方法中,所述栅极介电层延伸超过所述栅电极的长度在0.03μm至0.3μm的范围内。
在该方法中,所述栅极介电层包括二氧化硅。
在该方法中,所述栅电极包括多晶硅或金属。
该方法进一步包括:形成邻近所述栅电极设置在所述衬底中的至少一个轻掺杂区。
该方法进一步包括:形成邻近所述栅电极并且至少部分地位于所述栅极介电层上方的间隔件。
在该方法中,所述间隔件包括氮化硅或二氧化硅。
在该方法中,所述栅极介电层的朝向所述漏极的部分比朝向所述源极的部分厚。
根据本发明的又一方面,提供了一种金属氧化物半导体场效应晶体管(MOSFET),包括:衬底;源极,位于所述衬底中;漏极,位于所述衬底中;栅电极,在所述源极和所述漏极之间设置在所述衬底上方;栅极介电层,设置在所述衬底和所述栅电极之间;以及间隔件,被形成为邻近所述栅电极并且至少部分地在所述栅极介电层上方;其中,所述栅极介电层的至少一部分朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极的长度至少为所述栅极介电层的厚度的0.5倍。
在该MOSFET中,所述栅极介电层延伸超过所述栅电极的长度在0.03μm至0.3μm的范围内。
附图说明
现在,将结合附图所进行的以下描述作为参考,其中:
图1是根据一些实施例的示例性MOSFET的原理图;
图2是根据一些实施例的另一个示例性MOSFET的原理图;
图3是根据一些实施例的图1中示例性MOSFET与其他MOSFET相比较的Vbd曲线图;
图4A至图4E是根据一些实施例的图1中的MOSFET的示例性制造方法的中间步骤;以及
图5A至图5E是根据一些实施例的图1中MOSFET的另一个示例性制造方法的中间步骤。
具体实施方式
以下详细讨论各种实施例的制造和使用。然而,应该理解,本发明提供了许多可以在各种具体环境中实现的可应用的创造性概念。所讨论的具体实施例仅仅说明制造和使用的具体方式,并且没有限定本发明的范围。
此外,本发明可在各个示例中重复参照数字和/或字母。该重复是为了简明和清楚,而且其本身没有规定所述各种实施例和/或结构之间的关系。而且,本发明中一个部件形成在另一个部件上、一个部件与另一个部件的连接和/或一个部件与另一个部件耦合包括其中以直接接触的方式形成部件的实施例,并且也可以包括其中附加部件形成在部件之间,使得部件不直接接触的实施例。另外,空间相对位置的术语,例如“下部”、“上部”、“水平”、“垂直”、“在…之上”、“在…上方”、“在…之下”、“在…下方”、“向上”、“向下”、“顶部”、“底部”等及其派生词(例如,“水平地”、“向下地”、“向上地”等)是用于简化本发明中一个部件和另一个部件的关系。这些空间相对术语旨在覆盖具有这些部件的器件的不同定向。
图1是根据一些实施例的示例性MOSFET的原理图。MOSFET100包括衬底102、栅极介电层104、源极/漏极110、轻掺杂区108、栅电极106以及间隔件112。
衬底102提供支撑并用作制造集成电路器件的基础。衬底102包括硅、二氧化硅、氧化铝、蓝宝石、锗、砷化镓(GaAs)、硅和锗合金、磷化铟(InP)、绝缘体上硅或任何其他合适的材料。
栅极介电层104包括二氧化硅或任何其他合适的介电材料。在一些高电压应用的实施例中,栅极介电层104在漏极侧上比在源极侧上更厚。在一些实施例中,栅极介电层104的厚度为
栅极介电层104朝向源极或漏极110中的至少一个延伸超过栅电极106。如图3所示,延伸的栅极介电层104能够减少Vbd拖尾问题。在一些实施例中,栅极介电层104延伸超过栅电极106边缘至少栅极介电层104的厚度的1/2。
在一个示例中,栅极介电层104从栅电极106边缘延伸的长度等于栅极介电层104的厚度。在一些实施例中,栅极介电层104从栅电极106边缘延伸0.03μm至0.3μm。
栅电极106包括多晶硅、金属或任何其他合适的材料。邻近栅电极106的轻掺杂区108用于避免短沟道效应。邻近栅电极106将轻掺杂区108设置在衬底102中的源极/漏极110侧。例如,轻掺杂区108通过离子注入掺杂有诸如磷或硼的N型或P型掺杂剂。虽然在图1中示出了位于一侧(例如,源极侧)的轻掺杂区108,但是如图2所示,轻掺杂区108也可能位于源极侧和漏极侧上。
当栅极介电层104延伸超过栅电极106时,邻近栅电极106形成间隔件112并且间隔件112至少部分地形成在栅极介电层104上方。间隔件112包括氮化硅、二氧化硅或任何其他合适的材料。在一些实施例中,间隔件112可以用于限定源极/漏极110并用作自对准形成的掩模。例如,源极/漏极110通过离子注入掺杂有诸如磷或硼的N型或P型掺杂剂。
图2是根据一些实施例的另一个示例性MOSFET200的原理图。MOSFET200类似于图1中的MOSFET100,栅极介电层104朝向源极和漏极110延伸超过栅电极106。在其他实施例中,栅电极106朝向源极侧和漏极侧中的一个延伸。在一个示例中,栅电极106朝向漏极侧延伸。与图1中MOSFET100相比,栅极介电层104具有均匀的厚度。在源极侧和漏极侧中都形成轻掺杂区108。
例如,可以在各种MOSFET结构中实现延伸的栅极介电层104,诸如图2所示的对称MOSFET、非对称MOSFET、横向扩散金属氧化物半导体(LDMOS)晶体管或任何其他MOSFET。
具有延伸的栅极介电层104的一些MOSFET可以用于高压应用中,其中,栅极电压Vg在6.75V至40V的范围内并且漏源电压在6.75V至250V的范围内。
图3是根据一些实施例的图1中的示例性MOSFET与其他MOSFET相比较的Vbd曲线图。与其他MOSFET的线304相比较,特别在区域306中,如图1和图2所示的具有延伸的栅极介电层104的MOSFET的线302没有Vbd拖尾问题(在较宽电压值范围上散布的Vbd)。
图4A至图4E是根据一些实施例的图1中MOSFET的示例性制造方法的中间步骤。
在图4A中,在衬底102上方形成栅极介电层104a和栅电极106。栅极介电层104a包括二氧化硅或任何其他合适的材料而栅电极106包括多晶硅、金属或任何其他合适的材料。
在一个示例中,在衬底102上生长栅极介电层104a的二氧化硅(氧化物)层并且在二氧化硅上方沉积栅电极106的多晶硅层并图案化该多晶硅层以形成栅电极106。
在一些实施例中,特别是对于一些高电应用,栅极介电层104a在漏极侧上比在源极侧上厚。例如,可以在晶圆上生长厚度为(即,期望的源极侧和漏极侧栅极介电层的厚度差)的氧化物层,并且可以通过使用掩模蚀刻位于源极侧上的氧化物层。然后,可以在晶圆上再次生长厚度为(即,期望的源极侧厚度)的附加氧化物层以形成在源极侧和漏极侧上具有不同厚度的栅极氧化物层。在其他实施例中,栅极介电层104a的厚度可以是均匀的。在一些实施例中,栅极介电层104的厚度为
在图4B中,在一些实施例中,使用栅电极106作为掩模通过离子注入来形成轻掺杂区108,使得轻掺杂区108与栅电极106的边缘自对准。在一些实施例中,在离子注入步骤中,采用光掩模或硬掩模(未示出)以保护漏极区,使得仅源极区具有轻掺杂区。在其他实施例中,在源极侧和漏极侧中都形成轻掺杂区。
在图4C中,例如,通过化学汽相沉积和蚀刻来形成间隔件112。间隔件112包括氮化硅、二氧化硅或任何其他合适的材料。
在图4D中,在一些实施例中,使用间隔件112作为掩模通过(高电压)蚀刻工艺来蚀刻图4C中的栅极介电层104a,使得生成的栅极介电层104与间隔件112的边缘自对准。间隔件112至少部分地位于延伸的栅极介电层104上方。
在图4E中,在一些实施例中,使用栅电极106和间隔件112作为掩模通过离子注入形成源极/漏极110,使得源极/漏极110与间隔件112的边缘自对准。栅极介电层104朝向源极和漏极110的至少一个延伸超过栅电极106。在一个示例中,栅极介电层104朝向漏极110延伸。在另一个示例中,栅极介电层104朝向源极和漏极110两侧延伸。延伸的栅极介电层104可以减小如图3所述的Vbd拖尾问题。
在一些实施例中,栅极介电层104从栅电极106边缘延伸至少1/2的栅极介电层104的厚度。在一个示例中,栅极介电层104从栅电极106边缘延伸的长度等于栅极介电层104的厚度。在一些实施例中,栅极介电层104从栅电极106边缘延伸0.03μm至0.3μm。
图5A至图5E是根据一些实施例的图1中的示例性MOSFET的另一个示例性制造方法的中间步骤。
在图5A中,在衬底102上方形成栅极介电层104a和栅电极106。栅极介电层104a包括二氧化硅或任何其他合适的材料而栅电极106包括多晶硅、金属或任何其他合适的材料。
在一个示例中,在衬底102上生长栅极介电层104a的二氧化硅(氧化物)层并且在二氧化硅上方沉积栅电极106的多晶硅层并将该多晶硅图案化以形成栅电极106。
在一些实施例中,尤其是对于一些高电压应用,栅极介电层104a在漏极侧上比在源极侧上厚。例如,可以在晶圆上生长厚度为(即,期望的源极侧和漏极侧栅极介电层的厚度差)的氧化物层,并且可以通过使用掩模蚀刻掉源极侧上的氧化物层。然后,可以在晶圆上再次生长厚度为(即,期望的源极侧厚度)的附加氧化物层以在源极侧和漏极侧上形成具有不同厚度的栅极氧化物层。在其他实施例中,栅极介电层104a的厚度可以是均匀的。在一些实施例中,栅极介电层104的厚度为
在图5B中,在一些实施例中,使用与延伸超过栅电极106期望长度的栅极介电层104a的边缘对准的掩模105,通过(高电压)蚀刻工艺蚀刻栅极介电层104a。
在图5C中,在一些实施例中,使用栅电极106和栅极介电层104a的较厚一侧作为掩模,通过离子注入形成轻掺杂区108。
在图5D中,例如,通过化学汽相沉积和蚀刻形成间隔件112。间隔件112包括氮化硅、二氧化硅或任何其他合适的材料。间隔件112至少部分地形成在延伸的栅极介电层104上方。
在图5E中,在一些实施例中,使用栅电极106和间隔件112作为掩模通过离子注入形成源极/漏极110,使得源极/漏极110与间隔件112的边缘自对准。栅极介电层104朝向源极和漏极110至少一个延伸超过栅电极106。在一个示例中,栅极介电层104朝向漏极110延伸。在另一个示例中,栅极介电层104朝向源极和漏极110两侧都延伸。延伸的栅极介电层104能够减小如图3所述的Vbd拖尾问题。
在一些实施例中,栅极介电层104从栅电极106边缘延伸至少1/2的栅极介电层104的厚度。在一个示例中,栅极介电层104从栅电极106边缘延伸的长度等于栅极介电层104的厚度。在一些实施例中,栅极介电层104从栅电极106边缘延伸0.03μm至0.3μm。
根据一些实施例,金属氧化物半导体场效应晶体管(MOSFET)包括衬底、衬底中的源极和漏极、在源极和漏极之间设置在衬底上方的栅电极,以及设置在衬底和栅电极之间的栅极介电层。至少一部分的栅极介电层朝向源极和漏极中的至少一个方向上延伸超过栅电极。
根据一些实施例,制造金属氧化物半导体场效应晶体管(MOSFET)的方法包括在衬底上方形成栅极介电层。在栅极介电层上方形成栅电极。至少一部分的栅极介电层未被栅电极覆盖。在衬底中形成源极和漏极。栅极介电层朝向源极和漏极中的至少一个上延伸超过栅电极。
本领域的技术人员应该意识到,可能存在本发明实施例的多个变型例。尽管已经详细地描述了本实施例及其部件,但应该理解,可以在不背离实施例的主旨和范围的情况下,做各种不同的改变、替换和更改。而且,本申请的范围并不仅限于本说明书中描述的工艺、机器、制造、材料组分、装置、方法和步骤的特定实施例。作为本领域普通技术人员应理解,通过本发明,现有的或今后开发的用于执行与根据本发明所采用的所述相应实施例基本相同的功能或获得基本相同结果的工艺、机器、制造、材料组分、装置、方法或步骤根据本发明可以被使用。
以上方法示出了示例性步骤,但是不需要一定按照所示顺序实施。在本发明的实施例的精神和范围内,可以适当地增加、替换、改变顺序和/或删除步骤。结合不同权利要求和/或不同实施例的实施例在本发明的范围之内,这对阅读了本发明之后的本领域的技术人员来说是显而易见的。

Claims (10)

1.一种金属氧化物半导体场效应晶体管(MOSFET),包括:
衬底;
源极,位于所述衬底中;
漏极,位于所述衬底中;
栅电极,在所述源极和所述漏极之间设置在所述衬底上方;以及
栅极介电层,设置在所述衬底和所述栅电极之间,
其中,至少部分所述栅极介电层朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极。
2.根据权利要求1所述的MOSFET,其中,所述栅极介电层延伸超过所述栅电极的长度至少为所述栅极介电层的厚度的0.5倍。
3.根据权利要求1所述的MOSFET,其中,所述栅极介电层延伸超过所述栅电极的长度在0.03μm至0.3μm的范围内。
4.根据权利要求1所述的MOSFET,其中,所述栅极介电层包括二氧化硅。
5.根据权利要求1所述的MOSFET,其中,所述栅电极包括多晶硅或金属。
6.根据权利要求1所述的MOSFET,进一步包括:邻近所述栅电极设置在所述衬底中的轻掺杂区。
7.根据权利要求1所述的MOSFET,进一步包括:邻近所述栅电极并且至少部分地位于所述栅极介电层上方的间隔件。
8.根据权利要求7所述的MOSFET,其中,所述间隔件包括氮化硅或二氧化硅。
9.一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法,包括:
在衬底上方形成栅极介电层;
在所述栅极介电层上方形成栅电极,至少一部分所述栅极介电层没有被所述栅电极所覆盖;以及
在所述衬底中形成源极和漏极,所述栅极介电层朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极。
10.一种金属氧化物半导体场效应晶体管(MOSFET),包括:
衬底;
源极,位于所述衬底中;
漏极,位于所述衬底中;
栅电极,在所述源极和所述漏极之间设置在所述衬底上方;
栅极介电层,设置在所述衬底和所述栅电极之间;以及
间隔件,被形成为邻近所述栅电极并且至少部分地在所述栅极介电层上方;
其中,所述栅极介电层的至少一部分朝向所述源极和所述漏极中的至少一个延伸超过所述栅电极的长度至少为所述栅极介电层的厚度的0.5倍。
CN201310233806.0A 2013-03-08 2013-06-13 具有延伸的栅极介电层的金属氧化物半导体场效应晶体管 Active CN104037225B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/790,811 US9209298B2 (en) 2013-03-08 2013-03-08 Metal-oxide-semiconductor field-effect transistor with extended gate dielectric layer
US13/790,811 2013-03-08

Publications (2)

Publication Number Publication Date
CN104037225A true CN104037225A (zh) 2014-09-10
CN104037225B CN104037225B (zh) 2019-03-08

Family

ID=51467929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310233806.0A Active CN104037225B (zh) 2013-03-08 2013-06-13 具有延伸的栅极介电层的金属氧化物半导体场效应晶体管

Country Status (3)

Country Link
US (2) US9209298B2 (zh)
KR (2) KR20140111216A (zh)
CN (1) CN104037225B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551961A (zh) * 2015-12-03 2016-05-04 厦门元顺微电子技术有限公司 一种高压功率器件终端的制作方法
CN105633151A (zh) * 2014-11-04 2016-06-01 中国科学院微电子研究所 一种非对称FinFET结构及其制造方法
CN108074968A (zh) * 2016-11-17 2018-05-25 格芯公司 具有自对准栅极的穿隧finfet
CN109065443A (zh) * 2018-08-08 2018-12-21 武汉新芯集成电路制造有限公司 提高mos晶体管击穿电压的方法及mos晶体管的制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412667B2 (en) * 2014-11-25 2016-08-09 International Business Machines Corporation Asymmetric high-k dielectric for reducing gate induced drain leakage
US10050115B2 (en) * 2014-12-30 2018-08-14 Globalfoundries Inc. Tapered gate oxide in LDMOS devices
CN106206735B (zh) 2016-07-19 2019-12-10 上海华虹宏力半导体制造有限公司 Mosfet及其制造方法
WO2019132887A1 (en) * 2017-12-27 2019-07-04 Intel Corporation Reduced electric field by thickening dielectric on the drain side
KR20200073715A (ko) * 2018-12-14 2020-06-24 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법
CN114420749A (zh) * 2020-10-28 2022-04-29 联华电子股份有限公司 半导体元件及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032007A1 (en) * 2005-08-05 2007-02-08 Junji Hirase Semiconductor device and method for fabricating the same
US20100164021A1 (en) * 2008-12-30 2010-07-01 Yong-Soo Cho Method of manufacturing semiconductor device
US20100219471A1 (en) * 2009-03-02 2010-09-02 Fairchild Semiconductor Corporation Quasi-resurf ldmos
CN101960574A (zh) * 2008-03-17 2011-01-26 飞兆半导体公司 具有经改进架构的ldmos装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875380B2 (ja) * 1990-11-19 1999-03-31 三菱電機株式会社 半導体装置およびその製造方法
TW203148B (zh) * 1991-03-27 1993-04-01 American Telephone & Telegraph
US5182619A (en) * 1991-09-03 1993-01-26 Motorola, Inc. Semiconductor device having an MOS transistor with overlapped and elevated source and drain
KR0166840B1 (ko) 1995-05-12 1999-01-15 문정환 리세스 채널 구조를 갖는 반도체 소자 및 그의 제조방법
JP3521097B2 (ja) 1995-07-03 2004-04-19 シャープ株式会社 表面チャネル型cmosトランジスタの製造方法
US6049114A (en) * 1998-07-20 2000-04-11 Motorola, Inc. Semiconductor device having a metal containing layer overlying a gate dielectric
JP2000196070A (ja) 1998-12-24 2000-07-14 Hitachi Ltd 半導体集積回路装置の製造方法
US6515331B1 (en) * 2000-07-17 2003-02-04 National Semiconductor Corporation MOSFET structure for use in ESD protection devices
JP4173672B2 (ja) 2002-03-19 2008-10-29 株式会社ルネサステクノロジ 半導体装置及びその製造方法
KR100487525B1 (ko) 2002-04-25 2005-05-03 삼성전자주식회사 실리콘게르마늄 게이트를 이용한 반도체 소자 및 그 제조방법
KR100508548B1 (ko) 2003-04-16 2005-08-17 한국전자통신연구원 쇼트키 장벽 트랜지스터 및 그 제조방법
KR100840662B1 (ko) 2006-09-20 2008-06-24 동부일렉트로닉스 주식회사 반도체 소자의 제조 방법
US7811911B2 (en) * 2006-11-07 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4859884B2 (ja) 2008-06-30 2012-01-25 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032007A1 (en) * 2005-08-05 2007-02-08 Junji Hirase Semiconductor device and method for fabricating the same
CN101960574A (zh) * 2008-03-17 2011-01-26 飞兆半导体公司 具有经改进架构的ldmos装置
US20100164021A1 (en) * 2008-12-30 2010-07-01 Yong-Soo Cho Method of manufacturing semiconductor device
US20100219471A1 (en) * 2009-03-02 2010-09-02 Fairchild Semiconductor Corporation Quasi-resurf ldmos

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633151A (zh) * 2014-11-04 2016-06-01 中国科学院微电子研究所 一种非对称FinFET结构及其制造方法
CN105633151B (zh) * 2014-11-04 2019-03-26 中国科学院微电子研究所 一种非对称FinFET结构及其制造方法
CN105551961A (zh) * 2015-12-03 2016-05-04 厦门元顺微电子技术有限公司 一种高压功率器件终端的制作方法
CN105551961B (zh) * 2015-12-03 2019-02-12 厦门元顺微电子技术有限公司 一种高压功率器件终端的制作方法
CN108074968A (zh) * 2016-11-17 2018-05-25 格芯公司 具有自对准栅极的穿隧finfet
CN109065443A (zh) * 2018-08-08 2018-12-21 武汉新芯集成电路制造有限公司 提高mos晶体管击穿电压的方法及mos晶体管的制造方法

Also Published As

Publication number Publication date
CN104037225B (zh) 2019-03-08
US20140252499A1 (en) 2014-09-11
US20160079368A1 (en) 2016-03-17
KR20150114928A (ko) 2015-10-13
KR101637852B1 (ko) 2016-07-07
US9209298B2 (en) 2015-12-08
KR20140111216A (ko) 2014-09-18
US9997601B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
CN104037225A (zh) 具有延伸的栅极介电层的金属氧化物半导体场效应晶体管
KR101961235B1 (ko) 두꺼운 트렌치 바텀 산화물을 구비하는 모스펫 장치
US20150123199A1 (en) Lateral diffused semiconductor device
JP2010135791A (ja) 半導体素子及びその製造方法
CN103794498B (zh) 一种半导体器件及其制备方法
CN103560153B (zh) 一种隧穿场效应晶体管及其制备方法
CN104538445A (zh) 一种高压pmos器件及其制作工艺流程
CN103956338A (zh) 一种集成u形沟道器件和鳍形沟道器件的集成电路及其制备方法
US20160172436A1 (en) Semiconductor device, termination structure and method of forming the same
CN106158957A (zh) 横向扩散金属氧化物半导体场效应管及其制造方法
US8835258B2 (en) High voltage device and manufacturing method thereof
KR101812497B1 (ko) 반도체 소자 및 그 형성
CN103681846A (zh) 半导体装置及其制造方法
CN107492497A (zh) 晶体管的形成方法
US7732877B2 (en) Gated diode with non-planar source region
CN117153888A (zh) 半导体器件及其制造方法
US9112012B2 (en) Transistor device and fabrication method
TWI588944B (zh) 具有漂移區的高壓無接面場效元件及其製造方法
CN104966732B (zh) GaAs基pHEMT器件及其制备方法
CN104051344B (zh) 半导体布置及其形成
US20120286361A1 (en) High Voltage Device and Manufacturing Method Thereof
US11075268B2 (en) Transistors with separately-formed source and drain
CN107492495A (zh) 半导体结构及其形成方法
US20140273376A1 (en) Semiconductor arrangement and formation thereof
US10381465B2 (en) Method for fabricating asymmetrical three dimensional device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant