CN102769037A - 减少表面电场的结构及横向扩散金氧半导体元件 - Google Patents

减少表面电场的结构及横向扩散金氧半导体元件 Download PDF

Info

Publication number
CN102769037A
CN102769037A CN2011101788140A CN201110178814A CN102769037A CN 102769037 A CN102769037 A CN 102769037A CN 2011101788140 A CN2011101788140 A CN 2011101788140A CN 201110178814 A CN201110178814 A CN 201110178814A CN 102769037 A CN102769037 A CN 102769037A
Authority
CN
China
Prior art keywords
conductivity type
isolation structure
oxide
doped region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101788140A
Other languages
English (en)
Other versions
CN102769037B (zh
Inventor
李宗晔
吴沛勋
黄湘文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Episil Technologies Inc
Original Assignee
Episil Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Episil Technologies Inc filed Critical Episil Technologies Inc
Publication of CN102769037A publication Critical patent/CN102769037A/zh
Application granted granted Critical
Publication of CN102769037B publication Critical patent/CN102769037B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7817Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7826Lateral DMOS transistors, i.e. LDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell

Abstract

一种减少表面电场的结构及横向扩散金氧半导体元件。此种减少表面电场的结构包括具有第一导电型的一基底、具有第二导电型的一深井区、一隔离结构、至少一沟渠绝缘结构及具有第一导电型的至少一掺杂区。深井区位于基底中。隔离结构位于基底上。沟渠绝缘结构位于隔离结构下方的深井区中。掺杂区位于深井区中且环绕沟渠绝缘结构的侧壁及底面。

Description

减少表面电场的结构及横向扩散金氧半导体元件
技术领域
本发明涉及一种半导体元件,尤其涉及一种减少表面电场(reducedsurface field;RESURF)的结构及包含此结构的横向扩散金氧半导体(lateral diffused metal oxide semiconductor;LDMOS)元件。
背景技术
近年来,横向扩散金氧半导体(LDMOS)元件已广泛地应用在各种电源集成电路或智能型电源集成电路上。LDMOS元件在使用上需具有高崩溃电压(breakdown voltage)与低的开启电阻(on-state resistance;Ron),以提高元件的效能。为获得高崩溃电压及降低开启电阻,一种被称之为减少表面电场(RESURF)的LDMOS元件应运而生。其主要的原理是于场氧化层下方N型掺杂漂移区域中植入P型掺杂区。在元件区内N型区域与P型区域在反逆向偏压时,N型与P型的电荷须要达到平衡才可达到高崩溃电压。因P型掺杂区加入,势必N型掺杂漂移区浓度也必须提高,因而也可降低开启电阻。
一般而言,在LDMOS元件中作为减少表面电场用的掺杂区是以单植入的方式于场氧化层下方形成一整片。此掺杂区受限于植入能量的限制,只能在表面,因此只能做一维的电荷平衡对于元件效能的提升有限。
发明内容
有鉴于此,本发明提供一种减少表面电场(RESURF)的结构及包含此结构的横向扩散金氧半导体(LDMOS)元件,可以使P型掺杂区的位置深度更深,进一步可做二维的电荷平衡。此外,N型掺杂漂移区浓度也可更提高,进而提升元件的效能。
本发明提供一种横向扩散金氧半导体元件,包括第一导电型的一基底、具有第二导电型的一外延层、具有第一导电型的一井区、具有第二导电型的一深井区、具有第二导电型的一源极区、具有第二导电型的一漏极区、一隔离结构、一栅极、至少一沟渠绝缘结构及具有第一导电型的至少一掺杂区。外延层位于基底上。井区位于外延层中。深井区位于外延层中。源极区位于井区中。漏极区位于深井区中。隔离结构位于深井区上。栅极位于漏极区以及源极区之间的外延层上并延伸至部分隔离结构上。沟渠绝缘结构位于隔离结构下方的深井区中。掺杂区位于深井区中且环绕沟渠绝缘结构的侧壁及底面。
在本发明的一实施例中,上述横向扩散金氧半导体元件还包括具有第二导电型的埋层,位于深井区下方的基底中。
在本发明的一实施例中,上述掺杂区与隔离结构及埋层实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构实体连接,但未与埋层实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构及基底实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构实体连接,但未与基底实体连接。
在本发明的一实施例中,上述沟渠绝缘结构的材料包括氧化硅。
在本发明的一实施例中,上述隔离结构包括场氧化物结构或浅沟渠隔离结构。
在本发明的一实施例中,上述横向扩散金氧半导体元件还包括具有第一导电型的一基体区,位于井区中。
在本发明的一实施例中,上述横向扩散金氧半导体元件还包括一栅氧化层,位于栅极与外延层之间。
在本发明的一实施例中,上述第一导电型为P型,第二导电型为N型;或第一导电型为N型,第二导电型为P型。
本发明另提供一种减少表面电场的结构,包括具有第一导电型的一基底、具有第二导电型的一深井区、一隔离结构、至少一沟渠绝缘结构及具有第一导电型的至少一掺杂区。深井区位于基底中。隔离结构位于基底上。沟渠绝缘结构位于隔离结构下方的深井区中。掺杂区位于深井区中且环绕沟渠绝缘结构的侧壁及底面。
在本发明的一实施例中,上述减少表面电场的结构还包括具有第二导电型的埋层,位于深井区下方的基底中。
在本发明的一实施例中,上述掺杂区与隔离结构及埋层实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构实体连接,但未与埋层实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构及基底实体连接。
在本发明的一实施例中,上述掺杂区与隔离结构实体连接,但未与基底实体连接。
在本发明的一实施例中,上述沟渠绝缘结构的材料包括氧化硅。
在本发明的一实施例中,上述隔离结构包括场氧化物或浅沟渠隔离结构。
在本发明的一实施例中,上述第一导电型为P型,第二导电型为N型;或第一导电型为N型,第二导电型为P型。
基于上述,在本发明的结构中,于基底中配置至少一沟渠绝缘结构及至少一掺杂区,且此掺杂区环绕沟渠绝缘结构的侧壁及底面,用以减少表面电场。此外,本发明以先形成沟渠再进行倾斜离子植入制程的方式,可以使P型掺杂区的位置深度更深,进一步可做二维的电荷平衡。此外,N型掺杂漂移区浓度也可更提高,进而提升元件的效能。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。
附图说明
图1A为依照本发明的一实施例所示的横向扩散金氧半导体元件的剖面示意图。
图1B为图1A的局部立体示意图。
图1C为依照本发明的另一实施例所示的横向扩散金氧半导体元件的的局部立体示意图。
图2为依照本发明的又一实施例所示的横向扩散金氧半导体元件的剖面示意图。
图3为依照本发明的再一实施例所示的横向扩散金氧半导体元件的剖面示意图。
图4为依照本发明的又另一实施例所示的横向扩散金氧半导体元件的剖面示意图。
附图标记:
100、200、300、400:横向扩散金氧半导体元件
101:漂移区
102、103:基底
104:外延层
106:井区
108:深井区
110:源极区
112:漏极区
114:埋层
116、126:隔离结构
118:栅极
119:栅氧化层
120、120a、120b:沟渠绝缘结构
122、122a、122b:掺杂区
124:基体区
具体实施方式
图1A为依照本发明的一实施例所示的横向扩散金氧半导体元件的剖面示意图。图1B为图1A的局部立体示意图。为清楚说明起见,图1B未示出隔离结构116、栅极118、栅氧化层119、源极区110、漏极区112等构件。
请参照图1A,本发明的横向扩散金氧半导体元件100包括具有第一导电型的一基底102、具有第二导电型的一外延层104、具有第一导电型的一井区106、具有第二导电型的一深井区108、具有第二导电型的一源极区110、具有第二导电型的一漏极区112、具有第二导电型的一埋层114、一隔离结构116、一栅极118及一栅氧化层119。
第一导电型可为P型或N型。当第一导电型为P型时,第二导电型为N型,而当第一导电型为N型时,第二导电型为P型。在此实施例中,是以第一导电型为P型,第二导电型为N型为例来说明。
基底102例如是P型硅基底。外延层104例如是N型外延层,位于基底102上。也可以将基底102及外延层104视为一个复合基底103。
井区106例如是P型井区,位于外延层104中。深井区108例如是N型深井区,位于外延层104中。在此实施例中,井区106与深井区108实体连接,如图1A所示。再另一实施例中(未示出),井区106与深井区108也可以彼此分开。
源极区110例如是N型重掺杂区,位于井区106中。漏极区112例如是N型重掺杂区,位于深井区108中。埋层114例如是N型淡掺杂层,位于深井区108下方的基底102中。
隔离结构116位于深井区108上。隔离结构116例如是场氧化物(FOX)结构或浅沟渠隔离(STI)结构。形成隔离结构116的方法包括进行化学气相沉积(CVD)制程或热氧化制程。在一实施例中,隔离结构116配置于复合基底103上且连接至沟渠绝缘结构120及掺杂区122,如图1所示。在另一实施例中(未绘示),隔离结构116配置于复合基底103上且仅连接至掺杂区122。栅极118位于漏极区112以及源极区110之间的外延层104上并延伸至部分隔离结构116上。栅极118的材料例如是多晶硅。栅氧化层119配置于栅极118与外延层104之间。栅氧化层119的材料例如是氧化硅。
在一实施例中,本发明的横向扩散金氧半导体元件100还包括一基体区124及一隔离结构126。基体区124例如是P型重掺杂区,位于井区106中。源极区110与基体区124例如是以隔离结构126相隔开。隔离结构126例如是场氧化物(FOX)结构或浅沟渠隔离(STI)结构。
特别要注意的是,本发明的横向扩散金氧半导体元件100还包括至少一沟渠绝缘结构120及具有第一导电型的至少一掺杂区122,用以减少表面电场。
沟渠绝缘结构120位于隔离结构116下方的深井区108中。沟渠绝缘结构120的材料包括氧化硅。掺杂区122例如是P型淡掺杂区,位于深井区108中且环绕沟渠绝缘结构120的侧壁及底面。
在一实施例中,沟渠绝缘结构120包括多个分开的沟渠绝缘结构120a,掺杂区122包括多个分开的掺杂区122a,如图1B所示。这些掺杂区122a位于深井区108中且环绕对应的沟渠绝缘结构120a的侧壁及底面。特别要注意的是,掺杂区122a与隔离结构116及埋层114实体连接,如图1A所示。
上述沟渠绝缘结构120及掺杂区122的形成方法相当简单。首先,在外延层104中形成沟渠。形成沟渠的方法例如是进行蚀刻制程。然后,在沟渠的侧面与底面的外延层104上形成掺杂区122。在一实施例中,形成掺杂区122的方法例如是进行倾斜离子植入制程,倾斜角度例如是大于零度小于九十度。在另一实施例中,形成掺杂区122的方法例如是进行扩散方式。接着,以绝缘材料(如氧化硅)填满沟渠。填满沟渠的方法例如是以化学气相沉积(CVD)将氧化硅层填入沟渠。接着,进行回蚀刻制程或是用化学机械研磨(CMP)方式以移除部分氧化硅层,直到露出外延层104的表面。
由此可知,本发明以先形成沟渠再进行倾斜离子植入制程的方式,使掺杂区122的可以使P型掺杂区的位置深度更深,进一步可做二维的电荷平衡。此外,N型掺杂漂移区浓度也可更提高,进而提升元件的效能。
此外,本发明的沟渠绝缘结构120及掺杂区122的配置除了与隔离结构116及埋层114实体连接外(如图1A所示),也可以有其他多种变化。在另一实施例中,掺杂区122与隔离结构116实体连接,但未与埋层114实体连接,如图2所示。
在上述实施例中,是以多个沟渠绝缘结构及多个掺杂区为例来说明,但本发明并不以此为限。在一实施例中,沟渠绝缘结构120b也可以为一长条区块,配置于外延层104中,且掺杂区122b环绕沟渠绝缘结构120b的侧壁及底面。类似地,掺杂区122b可仅与隔离结构116实体连接(如图1C所示)、仅与埋层114实体连接或未与隔离结构116及埋层114实体连接。特别要注意的是,掺杂区122b不可同时与隔离结构116及埋层114实体连接,以免阻断电流路径。
特别要注意的是,埋层114为选择性构件,可以视制程需要,删除形成埋层114的步骤。换言之,在没有埋层114的情况下,掺杂区122可以与隔离结构116及基底102实体连接,如图3所示。在另一实施例中,掺杂区122与隔离结构116实体连接,但未与基底102实体连接,如图4所示。
此外,本发明的横向扩散金氧半导体元件100亦定义出一漂移区101与位于此漂移区101中的减少表面电场的结构,如图1A所示。具体而言,在漂移区101中,减少表面电场的结构包括基底103、深井区108、埋层114、隔离结构116、至少一沟渠绝缘结构120以及至少一掺杂区122。深井区108位于基底103中。埋层114位于深井区108下方的基底103中。隔离结构116位于基底103上。沟渠绝缘结构120位于隔离结构116下方的深井区108中。掺杂区122位于深井区108中且环绕沟渠绝缘结构120的侧壁及底面。类似地,如图2~4所示,本发明的横向扩散金氧半导体元件200~400亦可分别定义出漂移区101与位于此漂移区101中的减少表面电场的结构。
另外,此减少表面电场的结构除了可应用于横向扩散金氧半导体(LDMO S)元件外,也可以应用于其他适合的元件,如结型场效应晶体管(Junction Field Effect Transistor;JFET)。
综上所述,在本发明的结构中,于基底中配置至少一沟渠绝缘结构及至少一掺杂区,且此掺杂区环绕沟渠绝缘结构的侧壁及底面,用以减少表面电场。此外,本发明以先形成沟渠再进行倾斜离子植入制程的方式,使掺杂区的浓度分布均匀且形状、深度容易控制,以解决已知的浓度分布不均以及精确度不够的问题。
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中的普通技术人员,当可作些许更动与润饰,而不脱离本发明的精神和范围。

Claims (20)

1.一种横向扩散金氧半导体元件,包括:
具有一第一导电型的一基底;
具有一第二导电型的一外延层,位于该基底上;
具有该第一导电型的一井区,位于该外延层中;
具有该第二导电型的一深井区,位于该外延层中;
具有该第二导电型的一源极区,位于该井区中;
具有该第二导电型的一漏极区,位于该深井区中;
一隔离结构,位于该深井区上;
一栅极,位于该漏极区以及该源极区之间的该外延层上并延伸至部分该隔离结构上;
至少一沟渠绝缘结构,位于该隔离结构下方的该深井区中;以及
具有该第一导电型的至少一掺杂区,位于该深井区中且环绕该沟渠绝缘结构的侧壁及底面。
2.根据权利要求1所述的横向扩散金氧半导体元件,其中还包括具有该第二导电型的一埋层,位于该深井区下方的该基底中。
3.根据权利要求2所述的横向扩散金氧半导体元件,其中该掺杂区与该隔离结构及该埋层实体连接。
4.根据权利要求2所述的横向扩散金氧半导体元件,其中该掺杂区与该隔离结构实体连接,但未与该埋层实体连接。
5.根据权利要求1所述的横向扩散金氧半导体元件,其中该掺杂区与该隔离结构及该基底实体连接。
6.根据权利要求1所述的横向扩散金氧半导体元件,其中该掺杂区与该隔离结构实体连接,但未与该基底实体连接。
7.根据权利要求1所述的横向扩散金氧半导体元件,其中该沟渠绝缘结构的材料包括氧化硅。
8.根据权利要求1所述的横向扩散金氧半导体元件,其中该隔离结构包括场氧化物结构或浅沟渠隔离结构。
9.根据权利要求1所述的横向扩散金氧半导体元件,其中还包括具有该第一导电型的一基体区,位于该井区中。
10.根据权利要求1所述的横向扩散金氧半导体元件,其中还包括一栅氧化层,位于该栅极与该外延层之间。
11.根据权利要求1所述的横向扩散金氧半导体元件,其中该第一导电型为P型,该第二导电型为N型;或该第一导电型为N型,该第二导电型为P型。
12.一种减少表面电场的结构,包括:
具有一第一导电型的一基底;
具有一第二导电型的一深井区,位于该基底中;
一隔离结构,位于该基底上;以及
至少一沟渠绝缘结构,位于该隔离结构下方的该深井区中;以及
具有该第一导电型的至少一掺杂区,位于该深井区中且环绕该沟渠绝缘结构的侧壁及底面。
13.根据权利要求12所述的减少表面电场的结构,其中还包括具有该第二导电型的一埋层,位于该深井区下方的该基底中。
14.根据权利要求13所述的减少表面电场的结构,其中该掺杂区与该隔离结构及该埋层实体连接。
15.根据权利要求13所述的减少表面电场的结构,其中该掺杂区与该隔离结构实体连接,但未与该埋层实体连接。
16.根据权利要求12所述的减少表面电场的结构,其中该掺杂区与该隔离结构及该基底实体连接。
17.根据权利要求12所述的减少表面电场的结构,其中该掺杂区与该隔离结构实体连接,但未与该基底实体连接。
18.根据权利要求12所述的减少表面电场的结构,其中该沟渠绝缘结构的材料包括氧化硅。
19.根据权利要求12所述的减少表面电场的结构,其中该隔离结构包括场氧化物结构或浅沟渠隔离结构。
20.根据权利要求12所述的减少表面电场的结构,其中该第一导电型为P型,该第二导电型为N型;或该第一导电型为N型,该第二导电型为P型。
CN201110178814.0A 2011-05-06 2011-06-29 减少表面电场的结构及横向扩散金氧半导体元件 Expired - Fee Related CN102769037B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100115939 2011-05-06
TW100115939A TWI478336B (zh) 2011-05-06 2011-05-06 減少表面電場的結構及橫向雙擴散金氧半導體元件

Publications (2)

Publication Number Publication Date
CN102769037A true CN102769037A (zh) 2012-11-07
CN102769037B CN102769037B (zh) 2015-02-18

Family

ID=47089682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110178814.0A Expired - Fee Related CN102769037B (zh) 2011-05-06 2011-06-29 减少表面电场的结构及横向扩散金氧半导体元件

Country Status (3)

Country Link
US (1) US8785969B2 (zh)
CN (1) CN102769037B (zh)
TW (1) TWI478336B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167360A (zh) * 2013-05-16 2014-11-26 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN106158957A (zh) * 2015-04-10 2016-11-23 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体场效应管及其制造方法
CN108039371A (zh) * 2017-12-01 2018-05-15 德淮半导体有限公司 横向扩散金属氧化物半导体晶体管及其制造方法
CN109545853A (zh) * 2017-09-21 2019-03-29 新唐科技股份有限公司 半导体基底结构及半导体装置
CN111969042A (zh) * 2020-08-28 2020-11-20 电子科技大学 具有高深宽比体内超结的横向高压器件及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643136B2 (en) * 2011-03-01 2014-02-04 Richtek Technology Corporation High voltage device and manufacturing method thereof
US8916913B2 (en) * 2012-07-13 2014-12-23 Monolithic Power Systems, Inc. High voltage semiconductor device and the associated method of manufacturing
US8994103B2 (en) * 2013-07-10 2015-03-31 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device and manufacturing method thereof
US9059278B2 (en) 2013-08-06 2015-06-16 International Business Machines Corporation High voltage lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) having a deep fully depleted drain drift region
TWI512990B (zh) * 2013-08-30 2015-12-11 Richtek Technology Corp 半導體結構與具有該半導體結構之半導體元件
CN104425568B (zh) * 2013-09-06 2017-11-07 立锜科技股份有限公司 半导体结构与具有该半导体结构的半导体组件
US9219146B2 (en) * 2013-12-27 2015-12-22 Monolithic Power Systems, Inc. High voltage PMOS and the method for forming thereof
TWI562371B (en) * 2014-01-07 2016-12-11 Vanguard Int Semiconduct Corp Semiconductor device and method of manufacturing the same
US20150214361A1 (en) * 2014-01-30 2015-07-30 Macronix International Co., Ltd. Semiconductor Device Having Partial Insulation Structure And Method Of Fabricating Same
US9318601B2 (en) * 2014-06-10 2016-04-19 Vanguard International Semiconductor Corporation Semiconductor device and method for fabricating the same
KR20160001913A (ko) * 2014-06-27 2016-01-07 에스케이하이닉스 주식회사 전력용 전자 소자
TWI549302B (zh) * 2014-08-01 2016-09-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
TWI612664B (zh) * 2015-05-26 2018-01-21 旺宏電子股份有限公司 半導體元件
US9773681B2 (en) * 2015-06-05 2017-09-26 Vanguard International Semiconductor Corporation Semiconductor device with a trench and method for manufacturing the same
TWI641131B (zh) * 2016-08-23 2018-11-11 新唐科技股份有限公司 橫向雙擴散金屬氧化半導體元件
US10424655B2 (en) * 2017-12-15 2019-09-24 Globalfoundries Singapore Pte. Ltd. Dual gate LDMOS and a process of forming thereof
US11069804B2 (en) * 2018-08-31 2021-07-20 Alpha And Omega Semiconductor (Cayman) Ltd. Integration of HVLDMOS with shared isolation region
CN114639737B (zh) * 2022-05-17 2022-08-30 广州粤芯半导体技术有限公司 Ldmos器件及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050997A (ja) * 1996-05-15 1998-02-20 Texas Instr Inc <Ti> Ldmosデバイスおよび製造方法
US20020195627A1 (en) * 2001-06-26 2002-12-26 International Rectifier Corp. Lateral superjunction semiconductor device
CN101162697A (zh) * 2006-10-13 2008-04-16 台湾积体电路制造股份有限公司 半导体元件的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164512A (ja) * 2000-11-28 2002-06-07 Fujitsu Ltd 半導体装置及びその製造方法
US20040056366A1 (en) * 2002-09-25 2004-03-25 Maiz Jose A. A method of forming surface alteration of metal interconnect in integrated circuits for electromigration and adhesion improvement
US7566931B2 (en) * 2005-04-18 2009-07-28 Fairchild Semiconductor Corporation Monolithically-integrated buck converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050997A (ja) * 1996-05-15 1998-02-20 Texas Instr Inc <Ti> Ldmosデバイスおよび製造方法
US20020195627A1 (en) * 2001-06-26 2002-12-26 International Rectifier Corp. Lateral superjunction semiconductor device
CN101162697A (zh) * 2006-10-13 2008-04-16 台湾积体电路制造股份有限公司 半导体元件的制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167360A (zh) * 2013-05-16 2014-11-26 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN104167360B (zh) * 2013-05-16 2017-05-31 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN106158957A (zh) * 2015-04-10 2016-11-23 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体场效应管及其制造方法
US10290705B2 (en) 2015-04-10 2019-05-14 Csmc Technologies Fab2 Co., Ltd. Laterally diffused metal oxide semiconductor field-effect transistor and manufacturing method therefor
CN109545853A (zh) * 2017-09-21 2019-03-29 新唐科技股份有限公司 半导体基底结构及半导体装置
CN108039371A (zh) * 2017-12-01 2018-05-15 德淮半导体有限公司 横向扩散金属氧化物半导体晶体管及其制造方法
CN111969042A (zh) * 2020-08-28 2020-11-20 电子科技大学 具有高深宽比体内超结的横向高压器件及其制造方法

Also Published As

Publication number Publication date
US20120280317A1 (en) 2012-11-08
TW201246536A (en) 2012-11-16
TWI478336B (zh) 2015-03-21
US8785969B2 (en) 2014-07-22
CN102769037B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN102769037B (zh) 减少表面电场的结构及横向扩散金氧半导体元件
JP4028482B2 (ja) トレンチゲート電極を有するパワーmosfet及びその製造方法
US7183610B2 (en) Super trench MOSFET including buried source electrode and method of fabricating the same
US7923804B2 (en) Edge termination with improved breakdown voltage
JP4132102B2 (ja) 高いブレークダウン電圧と低いオン抵抗を兼ね備えたトレンチ型mosfet
US7323386B2 (en) Method of fabricating semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
TWI594427B (zh) 半導體裝置結構及相關製程
CN104517852B (zh) 横向漏极金属氧化物半导体元件及其制造方法
TWI412071B (zh) 自對準電荷平衡的功率雙擴散金屬氧化物半導體製備方法
US8575685B2 (en) Buried field ring field effect transistor (BUF-FET) integrated with cells implanted with hole supply path
KR101320331B1 (ko) 저항 및 브레이크다운 전압 성능에 대해 향상된 반도체구조
TWI475614B (zh) 溝渠裝置結構及製造
CN110718546B (zh) 绝缘栅极半导体器件及其制造方法
KR100731141B1 (ko) 반도체소자 및 그의 제조방법
TW200302575A (en) High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
CN106033777A (zh) Ldmos器件及其形成方法
US20150118810A1 (en) Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
JP4122230B2 (ja) オン抵抗が低減された二重拡散型電界効果トランジスタ
KR102100863B1 (ko) SiC MOSFET 전력 반도체 소자
US20120098056A1 (en) Trench device structure and fabrication
KR20100027056A (ko) 반도체 장치 및 그의 제조 방법
CN105826360A (zh) 沟槽型半超结功率器件及其制作方法
WO2009130648A1 (en) Semiconductor devices including a field reducing structure and methods of manufacture thereof
US11222974B2 (en) Trench gate semiconductor device and method of manufacture
CN101764153B (zh) 横向扩散金属氧化物半导体元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150218

Termination date: 20190629