US20130123387A1 - Rubber composition for undertread, and pneumatic tire - Google Patents

Rubber composition for undertread, and pneumatic tire Download PDF

Info

Publication number
US20130123387A1
US20130123387A1 US13/672,880 US201213672880A US2013123387A1 US 20130123387 A1 US20130123387 A1 US 20130123387A1 US 201213672880 A US201213672880 A US 201213672880A US 2013123387 A1 US2013123387 A1 US 2013123387A1
Authority
US
United States
Prior art keywords
rubber
mass
natural rubber
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/672,880
Other languages
English (en)
Inventor
Yoshihiro Kagawa
Naoya Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Assigned to SUMITOMO RUBBER INDUSTRIES, LTD. reassignment SUMITOMO RUBBER INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ICHIKAWA, NAOYA, KAGAWA, YOSHIHIRO
Publication of US20130123387A1 publication Critical patent/US20130123387A1/en
Priority to US14/483,966 priority Critical patent/US9410033B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/04Purifying; Deproteinising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for an undertread, and a pneumatic tire formed from the rubber composition.
  • Examples of known methods for reducing the heat build-up of rubber compositions for undertreads include a method using semi-reinforcing filler, a method involving reducing the amount of filler, and a method using silica as filler.
  • these methods reduce the reinforcement of the rubber compositions, thereby leading to a decrease in tensile properties.
  • it has been difficult to improve fuel economy and tensile properties at the same time.
  • Natural rubber is commonly used for undertreads. Natural rubber has a higher Mooney viscosity than other synthetic rubbers and thus has poor processability. Therefore, natural rubber is usually mixed with a peptizer and masticated so as to reduce the Mooney viscosity before use. Hence, the productivity is low when natural rubber is used. Further, mastication causes molecular chain scission of natural rubber, which disadvantageously leads to a loss of intrinsic properties (e.g. fuel economy and rubber strength) of the high-molecular-weight polymer.
  • intrinsic properties e.g. fuel economy and rubber strength
  • Patent Literature 1 suggests the use of natural rubber that is deproteinized such that the total nitrogen content falls to 0.1% by weight or less, there is still room for improvement in improving processability, fuel economy, and tensile properties in a balanced manner.
  • the present invention aims to provide a rubber composition for an undertread which can solve the above-described problems and has improved in processability, fuel economy, and tensile properties in a balanced manner, and a pneumatic tire formed therefrom.
  • the present invention relates to a rubber composition for an undertread, including: a rubber component containing a modified natural rubber having a phosphorus content of 200 ppm or less; and at least one of carbon black and a white filler, wherein the modified natural rubber is contained in an amount of 5% by mass or more per 100% by mass of the rubber component.
  • the modified natural rubber has a nitrogen content of 0.3% by mass or less and has a gel content determined as a toluene-insoluble fraction of 20% by mass or less.
  • the modified natural rubber is preferably obtained by saponifying natural rubber latex.
  • the modified natural rubber is preferably obtained by the steps of: (A) saponifying natural rubber latex to prepare a saponified natural rubber latex; (B) coagulating the saponified natural rubber latex and treating the resulting coagulated rubber with alkali; and (C) washing the resulting rubber until the phosphorus content in rubber falls to 200 ppm or less.
  • the white filler is preferably silica.
  • the present invention also relates to a pneumatic tire, including an undertread formed from the rubber composition.
  • the present invention provides a rubber composition for an undertread including a modified natural rubber having a specific content (200 ppm or less) of phosphorus, and also including carbon black and/or a white filler, and therefore it is possible to improve processability, fuel economy, and tensile properties in a balanced manner.
  • the rubber composition for an undertread of the present invention includes a modified natural rubber having a phosphorus content of 200 ppm or less, and also includes carbon black and/or a white filler.
  • modified natural rubber obtained by decreasing or removing phospholipids in natural rubber makes it possible to improve fuel economy.
  • An unvulcanized rubber composition containing the modified natural rubber is excellent in processability and thus can be mixed sufficiently well without the special step mastication. Therefore, a reduction in the properties (e.g. tensile properties) of natural rubber due to mastication can be suppressed, and fuel economy, tensile properties and the like can be effectively enhanced. Further, by reducing not only the amount of phospholipids but also the amounts of proteins and gel fraction, it is possible to further improve these properties.
  • the modified natural rubber is also excellent in productivity because it is free from contaminants such as pebbles and woodchips and therefore requires no step of removing such contaminants.
  • the present invention achieves a good balance of processability, fuel economy, and tensile properties (particularly, elongation at break after thermal aging).
  • the modified natural rubber has a phosphorus content of 200 ppm or less. With the phosphorus content of more than 200 ppm, the tan ⁇ tends to increase to lead to poor fuel economy, and the Mooney viscosity of the unvulcanized rubber composition also tends to increase to lead to poor processability.
  • the phosphorus content is preferably 150 ppm or less, and more preferably 100 ppm or less.
  • the phosphorus content can be measured by conventional methods such as ICP optical emission spectrometry.
  • the phosphorus is derived from phospholipids (phosphorus compounds).
  • the modified natural rubber preferably has a nitrogen content of 0.3% by mass or less, and more preferably 0.15% by mass or less.
  • a nitrogen content of more than 0.3% by mass tends to cause an increase in Mooney viscosity during storage to deteriorate processability, and also tends to cause poor fuel economy.
  • the nitrogen content can be determined by conventional methods such as the Kjeldahl method.
  • the nitrogen is derived from proteins.
  • the modified natural rubber preferably has a gel content of 20% by mass or less, more preferably 10% by mass or less, and still more preferably 7% by mass or less.
  • a gel content of more than 20% by mass tends to lead to poor processability and poor fuel economy.
  • the gel content refers to a value determined as a fraction that is insoluble in toluene which is a non-polar solvent. Hereinafter, it is referred to simply as “gel content” or “gel fraction”.
  • the gel content is determined by the following method. First, a natural rubber sample is immersed in anhydrous toluene and left in a dark place protected from light for one week.
  • the toluene solution is centrifuged at 1.3 ⁇ 10 5 rpm for 30 minutes so that an insoluble gel fraction and a toluene-soluble fraction are separated from each other.
  • Methanol is added to the insoluble gel fraction for solidification, and the resulting solid is then dried.
  • the gel content can be determined from the ratio of the mass of the dried gel fraction to the initial mass of the sample.
  • the modified natural rubber contains substantially no phospholipids.
  • the phrase “contains substantially no phospholipids” means that no phospholipid peaks are observed in a range of ⁇ 3 to 1 ppm in 31 P-NMR measurement of an extract obtained by chloroform extraction from a natural rubber sample.
  • the phosphorus peaks present in a range of ⁇ 3 to 1 ppm are peaks from a phosphate ester structure of the “phospho” of phospholipids.
  • the modified natural rubber can be prepared by, for example, the method disclosed in JP-A 2010-138359.
  • the modified natural rubber is preferably prepared by a method including the steps of: (A) saponifying natural rubber latex to prepare a saponified natural rubber latex; (B) coagulating the saponified natural rubber latex and treating the resulting coagulated rubber with alkali; and (C) washing the resulting rubber until the phosphorus content in rubber falls to 200 ppm or less.
  • the phosphorus content, nitrogen content, and the like can be effectively reduced by this method.
  • the use of the modified natural rubber obtained by the method enables to significantly improve processability, fuel economy, and tensile properties, leading to the achievement of these properties at high levels. Additionally, after coagulation with acid, the remaining acid is neutralized by the alkali treatment, and acid-induced deterioration of rubber can thereby be prevented.
  • natural rubber latex can be saponified by adding thereto an alkali and, if necessary, a surfactant, followed by standing still for a certain period at a predetermined temperature.
  • stirring or the like may be performed, if necessary.
  • the natural rubber latex conventionally known latexes such as raw latex, purified latex, and high ammonia latex may be used.
  • examples of usable alkalis in the saponification include sodium hydroxide, potassium hydroxide, calcium hydroxide, and amine compounds. In particular, sodium hydroxide and potassium hydroxide are preferred.
  • surfactant known anionic, nonionic, or amphoteric surfactants may be used. In particular, anionic surfactants are preferred, and sulfonate anionic surfactants are more preferred.
  • the amount of the alkali added for saponification can be appropriately determined, and is preferably 0.1 to 10 parts by mass per 100 parts by mass of the solids in natural rubber latex.
  • the amount of the surfactant added is preferably 0.01 to 6.0 parts by mass per 100 parts by mass of the solids in natural rubber latex.
  • the temperature and the time of saponification can also be appropriately determined and are, in general, approximately at 20 to 70° C. for 1 to 72 hours.
  • the resulting saponified natural rubber latex is coagulated, and the coagulated rubber may be broken if necessary.
  • the coagulated rubber or broken rubber is subjected to alkali treatment by contact with alkali.
  • the alkali treatment enables to efficiently reduce the nitrogen content and the like in rubber, and therefore the effects of the present invention can be further enhanced.
  • Examples of the coagulation method include a method in which an acid such as formic acid is added to latex.
  • the alkali treatment method is not particularly limited as long as the method involves bringing the rubber into contact with alkali.
  • Examples of the alkali treatment method include a method of immersing the coagulated rubber or broken rubber in an alkali solution.
  • alkali metal carbonates such as potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, and lithium hydrogen carbonate, and aqueous ammonia.
  • alkali metal carbonates preferably sodium carbonate and potassium carbonate, are preferred because they can highly contribute to the effects of the present invention.
  • the treatment may be carried out by immersing the rubber (broken rubber) in an aqueous alkali solution with a concentration of preferably 0.1 to 5% by mass, more preferably 0.2 to 3% by mass. Such immersion further reduces the nitrogen content and the like in rubber.
  • the temperature during the alkali treatment can be appropriately determined, and is typically preferably 20 to 70° C.
  • the time of the alkali treatment although it depends on the treatment temperature, is preferably 1 to 20 hours, more preferably 2 to 12 hours, considering sufficient treatment and productivity.
  • washing is carried out, thereby reducing the phosphorus content in rubber. Washing may be carried out by, for example, a method in which the rubber fraction is diluted and washed with water, followed by centrifugation, or alternatively followed by leaving the dilution at rest to allow the rubber to float and then discharging only the water phase to collect the rubber fraction.
  • centrifugation dilution with water is first performed so that the rubber content of the natural rubber latex is 5 to 40% by mass, preferably 10 to 30% by mass. Subsequently, centrifugation may be performed at 5000 to 10000 rpm for 1 to 60 minutes, and washing may be repeated until a desired phosphorus content is obtained.
  • washing may be carried out by repeating addition of water and stirring until a desired phosphorus content is obtained. After the completion of washing, the resulting rubber is dried, thereby giving a modified natural rubber usable in the present invention.
  • the modified natural rubber content per 100% by mass of the rubber component is 5% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more.
  • the upper limit of the content may be 100% by mass, or may be 90% by mass or less.
  • Examples of rubbers usable in addition to the modified natural rubber in the rubber component in the present invention include diene rubbers such as natural rubber (NR) (unmodified), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), and acrylonitrile butadiene rubber (NBR).
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • EPDM ethylene propylene diene rubber
  • CR chloroprene rubber
  • NBR acrylonitrile butadiene rubber
  • the NR content per 100% by mass of the rubber component is preferably 5% by mass or more, and more preferably 15% by mass or more.
  • the content is preferably 95% by mass or less, and more preferably 25% by mass or less.
  • the NR content in the range allows excellent processability, fuel economy, and tensile properties.
  • the total content of the modified natural rubber and NR per 100% by mass of the rubber component is preferably 80% by mass or more, and more preferably 100% by mass.
  • the total content in the range leads to excellent processability, fuel economy, and tensile properties.
  • Examples of the carbon black include, but are not particularly limited to, GPF, FEF, HAF, ISAF, and SAF.
  • the addition of carbon black provides reinforcement as well as allowing the effects of the present invention to be achieved well.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 30 m 2 /g or more, and more preferably 60 m 2 /g or more.
  • An N 2 SA of less than 30 m 2 /g may lead to insufficient reinforcement.
  • the N 2 SA of carbon black is preferably 180 m 2 /g or less, more preferably 130 m 2 /g or less, and still more preferably 100 m 2 /g or less. With the N 2 SA of more than 180 m 2 /g, dispersion of the carbon black tends to be difficult, thereby leading to poor fuel economy.
  • the N 2 SA of carbon black herein is determined in accordance with JIS K 6217-2:2001.
  • the dibutyl phthalate (DBP) oil absorption of carbon black is preferably 50 mL/100 g or more, more preferably 60 mL/100 g or more, and still more preferably 65 mL/100 g or more. Also, the oil absorption is preferably 100 mL/100 g or less, more preferably 90 mL/100 g or less, and still more preferably 80 mL/100 g or less. The oil absorption in the range leads to the achievement of excellent tensile properties, and therefore the effects of the present invention can be favorably obtained.
  • the DBP oil absorption of carbon black is determined in accordance with JIS K6217-4:2001.
  • the carbon black content is preferably 20 parts by mass or more, more preferably 35 parts by mass or more, and still more preferably 45 parts by mass or more, per 100 parts by mass of the rubber component. A carbon black content of less than 20 parts by mass may result in insufficient reinforcement.
  • the carbon black content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 70 parts by mass or less, per 100 parts by mass of the rubber component. A carbon black content of more than 90 parts by mass tends to deteriorate fuel economy.
  • white filler examples include those commonly used in the rubber industry, including silica, calcium carbonate, mica such as sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, and titanium oxide. Of these, silica is preferred in terms of fuel economy and rubber strength.
  • the silica is not particularly limited. Examples thereof include dry silica (anhydrous silica) and wet silica (hydrous silica). Wet silica (hydrous silica) is preferred because such silica contains a large number of silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 90 m 2 /g or more, and more preferably 100 m 2 /g or more.
  • An N 2 SA of less than 90 m 2 /g tends to lead to insufficient reinforcement.
  • the N 2 SA of silica is preferably 250 m 2 /g or less, more preferably 220 m 2 /g or less, and still more preferably 120 m 2 /g or less.
  • An N 2 SA of more than 250 m 2 /g tends to lead to a decrease in silica dispersibility, thus deteriorating processability.
  • the nitrogen adsorption specific surface area of silica is a value determined by the BET method in accordance with ASTM D3037-81.
  • the white filler content is preferably 5 parts by mass or more, and more preferably 15 parts by mass or more, per 100 parts by mass of the rubber component.
  • the content is preferably 100 parts by mass or less, and more preferably 35 parts by mass or less. The content in the range allows good processability, fuel economy, and tensile properties.
  • the silica content is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, and still more preferably 15 parts by mass or more, per 100 parts by mass of the rubber component.
  • the content is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and still more preferably 35 parts by mass or less.
  • the content in the range allows good processability, fuel economy, and tensile properties.
  • silica When silica is used as the white filler in the present invention, it is preferable to use a silane coupling agent together.
  • silane coupling agents include sulfide silane coupling agents, mercapto silane coupling agents, vinyl silane coupling agents, amino silane coupling agents, glycidoxy silane coupling agents, nitro silane coupling agents, and chloro silane coupling agents.
  • sulfide silane coupling agents such as bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-triethoxysilylpropyl)disulfide, and bis(2-triethoxysilylethyl)disulfide. Particularly preferred is bis(3-triethoxysilylpropyl)disulfide.
  • the silane coupling agent content is preferably 2 parts by mass or more, more preferably 6 parts by mass or more; and is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, per 100 parts by mass of the silica.
  • the silane coupling agent content in the range allows good processability, fuel economy, and tensile properties.
  • the total content of the carbon black and the white filler is preferably 30 parts by mass or more, more preferably 45 parts by mass or more, and still more preferably 50 parts by mass or more, per 100 parts by mass of the rubber component. Also, the total content is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 80 parts by mass or less.
  • the total content of the carbon black and the white filler in the range contributes to good processability, fuel economy, and tensile properties.
  • the rubber composition of the present invention may preferably contain a phenolic resin. This can contribute to better processability, fuel economy, and tensile properties.
  • non-reactive alkylphenol resins refers to alkylphenol resins that do not contain any reactive site at the ortho or para position (particularly, para position) to the hydroxyl group on the benzene ring in the chain.
  • non-reactive alkyl phenol resin compounds represented by the following formula (I) or (II) can be suitably used because they contribute to excellent processability, fuel economy, and tensile properties.
  • m is an integer. In terms of adequate blooming resistance, m is preferably 1 to 10, and more preferably 2 to 9.
  • R 1 s are the same or different and each represent an alkyl group. In terms of affinity for rubber, the alkyl group preferably has 4 to 15 carbons, and more preferably 6 to 10 carbons.
  • n is an integer. In terms of adequate blooming resistance, n is preferably 1 to 10, and more preferably 2 to 9.
  • the phenolic resin content is preferably 0.5 parts by mass or more, and more preferably 1.5 parts by mass or more, per 100 parts by mass of the rubber component.
  • the content is preferably 8 parts by mass or less, and more preferably 2.5 parts by mass or less.
  • the content in the range contributes to excellent processability, fuel economy, and tensile properties, and therefore these properties can be achieved at high levels.
  • the total content of the compounds represented by formulae (I) and (II) is preferably 0.5 parts by mass or more, and more preferably 1.5 parts by mass or more, per 100 parts by mass of the rubber component.
  • the total content is preferably 8 parts by mass or less, and more preferably 2.5 parts by mass or less. This contributes to excellent processability, fuel economy, and tensile properties, and therefore these properties can be achieved at high levels.
  • sulfur may preferably be used.
  • the sulfur content is preferably 2 parts by mass or more, and more preferably 4 parts by mass or more, per 100 parts by mass of the rubber component.
  • the content is preferably 7 parts by mass or less, more preferably 6 parts by mass or less, and still more preferably 5 parts by mass or less.
  • the sulfur content in the range allows good processability, fuel economy, and tensile properties.
  • an amine antioxidant can be suitably used as an antioxidant because it provides excellent tensile properties.
  • usable amine antioxidants include amine derivatives such as diphenylamines and p-phenylenediamines.
  • the diphenylamine derivatives include p-(p-toluenesulfonylamide)-diphenylamine and octylated diphenylamine.
  • Examples of the p-phenylenediamine derivatives include N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), N-phenyl-N′-isopropyl-p-phenylenediamine (IPPD), and N,N′-di-2-naphthyl-p-phenylenediamine.
  • the antioxidant content is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more; and is preferably 6 parts by mass or less, more preferably 4 parts by mass or less, per 100 parts by mass of the rubber component.
  • the content in the range enables the achievement of good tensile properties.
  • the rubber composition of the present invention can be prepared by an ordinary method.
  • the rubber composition can be prepared by, for example, a method in which the ingredients described above are mixed by a Banbury mixer, a kneader, an open roll mill or the like, and then vulcanized.
  • the natural rubber is masticated before mixing ingredients such as rubber component and filler. Since the modified natural rubber is used in the present invention, ingredients can be mixed well without requiring mastication in advance, and therefore a desired rubber composition can be prepared.
  • the rubber composition of the present invention is used for undertreads for tires.
  • An undertread is a component positioned between a tread rubber and a breaker (belt) rubber, and covers a part of the breaker rubber which faces the outer surface of the tire. Specific examples thereof include components disclosed in FIG. 1 of JP-A 2009-191132 and the like.
  • the pneumatic tire of the present invention can be prepared from the rubber composition by an ordinary method. Specifically, an unvulcanized rubber composition into which various additives are added as needed is extruded and processed according to the shape of an undertread for tires; and arranged and assembled with other tire components by an ordinary method using a tire building machine so as to form an unvulcanized tire. This unvulcanized tire is then heated and pressed in a vulcanizer, whereby a tire can be formed.
  • the chemical agents used in Preparations are listed below.
  • the chemical agents were purified by a usual method, if necessary.
  • Natural rubber latex field latex (available from Muhibbah Lateks Sdn. Bhd.)
  • Emal-E27C sodium polyoxyethylene lauryl ether sulfate
  • NaOH NaOH produced by Wako Pure Chemical Industries, Ltd.
  • the solids content (DRC) of natural rubber latex was adjusted to 30% (w/v). Subsequently, a 10% Emal-E27C aqueous solution (25 g) and a 40% NaOH aqueous solution (50 g) were added to the natural rubber latex (wet, 1000 g), and saponification reaction was carried out for 48 hours at room temperature. Thus, a saponified natural rubber latex was prepared. Water was added to the saponified latex to dilute to a DRC of 15% (w/v). Then, while the diluted latex was slowly stirred, formic acid was added thereto to adjust the pH to 4.0, so that the latex was coagulated.
  • DRC solids content
  • the coagulated rubber was broken and immersed in a 1% sodium carbonate aqueous solution for 5 hours at room temperature. Subsequently, the rubber was taken out from the solution and repeatedly washed with 1000 mL of water. Then, the resulting rubber was dried for 4 hours at 90° C. into a solid rubber (saponified natural rubber A).
  • a solid rubber (saponified natural rubber B) was obtained in the same manner as in Preparation 1, except that the amount of the 40% NaOH aqueous solution added was 25 g.
  • the solid rubbers (saponified natural rubbers A and B) formed in Preparations 1 and 2 and TSR were measured for nitrogen content, phosphorus content, and gel content by the following methods. Table 1 shows the results.
  • the nitrogen content was determined with CHN CORDER MT-5 (Yanaco Analytical Instruments). In the determination, first, a calibration curve for determining the nitrogen content was prepared using antipyrine as the reference material. Then, about 10 mg of a sample was weighed out, and measured. The nitrogen content of the sample was determined as an average from three measurements.
  • the phosphorus content of a sample was determined with an ICP optical emission spectrometer (ICPS-8100, produced by Shimadzu Corp.).
  • a chloroform extract from the raw rubber was purified and dissolved in CDCl 3 to prepare a test sample.
  • the test sample was analyzed with an NMR spectrometer (400 MHz, AV400M, produced by Bruker Japan Co., Ltd.), using the peak of P atoms measured in an 80% phosphoric acid aqueous solution as standard (0 ppm).
  • the nitrogen content, the phosphorus content, and the gel content of the saponified natural rubbers A and B were lower than those of TSR.
  • Carbon black Diablack LH (N326) (N 2 SA: 84 m 2 /g, DBP oil absorption: 74 mL/100 g) produced by Mitsubishi Chemical Corporation
  • Silica Silica 115Gr (N 2 SA: 110 m 2 /g) produced by Rhodia Japan
  • Silane coupling agent Si266 (bis(3-triethoxysilylpropyl)disulfide) produced by Degussa
  • Phenolic resin SP1068 produced by Schenectady International (non-reactive alkylphenol resin represented by formula (I) in which m is an integer of 1 to 10, and R 1 is an octyl group)
  • Antioxidant Vulkanox 4020 (6PPD) produced by Bayer
  • Zinc oxide zinc oxide # 3 produced by Mitsui Mining & Smelting Co., Ltd.
  • Vulcanization accelerator (1) NOCCELER NS(N-tert-butyl-2-benzothiazolylsulfenamide) produced by Ouchi Shinko Chemical Industrial Co., Ltd.
  • Vulcanization accelerator (2) NOCCELER DM-P (di-2-benzothiazolyl disulfide) produced by Ouchi Shinko Chemical Industrial Co., Ltd.
  • the ingredients other than the sulfur and vulcanization accelerators were mixed with a 1.7-L Banbury mixer to provide a kneaded mixture.
  • the sulfur and vulcanization accelerators were added to the kneaded mixture, and they were mixed using an open roll mill, whereby an unvulcanized rubber composition was prepared.
  • the unvulcanized rubber composition thus prepared was vulcanized at 170° C. for 15 minutes to form a vulcanized rubber composition.
  • the prepared unvulcanized rubber compositions were measured for Mooney viscosity at 130° C. in accordance with the measurement method for Mooney viscosity specified in JIS K6300.
  • the rubber composition (vulcanizate) of each formulation was measured for loss tangent (tan ⁇ ) using a viscoelasticity spectrometer VES (Iwamoto Seisakusho Co., Ltd.) under the following conditions: temperature 70° C.; initial strain 10%; dynamic strain 2%; and frequency 10 Hz.
  • the loss tangent (tan ⁇ ) was expressed as an index (index of low heat build-up properties) using the following equation. The smaller the index, the better the fuel economy.
  • Each vulcanized rubber composition was subjected to thermal aging in an oven at 80° C. for 7 days, and the resulting composition was regarded as an aged sample.
  • the thus aged samples were subjected to a tensile test to measure elongation at break in accordance with JIS K 6251.
  • the measurement results were expressed as indices with the value of Comparative Example 1 or 2 as 100. The larger the index, the better the elongation at break, and in turn the better the tensile properties.
  • Example 2 Example 3
  • Example 4 Example 1 Formulation Saponified natural 80 100 — — — (part(s) by mass) rubber A Saponified natural — — 80 100 — rubber B Natural rubber 20 — 20 — 100 Carbon black 63 63 63 63 63 63 Silica — — — — — Silane coupling agent — — — — — Oil 2 2 2 2 2 Phenolic resin 2 2 2 2 2 2 Antioxidant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Stearic acid 1.5 1.5 1.5 1.5 1.5
  • Zinc oxide 6 6 6 6 6 6 6 20% oil-treated insoluble sulfur 6.25 6.25 6.25 6.25 6.25 Vulcanization accelerator (1) 0.5 0.5 0.5 0.5 0.5 Vulcanization accelerator (2) 0.75 0.75 0.75 0.75 0.75 Evaluation Index of Mooney viscosity 95 103 90 106 100 Index of low heat build-up properties 96 94 96 94 100 Index of elongation at break 107

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
US13/672,880 2011-11-11 2012-11-09 Rubber composition for undertread, and pneumatic tire Abandoned US20130123387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/483,966 US9410033B2 (en) 2011-11-11 2014-09-11 Rubber composition for undertread, and pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247879 2011-11-11
JP2011247879A JP5469151B2 (ja) 2011-11-11 2011-11-11 アンダートレッド用ゴム組成物及び空気入りタイヤ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/483,966 Division US9410033B2 (en) 2011-11-11 2014-09-11 Rubber composition for undertread, and pneumatic tire

Publications (1)

Publication Number Publication Date
US20130123387A1 true US20130123387A1 (en) 2013-05-16

Family

ID=48145394

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/672,880 Abandoned US20130123387A1 (en) 2011-11-11 2012-11-09 Rubber composition for undertread, and pneumatic tire
US14/483,966 Expired - Fee Related US9410033B2 (en) 2011-11-11 2014-09-11 Rubber composition for undertread, and pneumatic tire

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/483,966 Expired - Fee Related US9410033B2 (en) 2011-11-11 2014-09-11 Rubber composition for undertread, and pneumatic tire

Country Status (3)

Country Link
US (2) US20130123387A1 (de)
JP (1) JP5469151B2 (de)
DE (1) DE102012220425A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178235A1 (en) * 2010-01-18 2011-07-21 Mutsuki Sugimoto Rubber composition for inner liner and pneumatic tire
US20110184118A1 (en) * 2010-01-27 2011-07-28 Mutsuki Sugimoto Rubber composition for sidewall, insulation or breaker cushion, production method thereof, and pneumatic tire
US20130030083A1 (en) * 2011-07-28 2013-01-31 Takafumi Taguchi Rubber composition for tread, method for producing the same, and heavy-load tire
US8633275B2 (en) 2010-05-28 2014-01-21 Sumitomo Rubber Industries, Ltd. Rubber composition for breaker and pneumatic tire
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
EP3075774A4 (de) * 2013-12-26 2017-08-02 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für reifen und luftreifen
EP3075775A4 (de) * 2013-12-26 2017-08-16 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für reifen und luftreifen
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
EP3450464A4 (de) * 2016-05-11 2020-01-08 Sumitomo Rubber Industries, Ltd. Natürlicher kautschuk, kautschukzusammensetzung und luftreifen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977083B2 (ja) * 2012-05-29 2016-08-24 住友ゴム工業株式会社 ケーストッピング用ゴム組成物及び空気入りタイヤ
JP6073574B2 (ja) * 2012-05-29 2017-02-01 住友ゴム工業株式会社 チェーファー用ゴム組成物及び空気入りタイヤ
JP6057683B2 (ja) * 2012-11-28 2017-01-11 住友ゴム工業株式会社 ベーストレッド用ゴム組成物、その製造方法及び空気入りタイヤ
JP6199736B2 (ja) * 2013-12-27 2017-09-20 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
NL2016124B1 (en) * 2016-01-20 2017-07-25 Black Bear Carbon B V A method for sorting tires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835216A (en) * 1986-11-07 1989-05-30 Bridgestone Corporation Conjugated diene series rubber compositions
US6489389B1 (en) * 1994-08-19 2002-12-03 Bridgestone Corporation Rubber composition for tire treads

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB164392A (en) 1920-03-24 1921-06-16 Francois Louis Schauerman Improvements in the manufacture of ebonite and vulcanite substitutes
GB240939A (en) 1924-07-16 1925-10-15 Edwin Wood Improvements in compositions for the manufacture of articles impervious to fluids
US2140527A (en) 1936-12-29 1938-12-20 Zinsser William & Co Composition of matter
US2486720A (en) 1945-12-22 1949-11-01 Callaway Mills Co Adhesion of rubber to fibrous materials
US2650891A (en) 1951-04-13 1953-09-01 Us Rubber Co Protection of cellulose against heat aging
US2905567A (en) 1956-10-18 1959-09-22 Columbia Southern Chem Corp Silica composition and production thereof
US3716513A (en) 1970-07-16 1973-02-13 O Burke Silica pigments and elastomer-silica pigment masterbatches and production processes relating thereto
US3709845A (en) 1971-07-06 1973-01-09 Monsanto Co Mixed discontinuous fiber reinforced composites
US3959194A (en) 1972-10-31 1976-05-25 Johns-Manville Corporation Less abrasive composition railroad brake shoe material
US5000092A (en) 1981-11-12 1991-03-19 Chemoxy International Limited Printing processes
US4508860A (en) 1982-02-25 1985-04-02 Westvaco Corporation Discontinuous fiber pretreatment
CS237729B1 (cs) 1983-11-02 1985-10-16 Milan Podesva Vulkanizovatelná kaučuková vysoce ztužená směs na bázi krátkých, chemicky upravených celulózových vláken
CH669177A5 (de) 1986-03-17 1989-02-28 Schweiter Ag Maschf Verfahren und einrichtung zum umspulen eines fadens.
US5017636A (en) 1987-10-09 1991-05-21 Japan Synthetic Rubber Co., Ltd. Rubber compositions from modified trans-polybutadiene and rubber for tires
GB8802536D0 (en) 1988-02-04 1988-03-02 Sp Tyres Uk Ltd Pneumatic tyres
JP3003878B2 (ja) 1990-04-26 2000-01-31 住友ゴム工業株式会社 ラジアルタイヤ
FR2673187B1 (fr) 1991-02-25 1994-07-01 Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques a base de ladite composition.
US5290830A (en) 1991-11-06 1994-03-01 The Goodyear Tire And Rubber Company Reticulated bacterial cellulose reinforcement for elastomers
JPH05301994A (ja) 1992-04-28 1993-11-16 Ajinomoto Co Inc ゴム配合組成物
JP2798585B2 (ja) 1992-07-23 1998-09-17 住友ゴム工業株式会社 ラジアルタイヤ
JP3294901B2 (ja) 1993-05-20 2002-06-24 花王株式会社 ゴム組成物
JP3294903B2 (ja) 1993-05-24 2002-06-24 花王株式会社 改質天然ゴムおよびその製造方法
US5396940A (en) 1993-09-17 1995-03-14 The Goodyear Tire & Rubber Company Sulfur cured rubber composition containing epoxidized natural rubber and silica filler
JP3350593B2 (ja) 1994-02-25 2002-11-25 花王株式会社 脱蛋白天然ゴムラテックス及びその製造方法
JPH0812814A (ja) 1994-07-01 1996-01-16 Sumitomo Rubber Ind Ltd ゴム組成物およびこれを用いるゴム製品の製造方法
US6306955B1 (en) 1994-11-21 2001-10-23 Sumitomo Rubber Industries, Ltd Process for producing deproteinized natural rubber latex
JP3593368B2 (ja) 1994-11-21 2004-11-24 花王株式会社 脱蛋白天然ゴムラテックスの製造方法
FR2739383B1 (fr) 1995-09-29 1997-12-26 Rhodia Ag Rhone Poulenc Microfibrilles de cellulose a surface modifiee - procede de fabrication et utilisation comme charge dans les materiaux composites
JP3742196B2 (ja) 1997-06-24 2006-02-01 住友ゴム工業株式会社 精製固形天然ゴムの製造方法
JPH1178437A (ja) 1997-09-10 1999-03-23 Yokohama Rubber Co Ltd:The 空気入りタイヤ
US5967211A (en) 1997-09-24 1999-10-19 The Goodyear Tire & Rubber Company Tire tread for ice traction
JPH11129711A (ja) 1997-10-27 1999-05-18 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP3843177B2 (ja) 1998-02-09 2006-11-08 横浜ゴム株式会社 空気入りタイヤ
FR2774702B1 (fr) 1998-02-11 2000-03-31 Rhodia Chimie Sa Association a base de microfibrilles et de particules minerales preparation et utilisations
JP4363697B2 (ja) 1998-06-25 2009-11-11 株式会社ブリヂストン タイヤトレッド用ゴム組成物及びそのゴム組成物を使用した空気入りタイヤ
FR2784107B1 (fr) 1998-09-15 2005-12-09 Rhodia Chimie Sa Microfibrilles de cellulose a surface modifiee, leur procede de preparation, et leur utilisation
JP2000095898A (ja) 1998-09-24 2000-04-04 Jsr Corp 生分解性材料の改質剤、およびそれを用いた生分解性材料組成物
JP4921625B2 (ja) 1999-06-04 2012-04-25 住友ゴム工業株式会社 変性ジエン系ゴム組成物
JP4921627B2 (ja) 1999-10-14 2012-04-25 住友ゴム工業株式会社 変性ブタジエンゴム組成物
JP2002155164A (ja) 2000-11-21 2002-05-28 Bridgestone Corp ゴム組成物およびそれを用いた空気入りタイヤ
DE10122269A1 (de) 2001-05-08 2002-11-21 Degussa Silanmodifizierter biopolymerer, biooligomerer, oxidischer oder silikatischer Füllstoff, Verfahren zu seiner Herstellung und seine Verwendung
JP3670599B2 (ja) 2001-05-21 2005-07-13 住友ゴム工業株式会社 トラック用タイヤ
JP2003040902A (ja) * 2001-07-31 2003-02-13 Nitto Denko Corp 天然ゴム、天然ゴムの製造方法、粘着剤および粘着テープ
JP2003094918A (ja) 2001-09-21 2003-04-03 Sumitomo Rubber Ind Ltd タイヤ空気圧低下検出装置を備えた車両
JP4679312B2 (ja) 2002-03-28 2011-04-27 株式会社ブリヂストン 天然ゴム、ゴム組成物及び空気入りタイヤ
WO2003082925A1 (fr) 2002-03-28 2003-10-09 Bridgestone Corporation Caoutchouc naturel, composition de caoutchouc et pneumatique
JP4262436B2 (ja) 2002-05-01 2009-05-13 住友ゴム工業株式会社 空気入りタイヤ
JP4076813B2 (ja) 2002-07-30 2008-04-16 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物
JP2004067027A (ja) 2002-08-08 2004-03-04 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP4046579B2 (ja) * 2002-09-03 2008-02-13 株式会社ブリヂストン タイヤ
JP4204856B2 (ja) 2002-12-04 2009-01-07 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
DE60313721T2 (de) 2002-12-04 2008-01-17 Sumitomo Rubber Industries Ltd., Kobe Kautschukzusammensetzung für Reifenlaufflächen, sowie damit hergestellte Luftreifen
CN1324053C (zh) 2002-12-06 2007-07-04 株式会社普利司通 天然胶乳,天然橡胶,含有该物质的橡胶组合物及轮胎
JP2004262973A (ja) 2003-02-13 2004-09-24 Bridgestone Corp 天然ゴム及びこれを用いたゴム組成物
JP4563651B2 (ja) 2003-02-19 2010-10-13 住友ゴム工業株式会社 生ゴムおよびその製造方法
JP4076910B2 (ja) 2003-06-03 2008-04-16 住友ゴム工業株式会社 トレッド用ゴム組成物およびそれを用いた空気入りタイヤ
DE602004001807T2 (de) 2003-06-03 2007-08-02 Sumitomo Rubber Industries Ltd., Kobe Gummizusammensetzung für Reifenlaufflächen und peneumatischer Reifen auf der Basis derselben
JP4361322B2 (ja) 2003-07-25 2009-11-11 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2005015585A (ja) * 2003-06-25 2005-01-20 Nitto Denko Corp 脱蛋白質化スキムラバーの製造方法、粘着剤組成物、および粘着テープ又はシート
JP2005047993A (ja) 2003-07-30 2005-02-24 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物および当該ゴム組成物を用いた空気入りタイヤ
DE602004027498D1 (de) 2003-07-31 2010-07-15 Hitachi Ltd Faserverstärktes verbundmaterial, herstellunsgverfahren dafür und verwendung davon
EP1652862B1 (de) 2003-08-04 2012-02-15 Sumitomo Rubber Industries, Ltd. Deproteinisierter naturkautschuk, dessen zusammensetzung und dessen verwendung
JP2005068240A (ja) 2003-08-21 2005-03-17 Sumitomo Rubber Ind Ltd トレッドゴム組成物およびこれを用いたタイヤ
JP2005075856A (ja) 2003-08-28 2005-03-24 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物
JP2005082622A (ja) 2003-09-04 2005-03-31 Sumitomo Rubber Ind Ltd ゲル分含有量の少ない生ゴムの製造方法
JP2005082766A (ja) 2003-09-10 2005-03-31 Bridgestone Corp 空気入りタイヤ
JP2005126604A (ja) 2003-10-24 2005-05-19 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
JP2005133025A (ja) 2003-10-31 2005-05-26 Sumitomo Rubber Ind Ltd ゴム組成物
WO2005090412A1 (ja) 2004-03-24 2005-09-29 Thai Rubber Latex Corporation (Thailand) Public Company Limited タンパク質を除去した天然ゴムラテックス、その製造方法及びその用途
JPWO2005092971A1 (ja) 2004-03-26 2008-02-14 日本ゼオン株式会社 マスターバッチ組成物、これを含有してなるゴム組成物及び加硫物
JP4405849B2 (ja) 2004-05-13 2010-01-27 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物およびそれを用いたタイヤ
JP2005325307A (ja) 2004-05-17 2005-11-24 Yokohama Rubber Co Ltd:The ゴム組成物
JP2006036926A (ja) 2004-07-27 2006-02-09 Kyoto Univ 繊維強化複合材料
JP5006532B2 (ja) 2004-09-08 2012-08-22 東洋ゴム工業株式会社 冬用空気入りタイヤ用ゴム組成物及び冬用空気入りタイヤ
JP4815117B2 (ja) 2004-09-30 2011-11-16 住友ゴム工業株式会社 天然ゴムラテックスの凝固法
WO2006039942A1 (en) 2004-10-15 2006-04-20 Pirelli Tyre S.P.A. Tire and crosslinkable elastomeric composition
JP4963786B2 (ja) 2004-11-26 2012-06-27 株式会社ブリヂストン 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP4889940B2 (ja) 2004-11-30 2012-03-07 株式会社ブリヂストン 変性天然ゴムの製造方法
JP4595513B2 (ja) 2004-12-01 2010-12-08 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP3998692B2 (ja) 2004-12-27 2007-10-31 横浜ゴム株式会社 ゴム/短繊維マスターバッチ及びその製造方法並びにそれらのマスターバッチを用いた空気入りタイヤ
JP4762561B2 (ja) 2005-01-31 2011-08-31 東洋ゴム工業株式会社 タイヤトレッド用ゴム組成物
JP4672416B2 (ja) 2005-04-05 2011-04-20 住友ゴム工業株式会社 空気入りタイヤの製造方法および該製造方法により得られる空気入りタイヤ
JP4691389B2 (ja) 2005-04-28 2011-06-01 住友ゴム工業株式会社 タンパク分解天然ゴムおよびそれを含む組成物
DE102005043201A1 (de) 2005-09-09 2007-03-15 Degussa Ag Fällungskieselsäuren mit einer besonderen Porengrößenverteilung
JP5208361B2 (ja) 2005-10-28 2013-06-12 住友ゴム工業株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2007131730A (ja) 2005-11-10 2007-05-31 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
JP4895583B2 (ja) 2005-11-24 2012-03-14 住友ゴム工業株式会社 カーカスコード被覆用ゴム組成物およびそれを用いたカーカスを有するタイヤ
JP2007169431A (ja) 2005-12-21 2007-07-05 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物
ATE531761T1 (de) 2006-07-06 2011-11-15 Sumitomo Rubber Ind Gummimischung und reifen damit
JP4633703B2 (ja) 2006-10-24 2011-02-16 住友ゴム工業株式会社 タンパク分解天然ゴムの製造法
JP2008156446A (ja) 2006-12-22 2008-07-10 Sumitomo Rubber Ind Ltd 特定のタイヤ部材用ゴム組成物およびそれを用いたタイヤ
JP4783356B2 (ja) 2007-02-09 2011-09-28 住友ゴム工業株式会社 ゴム組成物
CN101679685B (zh) 2007-05-17 2013-04-24 住友橡胶工业株式会社 由特定橡胶组合物形成的帘布层、搭接部和胎面、以及使用了它们的充气轮胎
CN101679686A (zh) 2007-05-22 2010-03-24 住友橡胶工业株式会社 轮胎用橡胶组合物及充气轮胎
JP2008308615A (ja) 2007-06-15 2008-12-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP5250883B2 (ja) 2007-06-21 2013-07-31 住友ゴム工業株式会社 ブレーカ用ゴム組成物およびそれを用いた空気入りタイヤ
JP5218933B2 (ja) 2007-06-29 2013-06-26 住友ゴム工業株式会社 サイドウォール用ゴム組成物およびその製造方法、ならびに空気入りタイヤ
JP5337355B2 (ja) 2007-06-29 2013-11-06 住友ゴム工業株式会社 インスレーション用ゴム組成物およびそれを用いたインスレーションを有するタイヤ
JP5159190B2 (ja) 2007-06-29 2013-03-06 住友ゴム工業株式会社 インナーライナー用ゴム組成物およびそれを用いたインナーライナーを有するタイヤ
JP5594556B2 (ja) 2007-08-28 2014-09-24 住友ゴム工業株式会社 マスターバッチの製造方法およびゴム組成物
JP4581116B2 (ja) 2007-09-10 2010-11-17 住友ゴム工業株式会社 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
JP2009067929A (ja) 2007-09-14 2009-04-02 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP5060899B2 (ja) 2007-10-01 2012-10-31 東洋ゴム工業株式会社 ゴム−充填剤複合体の製造方法
DE112008002617B8 (de) 2007-10-03 2016-12-29 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für eine Seitenwand und Verwendung derselben sowie Kautschukzusammensetzung für einen Abriebsstreifen und Verwendung derselben
JP5242324B2 (ja) 2007-10-12 2013-07-24 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP4286319B1 (ja) 2008-02-01 2009-06-24 住友ゴム工業株式会社 空気入りタイヤ
JP5196424B2 (ja) * 2008-02-13 2013-05-15 住友ゴム工業株式会社 アンダートレッドおよびタイヤの製造方法
JP5178228B2 (ja) 2008-02-15 2013-04-10 株式会社ブリヂストン ゴム組成物及びその製造方法
CN101270219B (zh) 2008-04-18 2010-11-03 浙江嘉民塑胶有限公司 一种橡胶增韧的酚醛树脂注塑料
JP2009262835A (ja) 2008-04-25 2009-11-12 Bridgestone Corp タイヤ
JP2010070747A (ja) 2008-08-19 2010-04-02 Bridgestone Corp ゴム組成物
JP2010111785A (ja) 2008-11-06 2010-05-20 Toyo Tire & Rubber Co Ltd タイヤ用ゴム組成物及びランフラットタイヤ
JP4598853B2 (ja) 2008-12-15 2010-12-15 住友ゴム工業株式会社 天然ゴム、その製造方法、ゴム組成物およびそれを用いた空気入りタイヤ
EP2377892B1 (de) 2008-12-15 2014-05-14 Sumitomo Rubber Industries, Ltd. Naturkautschuk und herstellungsverfahren dafür, kautschukzusammensetzung und luftreifen damit, modifizierter naturkautschuk und herstellungsverfahren dafür sowie kautschukverbund zur abdeckung von fäden oder karkassencords sowie luftreifen damit
JP4603615B2 (ja) 2009-01-30 2010-12-22 住友ゴム工業株式会社 トレッド又はカーカスコード被覆用ゴム組成物及びタイヤ
JP2010144001A (ja) 2008-12-17 2010-07-01 Sumitomo Rubber Ind Ltd 天然ゴムの製造方法
JP2010173513A (ja) 2009-01-30 2010-08-12 Yokohama Rubber Co Ltd:The ビードフィラー用ゴム組成物
US8664305B2 (en) 2009-02-10 2014-03-04 The Goodyear Tire & Rubber Company Functionalized lignin, rubber containing functionalized lignin and products containing such rubber composition
JP5301338B2 (ja) 2009-04-09 2013-09-25 東洋ゴム工業株式会社 重荷重用タイヤトレッドゴム組成物及び重荷重用空気入りタイヤ
JP2010248282A (ja) 2009-04-10 2010-11-04 Toyo Tire & Rubber Co Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP4666089B2 (ja) 2009-05-20 2011-04-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5218282B2 (ja) 2009-05-26 2013-06-26 横浜ゴム株式会社 ゴム補強用繊維コード及びそれを用いた空気入りラジアルタイヤ
EP2284022B1 (de) 2009-07-29 2012-05-09 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für Lauffläche und Luftreifen
JP2011063651A (ja) 2009-09-15 2011-03-31 Yokohama Rubber Co Ltd:The ゴム/短繊維マスターバッチの製造方法
CA2778560C (en) 2009-10-23 2015-02-03 Kyoto University Composition containing microfibrillated plant fibers
US20110136939A1 (en) 2009-12-08 2011-06-09 Annette Lechtenboehmer Tire with component containing cellulose
JP5149316B2 (ja) 2009-12-09 2013-02-20 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
CN102115554B (zh) 2010-01-04 2014-09-10 住友橡胶工业株式会社 轮胎用橡胶组合物以及无钉防滑轮胎
JP5216028B2 (ja) 2010-01-18 2013-06-19 住友ゴム工業株式会社 インナーライナー用ゴム組成物及び空気入りタイヤ
JP5503310B2 (ja) 2010-01-27 2014-05-28 住友ゴム工業株式会社 ランフラットタイヤ用ゴム組成物及びランフラットタイヤ
JP5216029B2 (ja) 2010-01-27 2013-06-19 住友ゴム工業株式会社 サイドウォール、インスレーション又はブレーカークッション用ゴム組成物、これらの製造方法及び空気入りタイヤ
JP2011157473A (ja) 2010-02-01 2011-08-18 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
WO2011096399A1 (ja) 2010-02-02 2011-08-11 国立大学法人京都大学 ゴム組成物
CN102190822B (zh) 2010-03-17 2014-10-29 住友橡胶工业株式会社 轮胎橡胶组合物和重载轮胎
JP5587658B2 (ja) * 2010-04-16 2014-09-10 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5503396B2 (ja) 2010-04-27 2014-05-28 住友ゴム工業株式会社 クリンチエイペックス又はビードエイペックス用ゴム組成物、これらの製造方法及び空気入りタイヤ
JP5086457B2 (ja) 2010-05-28 2012-11-28 住友ゴム工業株式会社 ブレーカー用ゴム組成物及び空気入りタイヤ
EP2581390B1 (de) 2010-06-10 2015-01-14 Sumitomo Rubber Industries, Ltd. Modifizierter naturkautschuk, verfahren zu seiner herstellung, kautschukzusammensetzung und luftreifen
JP5551972B2 (ja) 2010-06-10 2014-07-16 住友ゴム工業株式会社 サイドウォール用ゴム組成物、製造方法及び空気入りタイヤ
JP5394993B2 (ja) 2010-06-14 2014-01-22 住友ゴム工業株式会社 複合体の製造方法、ゴム組成物及び空気入りタイヤ
JP5457378B2 (ja) 2011-01-17 2014-04-02 住友ゴム工業株式会社 改質天然ゴム、その製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP5411214B2 (ja) 2011-07-28 2014-02-12 住友ゴム工業株式会社 トレッド用ゴム組成物、その製造方法及び重荷重用タイヤ
JP5466685B2 (ja) 2011-10-25 2014-04-09 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5466684B2 (ja) 2011-10-25 2014-04-09 住友ゴム工業株式会社 クリンチエイペックス用ゴム組成物及び空気入りタイヤ
JP5469151B2 (ja) 2011-11-11 2014-04-09 住友ゴム工業株式会社 アンダートレッド用ゴム組成物及び空気入りタイヤ
JP5706863B2 (ja) 2012-01-16 2015-04-22 住友ゴム工業株式会社 マスターバッチ、ゴム組成物及び空気入りタイヤ
JP5639121B2 (ja) 2012-06-27 2014-12-10 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835216A (en) * 1986-11-07 1989-05-30 Bridgestone Corporation Conjugated diene series rubber compositions
US6489389B1 (en) * 1994-08-19 2002-12-03 Bridgestone Corporation Rubber composition for tire treads

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952091B2 (en) 2010-01-18 2015-02-10 Sumitomo Rubber Industries, Ltd. Rubber composition for inner liner and pneumatic tire
US20110178235A1 (en) * 2010-01-18 2011-07-21 Mutsuki Sugimoto Rubber composition for inner liner and pneumatic tire
US20110184118A1 (en) * 2010-01-27 2011-07-28 Mutsuki Sugimoto Rubber composition for sidewall, insulation or breaker cushion, production method thereof, and pneumatic tire
US8623956B2 (en) 2010-01-27 2014-01-07 Sumitomo Rubber Industries, Ltd. Rubber composition for sidewall, insulation or breaker cushion, production method thereof, and pneumatic tire
US8633275B2 (en) 2010-05-28 2014-01-21 Sumitomo Rubber Industries, Ltd. Rubber composition for breaker and pneumatic tire
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US20130030083A1 (en) * 2011-07-28 2013-01-31 Takafumi Taguchi Rubber composition for tread, method for producing the same, and heavy-load tire
US8857482B2 (en) * 2011-07-28 2014-10-14 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, method for producing the same, and heavy-load tire
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
EP3075774A4 (de) * 2013-12-26 2017-08-02 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für reifen und luftreifen
EP3075775A4 (de) * 2013-12-26 2017-08-16 Sumitomo Rubber Industries, Ltd. Kautschukzusammensetzung für reifen und luftreifen
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
EP3450464A4 (de) * 2016-05-11 2020-01-08 Sumitomo Rubber Industries, Ltd. Natürlicher kautschuk, kautschukzusammensetzung und luftreifen

Also Published As

Publication number Publication date
JP5469151B2 (ja) 2014-04-09
JP2013103969A (ja) 2013-05-30
DE102012220425A1 (de) 2013-05-16
US20140378593A1 (en) 2014-12-25
US9410033B2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
US9410033B2 (en) Rubber composition for undertread, and pneumatic tire
US8875765B2 (en) Rubber composition for clinch apex and pneumatic tire
US8813798B2 (en) Rubber composition for tire, and pneumatic tire
US8658730B2 (en) Rubber composition for tire, and pneumatic tire
US8633275B2 (en) Rubber composition for breaker and pneumatic tire
US8623956B2 (en) Rubber composition for sidewall, insulation or breaker cushion, production method thereof, and pneumatic tire
US8952091B2 (en) Rubber composition for inner liner and pneumatic tire
US8857482B2 (en) Rubber composition for tread, method for producing the same, and heavy-load tire
JP5977083B2 (ja) ケーストッピング用ゴム組成物及び空気入りタイヤ
EP2390088B1 (de) Kautschukzusammensetzung für Gürteleinlage und Luftreifen
JP2009013197A (ja) インナーライナー用ゴム組成物およびそれを用いたインナーライナーを有するタイヤ
US9068060B2 (en) Composite and method for producing the same, rubber composition, and pneumatic tire
JP6017779B2 (ja) ウイング用ゴム組成物、その製造方法及び空気入りタイヤ
JP6073574B2 (ja) チェーファー用ゴム組成物及び空気入りタイヤ
JP5646971B2 (ja) タイヤ用ゴム組成物及びその製造方法、並びに空気入りタイヤ
US9873779B2 (en) Rubber composition for tire and tire
JP2013043956A (ja) ビードエーペックス用ゴム組成物及び空気入りタイヤ
JP2013122042A (ja) バンド層用ゴム組成物及び空気入りタイヤ
JP5587842B2 (ja) タイヤ用ゴム組成物及びその製造方法、並びに空気入りタイヤ

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO RUBBER INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAGAWA, YOSHIHIRO;ICHIKAWA, NAOYA;REEL/FRAME:029285/0127

Effective date: 20121026

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION