TWI375326B - Methods of fabricating nitride-based transistors with a cap layer and a recessed gate - Google Patents

Methods of fabricating nitride-based transistors with a cap layer and a recessed gate Download PDF

Info

Publication number
TWI375326B
TWI375326B TW094112478A TW94112478A TWI375326B TW I375326 B TWI375326 B TW I375326B TW 094112478 A TW094112478 A TW 094112478A TW 94112478 A TW94112478 A TW 94112478A TW I375326 B TWI375326 B TW I375326B
Authority
TW
Taiwan
Prior art keywords
layer
gate
forming
ohmic contact
recess
Prior art date
Application number
TW094112478A
Other languages
English (en)
Other versions
TW200605350A (en
Inventor
Scott Sheppard
Peter Smith Richard
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Publication of TW200605350A publication Critical patent/TW200605350A/zh
Application granted granted Critical
Publication of TWI375326B publication Critical patent/TWI375326B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Description

1375326 九、發明說明: ' 【發明所屬之技術領域】 本發明係關於半導體裝置,且更特定言之係關於倂入氮 化物基活性層之電晶體。 【先前技術】 經發現諸如矽(Si)及砷化鎵(GaAs)之材科已在用於較低 功率及(對於Si之狀況)較低頻率應用之半導體裝置中得到 廣泛應用。然而,因為此等(較常見之)半導體材料相對小 •之帶隙(例如,在室溫下以為1.12 ev,及GaAs為1>42 eV) - 及/或相對小之擊穿電壓,所以其不太適用於較高功率及/ 或高頻應用。 考慮到Si及GaAS所呈現之困難,高功率、高溫及/或高 頻應用及裝置已轉向諸如碳化石夕(在室溫下α加為2州 eV)及III族氮化物(例如,在室溫下GaN為3 36 π)之寬帶 隙半導體材料。通常’此等材料與砰化鎵及石夕相比具有較 ^高之電場擊穿強度及較高之電子飽和速度。 用於问功率及/或高頻率應用之特定裝置為高電子遷移 率電晶體(HEMT) ’在特定狀況下其亦稱為調變掺雜場效 電晶體_DFET)。此等裝置可在多種環境下提供操作優 勢’因為在具有不同帶隙能之兩種半導體材料之異質接面 處形成—維電子氣(2DEG),且其中較小帶隙之#料具有較 * 冑電子親和力。2卿為未摻雜之("非故意推雜”)較小帶隙 …材料:之累積層且可含有超過(例如)1〇13載流子/平方公分 之很问的薄片電子濃度。另外,源於較寬帶隙半導體中之 100909.doc 13.75326 電子轉移至2DEG,規因於減少之離子化雜質散射從而允 '許高電子遷移率。 ’ 高載流子濃度及高載流子遷移率之此組合可使HEMT產 生很大之轉導且可與用於高頻應用之金屬半導體場效電晶 體(MESFET)相比提供強效能優勢。 製造於氮化鎵/氮化鋁鎵(GaN/AlGaN)材料系統中之高電 子遷移率電晶體由於材料特點之組合而具有產生大量RF功 率之潛力,該組合包括上述高擊穿場、其寬帶隙、高導帶 偏移及/或高度飽和之電子漂移速度(electron drift velocity)。2DEG中電子之主要部分歸因於AlGaN中之極 化。GaN/AlGaN系統中之HEMT已被證明。美國專利第 5,192,987號及第 5,296,395號描述了 GaN/AlGaN HEMT結構 及製造方法。共同讓渡並以引用的方式倂入本文之 Sheppard等人的美國專利第6,316,793號描述了一種HEMT 裝置,其具有一半絕緣碳化矽基板、一位於該基板上之氮 化紹缓衝層、一位於該緩衝層上之絕緣氮化鎵層、一位於 該氮化鎵層上之氮化鋁鎵障壁層及一位於該氮化鋁鎵活性 結構上之鈍化層。 某些氮化物基電晶體之製造中之一步驟為在一凹槽中形 成閘極接觸。在達成高電流能力及低分散時可需要電晶體 之厚蓋結構。然而,可需要一穿過覆蓋層之閘極凹槽以達 * 成高擊穿電壓、低RF分散及/或高轉導同時伴隨高頻效 , 能。另一方面,用於形成凹陷閘極結構之蝕刻處理可能會 損壞產生電子之下方障壁層。2004年1月16日申請且題為 100909.doc 1375326 "NITRIDE-BASED TRANSISTORS WITH A CAP LAYER AND A LOW-DAMAGE RECESS AND METHODS OF FABRICATION THEREOF"之美國專利申請案第 10/758,871 號描述了用以經由SiN鈍化提供低損害凹槽之裝置及技 術,該申請案之揭示内容以如同本文完全陳述的方式倂入 本文中。 用以減輕蝕刻之GaN及AlGaN表面上之高洩漏的其它嘗 試包括在沉積肖特基金屬之後使用高溫退火。此等嘗試已 使用400-600°C之退火溫度。後肖特基/AlGaN高溫退火似 乎可將高洩漏肖特基/AlGaN接觸改良為適度洩漏之肖特基 /AlGaN接觸。 【發明内容】 本發明之某些實施例提供製造高電子遷移率電晶體 (HEMT)之方法’該方法包括形成一通道層、在該通道層 上形成一障壁層、在該障壁層上形成一覆蓋層及在該覆蓋 層中形成一延伸至障壁層之閘極凹槽。退火障壁層、通道 層及具有閘極凹槽之覆蓋層且接著在經退火之閘極凹槽中 形成閘極接觸。該閘極接觸可為肖特基接觸。 在本發明之其它實施例中,退火障壁層、通道層及具有 閘極凹槽之覆蓋層包括在至少約700°C之溫度下退火障壁 層、通道層及具有閘極凹槽之覆蓋層。可在於覆蓋層上及 閘極凹槽中形成封裝層之後退火。可在退火之後移除封裝 層且可在移除封裝層之後形成肖特基閘極接觸。該封裝層 可包括AIN。 I00909.doc I3J5326 在本發明之額外實施例中’該等方法進_步包括在閉極 凹槽之相對侧上之覆蓋層中形成歐姆接觸凹槽及在該等歐 姆接觸凹槽中形成歐姆接觸材料圖案。在某些實施例中, 退火障壁層、通道層及具有閘極凹槽之覆蓋層包括退火障 壁層、通道層、歐姆接觸材料圖案及具有閘極凹槽之覆蓋 層。此外,可在形成歐姆接觸材料圖案之後且可在退火之 前,在覆蓋層、歐姆接觸材料圖案上及閘極凹槽中形成封 裝層。可在退火之後且在形成閘極接觸之前移除封裝層。 該封裝層可包括A1N。 在本發明之又一些實施例中,形成一閘極凹槽包括:在 覆蓋層上圖案化一遮罩層以具有一對應於閘極凹槽之開 口;及將圖案化之遮罩層用作蝕刻遮罩來蝕刻覆蓋層以提 供閘極凹槽。可在於圖案化之遮罩層及閘極凹槽上形成封 農層之後退火。該封裝層可包括A1N。可在退火之後利用 自對準起離技術移除遮罩層及封裝層以便提供餘留於閘極 凹槽中之封裝層之一部分。可在形成閘極接觸之前移除該 閘極凹槽中之封裝層之部分。 在本發明之某些實施例中,在覆蓋層上及閘極凹槽中形 成一絕緣層。可在閘極凹槽中之絕緣層上形成閘極接觸。 閘極接觸亦可延伸至覆蓋層上之絕緣層上。 在本發明之某些實施例中’形成覆蓋層包括在障壁層上 形成GaN層。舉例而言’ GaN層可為未摻雜之GaN層、屬 於GaN級別之AlGaN層、属於GaN級別之AKJaN層及摻雜 之GaN層及/或摻雜之GaN層。形成覆蓋層亦可包括在障壁 100909.doc U75326 層上形成GaN層及在GaN層上形成㈣層。此外,形成間極 凹槽亦可包括形成延伸穿過覆蓋層且進入但不穿過障壁層 之閉極凹槽。在本發明之特定實施例中,覆蓋層包括GaN 基半導體材料。 在本發明之額外實施例中,製造高電子遷移率電晶體之 方法包括.在基板上第一層形成GaN基半導體材料,·在第 層上形成第二層A1GaN基半導體材料,該第二層經組態 馨為在接近第^與第二層間之介面之區域中感應二維電子 氣;及在第二層GaN基半導體材料上形成第三層<3aN基半 導體材料。該等方法進一步包括:在第三層中形成一延伸 至第二層之閘極凹槽;$火第-層、第二層及具有閘極凹 槽之第三層;及接著在經退火之閘極凹槽中形成閘極接 觸。該閘極接觸可為肖特基閘極接觸。 在本發明之其它實施例中,在於第三層GaN基半導體材 料上及閘極凹槽中形成封裝層之後退火。在退火之後可移 _除封裝層。可在移除封裝層之後形成閘極接觸。 在本發明之又一些實施例中,該等方法進一步:包括在 閘極凹槽之相對側上之第三層GaN基丰導體材料中形成歐 姆接觸凹槽;及在歐姆接觸凹槽中形成歐姆接觸材料圖 案。在此狀況下,退火第一層、第二層及具有閘極凹槽之 第二層包括退火第一層、第二層、歐姆接觸材料圖案及具 有閘極凹槽之第三層。 在本發明之額外實施例中,形成一閘極凹槽包括:在第 三層GaN基半導體材料上圖案化一遮罩層以具有一對應於 100909.doc 13.75326 • 間極凹槽之開口;及將圖案化之遮罩層用作蝕刻遮罩來蝕 刻第三層GaN基半導體材料以提供閘極凹槽。在此狀況 下’退火可在於圖案化之遮罩層及間極凹槽上形成封裝層 之後進行’且在利用自對準起離技術移除遮罩層及封裝層 以便提供餘留於閘極凹槽中之封裝層之一部分之前進行。 該封裝層可包括A1N、Si〇2及氮氧化物、ΟΝΟ結構及/或 SiN。 在本發明之某些實施例中,在形成閘極接觸之前移除餘 留於閘極凹槽中之封裝層之部分。此外,可在第三層 基材料上及凹槽中形成絕緣層,且在閘極凹槽中之絕緣層 上形成閘極接觸β亦可在第三層GaN基材料上之絕緣層上 形成閘極接觸。 【實施方式】 現將參看展示本發明之實施例之附圖在下文中更充分地 描述本發明。然而,不應將本發明解釋為限於本文所陳述 •之實施例。相反,提供此等實施例以使得此揭示内容將全 面且完整,並將完全傳送本發明之範疇至熟習此項技術 者。在s玄等圖式中,出於清晰之目的將層及區域之厚度放 大。整篇文中相同數字係指相同元件。本文所用之術語 ,,及/或"包括一或多個相關聯之列出項之任意及全部組合。 本文所用之術語為僅用於描述特定實施例之目的且並不 意欲限制本發明。本文所用之單數形式"一"及•,該"意欲同 樣包括複數形式,除非本文另外明確指出。應進—步瞭解 術語”包含,,在用於此說明書中時,其指定存在規定特徵、 100909.doc •10· 丄 J·/ 整體、步驟、操作、元件及/或組件,但不排除存在及添 加—或多個其它特徵、整體、步驟、操作、元件、組件及 /或其群。 應瞭解當諸如層、區域或基板之元件被稱為位於另一元 件上或延仲i其上"時,該元件可直接位於該另一元件 上或直接延伸至該另一元件上’或亦可存在介入元件。相 反·,,當—元件被稱為"直接,,位於另—元件"上"或"直接"延 t至其上時,不存在介入元件。亦應瞭解,當一元件被 稱為”連接"或’,耦接,,至另一元件時,該元件可直接連接或 耦接至該另一元件或可存在介入元件。相反,當一元件被 稱為"直料接”或"直_接"至另—元料,不存在介入 凡件。在整篇說明書中相同數字係指相同元件。 應瞭解’儘管在本文可使用術語第―、第二等等來摇述 各種兀件、组件、區域、層及/或區段,但是此等元件、 、-且件區域、層及/或區段不應受此等術語限制。此等術 語僅用於區別一元件、組件、區域、層或區段與另一區 域、層或區段。因此,在不背離本發明之教示的狀況下, 可將下文討論之第一元件、組件、區域、層或區段稱為第 二元件、組件、區域、層或區段。 此外在本文中可使用諸如"下,,或底部"與"上,,或”頂部I, 之相對術語來描述如圖式+所說明之—元件與另_元件之 關係。應瞭解相對術語除了包含圖式中所描繪之裝置之定 向之外還意欲包含不同定向。舉例而t,若將圖中之裝置 翻轉’則描述為位於其它元件之,,下,,側上之元件將被定向 100909.doc -II - 為位於其它元妹" 上側上。因此,例示性術語"m 广疋向可包含"下"及"上"兩者之定向。類似地若 =等圖之一中之裝置翻轉,則描述為位於其它元件"下 或下面之7C件將被定向為位於其它元件”上方"。因 :’例示性術語"下方,’或"下面”可包含上方及下方兩者之 定向。 在本文參看橫截面說明來描述本發明之實施例,該等橫 φ 。說月為本發明之理想化實施例之示意性說明。因而’ 可預期由(例如)製造技術及/或容限所導致之該等說明之形 狀變化。因此,不應將本發明之實施例解釋為限於本文所 說明區域之特定形狀’而應包括由(例如)製造所導致之形 狀偏差。舉例而言,一圖示為矩形之韻刻區域將通常具有 錐形、圓形或彎曲特徵。因此’該等圖式中所說明之區域 實質上是示意性的,且其形狀並不意欲說明一裝置之區域 之精確形狀且並不意欲限制本發明之範嘴。 春▲除非另外界定,否則本文所用之所有術語(包括技術術 語及科學術語)均具有本發明所屬之普通熟習此項技術者 通吊瞭解之相同含意。應進一步瞭解,應將諸如通用字典 中所定義之彼等術語解釋為具有與其在相關技術之内容^中 之含意一 S的含意,且除非在本文明顯地如此定義否則不 應從理想化或過度形式之意義上解釋。 熟習此項技術者亦將瞭解,對一結構或特徵("鄰近,,另— 特徵安置)之參考可具有重疊該鄰近特徵或位於該鄰近特 徵下面的部分。 100909.doc 12 13.75326 本發明之某些實施例在形成肖特基接觸之前使用一凹槽 退火以在諸如電晶體之半導體裝置中減少閘極洩漏及/或 ' 提供高品質肖特基接觸。在本發明之某些實施例中’凹槽 之退火亦可恢復經蝕刻之凹槽區域下之2DEG通道之傳導 性。在退火期間使用封裝層可防止對電晶體之閘極凹槽中 之半導體進一步損害。該退火可(例如)由該裝置之歐姆接 觸之退火來提供。因此,可提供具有減少之閘極區域之降 級的高品質閘極及歐姆接觸,此可由提供由在形成凹槽時 • ® 之蝕刻損害引起之凹陷閘極結構而導致。 本發明之實施例可尤其良好適用於諸如第III族氮化物基 裝置之氮化物基HEMT。本文所用之術語"第III族氮化物" 係指彼等由氮與元素週期表之第III族中之元素形成的半導 體化合物,通常為鋁(A1)、鎵(Ga)及/或銦(In) »該術語亦 指諸如AlGaN及AlInGaN之三元及四元化合物。如熟習此 項技術者所良好瞭解,第III族元素可結合氮以形成二元化 合物(例如GaN)、三元化合物(例如AlGaN)及四元化合物 (例如AlInGaN)。此等化合物全部具有實驗式,其中一莫 耳之氮結合總共一莫耳之第III族元素。通常使用諸如 AlxGa丨·XN(其中OSxSl)之式子來描述其。
可使用本發明之實施例之GaN基HEMT之適當結構描述 於(例如)共同讓渡之美國專利第6,316,793號及2001年7月 , 12日申請並於2002年6月6日公開之題為"ALUMINUM
GALLIUM NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A 100909.doc 13 13.75326
GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME"之美國專利公開案第 • 2002/0066908A1 號、2001 年 5 月 11 日申請之題為"GROUP III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER" 之美國臨時專利申請案第60/290,195號、2002年11月14曰 公開之題為"GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER"之 Smorchkova等人的美國專利 公開案第2002/01 67023 A1號、2003年7月11日申請之題為 "NITRIDE-BASED TRANSISTORS AND METHODS OF FABRICATION THEREOF USING ΝΟΝ-ETCHED CONTACT RECESSES”之美國專利申請案第10/617,843號及2002年7月 23日申請並於2003年1月30日公開之題為"INSULATING GATE ALGAN/GAN HEMT”之美國專利公開案第 2003/0020092號中,該等專利案之揭示内容全文以引用的 方式倂入本文中。 根據本發明之某些實施例的製造方法示意性說明於圖 1A-1F中。如圖1A中可見,提供一基板1〇,在其上可形成 氮化物基裝置。在本發明之特定實施例中’基板10可為半 絕緣碳化矽(SiC)基板,其可為(例如)碳化矽之4H多型》其 ,它碳化矽候選多型包括3C、6H及15R多型。術亨"半絕緣" -為描述性地使用而非以絕對意義使用。在本發明之特定實 施例中,碳化矽塊狀結晶在室溫下具有等於或大於約ΐχΐ〇5 100909.doc 13.75326 Ω-cm之電阻率。 可選之缓衝、長晶及/或過渡層(未圖示)可提供於基板10 上。舉例而言,可提供一 A1N緩衝層以提供碳化矽基板與 裝置之剩餘部分間之適當晶體結構過渡。另外,亦可提供 應變平衡過渡層,如描述於(例如)共同讓渡之2002年7月19 日申請並於2003年6月5日公開且題為"STRAIN BALANCED NITRIDE HETROJUNCTION TRANSISTORS AND METHODS OF FABRICATING STRAIN BALANCED NITRIDE HETEROJUNCTION TRANSISTORS"之美國專利 公開案第2003/0102482A1號及2001年12月3日申請且題為 "STRAIN BALANCED NITRIDE HETEROJUNCTION TRANSISTOR"之美國臨時專利申請案第60/337,687號中, 該等專利案之揭示内容以如同本文完全陳述之引用的方式 倂入本文中。 適當之SiC基板由本發明之受讓人(例如N.C.之Durham之 Cree有限公司)製造,且用於製造之方法描述於(例如)美國 再頒專利第Re. 34,861號、美國專利第4,946,547號、第 552005022號及第6:218,680號中,該等專利案之内容全文以 引用的方式倂入本文中。類似地,用於第ΙΠ族氮化物之蟲 晶成長的技術已描述於(例如)美國專利第5,21〇,〇51號、第 5,393,993號、第5,523,5 89號及第5,592,501號中’該等專 利案之内容全文亦以引用的方式倂入本文中。 儘管碳化矽可用作基板材料,本發明之實施例可使用任 何適當基板,諸如藍寶石、氮化鋁、氮化鋁鎵、氮化鎵、 100909.doc •15- 13.75326 碎、GaAs、LGO、ZnO、LAO、InP及類似物。在某些實 « 施例中,亦可形成一適當緩衝層。 轉向圖1Α,一通道層20提供於基板10上。利用如上所述 之緩衝層、過渡層及/或長晶層可將通道層20沉積於基板 10上》通道層20可處於壓縮應變下。此外,可藉由 MOCVD或熟習此項技術者已知之其它技術(諸如ΜΒΕ或 H VPE)來沉積通道層及/或緩衝長晶層及/或過渡層。 在本發明之某些實施例中,通道層20為第III族氮化物, 諸如AlxGa^N(其中0 $ X < 1),假定在通道層與障壁層之 間的介面處,通道層20之導帶邊緣之能量小於障壁層22之 導帶邊緣之能量。在本發明之某些實施例中,X = 0,表明 通道層20為GaN。通道層20亦可為其它第III族氮化物,諸 如InGaN、AlInGaN或其類似物。通道層20可為未摻雜的 ("非故意摻雜")且可成長至大於約20 A之厚度。通道層20 亦可為多層結構,諸如超晶格或GaN、AlGaN或其類似物 之組合。
障壁層22提供於通道層20上。通道層20可具有小於障壁 層22之帶隙的帶隙,且通道層20亦可具有大於障壁層22之 電子親和力。障壁層22可沉積於通道層20上。在本發明之 某些實施例中,障壁層22為AIN、AlInN、AlGaN或 AlInGaN,其具有介於約0.1 nm與約40 nm之間的厚度。根 •據本發明之某些實施例的層之實例描述於Smorchkova等人 • 之題為"GROUP-III NITRIDE BASED HIGH ELECTRON
MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER 100909.doc 16· 1375326 LAYER"之美國專利公開案第20〇2/0167〇23Α1號中,該案 之揭示内容以如同本文完全陳述之引用方式倂入本文中。 在本發明之特定實施例中,障壁層22足夠厚且具有足夠高 之A1成份並摻雜以在通道層20與障壁層22之間的介面處經 由極化效應來感應較大之載流子濃度。而且,障壁層Μ庳 足夠厚以減少或最小化由於沉積於障壁層22與覆蓋層24之 間的介面處之離子化雜質或瑕疵所導致的通道中電子之散 射(圖1Β)。
障壁層22可為第III族氮化物且具有大於通道層2〇之帶隙 及小於通道層20之電子親和力。因此,在本發明之某些實 施例中,障壁層22為AlGaN、AlInGaN及/或Α1Ν或其層之 組合。障壁層22可(例如)為約^ nm至約4〇 ,但;應 太厚而導致裂化或其中形成實質缺陷。在本發明之某些實 施例中,障壁層22為未摻雜的或摻雜η型摻雜物至小於約 10 9 cm 3之濃度。在本發明之某些實施例中,障壁層a為
AlxGa】_xN ’其中〇 < X < j。在特定實施例中 紹濃度為約 25%。然而,在本發明之其它實施例中,障壁層22包含 A1GaN,其中銘漠度介於約外與約1〇〇%之間。在本發明 之特定實施例中,鋁濃度大於約1〇%。 圖1B說明在障壁層22上形成相對厚之覆蓋層24。覆蓋層 24可為第⑽氮化# ’且在某些實施例中其可為諸如 GaN、滿撕/或化㈣之㈣基半導體材料。在本發明 :特定實施例中,覆蓋層為GaN。此外,覆蓋層以可:單 層或具有均勻及/或非均勻成份及/或厚度之多個層。在 I00909.doc •17· 1375326
本發明之某些實施例中,覆蓋層24可為分級之AlGaN層及 GaN層,如描述於2004年1月IEEE電子裝置期刊(IEEE Electron Device Letters)第 1期第 25 卷第 7-9 頁 Shen 等人的 "High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation"中,其揭示内容以如 同完全陳述之引用的方式倂入本文中。舉例而言,在本發 明之某些實施例中,覆蓋層24可為GaN層,其中一 SiN層 位於該GaN層上。覆蓋層24移動裝置之頂面使其實體遠離 通道,此可減少表面之效應。 覆蓋層24可為形成於障壁層22上之覆蓋物且可磊晶地成 長及/或藉由沉積而形成。舉例而言,覆蓋層可藉由在GaN 覆蓋層上SiN之原位成長或在GaN覆蓋層之頂部SiN或Si02 之非原位PECVD(電漿增強化學氣體沉積)而形成。通常, 覆蓋層24可具有約2 nm至約500 nm之厚度。舉例而言, SiN及GaN之覆蓋層24可具有約300 nm之厚度。根據本發 明之某些實施例的覆蓋層之實例描述於Smorchkova等人的 題為"GROUP-ΠΙ NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER"之美國專利公開案第2002/0167023A1號中。 如圖1C中所說明,在遮罩層中打開窗口以提供用於形成 歐姆接觸30之第一遮罩圖案40。在本發明之某些實施例 中,第一遮罩層可為習知微影遮罩材料。在本發明之某些 實施例中,遮罩材料可為SiN、Si02或其類似物。可使用 圖案化遮罩及蝕刻處理以曝露下方障壁層22來形成窗口。 100909.doc • 18 - 13.75326 在本發明之某些實施例中,該蝕刻可為低損害蝕刻。在本 發明之某些實施例中’該蝕刻為利用強鹼(諸如具有uv照 明之KOH)之濕式蝕刻。在其它實施例中,該蝕刻為乾式 姓刻。用於第III族氮化物之低損害蝕刻技術之實例包括不 同於反應性離子蝕刻之蝕刻技術,諸如利用Cl2、BC13、 CChF2及/或其它氯化物質之感應耦合電漿或電子迴旋共振 (ECR)及/或下游電漿蝕刻(電漿中無DC分量)。用於SiN之 低損害蝕刻技術之實例包括不同於反應性離子蝕刻之蝕刻 •技術,諸如利用CFJO2、NFs/O2及/或其它氟化物質之感應 耦合電漿或電子迴旋共振(ECR)及/或下游電漿蝕刻(電漿 中無DC分量)。 如圖1C中進一步說明,舉例而言,藉由隨後之微影步驟 及蒸鏟’圖案化歐姆金屬以提供歐姆接觸材料圖案,該等 歐姆接觸材料圖案在退火時提供歐姆接觸3〇。在覆蓋層24 中使用SiN及/或Si〇2之本發明之某些實施例中,歐姆接觸 φ 30與覆蓋層24之SiN及/或Si〇2部分間隔充分大之距離以允 許歐姆接觸金屬之形成及圖案化中之未對準容限。若歐姆 接觸金屬接觸覆蓋層24之SiN及/或Si〇2部分,則該金屬可 在隨後之加熱步驟期間擴散至覆蓋層24中,此可導致閑極 接觸與歐姆接觸30之間的短路。 圖1D說明了閘極凹槽之形成。如圖id中所見,第二遮 罩圖案42形成於歐姆接觸及覆蓋層24上並經圖案化以形成 曝露覆蓋層24之一部分的窗口.。在本發明之某些實施例 中,第二遮罩圖案42可為習知微影遮罩材料。在本發明之 100909.doc •19· 1375326 某些實施例中,該遮罩材料可為氮化矽、二氧化矽或其類 似物。然後形成穿過覆蓋層24之凹槽36以曝露障壁層22之 一部分。在本發明之某些實施例中,形成凹槽36以延伸至 障壁層22中。凹槽36可延伸至障壁層22中以(例如)調整裝 置之效能特點,諸如臨限電壓、頻率效能等等。可利用遮 罩42及如上所述之蝕刻處理來形成該凹槽。在歐姆接觸30 提供源極及汲極接觸之特定實施例中,凹槽可在源極接觸 與汲極接觸間存在偏移,從而使得凹槽及隨後閘極接觸32 與源極接觸間的距離比汲極接觸更小。 圖1E說明了在移除第二遮罩圖案42之後形成一光學封裝 層44。封裝層44可形成於覆蓋層24上及凹槽36中。封裝層 44可為氮化矽(SixNy)、氮化鋁(AIN)、ΟΝΟ結構及/或其它 適當之保護材料,諸如二氧化矽(Si02)及/或氮氧化物。其 它材料亦可用於封裝層44,只要該材料可被移除而不會顯 著損害下方障壁層22。舉例而言,封裝層44亦可包括氧化 鎂、氧化銃、氧化鋁及/或氧氮化鋁。此外,封裝層44可 為單一層或均勻及/或非均勻成份之多個層。 在本發明之特定實施例中,封裝層44可為SiN、A1N、 ΟΝΟ結構及/或Si02。SiN、A1N及/或Si02可藉由PVD及/或 CVD形成且可為非化學計量的。參考2004年1月16日申請 且題為"NITRIDE-BASED TRANSISTORS WITH A CAP LAYER AND A LOW-DAMAGE RECESS AND METHODS OF FABRICATION THEREOF"之美國專利申請案第 10/75 8,871號中之保護層進一步詳細描述適當之封裝材 100909.doc •20· 1375326 料’遠案之揭示内容以如同本文完全陳述之引用的方式倂 入本文中。 封裝層44可為形成於覆蓋層24上及凹槽36中以便定位於 凹槽36中之障壁層22上之覆蓋物且可藉由沉積而形成。舉 例而a ’氮化矽層可藉由高品質濺鍍及/或pEcvD來形 成。封裝層44通常可具有約30 nm之厚度,然而,亦可使 用其匕厚度之層。舉例而言,封裝層應足夠厚以便在隨後 歐姆接觸之退火期間保護下方層。出於此等目的,與兩個 或三個單層一樣薄的層可為足夠的。然而,封裝層44 一般 可具有約10 nm至約500 nm之厚度。而且,高品質siN保護 層可藉由第III族氮化物層2M〇VCD成長而在原位成長。 在形成閘極凹槽36及封裝層44(若存在)之後,但在形成 閘極接觸之前,退火歐姆接觸材料以提供歐姆接觸3〇。該 退火可為高溫退火。舉例而言,退火可在約7〇〇〇c至約 900°C之溫度下,且在某些實施例中該溫度大於約9〇(rc。 舉例而言’退火可在利用快速熱退火系統中之習知量測技 術所量測之約700°C至約900°C之環境溫度下進行約3〇秒至 約5分鐘,該等習知量測技術諸如利用嵌於固持晶圓之晶 座中之熱電偶及/或光學高溫測量學。藉由使用歐姆接觸 退火,可將歐姆接觸之電阻自高電阻降低至小於約 1 Ω-mm 0 因此’本文所用之術語"歐姆接觸,,係指具有小於約1 n_mm 之接觸電阻的非整流接觸。已钱刻之閘極凹槽3 6之退火可 將可由閘極凹槽36之製造所引起之損害移除至障壁層22。 因此舉例而5 ’在兩溫歐姆接觸退火之後接近閘極凹槽 100909.doc -21 > 1375326 材料形成。在本發明之特定實施例中,封裝層耗為A丨N。 在本發明之其它實施例中,封裝層46可為任何惰性陶瓷材 料。此外,第二遮罩42可為siN。 在本發明之實施例中,第二遮罩42為可實質上受到隨後 退火損害之光阻或其它材料,第二遮罩42及封裝層46之部 分(例如)利用自對準起離技術被移除,以便在閘極凹槽中 提供封裝層46之一部分26。然後如上所述對圖2A之結構退 火。在本發明之某些實施例中,封裝層46可具有約1 至 約500 nm之厚度。 如圖2B中所見,第二遮罩42及封裝層46之部分(例如)利 用自對準起離技術被移除,以便在閘極凹槽中提供封裝層 46之一部分26。然後閘極接觸32形成於餘留在閘極凹槽中 之部分26上。在某些實施例中,在形成閘極接觸32之前移 除部分26。在圖2B中所說明之實施例中,閘極接觸可由上 述之材料形成。 圖3說明了根據本發明之其它實施例之電晶體之形成。 如圖3中所見,圖2B之結構可移除部分26且一絕緣層13〇形 成於包括於閘極凹槽中之所得結構上》然後閘極接觸32可 形成於絕緣層130上。絕緣層130可為一或多個層且可包括 (例如)SiN、AIN、Si02及/或ΟΝΟ結構。因此,在本發明之 某些實施例中,可提供絕緣閘極ΗΕΜΤ,例如描述於 Parikh 等人的題為"INSULATING GATE ALGAN/GAN ΗΕΜΤ"之美國專利公開案第2003/0020092號中,該案之揭 示内容以如同本文完全陳述之引用的方式倂入本文中。 100909.doc -23· 1375326 θ雖然已參照操作之特定序列來描述本發明之實施例,但 是可在該序列中進行某些修改或亦可包括其它操作而同 時仍受益於本發明之教示。舉例而言,可忽略在歐姆金屬 沉積之前覆蓋層24之形成,且歐姆金屬可沉積及圖案化於 障壁層22上以在障壁層22上提供歐姆接觸材料區域3〇。然 後在歐姆接觸材料之沉積及圖案化之後形成覆蓋層。然後 可蝕刻覆蓋層以提供閘極凹槽且在形成閘極接觸之前進行 歐姆接觸退火。 提供於單一步驟中之上述操作可提供於多個步驟中,同 樣地,描述為多個步驟之操作可組合於單一步驟中。舉例 而δ,雖然已將自閘極凹槽蝕刻移除損害之退火描述為由 歐姆接觸退火提供,但是亦可提供單獨退火。若將退火提 供為單獨退火,則該退火可在(例如)約6〇(rc至約9〇〇它之 溫度下進行約30秒至約20分鐘。另外,可利用單一遮罩而 非如上所述之兩個單獨遮罩來進行歐姆接觸凹槽及間極凹 槽之蝕刻。 雖然已參照特定HEMT結構在本文描述了本發明之實施 例,但是不應將本發明解釋為限於此等結構◊舉例而言, 額外層可包括於HEMT裝置令而同時仍受益於本發明之教 示。此等額外層可包括GaN覆蓋層,例如描述於1998年應 用物理期刊(Applied Physics Letters)第13期第73卷中Yu等 人的"Schottky barrier engineering in m_v nitddes 化加 piezoelectric effect”中,或描述於2〇〇1年7月12日申請且 2002年6月6日公開之題為"aluminum GALUUm 100909.doc ·24· 1375326 NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME"之美國專利公開案第 2002/0066908A1 號中,其揭示内容以如同本文完全陳述之引用的方式倂入 本文中。在某些實施例中,可沉積諸如SiN、ΟΝΟ結構或 相對高品質Α1Ν之絕緣層以製造MISHEMT及/或鈍化表 面。額外層亦可包括在成份上分級之過渡層。 此外,障壁層22亦可具有多個層,如描述於Smorchkova 等人的題為”GROUP-ΠΙ NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER”之美國專利公開案第 2002/0167023A1號中,該案之揭示内容以如同本文完全陳 述之引用的方式倂入本文中。因此,不應將本發明之實施 例解釋為限制該障壁層為單一層,而應可包括(例如)具有 GaN、AlGaN及/或A1N層之組合之障壁層。舉例而言,可 使用GaN、Α1Ν結構以減少或防止合金散射。因此,本發 明之實施例可包括氮化物基障壁層,此等氮化物基障壁層 可包括AlGaN基障壁層、A1N基障壁層及其組合。 在該等圖式及說明書中,已揭示本發明之典型實施例, 且儘管已使用了特定術語,但是該等術語僅以通用及描述 之意義來使用且並非用於限制之目的。 【圖式簡單說明】 圖1A-1F為說明根據本發明之某些實施例之電晶體之製 100909.doc -25·

Claims (1)

1375326 第094112478號專利申請案 • ·'· 中文申請專利範圍替換本(101年4月) 十、申請專利範圍: 1. 一種製造一高電子遷移率電晶體(HEMT)之方法,其包 含: 形成一障壁層; 於該障壁層上形成一覆蓋層; 於該覆蓋層中形成歐姆接觸凹槽; 於該等歐姆接觸凹槽令形成歐姆接觸材料圖案; 於該覆蓋層中形成一延伸至該障壁層之閘極凹槽; ^ 於該覆蓋層上、該等歐姆接觸材料圖案上及該閘極凹 槽中形成一封裝層; 退火該障壁層、該等歐姆接觸材料圖案及該具有該閘 極凹槽之覆蓋層,該等歐姆接觸材料圖案係第一次退 火; 移除該封裝層;及然後 於該退火之閘極凹槽中形成一閘極接觸。 φ "^凊求項1之方法,纟中退火該障壁層、該等歐姆接觸 材料圖案及該具有該閘極凹槽之覆蓋層包含在一至少約 700 (:之/现度下退火該障壁層、該等歐姆接觸材料圖案及 該具有該閘極凹槽之覆蓋層。 3. 如請求項1之方法,其中該封裝廣包含A1N。 4. 如請求項1之方法,其中形成-閘極凹槽包含: 於該覆蓋層上圖案化一遮罩層以具有一對應於該閘極 凹槽之開口;及 將該圖案化遮罩層用作一蚀刻遮罩來触刻該覆蓋層以 100909-1010416.doc 1375326 提供該閘極凹槽。 5. 如請求項1之方法,其中該閘極接觸包含一肖特基 (Schottky)接觸 β 6. 如請求項1之方法,其中形成一覆蓋層包含於該障壁層 上形成一 GaN層。 7·如請求項1之方法,其中形成一覆蓋層包含: 於該障壁層上形成一GaN層;及 於該GaN層上形成一siN層。 8.如請求項7之方法,其中該SiN層係於原位形成。 9·如請求項1之方法,其中形成一閘極凹槽包含形成一延 伸穿過該覆蓋層且進入但未通過該障壁層之閘極凹槽。 10. 如請求項1之方法,其中該覆蓋層包含一 GaN基半導體材 料。 11. 一種製造一高電子遷移率電晶體(HEMT)之方法,其包 含: ’、 形成一障壁層; 於該障壁層上形成一覆蓋層; 於該覆蓋層中形成歐姆接觸凹槽; 於該等歐姆接觸凹槽中形成歐姆接觸材料圖案丨 於該覆蓋層t形成一延伸至該障壁層之閘極凹槽; 於該覆蓋層上、該等歐姆接觸材料圖案; 槽中形成一封裝層; mu 退火該障壁層、該等歐姆接觸材料圓案及該具有該間 極凹槽之覆蓋層,該等歐姆接觸 ° 订料圖案係第一次退 J00909-J010416.doc •2- 1375326 火;及然後 於該退火之閉極凹槽φ芬彡4、 甲形成—閘極接觸; 其中形成一閘極接觸包含: 於該覆蓋層上圖荦仆一说+ 固系化遮罩層以具有一對應於該閘極 凹槽之開口;及 將該圖案化遮罩層用 尤早增用作一姓刻遮罩來蝕刻該覆蓋層以 提供該閘極凹槽;及 其中形成該封裝層包含於該圖案化遮罩層及該閘極凹 槽上形成該封裝層,且其中在退火之後使用—自對準起 離(lift-off)技術來移除該遮罩層及該封裝層,以便提供 餘留在該閘極凹槽中之該封裝層之一部分。 12.如請求項11之方沐,甘 &万击其中該封裝層包含AIN、SiN、 S1O2、氮氧化物及/或一 〇N〇結構。 U· 項11之方法’其進—步包含在形成該閘極接觸之 前移除該閘極凹槽中之該封裝層之該部分。 14. 如請求項13之方法,其進一步包含: 於該覆蓋層上及該閑極凹槽中形成一絕緣層;且 其中形成該閘極接觸包含於該閘極凹槽中之該絕緣層 上形成該閘極接觸。 15. 如凊求項14之方法,其中該閘極接觸亦在該覆蓋層上之 該絕緣層上延伸。 16. —種製造一高電子遷移率電晶體之方法,其包含: 於基板上形成GaN基半導體材料之一第一層; 於該第一層上形成GaN基半導體材料之一第二層,該 I00909-I010416.doc 1375326 第一層係組態為在一接近該第一層與該第二層間之一介 面之區域中感應一二維電子氣; 於該GaN基半導體材料之第二層上形成GaN基半導體 材料之一第三層; 於該GaN基半導體材料之第三層中形成歐姆接觸凹 槽; 於該等歐姆接觸凹槽中形成歐姆接觸材料圖案; 於該第三層中形成一延伸至該第二層之閘極凹槽; 退火該第一層、該第二層歐姆接觸材料圖案及該具有 該閘極凹槽之第三層,該等歐姆接觸材料圖案係第一次 退火;及然後 於該退火之閘極凹槽中形成一閘極接觸。 17. 如請求項16之方法,其中退火在於該GaN基半導體材料 之第二層上及該閘極凹槽_形成一封裝層之後進行,且 其中在形成一閘極接觸步驟之前移除該封裝層。 18. 如請求項π之方法,其中形成一閘極凹槽包含· 於該GaN基半導體材料之第三層上圖案化一遮罩層以 具有一對應於該閘極凹槽之開口; 將該圖案化之遮罩層用作一蝕刻遮罩來蝕刻該GaN基 半導體材料之第三層以提供該閘極凹槽; 其t形成該封裝層包含於該圖案化之遮罩層及該閘極 凹槽上形成該封裝層,•且 其t在退火之後使用一自對準起離技術來移除該遮罩 層及該封裝層以便提供餘留在該閘極凹槽中之該封裝層 100909-1010416.doc -4- 之一部分。 19·如請求項18之方法,其中該封裝層包含Am。 2。·二請求項18之方法,其進一步包含在形成該 前移除餘留在該閘極凹槽中之該封裝層之該部分。觸之 21_如請求項20之方法’其進一步包含: 層於:^基材料之第三層上及該凹槽中形成一絕緣 二中形成該閘極接觸包含於該閘極凹槽中之該絕緣層 上形成該閘極接觸。 •項21之方法,其中該閘極接觸亦形成於該GaN基 材料之第二層上之該絕緣層上。 23·如請求項之古 ^ 万法’其中該閘極接觸包含一 T形閘極结 構。 24.如請求項16之 法:’其中形成一閘極凹槽包含形成一延 咬、Μ第三層且進入但不穿過該第二層之閘極凹槽。 月求項16之方法,其中該閘極接觸為一肖特基接觸。 26_如請求項16 万法,其中形成歐姆接觸凹槽在於該GaN 土材:之第二層上原位形成-鈍化層之後進行。 27·種㈤電子遷移率電晶體(HEMT) ’其包含: 一障壁層; 、 該障壁層上之-覆蓋層; 該覆蓋層Φ 續宁之一延伸至該障壁層之閘極凹槽; 該間極ρη她I W糟中之一閘極接觸,其中在該障壁層、該覆 〜間極凹槽退火之後接近該閘極凹槽之該障壁層 100909-1010416.doc 1375326 之一薄片電阻係與該障壁層之一薄片電阻相同。 28. 如請求項27之HEMT,其進一步包含該覆蓋層中之歐姆 接觸凹槽中之歐姆接觸材料圖案,其中該等歐姆接觸材 料圖案係與該障壁層、該覆蓋層及該閘極凹槽同時退 火。 29. 如請求項28之HEMT,其進一步包含該覆蓋層上之一封 裝層、該等歐姆接觸材料圖案及該閘極凹槽。 30. 如請求項28之HEMT,其進一步包含一通道層,其中該 障壁層係於該通道層上,且其中該通道層係與該障壁 層、該等歐姆接觸材料圖案、該覆蓋層及該閘極凹槽同 時退火。 3 1.如請求項27之HEMT,其中該閘極接觸包含一肖特基 (Schottky)接觸。 32.如請求項27之HEMT,其中該覆蓋層包含該障壁層上之 一 GaN層。 3 3.如請求項27之HEMT,其中該覆蓋層包含: 該障壁層上之一 GaN層;及 該GaN層上之一 SiN層。 34. 如請求項33之HEMT,其中該SiN層係於原位形成。 35. 如請求項27之HEMT,其中該閘極凹槽延伸穿過該覆蓋 層且進入但未通過該障壁層。 36. 如請求項27之HEMT,其中該覆蓋層包含一 GaN基半導 體材料。 100909-1010416.doc 1375326 第094112478號專利申請案 中文圖式替換頁(101年4月 封裝層 44 ΈΜΜ Μ 歐姆接觸 30
1 覆躉層\: 障壁層 2Ζ通道層 20 10 圖1Ε 歐姆接觸 2Q
圖1F 100909-fig-1010416.doc
TW094112478A 2004-07-23 2005-04-19 Methods of fabricating nitride-based transistors with a cap layer and a recessed gate TWI375326B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/897,726 US7238560B2 (en) 2004-07-23 2004-07-23 Methods of fabricating nitride-based transistors with a cap layer and a recessed gate

Publications (2)

Publication Number Publication Date
TW200605350A TW200605350A (en) 2006-02-01
TWI375326B true TWI375326B (en) 2012-10-21

Family

ID=34965900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094112478A TWI375326B (en) 2004-07-23 2005-04-19 Methods of fabricating nitride-based transistors with a cap layer and a recessed gate

Country Status (8)

Country Link
US (3) US7238560B2 (zh)
EP (2) EP1771876B1 (zh)
JP (2) JP5355888B2 (zh)
KR (1) KR101108344B1 (zh)
CN (1) CN1989601B (zh)
CA (1) CA2572244C (zh)
TW (1) TWI375326B (zh)
WO (1) WO2006022874A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755044B2 (en) 2014-05-30 2017-09-05 Delta Electronics, Inc. Method of manufacturing a transistor with oxidized cap layer
TWI755277B (zh) * 2021-02-09 2022-02-11 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法
US11380767B2 (en) 2020-04-28 2022-07-05 Vanguard International Semiconductor Corporation High electron mobility transistor and fabrication method thereof
TWI794599B (zh) * 2020-03-24 2023-03-01 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法

Families Citing this family (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071498B2 (en) * 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7238560B2 (en) * 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
EP1801865A4 (en) * 2004-08-27 2009-11-04 Nat Inst Inf & Comm Tech GALLIUM-NITRIDE FIELD EFFECT TRANSISTOR AND METHOD FOR PRODUCING THE SAME
JP4389935B2 (ja) * 2004-09-30 2009-12-24 サンケン電気株式会社 半導体装置
US7456443B2 (en) * 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
EP1843390B1 (en) * 2005-01-25 2011-11-09 Fujitsu Limited Semiconductor device provided with mis structure and method for manufacturing the same
JP2006245317A (ja) * 2005-03-03 2006-09-14 Fujitsu Ltd 半導体装置およびその製造方法
US7364988B2 (en) * 2005-06-08 2008-04-29 Cree, Inc. Method of manufacturing gallium nitride based high-electron mobility devices
US7326971B2 (en) * 2005-06-08 2008-02-05 Cree, Inc. Gallium nitride based high-electron mobility devices
US7485512B2 (en) * 2005-06-08 2009-02-03 Cree, Inc. Method of manufacturing an adaptive AIGaN buffer layer
US9331192B2 (en) * 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
JP4751150B2 (ja) 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
KR100620393B1 (ko) * 2005-11-03 2006-09-06 한국전자통신연구원 전계효과 트랜지스터 및 그의 제조 방법
JP2007149794A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
KR101236811B1 (ko) * 2006-03-10 2013-02-25 페어차일드코리아반도체 주식회사 질화물계 반도체 소자 및 그 제조방법
EP2677544B1 (en) 2006-03-16 2015-04-22 Fujitsu Limited Compound Semiconductor Device and Manufacturing Method of the Same
US7408208B2 (en) * 2006-03-20 2008-08-05 International Rectifier Corporation III-nitride power semiconductor device
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
JP5179023B2 (ja) * 2006-05-31 2013-04-10 パナソニック株式会社 電界効果トランジスタ
EP1865561B1 (en) * 2006-06-07 2013-01-02 Imec An enhancement mode field effect device and the method of production thereof
US8049272B2 (en) * 2006-06-16 2011-11-01 Cree, Inc. Transistors having implanted channel layers and methods of fabricating the same
US20080001173A1 (en) * 2006-06-23 2008-01-03 International Business Machines Corporation BURIED CHANNEL MOSFET USING III-V COMPOUND SEMICONDUCTORS AND HIGH k GATE DIELECTRICS
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US7939853B2 (en) * 2007-03-20 2011-05-10 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
KR100791551B1 (ko) * 2007-08-17 2008-01-07 주식회사 퓨처라인 보호회로모듈과 이를 포함하는 전지 및 상기보호회로모듈을 포함하는 전지 제조 방법
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US20090096106A1 (en) * 2007-10-12 2009-04-16 Air Products And Chemicals, Inc. Antireflective coatings
FR2924270B1 (fr) * 2007-11-27 2010-08-27 Picogiga Internat Procede de fabrication d'un dispositif electronique
JP2009231396A (ja) * 2008-03-19 2009-10-08 Sumitomo Chemical Co Ltd 半導体装置および半導体装置の製造方法
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
EP2187432B1 (en) * 2008-11-13 2013-01-09 Epcos AG P-type field-effect transistor and method of production
US7977224B2 (en) * 2008-12-03 2011-07-12 The United States Of America As Represented By The Secretary Of The Army Method using multiple layer annealing cap for fabricating group III-nitride semiconductor device structures and devices formed thereby
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
JP5323527B2 (ja) * 2009-02-18 2013-10-23 古河電気工業株式会社 GaN系電界効果トランジスタの製造方法
JP5564815B2 (ja) * 2009-03-31 2014-08-06 サンケン電気株式会社 半導体装置及び半導体装置の製造方法
WO2010118087A1 (en) * 2009-04-08 2010-10-14 Efficient Power Conversion Corporation Enhancement mode gan hemt device and method for fabricating the same
US8823012B2 (en) 2009-04-08 2014-09-02 Efficient Power Conversion Corporation Enhancement mode GaN HEMT device with gate spacer and method for fabricating the same
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US9306050B2 (en) * 2009-06-26 2016-04-05 Cornell University III-V semiconductor structures including aluminum-silicon nitride passivation
WO2011008531A2 (en) * 2009-06-30 2011-01-20 University Of Florida Research Foundation, Inc. Enhancement mode hemt for digital and analog applications
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
JP5625336B2 (ja) * 2009-11-30 2014-11-19 サンケン電気株式会社 半導体装置
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8936976B2 (en) * 2009-12-23 2015-01-20 Intel Corporation Conductivity improvements for III-V semiconductor devices
US8624260B2 (en) * 2010-01-30 2014-01-07 National Semiconductor Corporation Enhancement-mode GaN MOSFET with low leakage current and improved reliability
JP5056883B2 (ja) * 2010-03-26 2012-10-24 サンケン電気株式会社 半導体装置
US8907350B2 (en) * 2010-04-28 2014-12-09 Cree, Inc. Semiconductor devices having improved adhesion and methods of fabricating the same
KR101679054B1 (ko) 2010-05-04 2016-11-25 삼성전자주식회사 산소처리영역을 포함하는 고 전자 이동도 트랜지스터 및 그 제조방법
JP5635803B2 (ja) * 2010-05-07 2014-12-03 トランスフォーム・ジャパン株式会社 化合物半導体装置の製造方法及び化合物半導体装置
US8878246B2 (en) 2010-06-14 2014-11-04 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of fabricating the same
JP5636867B2 (ja) 2010-10-19 2014-12-10 富士通株式会社 半導体装置及び半導体装置の製造方法
JP5712583B2 (ja) * 2010-12-02 2015-05-07 富士通株式会社 化合物半導体装置及びその製造方法
JP5685918B2 (ja) * 2010-12-10 2015-03-18 富士通株式会社 半導体装置の製造方法
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
JP5866766B2 (ja) * 2011-02-10 2016-02-17 富士通株式会社 化合物半導体装置及びその製造方法
US8586997B2 (en) 2011-02-15 2013-11-19 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting field-controlling element
JP5913816B2 (ja) * 2011-02-21 2016-04-27 富士通株式会社 半導体装置の製造方法
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
JP5179611B2 (ja) * 2011-03-04 2013-04-10 シャープ株式会社 ノーマリオフ型ヘテロ接合電界効果トランジスタ
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US9373688B2 (en) * 2011-05-04 2016-06-21 Infineon Technologies Austria Ag Normally-off high electron mobility transistors
KR101813177B1 (ko) * 2011-05-06 2017-12-29 삼성전자주식회사 고전자이동도 트랜지스터 및 그 제조방법
JP5364760B2 (ja) * 2011-07-25 2013-12-11 パナソニック株式会社 半導体装置
KR101259126B1 (ko) * 2011-07-25 2013-04-26 엘지전자 주식회사 질화물계 반도체 이종접합 반도체 소자 및 그 제조방법
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
WO2013036593A1 (en) * 2011-09-06 2013-03-14 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting field-controlling element
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
JP5236787B2 (ja) * 2011-09-27 2013-07-17 シャープ株式会社 窒化物半導体装置およびその製造方法
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US20130099284A1 (en) * 2011-10-20 2013-04-25 Triquint Semiconductor, Inc. Group iii-nitride metal-insulator-semiconductor heterostructure field-effect transistors
US20130105817A1 (en) * 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
US8841703B2 (en) * 2011-10-31 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
US8994035B2 (en) 2011-11-21 2015-03-31 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
US9673285B2 (en) 2011-11-21 2017-06-06 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
CN102569399A (zh) * 2011-11-29 2012-07-11 中国科学院微电子研究所 源漏自对准的mos器件及其制作方法
JP2013125918A (ja) * 2011-12-16 2013-06-24 Sumitomo Electric Ind Ltd 半導体装置
US8569799B2 (en) * 2011-12-20 2013-10-29 Infineon Technologies Austria Ag III-V semiconductor devices with buried contacts
JP2013131650A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 半導体装置及びその製造方法
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
GB201203161D0 (en) 2012-02-23 2012-04-11 Epigan Nv A device comprising a III-N layer stack with improved passivation layer and associated manufacturing method
US8941148B2 (en) * 2012-03-06 2015-01-27 Infineon Technologies Austria Ag Semiconductor device and method
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
CN102810564B (zh) * 2012-06-12 2017-03-15 苏州能讯高能半导体有限公司 一种射频器件及其制作方法
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US8975664B2 (en) 2012-06-27 2015-03-10 Triquint Semiconductor, Inc. Group III-nitride transistor using a regrown structure
US8890262B2 (en) * 2012-11-29 2014-11-18 Globalfoundries Inc. Semiconductor device having a metal gate recess
US10164038B2 (en) * 2013-01-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of implanting dopants into a group III-nitride structure and device formed
WO2014127150A1 (en) 2013-02-15 2014-08-21 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9231094B2 (en) 2013-05-21 2016-01-05 Globalfoundries Inc. Elemental semiconductor material contact for high electron mobility transistor
US9276077B2 (en) 2013-05-21 2016-03-01 Globalfoundries Inc. Contact metallurgy for self-aligned high electron mobility transistor
CN103311284B (zh) * 2013-06-06 2015-11-25 苏州晶湛半导体有限公司 半导体器件及其制作方法
DE112014003175B4 (de) 2013-07-08 2020-12-03 Efficient Power Conversion Corporation Verfahren zur Herstellung einer selbstausrichtenden Isolation in Galliumnitrid-Komponenten und integrierten Schaltungen
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
CN103426740A (zh) * 2013-08-20 2013-12-04 中国科学院微电子研究所 减小高电子迁移率晶体管源漏区域欧姆接触电阻率的方法
CN103500763B (zh) * 2013-10-15 2017-03-15 苏州晶湛半导体有限公司 Ⅲ族氮化物半导体器件及其制造方法
JP6169958B2 (ja) * 2013-12-02 2017-07-26 日本電信電話株式会社 電界効果トランジスタ
JP2015173151A (ja) * 2014-03-11 2015-10-01 株式会社東芝 半導体装置
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
CN104167444A (zh) * 2014-08-27 2014-11-26 电子科技大学 一种具有局部帽层的氮化镓基异质结场效应晶体管
CN105633143B (zh) * 2014-10-31 2018-09-14 财团法人工业技术研究院 增强型氮化镓晶体管器件
US9601608B2 (en) * 2014-11-13 2017-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Structure for a gallium nitride (GaN) high electron mobility transistor
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
JP6401053B2 (ja) * 2014-12-26 2018-10-03 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
SG11201706079YA (en) * 2015-03-09 2017-09-28 Agency Science Tech & Res Self-aligning source, drain and gate process for iii-v nitride mishemts
WO2016175024A1 (ja) * 2015-04-30 2016-11-03 日本電信電話株式会社 半導体装置およびその製造方法
CN106158926B (zh) 2015-05-12 2019-05-07 台达电子工业股份有限公司 半导体装置及其制作方法
JP6524888B2 (ja) * 2015-10-30 2019-06-05 富士通株式会社 化合物半導体装置及びその製造方法
ITUB20155503A1 (it) 2015-11-12 2017-05-12 St Microelectronics Srl Metodo di fabbricazione di un transistore hemt e transistore hemt con migliorata mobilita' elettronica
US10804359B2 (en) * 2015-12-14 2020-10-13 Intel Corporation Geometric manipulation of 2DEG region in source/drain extension of GaN transistor
CN109075194B (zh) * 2015-12-26 2021-10-29 英特尔公司 受限且可伸缩的防护帽
WO2017123999A1 (en) 2016-01-15 2017-07-20 Transphorm Inc. Enhancement mode iii-nitride devices having an al(1-x)sixo gate insulator
CN107104047A (zh) * 2016-02-23 2017-08-29 北京大学 氮化镓肖特基二极管的制造方法
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
CN106098794A (zh) * 2016-06-30 2016-11-09 江苏能华微电子科技发展有限公司 二极管用外延片及其制备方法
CN109314135B (zh) * 2016-07-01 2023-03-10 英特尔公司 用于GaN E模式晶体管性能的栅极堆叠体设计
CN105977147B (zh) * 2016-07-29 2020-03-31 中国电子科技集团公司第十三研究所 一种用于纳米栅制备的无损伤自终止刻蚀方法
EP3497718A1 (en) 2016-08-12 2019-06-19 Qorvo Us, Inc. Wafer-level package with enhanced performance
CN116884928A (zh) 2016-08-12 2023-10-13 Qorvo美国公司 具有增强性能的晶片级封装
US10109502B2 (en) 2016-09-12 2018-10-23 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
JP6957982B2 (ja) * 2017-05-29 2021-11-02 三菱電機株式会社 半導体装置及びその製造方法
US10490471B2 (en) 2017-07-06 2019-11-26 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10134596B1 (en) * 2017-11-21 2018-11-20 Texas Instruments Incorporated Recessed solid state apparatuses
JP7100241B2 (ja) * 2017-12-20 2022-07-13 富士通株式会社 化合物半導体装置及びその製造方法
US11888037B2 (en) * 2018-03-06 2024-01-30 Hitachi Energy Ltd Self-aligned field plate mesa FPM SiC schottky barrier diode
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US12062700B2 (en) 2018-04-04 2024-08-13 Qorvo Us, Inc. Gallium-nitride-based module with enhanced electrical performance and process for making the same
US12046505B2 (en) 2018-04-20 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
EP3818558A1 (en) 2018-07-02 2021-05-12 Qorvo US, Inc. Rf semiconductor device and manufacturing method thereof
US10763334B2 (en) 2018-07-11 2020-09-01 Cree, Inc. Drain and/or gate interconnect and finger structure
CN108962751A (zh) * 2018-07-12 2018-12-07 中国科学院微电子研究所 GaN HEMT器件的制备方法
US10600746B2 (en) 2018-07-19 2020-03-24 Cree, Inc. Radio frequency transistor amplifiers and other multi-cell transistors having gaps and/or isolation structures between groups of unit cell transistors
US11049820B2 (en) * 2018-07-30 2021-06-29 Texas Instruments Incorporated Crack suppression structure for HV isolation component
TWI692867B (zh) * 2018-10-04 2020-05-01 新唐科技股份有限公司 高電子遷移率電晶體元件及其製造方法
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
CN109686663A (zh) * 2018-12-27 2019-04-26 上海华力微电子有限公司 一种半导体结构及其制造方法
US10937873B2 (en) * 2019-01-03 2021-03-02 Cree, Inc. High electron mobility transistors having improved drain current drift and/or leakage current performance
US12046483B2 (en) 2019-01-23 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923313B2 (en) 2019-01-23 2024-03-05 Qorvo Us, Inc. RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same
US12057374B2 (en) 2019-01-23 2024-08-06 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12046570B2 (en) 2019-01-23 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
CN109841677A (zh) * 2019-03-28 2019-06-04 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
US11417746B2 (en) 2019-04-24 2022-08-16 Wolfspeed, Inc. High power transistor with interior-fed fingers
CN110047744A (zh) * 2019-04-28 2019-07-23 苏州汉骅半导体有限公司 T型栅制备方法
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
CN111989779B (zh) * 2020-07-15 2024-03-05 英诺赛科(珠海)科技有限公司 半导体结构和其制造方法
CN112470289B (zh) * 2020-10-28 2023-07-21 英诺赛科(苏州)科技有限公司 半导体装置和其制造方法
CN112768137B (zh) * 2020-12-18 2022-09-16 安捷利电子科技(苏州)有限公司 一种具有窄沟道的电极的制备方法
CN112768512A (zh) * 2021-01-13 2021-05-07 西安电子科技大学 基于凹槽阳极结构的AlGaN基双沟道肖特基二极管及制备方法
WO2022186857A1 (en) 2021-03-05 2022-09-09 Qorvo Us, Inc. Selective etching process for si-ge and doped epitaxial silicon
US20220336649A1 (en) * 2021-04-15 2022-10-20 Vanguard International Semiconductor Corporation High electron mobility transistor and fabrication method thereof
US11869964B2 (en) 2021-05-20 2024-01-09 Wolfspeed, Inc. Field effect transistors with modified access regions
WO2023065284A1 (en) * 2021-10-22 2023-04-27 Innoscience (Suzhou) Technology Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465317A2 (fr) 1979-03-28 1981-03-20 Thomson Csf Transistor a effet de champ a frequence de coupure elevee
CA1145482A (en) 1979-12-28 1983-04-26 Takashi Mimura High electron mobility single heterojunction semiconductor device
US4396437A (en) 1981-05-04 1983-08-02 Hughes Aircraft Company Selective encapsulation, controlled atmosphere annealing for III-V semiconductor device fabrication
JPH088350B2 (ja) 1985-04-08 1996-01-29 日本電気株式会社 半導体装置
US4788156A (en) 1986-09-24 1988-11-29 Microwave Technology, Inc. Subchannel doping to reduce short-gate effects in field effect transistors
KR880010509A (ko) * 1987-02-11 1988-10-10 오레그 이. 앨버 전계효과 트랜지스터
US4866005A (en) 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
US5411914A (en) 1988-02-19 1995-05-02 Massachusetts Institute Of Technology III-V based integrated circuits having low temperature growth buffer or passivation layers
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5053348A (en) 1989-12-01 1991-10-01 Hughes Aircraft Company Fabrication of self-aligned, t-gate hemt
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5172197A (en) 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer
US5292501A (en) 1990-06-25 1994-03-08 Degenhardt Charles R Use of a carboxy-substituted polymer to inhibit plaque formation without tooth staining
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JPH0563006A (ja) * 1991-08-30 1993-03-12 Hitachi Ltd 半導体装置とその製造方法
DE69202554T2 (de) 1991-12-25 1995-10-19 Nippon Electric Co Tunneltransistor und dessen Herstellungsverfahren.
JPH05275463A (ja) 1992-03-30 1993-10-22 Matsushita Electric Ind Co Ltd 半導体装置
JPH05326561A (ja) 1992-05-22 1993-12-10 Nec Corp 電界効果トランジスタの製造方法
JPH06267991A (ja) 1993-03-12 1994-09-22 Hitachi Ltd 半導体装置およびその製造方法
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
AU690275B2 (en) * 1994-05-07 1998-04-23 Boehringer Ingelheim International Gmbh Neurokinine (tachykinine) antagonists
US5814533A (en) 1994-08-09 1998-09-29 Rohm Co., Ltd. Semiconductor light emitting element and manufacturing method therefor
US5460549A (en) * 1994-09-02 1995-10-24 Itt Industries, Inc. Connector with sealed contacts
US5592501A (en) 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
JP3157690B2 (ja) 1995-01-19 2001-04-16 沖電気工業株式会社 pn接合素子の製造方法
US5534462A (en) 1995-02-24 1996-07-09 Motorola, Inc. Method for forming a plug and semiconductor device having the same
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
SE9501311D0 (sv) 1995-04-10 1995-04-10 Abb Research Ltd Method for producing a semiconductor device having a semiconductor layer of SiC
US6002148A (en) 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
KR100195269B1 (ko) 1995-12-22 1999-06-15 윤종용 액정표시장치의 제조방법
DE19600116C2 (de) 1996-01-03 2001-03-15 Siemens Ag Doppelheterostruktur-HEMT
AU1833197A (en) * 1996-01-18 1997-08-11 Progenitor, Inc. Detection of a leptin receptor variant and methods for regulating obesity
JPH1050982A (ja) 1996-07-31 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JPH10199895A (ja) * 1997-01-09 1998-07-31 Sumitomo Electric Ind Ltd 電界効果トランジスタの製造方法
US6448648B1 (en) 1997-03-27 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Metalization of electronic semiconductor devices
JPH10335637A (ja) 1997-05-30 1998-12-18 Sony Corp ヘテロ接合電界効果トランジスタ
JP3372470B2 (ja) 1998-01-20 2003-02-04 シャープ株式会社 窒化物系iii−v族化合物半導体装置
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3209270B2 (ja) 1999-01-29 2001-09-17 日本電気株式会社 ヘテロ接合電界効果トランジスタ
US6218680B1 (en) 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination
JP3371871B2 (ja) * 1999-11-16 2003-01-27 日本電気株式会社 半導体装置の製造方法
US6639255B2 (en) 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
JP4592938B2 (ja) 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
JP3393602B2 (ja) 2000-01-13 2003-04-07 松下電器産業株式会社 半導体装置
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP4751498B2 (ja) * 2000-03-30 2011-08-17 富士通株式会社 半導体三端子装置
JP4022708B2 (ja) 2000-06-29 2007-12-19 日本電気株式会社 半導体装置
JP4186032B2 (ja) * 2000-06-29 2008-11-26 日本電気株式会社 半導体装置
US6515316B1 (en) 2000-07-14 2003-02-04 Trw Inc. Partially relaxed channel HEMT device
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6593193B2 (en) 2001-02-27 2003-07-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
KR100920434B1 (ko) 2001-07-24 2009-10-08 크리, 인코포레이티드 절연 게이트 갈륨 비소 질화물/갈륨 질화물계 고전자이동도 트랜지스터
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US7470941B2 (en) * 2001-12-06 2008-12-30 Hrl Laboratories, Llc High power-low noise microwave GaN heterojunction field effect transistor
JP3986887B2 (ja) 2002-05-17 2007-10-03 松下電器産業株式会社 半導体装置
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
FR2842832B1 (fr) * 2002-07-24 2006-01-20 Lumilog Procede de realisation par epitaxie en phase vapeur d'un film de nitrure de gallium a faible densite de defaut
US20040021152A1 (en) 2002-08-05 2004-02-05 Chanh Nguyen Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US6884704B2 (en) 2002-08-05 2005-04-26 Hrl Laboratories, Llc Ohmic metal contact and channel protection in GaN devices using an encapsulation layer
JP4479222B2 (ja) * 2002-11-22 2010-06-09 沖電気工業株式会社 化合物半導体層の表面処理方法及び半導体装置の製造方法
US6956239B2 (en) * 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
JP4620333B2 (ja) * 2003-05-09 2011-01-26 三菱電機株式会社 半導体装置の製造方法
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7238560B2 (en) * 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755044B2 (en) 2014-05-30 2017-09-05 Delta Electronics, Inc. Method of manufacturing a transistor with oxidized cap layer
US9793370B2 (en) 2014-05-30 2017-10-17 Delta Electronics, Inc. Transistor with oxidized cap layer
TWI794599B (zh) * 2020-03-24 2023-03-01 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法
US11380767B2 (en) 2020-04-28 2022-07-05 Vanguard International Semiconductor Corporation High electron mobility transistor and fabrication method thereof
US11929407B2 (en) 2020-04-28 2024-03-12 Vanguard International Semiconductor Corporation Method of fabricating high electron mobility transistor
TWI755277B (zh) * 2021-02-09 2022-02-11 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法

Also Published As

Publication number Publication date
CN1989601A (zh) 2007-06-27
KR101108344B1 (ko) 2012-01-25
EP3425674A2 (en) 2019-01-09
US20060019435A1 (en) 2006-01-26
CA2572244C (en) 2014-01-28
US7238560B2 (en) 2007-07-03
EP3425674A3 (en) 2019-05-15
US20070254418A1 (en) 2007-11-01
CN1989601B (zh) 2012-06-20
US9666707B2 (en) 2017-05-30
US7678628B2 (en) 2010-03-16
CA2572244A1 (en) 2006-03-02
WO2006022874A1 (en) 2006-03-02
JP2008507843A (ja) 2008-03-13
TW200605350A (en) 2006-02-01
US20100140664A1 (en) 2010-06-10
EP1771876B1 (en) 2018-09-26
EP1771876A1 (en) 2007-04-11
KR20070032790A (ko) 2007-03-22
JP2012142595A (ja) 2012-07-26
JP5355888B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
TWI375326B (en) Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
JP6050579B2 (ja) 保護層および低損傷陥凹部を備える窒化物ベースのトランジスタならびにその製作方法
JP5767637B2 (ja) Iii族窒化物半導体デバイス及びその製造方法
TWI433240B (zh) 具有自我對準耐高溫接點之半導體元件及其製造方法
JP5805608B2 (ja) 支持されたゲート電極を備えるトランジスタの作製方法およびそれに関連するデバイス
JP5621006B2 (ja) 金属及びシリコンの交互層を含むコンタクト構造体並びに関連デバイスの形成方法
JP2014003301A (ja) 窒化物ベースのトランジスタおよびエッチストップ層を用いた製造方法
US20070164315A1 (en) Cap Layers Including Aluminum Nitride for Nitride-Based Transistors and Methods of Fabricating Same
JP2009283915A (ja) 浅いイオン注入された領域を含む半導体デバイスとその形成方法
JP2007538402A (ja) 再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタの製作方法及び再成長オーミックコンタクト領域を有する窒化物ベースのトランジスタ