RU2621033C2 - Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения - Google Patents

Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения Download PDF

Info

Publication number
RU2621033C2
RU2621033C2 RU2014126870A RU2014126870A RU2621033C2 RU 2621033 C2 RU2621033 C2 RU 2621033C2 RU 2014126870 A RU2014126870 A RU 2014126870A RU 2014126870 A RU2014126870 A RU 2014126870A RU 2621033 C2 RU2621033 C2 RU 2621033C2
Authority
RU
Russia
Prior art keywords
catalyst
range
value
propane
denotes
Prior art date
Application number
RU2014126870A
Other languages
English (en)
Other versions
RU2014126870A (ru
Inventor
Полетт ХАЗИН
Реджиналд ТЕННИСОН
Майкл ХАКМАН
Original Assignee
Сауди Бейсик Индастриз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сауди Бейсик Индастриз Корпорейшн filed Critical Сауди Бейсик Индастриз Корпорейшн
Publication of RU2014126870A publication Critical patent/RU2014126870A/ru
Application granted granted Critical
Publication of RU2621033C2 publication Critical patent/RU2621033C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/686Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к композиции бифункционального катализатора для одновременного окисления пропана в акриловую кислоту и монооксида углерода в диоксид углерода, к способу получения указанной композиции и к её применению. Композиция катализатора содержит соединение следующей общей формулы: MoVaNbbPtcSbd1Ted2ZeOx, где а обозначает число, имеющее значение в диапазоне от 0,15 до 0,50, b обозначает число, имеющее значение в диапазоне от 0,05 до 0,30, с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,10, d1 представляет собой число, имеющее значение в диапазоне от более 0 до 0,30, d2 представляет собой число, имеющее значение в диапазоне от 0,01 до 0,30, е обозначает число, имеющее значение в диапазоне от 0 до 0,10, х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и Z представляет собой один или несколько элементов, выбранных из группы, состоящей из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В, а если присутствует больше одного элемента Z, то каждый элемент Z изменяется независимо в диапазоне значений е. Способ получения композиции включает: приготовление первого водного раствора, включающего источник молибдена, источник ванадия, источник платины, источник сурьмы и источник теллура; приготовление второго водного раствора, включающего органическую кислоту и источник ниобия; добавление второго водного раствора к первому водному раствору с образованием суспензии предшественника катализатора; сушку предшественника катализатора и разложение предшественника катализатора с образованием композиции катализатора; где платина присутствует в количестве, достаточном для формирования катализатора, массовый процент платины в котором составляет от 0,1 до 4,5 в пересчете на общую массу катализатора. Раскрыт также способ превращения углеводорода в ненасыщенную карбоновую кислоту. Технический результат – возможность одновременного окисления пропана в акриловую кислоту и монооксида углерода в диоксид углерода. 3 н. и 14 з.п. ф-лы, 17 ил., 6 табл.

Description

УРОВЕНЬ ТЕХНИКИ
1. ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Варианты осуществления настоящего изобретения относятся к композициям бифункционального катализатора для частичного окисления алканов и одновременного окисления не полностью окисленных оксидов углерода, к способам получения композиций и их использованию.
В частности, варианты осуществления настоящего изобретения относятся к композициям бифункционального катализатора для частичного окисления алканов и одновременного окисления частично окисленных оксидов углерода, где каталитические композиции включают, по меньшей мере, одно соединение общей формулы (I):
MoVaNbbPtcMdZeOx (I)
где
a обозначает число, имеющее значение от приблизительно 0,15 до приблизительно 0,50,
b обозначает число, имеющее значение от приблизительно 0,05 до приблизительно 0,30,
с обозначает число, имеющее значение от приблизительно 0,0001 до приблизительно 0,10,
d обозначает число, имеющее значение от приблизительно 0,0 до приблизительно 0,40,
е обозначает число, имеющее значение от приблизительно 0,0 до приблизительно 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I),
М представляет собой один или несколько из следующих элементов: Ag, Te и Sb, и
Z представляет собой один или несколько элементов, выбранных из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Ta, W, Re, Ir, Au, Pb, B и их смесей.
2. ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
Реакции конверсии углеводородов представляют собой промышленные способы превращения широко доступных компонентов нефтяного сырья в другие соединения, которые находят более широкое применение в промышленности. Примеры подобных реакций включают превращение этана в этилен, превращение пропана в пропилен, превращение пропилена в акриловую кислоту (AA), превращение изобутена в метакриловую кислоту, превращение гексена в ароматические соединения или другие подобные реакции, которые преобразуют менее ценное сырье в высокоценные продукты. Конкретным примером является производство акриловой кислоты из углеводородного сырья.
Акриловая кислота является важным химическим соединением, используемым в промышленности. Мировой спрос на акриловую кислоту в 2009 году составил почти 4 миллиона тонн в год. Основным коммерческим способом производства акриловой кислоты является двухступенчатое окисление пропилена. На первой стадии пропилен окисляется в акролеин в присутствии кислорода и водяного пара. На второй стадии акролеин окисляется в акриловую кислоту в присутствии кислорода и водяного пара. Каждая стадия осуществляется при различных оптимальных температурах и при различной концентрации углеводородов. Акриловая кислота является важным соединением для производства многих полезных веществ. Акриловую кислоту подвергают типичным реакциям карбоновых кислот, например, подвергают реакции этерификации со спиртами. Соли и эфиры акриловой кислоты известны под общим термином акрилаты (или пропионаты). Наиболее распространенными алкиловыми эфирами акриловой кислоты являются метил-, бутил-, этил- и 2-этилгексилакрилат. Полимеризация кислот и акрилатов приводит к получению коммерчески важных поликислот, полиакрилатов и полиалкилакрилатов.
Практически вся коммерчески получаемая акриловая кислота производится окислением пропилена. Однако окисление пропана в акриловую кислоту могло бы быть более экономичным, поскольку пропан является более дешевым сырьем, чем пропилен.
Прямое окисление пропана в акриловую кислоту исследовали в течение более двух десятилетий в качестве альтернативы существующему коммерческому способу окисления пропилена в акриловую кислоту. См., например, M. Ai, Journal of Catalysis, 101, 389-395 (1986) и патент США № 5380933. Однако до сих пор процесс превращения пропана в акриловую кислоту не реализован коммерчески, несмотря на относительное преимущество в цене сырья на основе пропана.
При окислении пропана в акриловую кислоту часто удобно проводить процесс таким образом, чтобы превращение пропана было лимитировано поступлением кислорода. Концентрацию кислорода поддерживают на низком уровне с тем, чтобы подаваемая в реакцию исходная смесь находилась в условиях ниже предела ее воспламенения; однако ограничение доступного кислорода приводит к ограничению конверсии пропана. Для того чтобы процесс был экономичным, не прореагировавший пропан должны быть извлечен и возвращен обратно в процесс. Кроме того, в качестве промежуточного продукта получают пропилен, и его рециклируют вместе с пропаном.
Некоторые из более эффективных катализаторов окисления пропана в акриловую кислоту (AA) приводят к образованию значительного количества оксида углерода (СО) в качестве побочного продукта, однако катализаторы не окисляют CO далее в диоксид углерода (CO2). В патенте EP1930074A1 раскрывается катализатор окисления пропана, соответствующий формуле (I):
MoVaTebNbcZdOx (I)
где a=0,0-0,50, b=0,0-0,45, c=0-0,5, d≤0,05, а х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и Z обозначает, по меньшей мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Те, Sm, Tb, Та, W, Re, Ir, Pt, Au, Pb и Bi, при условии, что в композиции катализатора содержатся металлы, по крайней мере, двух разных типов, т.е. одна из переменных a, b, c и d отлична от нуля.
С точки зрения эффективности, желательно получать большие выходы продукта из исходных углеводородных веществ. Один из способов повышения выхода заключается в рециклировании не прореагировавших и частично прореагировавших исходных веществ обратно в реактор. При окислении пропана в акриловую кислоту не прореагировавшими и частично прореагировавшими исходными веществами являются пропан и пропилен. Тем не менее, отходящий поток также содержит в виде побочных газов оксид углерода (CO) и диоксид углерода (CO2). При каждом проходе CO и CO2 накапливаются в рециклируемом потоке до тех пор, пока они не достигнут уровня, оказывающего вредное воздействие на реакцию. По этой причине важно удалить СО и СО2 или иным способом предотвратить их накопление в рециклируемом потоке. Существуют стандартные способы удаления CO2 из рециклируемого потока, которые хорошо отработаны и относительно недороги. Например, CO2 можно извлечь из рециклируемого потока промывкой основанием. Однако удаление СО сопряжено со значительными трудностями и проблемами, и, как следствие, является более дорогостоящим.
В EP 2179793 раскрываются катализаторы реакции окисления пропана, соответствующие общей формуле (I):
MoVaXbQcZdOe (I)
где Х обозначает P, который может быть частично заменен Bi, например, вплоть до молярного отношения Bi/P, равного 1/1, Q обозначает, по крайней мере, один из Nb, Ta и W (включает совместное использование Nb и Ta, Nb и W, Та и W, а также использования всех трех элементов), a=0,15-0,50, b=0,02-0,45, в частности 0,05-0,40, c=0,05-0,45, d равно 0,05, а е обозначает молярное количество кислорода, связывающегося с атомом металла, присутствующим в указанном смешанном оксиде, которое следует из относительного количества и валентности металлических элементов, а Z обозначает, по меньшей мере, один элемент, выбранный из Na, К, Si, Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Се, Pr, Nd, Sm, Tb, Re, Ir, Pt, Au и Pb.
В WO 2006008177 раскрываются металлооксидные катализаторы, содержащие оксиды таких металлов как Mo, V, Те и Nb, и которые необязательно могут содержать оксиды других металлических элементов, при условии, что они не оказывают отрицательного воздействия на каталитические функции полученного вещества в рассматриваемой в данном описании реакции окисления. Прокаленное вещество катализатора, подлежащего выщелачиванию в способе по настоящему изобретению, представляет собой вещество с усредненной общей формулой (I):
MoVaTebNbcZdOx (I)
где a=0,15-0,50, b=0,10-0,45, в частности, равно 0,10-0,40, c равно 0,05-0,20, d равно 0,05, а х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Pt, Au, Pb и Bi.
Поскольку в рециклируемом потоке концентрация CO увеличивается, то рециклируемый поток необходимо продувать, чтобы снизить уровень CO, что приводит к сопутствующей потере пропана и пропилена и к снижению эффективности, поскольку компоненты исходного сырья теряются.
Проблема накопления СО в рециклируемом потоке может быть решена одним из двух способов. CO можно удалить из рециклируемого потока. Как уже отмечалось ранее, этот способ является дорогостоящим и трудным. В качестве альтернативы, образование CO можно подавить, предотвратить или устранить таким образом, чтобы в первую очередь предотвратить, подавить или устранить накопление CO в рециклируемом потоке.
Таким образом, было бы полезно для процессов конверсии углеводородов в целом и для конверсии пропана в акриловую кислоту, в частности, получить средства для минимизации или устранения накопления СО в рециклируемом потоке. Настоящее изобретение фокусируется на втором варианте уменьшения выбросов СО и направлено на приготовление бифункциональных катализаторов, которые сочетают функцию окисления пропана, приводящую к образованию акриловой кислоты, и функцию мягкого окисления для превращения СО в СО2, который гораздо легче удаляется из рециклируемого потока. Катализатор по настоящему изобретению решает указанную задачу, не оказывая вредного воздействия на функцию превращения пропана в акриловую кислоту.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В вариантах осуществления настоящего изобретения предлагаются композиции металлооксидных катализаторов для частичного окисления алканов, содержащие оксиды Mo, V, Nb, относительно небольшое количество платины, в пределах определенного диапазона, необязательно, один или несколько оксидов металлов, выбранных из группы, которая включает Ag, Te и Sb, и необязательно оксиды других металлических элементов, при условии, что указанные оксиды других металлов не приводят к вредному воздействию полученной в итоге композиции катализатора на функцию при осуществлении частичного окисления алканов, где относительно небольшие и определенные количества Pt достаточны для получения композиций катализатора, способных одновременно окислять монооксид углерода в диоксид углерода, при этом каталитическая активность и селективность композиции снижаются лишь умеренно. Однако небольшое снижение каталитической активности и селективности более чем компенсируется возможностью композиций катализатора по настоящему изобретению одновременно частично окислять алканы и окислять CO, что снижает необходимость продувки и стоимость операции устранения СО при продувке. В некоторых вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 5% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 2,5% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше чем или равно приблизительно 1,0% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 0,8% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 0,6% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 0,5% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 0,4% масс. В других вариантах осуществления настоящего изобретения количество платины в катализаторе меньше или равно приблизительно 0,3% масс. В общем случае композиции предкатализатора прокаливают с образованием композиций активного катализатора. В некоторых вариантах осуществления настоящего изобретения активные катализаторы можно выщелачивать с образованием композиций выщелоченного катализатора.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению для частичного окисления алканов включают, по меньшей мере, одно соединение общей формулы (I):
MoVaNbbPtcMdZeOx (I),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,15 до приблизительно 0,50; в качестве альтернативы, a имеет значение в диапазоне от 0,15 до 0,50,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,05 до приблизительно 0,30; в качестве альтернативы b имеет значение в диапазоне от 0,05 до 0,30,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,0001 до приблизительно 0,10; в качестве альтернативы, c имеет значение в диапазоне от 0,0001 до 0,10,
d представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,40; в качестве альтернативы, d имеет значение в диапазоне от 0,0 до 0,40,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,10; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
М обозначает один или несколько из следующих элементов: Ag, Te и Sb, а
Z обозначает один или несколько элементов, выбранных из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от приблизительно 0,0001 до приблизительно 0,05. В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от приблизительно 0,0001 до приблизительно 0,03. В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от приблизительно 0,0001 до приблизительно 0,01. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от приблизительно 0,1% масс. до приблизительно 4,5% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от приблизительно 0,1 до приблизительно 1,2% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от приблизительно 0,1 до приблизительно 0,6% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от приблизительно 0,1 до приблизительно 0,3% масс.
В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от 0,0001 до 0,05. В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от 0,0001 до 0,03. В других вариантах осуществления настоящего изобретения с представляет собой число, имеющее значение в диапазоне от 0,0001 до 0,01. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от 0,1% масс. до 4,5% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от 0,1 до 1,2% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от 0,1 до 0,6% масс. В других вариантах осуществления настоящего изобретения соединение содержит платину в количестве в диапазоне от 0,1 до 0,3% масс.
В других вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению для частичного окисления алканов включают, по меньшей мере, одно соединение общей формулы (II):
MoVaNbbPtcSbd1Ted2ZeOx (II),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,15 до приблизительно 0,50; в качестве альтернативы, a имеет значение в диапазоне от 0,15 до 0,50,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,05 до приблизительно 0,30; в качестве альтернативы b имеет значение в диапазоне от 0,05 до 0,30,
c обозначает число, соответствующее количеству Pt, достаточному для снижения концентрации CO, который образуется при частичном окислении алканов,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,01 до приблизительно 0,40; в качестве альтернативы, d1 имеет значение в диапазоне от 0,0 до 0,40,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,01 до приблизительно 0,40; в качестве альтернативы, d2 имеет значение в диапазоне от 0,0 до 0,40,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,10; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению включают, по меньшей мере, одно соединение общей формулы (III):
MoVaNbbPtcSbd1Ted2ZeOx (III),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,15 до приблизительно 0,50; в качестве альтернативы, a имеет значение в диапазоне от 0,15 до 0,50,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,05 до приблизительно 0,30; в качестве альтернативы, b имеет значение в диапазоне от 0,05 до 0,30,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,0001 до приблизительно 0,10; в качестве альтернативы, c имеет значение в диапазоне от 0,0001 до 0,10,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,01 до приблизительно 0,30; в качестве альтернативы, d1 имеет значение в диапазоне от 0,0 до 0,30,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,01 до приблизительно 0,30; в качестве альтернативы, d2 имеет значение в диапазоне от 0,0 до 0,30,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,10; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению включают, по меньшей мере, одно соединение общей формулы (IV):
MoVaNbbPtcSbd1Ted2ZeOx (IV),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,20 до приблизительно 0,40; в качестве альтернативы, a имеет значение в диапазоне от 0,20 до 0,40,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,10 до приблизительно 0,20; в качестве альтернативы, b имеет значение в диапазоне от 0,10 до 0,20,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,001 до приблизительно 0,075; в качестве альтернативы, c имеет значение в диапазоне от 0,001 до 0,075,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,02 до приблизительно 0,20; в качестве альтернативы, d1 имеет значение в диапазоне от 0,0 до 0,20,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,02 до приблизительно 0,20; в качестве альтернативы, d2 имеет значение в диапазоне от 0,0 до 0,20,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,05; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,05,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению включают, по меньшей мере, одно соединение общей формулы (V):
MoVaNbbPtcSbd1Ted2ZeOx (V),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,25 до приблизительно 0,35; в качестве альтернативы, a имеет значение в диапазоне от 0,25 до 0,35,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,10 до приблизительно 0,15; в качестве альтернативы, b имеет значение в диапазоне от 0,10 до 0,15,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,001 до приблизительно 0,05; в качестве альтернативы, c имеет значение в диапазоне от 0,001 до 0,05,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,04 до приблизительно 0,12; в качестве альтернативы, d1 имеет значение в диапазоне от 0,04 до 0,12,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,04 до приблизительно 0,12; в качестве альтернативы, d2 имеет значение в диапазоне от 0,04 до 0,12,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,05; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,05,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению включают, по меньшей мере, одно соединение общей формулы (VI):
MoVaNbbPtcSbd1Ted2ZeOx (VI),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,25 до приблизительно 0,35; в качестве альтернативы, a имеет значение в диапазоне от 0,25 до 0,35,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,10 до приблизительно 0,15; в качестве альтернативы, b имеет значение в диапазоне от 0,10 до 0,15,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,001 до приблизительно 0,05; в качестве альтернативы, c имеет значение в диапазоне от 0,001 до 0,05,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,06 до приблизительно 0,12; в качестве альтернативы, d1 имеет значение в диапазоне от 0,06 до 0,12,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,06 до приблизительно 0,12; в качестве альтернативы, d2 имеет значение в диапазоне от 0,06 до 0,12,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,05; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,05,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
В некоторых вариантах осуществления настоящего изобретения композиции катализаторов по настоящему изобретению включают, по меньшей мере, одно соединение общей формулы (VII):
MoVaNbbPtcSbd1Ted2ZeOx (VII),
где
a представляет собой число, имеющее значение в диапазоне от приблизительно 0,25 до приблизительно 0,35; в качестве альтернативы, a имеет значение в диапазоне от 0,15 до 0,50,
b представляет собой число, имеющее значение в диапазоне от приблизительно 0,10 до приблизительно 0,15; в качестве альтернативы, b имеет значение в диапазоне от 0,10 до 0,15,
c представляет собой число, имеющее значение в диапазоне от приблизительно 0,001 до приблизительно 0,05; в качестве альтернативы, c имеет значение в диапазоне от 0,0001 до 0,10,
d1 представляет собой число, имеющее значение в диапазоне от приблизительно 0,06 до приблизительно 0,12; в качестве альтернативы, d1 имеет значение в диапазоне от 0,06 до 0,12,
d2 представляет собой число, имеющее значение в диапазоне от приблизительно 0,06 до приблизительно 0,12; в качестве альтернативы, d2 имеет значение в диапазоне от 0,06 до 0,12,
e представляет собой число, имеющее значение в диапазоне от приблизительно 0,0 до приблизительно 0,05; в качестве альтернативы, e имеет значение в диапазоне от 0,0 до 0,05,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z обозначает, по крайней мере, один элемент, выбранный из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Sb, Ce, Pr, Nd, Te, Sm, Tb, Та, W, Re, Ir, Au, Pb, B и их смесей.
Следует понимать, что в формулах (I-VII), если соединение имеет больше одного элемента M или больше одного элемента Z, то количество каждого элемента М в соединении может меняться в пределах указанных диапазонов переменной d, а количество каждого элемента Z может меняться в пределах указанных диапазонов переменной е. Так, в соединениях формул II-VII значения для d1 и d2 могут независимо друг от друга попадать в диапазон указанных значений и их сумма необязательно должна составлять d в соединениях формулы I.
В вариантах осуществления настоящего изобретения предлагаются способы получения катализатора по настоящему изобретению, которые включают стадию приготовления первой смеси из Mo, V, Те, Sb и Pt в воде, которые добавляют в указанном порядке при перемешивании и нагревании. Полученную смесь затем перемешивают при повышенной температуре в течение необходимого для нагревания времени, а затем охлаждают до температуры охлаждения. Способы также включают приготовление второй смеси, включающей щавелевую кислоту и Nb, в воде при перемешивании и нагревании до второй температуры нагревания в течение второго времени нагревания. Вторую смесь охлаждают до второй температуры охлаждения. Вторую смесь затем добавляют к первой смеси и высушивают распылением, получая предшественник катализатора. Предшественник катализатора затем сушат на воздухе при температуре сушки в течение необходимого для сушки времени. Затем предшественник катализатора разлагают при температуре разложения в течение необходимого для разложения времени. Предшественник катализатора после разложения затем прокаливают при температуре прокаливания в течение времени обжига и получают активный катализатор. Активный катализатор затем измельчают и просеивают до размера 18/35 меш.
В вариантах осуществления настоящего изобретения предлагаются способы использования катализатора по настоящему изобретению, которые включают стадию контактирования алкана с кислородом в реакторе в присутствии катализатора по настоящему изобретению в условиях окисления алкана, с целью получения требуемого продукта окисления алкана, и одновременно с целью снижения концентрации совместно образующегося монооксида углерода (CO). Затем продукт окисления алкана извлекают. Способы по настоящему изобретения включают также рециклирование отходящего потока, при этом указанный катализатор уменьшает количество CO в рециклируемом потоке. Способы включают также минимизацию продувки, необходимость которой вызывается образованием СО, что приводит к сокращению потерь углеводородов и повышает общую производительность способа. В некоторых вариантах осуществления настоящего изобретения алканом является пропан, а требуемым продуктом является акриловая кислота. В некоторых вариантах осуществления настоящего изобретения алканом является изобутан, а продуктом является метакриловая кислота. В некоторых вариантах осуществления настоящего изобретения алканом является н-бутан, а продуктом является 2-метилакриловая кислота. В некоторых вариантах осуществления настоящего изобретения алканом является 2-метилпентан, а продуктом является 2-метилметакриловая кислота. В некоторых вариантах осуществления настоящего изобретения алканом является н-пентан, а продуктом является 2-этилакриловая кислота.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение станет более понятным благодаря следующему подробному описанию вместе с прилагаемыми пояснительными чертежами, на которых все одинаковые элементы пронумерованы одинаково:
На фиг. 1 представлена эффективность окисления CO в присутствии катализатора 1.
На фиг. 2 представлена эффективность окисления CO в присутствии катализатора 1.
На фиг. 3 представлена эффективность окисления CO в присутствии катализатора 5.
На фиг. 4 представлена эффективность окисления CO в присутствии катализатора 1 в сравнении с катализатором 5.
На фиг. 5 представлена эффективность функционирования катализатора 5 при отношении O2 к пропану, равному 0,5.
На фиг. 6 представлена эффективность функционирования катализатора 5 при отношении O2 к пропану, равному 3.
На фиг. 7 представлена эффективность функционирования катализатора 1 при отношении O2 к пропану, равному 0,5.
На фиг. 8 представлена эффективность функционирования катализатора 1 при отношении O2 к пропану, равному 3.
На фиг. 9 представлена эффективность функционирования катализатора 6 при отношении O2 к пропану, равному 0,5.
На фиг. 10 представлена эффективность функционирования катализатора 6 при отношении O2 к пропану, равному 3.
На фиг. 11 представлена эффективность функционирования катализатора 7 при отношении O2 к пропану, равному 0,5.
На фиг. 12 представлена эффективность функционирования катализатора 7 при отношении O2 к пропану, равному 3.
На фиг. 13 представлена эффективность функционирования катализатора 8 при отношении O2 к пропану, равному 0,5.
На фиг. 14 представлена эффективность функционирования катализатора 8 при отношении O2 к пропану, равному 3.
На фиг. 15 представлена эффективность окисления CO в присутствии катализатора 6.
На фиг. 16 представлена эффективность окисления CO в присутствии катализатора 7.
На фиг. 17 представлена эффективность окисления CO в присутствии катализатора 8.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Авторы настоящего изобретения обнаружили, что стандартный катализатор частичного окисления алканов можно преобразовать в бифункциональный катализатор путем добавления определенного количества вспомогательного металла, эффективного для превращения стандартного катализатора частичного окисления пропана в бифункциональный катализатор, способный одновременно частично окислять алкан в требуемый продукт и доокислять частично окисленный оксид углерода, образующийся в виде побочного продукта, в диоксид углерода, в частности, одновременно окислять монооксид углерода в диоксид углерода. Для случая проведения реакции окисления пропана авторы настоящего изобретения обнаружили, что композиции бифункциональных катализаторов по настоящему изобретению эффективно превращают пропан в акриловую кислоту и одновременно превращают побочно образующийся СО в СО2, тем самым сокращая накопление СО в рециклируемом потоке. После проверки ряда вспомогательных металлов в стандартной композиции базового катализатора авторы настоящего изобретения обнаружили, что добавление относительно небольшого, в пределах определенного диапазона, количества платины (Pt) в композицию основного катализатора приводит к получению композиций эффективного и действенного бифункционального катализатора. Хотя добавление Pt на всех протестированных уровнях, даже относительно низких уровнях или незначительных уровнях, приводит к незначительному снижению активности и селективности катализатора, указанные снижения более чем компенсируются возможностью катализаторов осуществлять окисление. Снижение образования CO за счет его совместного окисления устраняет необходимость удаления CO из рециклируемого потока. Кроме того, использование концентраций Pt, которые превышают указанные в данном описании уровни, неблагоприятно как с точки зрения эффективности катализатора, так и с точки зрения стоимости катализатора.
Композиции бифункциональных катализаторов по настоящему изобретению способны окислять пропан в акриловую кислоту, а монооксид углерода в диоксид углерода при проведении реакции как в условиях ограниченного поступления пропана, так и в условиях ограниченного доступа кислорода. Композиции бифункциональных катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤1,00 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤0,75 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤0,50 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤0,25 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤0,15 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 55%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 20% и производят оксиды углерода с отношением CO/CO2≤0,10 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 60%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 25% и производят оксиды углерода с отношением CO/CO2≤0,50 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 65%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 25% и производят оксиды углерода с отношением CO/CO2≤0,25 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 70%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 25% и производят оксиды углерода с отношением CO/CO2≤0,20 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 70%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 25% и производят оксиды углерода с отношением CO/CO2≤0,15 в условиях ограниченного поступления пропана. В других вариантах осуществления настоящего изобретения композиции катализаторов обладают селективностью по акриловой кислоте (AA), равной, по меньшей мере, 70%, обеспечивают степень конверсии пропана, равную, по меньшей мере, 25% и производят оксиды углерода с отношением CO/CO2≤0,10 в условиях ограниченного поступления пропана.
ПОДХОДЯЩИЕ РЕАГЕНТЫ И КОМПОНЕНТЫ
АЛКАНЫ
Подходящие алканы для окисления в присутствии композиций катализаторов по настоящему изобретению включают, без ограничения, С35 алканы. Типичные не ограничивающие настоящее изобретение примеры включают, без ограничения, пропан, н-бутан, изобутан, н-пентан, изо-пентан или их смеси.
КОМПОНЕНТЫ МЕТАЛЛОВ
Следует понимать, что приведенные в данном описании исходные материалы даны для примера и не является исчерпывающими. Подходящими исходными веществами (источники металлов) для оксидов Mo, V и Nb являются, например, такие вещества, которые описаны в патенте США №5380933 (столбец 3, строки с 27 по 57) и/или патенте США №6710207 (столбец 8, строки с 12 по 30) и включают органические и неорганические соли и кислоты (как правило, оксикислоты) требуемых металлических элементов. Соли выбраны таким образом, что после прокаливания в отожженном предшественнике катализатора остаются лишь металл и кислород, поскольку все другие компоненты являются летучими или становятся летучими в результате разложения или окисления. По указанной причине возможно также использование аммониевых солей металлического элемента (или соответствующей оксикислоты), органических солей, таких как оксалаты, алкоксиды или ацетилацетонаты, металлоорганических комплексов, металлоорганических соединений или летучих неорганических солей, таких как нитраты. Кроме того, выбранные соли и кислоты в общем случае растворимы или, по крайней мере, способны диспергироваться в выбранном растворителе, таком как вода. Подходящие исходные соли и кислоты включают, например, пара- или гептамолибдат аммония, оксалат молибдена, молибденофосфорную кислоту, теллуровую кислоту, нитрат висмута, метаванадат аммония, оксалат ванадия, ванадилсульфат (VOSO4), оксалат аммония и ниобия, пара- или гептавольфрамат аммония, оксалат вольфрама, вольфрамофосфорную кислоту и оксалат тантала и аммония. Например, катализатор можно получить, приготавливая раствор источника V (например, водный раствор метаванадата аммония) и раствор источника Te (например, водный раствор теллуровой кислоты) и добавляя их к раствору источника Mo (например, водному раствору гептамолибдата аммония) необязательно после нагревания раствора Мо, с последующим добавлением раствора источника Nb (например, водного раствора оксалата аммония ниобия). Аналогичным образом, исходное вещество для необязательного элемента Z может быть выбрано специалистом из тех веществ, которые используются в данной области техники. Марганец (Mn), например, может быть добавлен в виде ацетата марганца, а рутения (Ru) может быть добавлен в виде поликислоты, например в виде Mo-содержащих (необязательно также P-содержащих) поликислот, таких как H3PMo11RuO40.
Как правило, количества исходных веществ регулируют как можно более точно с тем, чтобы получить катализатор, в котором номинально количество металлов такое же, как и установленное в конкретной формуле катализатора, поскольку количества исходного вещества, по всей видимости, оказывают большое влияние на активность целевого катализатора. Концентрация (в моль) каждого металла, имеющегося в исходной композиции, не должна отличаться более чем на ±5% от расчетной композиции для данного состава катализатора. В некоторых вариантах осуществления настоящего изобретения концентрации исходных металлов не должны отличаться более чем на ±2%. В других вариантах осуществления настоящего изобретения концентрации исходных металлов не должны отличаться более чем на ±1%. В других вариантах осуществления настоящего изобретения концентрации исходных металлов не должны отличаться более чем на 0,1% мольн.
НЕИОНОГЕННЫЙ (НЕЙТРАЛЬНЫЙ) СТРУКТУРООБРАЗУЮЩИЙ АГЕНТ
В некоторых способах получения по настоящему изобретению в растворе или суспензии может присутствовать неионогенный (нейтральный) структурообразующий агент, который выполняет структурообразующую функцию при образовании пор в композициях конечных катализаторов. Форма и размер структурообразующего агента определяет форму и размер пор, присутствующих в композициях катализаторов по настоящему изобретению.
Подходящие структурообразующие агенты включают, без ограничения, основания Льюиса, т.е. соединения, которые обладают свободной парой электронов, например, соединения, имеющие эфирную связь, где свободная электронная пара присутствует у соответствующего атома кислорода. Структурообразующие агенты, используемые при получении композиций катализаторов по настоящему изобретению в широком смысле, разделяют на нейтральные структурообразующие агенты (т.е. агенты, которые не диссоциируют на ионы в воде) и заряженные структурообразующие агенты (т.е. агенты, несущие заряд до или после диссоциации в воде, такие как соли, например, СТАВ). В некоторых вариантах осуществления настоящего изобретения, нейтральные структурообразующие агенты используются при получении катализатора.
Подходящие нейтральные структурообразующие агенты включают, без ограничения, соединения, которые не несут положительный или отрицательный заряд или которые не диссоциируют в растворителе на химические соединения, имеющие положительный или отрицательный заряд. Отдельные не ограничивающие настоящее изобретение примеры нейтральных структурообразующих агентов включают кислородсодержащие сополимеры, такие как поли(алкиленоксид)ные полимеры, например поли(этиленоксид), триблочные сополимеры поли(алкиленоксид)ного типа, такие как поли(алкиленоксид)ные полимеры этиленоксид/пропиленоксид/этиленоксидного типа или двухблочные сополимеры поли(алкиленоксид)ного типа, например, сополимеры этиленоксид/бутиленоксидного типа. Указанные полимеры доступны под торговым названием Pluronic.
Как указано выше, размер и форма структурообразующего агента определяют структуру образующегося мезопористого вещества и, в конечном счете, влияют на распределение размера пор конечной композиции катализатора. Таким образом, размером пор можно управлять путем регулирования размера структурообразующего агента. В случае использования полиалкиленоксида в качестве структурообразующего агента на размер пор влияет молекулярная масса. В некоторых вариантах осуществления настоящего изобретения полиалкиленоксид в качестве структурообразующего агента имеет среднечисловую молекулярную массу от 1100 до 15000.
Другими пригодными для использования неионогенными структурообразующими агентами являются поверхностно-активные вещества, такие как первичных амины, в частности, первичные амины формулы CnH2n+1NH2, где n обозначает целое число от 12 до 18, а CnH2n+1 представляет собой разветвленную или, предпочтительно, линейную алкильную группу, или спирты, такие как первичные спирты, в частности, первичные спирты формулы CnH2n+1OH, где n обозначает целое число от 12 до 18, а CnH2n+1 представляет собой разветвленную или, предпочтительно, линейную алкильную группу.
Относительные пропорции структурообразующего агента и металлических предшественников в предлагаемой смеси специально не ограничиваются и в общем случае меняются в интервале от 0,001 до 0,03, выраженном как молярное количество структурообразующего агента/молярное количество металлического предшественника.
РАСТВОРИТЕЛИ
На стадиях приготовления композиции катализатора по настоящему изобретению вышеуказанный металлический предшественник в общем случае включает растворы или суспензии одного или нескольких исходных металлических веществ. Тип используемого для этой цели растворителя специально не ограничивается, при условии, что он способен, по крайней мере, в некоторой степени растворять металлические предшественники. Если используется высоко устойчивый к давлению сосуд, то достаточно, если используемый растворитель будет способен, по крайней мере, в некоторой степени растворять металлические предшественники в определенных условиях в высоко устойчивом к давлению сосуде. Например, можно использовать растворитель, который не растворяет металлический предшественник в стандартных условиях (при комнатной температуре и давлении 1 атмосфера (атм)), но который, по крайней мере, в некоторой степени действительно растворяет металлический предшественник в высоко устойчивом к давлению сосуде при повышенных давлениях и/или температурах.
Подходящие растворители включают, без ограничения, воду и/или один или несколько полярных растворителях, таких как протонные растворители, в частности, спирты (например, метанол, этанол, изопропанол), или апротонные растворители, такие как кетоны (например, ацетон), или простые эфиры (например, диметиловый эфир, диэтиловый эфир, ди-трет-бутиловый эфир). В некоторых вариантах осуществления настоящего изобретения растворитель включает воду или водный раствор. Если используют воду или водный раствор, то раствор или суспензию можно обозначить как "водный" раствор или суспензия.
Помимо металлического предшественника, структурообразующего агента и растворителя, растворы или суспензии могут содержать различные добавки. Подобные добавки могут быть использованы для регулирования размера пор полученных в итоге композиций катализаторов. Например, структурообразующие агенты могут использоваться для увеличения размера пор. Другие добавки могут включать агенты, которые образуют комплексы с металлами, или агенты, которые повышают растворимость исходного металлического вещества. Подходящие комплексообразующие или повышающие растворимость добавки могут включать лимонную кислоту, щавелевую кислоту или ЭДТК (этилендиаминтетрауксусную кислоту). Другие добавки, включающие восстановители, такие как гидразин или гидроксиламин, могут быть использованы для контролирования состояния окисления металла в процессе синтеза. Щавелевая кислота является полезной добавкой для регулирования состояния окисления теллура, когда синтез проводят в высоко устойчивом к давлению сосуде или при термической обработке. Твердые вещества, которые не растворяются в условиях проведения реакции в устойчивом к давлению сосуде, могут быть добавлены в качестве разбавителей. Примерами являются частицы оксидов, таких как диоксид кремния, SiC или углерода, такого как активированный уголь или наноструктурированный углерод, такой как углеродные нанотрубки или нановолокна.
Ниже приведены некоторые примеры вариантов композиций по настоящему изобретению, способов получения указанных композиции и способов применения указанных композиции.
Вариант осуществления изобретения 1: Композиция, содержащая соединение следующей общей формулы:
MoVaNbbPtcMdZeOx
a обозначает число, имеющее значение в диапазоне от 0,15 до 0,50,
b обозначает число, имеющее значение в диапазоне от 0,05 до 0,30,
c обозначает число, имеющее значение в диапазоне от 0,0001 до 0,10,
d обозначает число, имеющее значение в диапазоне от 0,0 до 0,35,
e обозначает число, имеющее значение в диапазоне от от 0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I),
М присутствует и представляет собой один или несколько следующих элементов, выбранных из группы, которая включает Ag, Te, Sb, а если присутствует больше одного элемента М, то каждый элемент М изменяется независимо в диапазоне значений d, и
Z представляет собой один или несколько элементов, выбранных из группы, состоящей из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В, а если присутствует больше одного элемента Z, то каждый элемент Z изменяется независимо в диапазоне значений e.
Вариант осуществления изобретения 2: Композиция по варианту осуществления изобретения 1, где c обозначает число, имеющее значение в диапазоне от 0,0001 до 0,05.
Вариант осуществления изобретения 3: Композиция по варианту осуществления изобретения 1, где c обозначает число, имеющее значение в диапазоне от 0,0001 до 0,03.
Вариант осуществления изобретения 4: Композиция по варианту осуществления изобретения 1, где c обозначает число, имеющее значение в диапазоне от 0,0001 до 0,01.
Вариант осуществления изобретения 5: Композиция по варианту осуществления изобретения 1, где c обозначает число, имеющее значение в диапазоне от 0,001 до 0,03.
Вариант осуществления изобретения 6: Композиция по любому из вариантов осуществления изобретения 1-5, где соединение содержит платину с концентрацией от 0,1% масс. до 4,5% масс.
Вариант осуществления изобретения 7: Композиция по любому из вариантов осуществления изобретения 1-6, где соединение содержит платину с концентрацией 0,1% масс. до 1,2% масс.
Вариант осуществления изобретения 8: Композиция по любому из вариантов осуществления изобретения 1-7, где соединение содержит платину с концентрацией 0,1% масс. до 0,6% масс.
Вариант осуществления изобретения 9: Композиция по любому из вариантов осуществления изобретения 1-8, где соединение содержит платину с концентрацией 0,1% масс. до 0,3% масс.
Вариант осуществления 10: Композиция по любому из вариантов осуществления изобретения 1-9, где, по меньшей мере, один М присутствует в количестве больше нуля.
Вариант осуществления изобретения 11: Композиция по любому из вариантов осуществления изобретения 1-10, где М включает Se и Te, а d имеет значение от 0,05 до 0,15.
Вариант осуществления изобретения 12: Композиция по любому из вариантов осуществления изобретения 1-11, где M представляет собой Ag0.10-0,30.
Вариант осуществления изобретения 13: Способ конверсии углеводорода в ненасыщенную карбоновую кислоту, который включает: контактирование потока, содержащего углеводород, который имеет от трех до пяти атомов углерода, кислород и инертный компонент, выбранный из группы, которая включает газообразный азот, водяной пар и их смеси, в присутствии композиции по любому из вариантов осуществления изобретения 1-12; образование отходящего потока со стадии контактирования; и извлечение ненасыщенной карбоновой кислоты из отходящего потока.
Вариант осуществления изобретения 14: Способ по варианту осуществления изобретения 13, дополнительно включающий рециклирование, по крайней мере, части отходящего потока на указанную стадию контактирования.
Вариант осуществления изобретения 15: Способ по любому из вариантов осуществления изобретения 13-14, где указанный углеводород представляет собой один или несколько углеводородов, имеющих три атома углерода, а ненасыщенной карбоновой кислотой является акриловая кислота.
Вариант осуществления изобретения 16: Способ получения бифункционального катализатора окисления, способного одновременно окислять пропан в акриловую кислоту, а монооксид углерода - в диоксид углерода, включающий: приготовление первого водного раствора, включающего источник молибдена, источник ванадия и источник платины; приготовление второго водного раствора, включающего органическую кислоту и источник ниобия; добавление второго водного раствора к первому водному раствору с образованием суспензии предшественника катализатора; сушку предшественника катализатора; и разложение предшественника катализатора с образованием композиции катализатора. Платина присутствует в количестве, достаточном, для формирования катализатора, массовый процент платины в котором составляет от 0,1 до 4,5 в пересчете на общую массу катализатора.
Вариант осуществления изобретения 17: Способ по варианту осуществления изобретения 16, где первый водный раствор дополнительно включает источник одного или нескольких металлов, выбранных из группы, состоящей из Ag, Te, и Sb.
Вариант осуществления изобретения 18: Способ по любому из вариантов осуществления изобретения 16-17, где первый водный раствор дополнительно включает источник одного или нескольких металлов, выбранных из группы, которая состоит из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Се, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В.
Вариант осуществления изобретения 19: Способ по любому из вариантов осуществления изобретения 16-18, где сушку осуществляют на воздухе при температуре 120°С в течение 1 час, а разложение осуществляют при температуре 300°С в течение 5 час.
Вариант осуществления изобретения 20: Способ по любому из вариантов осуществления изобретения 16-19, который дополнительно включает прокаливание предшественника катализатора в атмосфере аргона при температуре 600°С в течение 2 часов.
Вариант осуществления изобретения 21: Способ по любому из вариантов осуществления изобретения 16-20, дополнительно включающий: перед стадией добавления, нагревание первого водного раствора при первой температуре и в течение первого времени, чтобы растворить исходные вещества, и охлаждение нагретого первого водного раствора; и перед стадией добавления, нагревание второго водного раствора при второй температуре и в течение второго времени, чтобы растворить исходные вещества, и охлаждение нагретого первого водного раствора.
Вариант осуществления изобретения 22: Способ по варианту осуществления изобретения 21, где первая температура составляет 90°C, и первое время равно 1 час, и первый водный раствор охлаждают до температуры 35°С, а вторая температура составляет от 95°C до 100°С и второе время равно 1 час.
Вариант осуществления изобретения 23: Композиция по любому из п.п. 1-12, получаемая по любому способу п.п. 16-23.
ЭКСПЕРИМЕНТЫ ПО ИЗОБРЕТЕНИЮ
ПОЛУЧЕНИЕ КАТАЛИЗАТОРА 1
Готовят катализатор 1 с номинальным составом Mo1V0,3Nb0,12Sb0,09Te0,09Ox, где х обозначает число, необходимое для того, чтобы сбалансировать валентности в композиции катализатора.
Раствор A готовят следующим образом: 40,0 грамм (г) парамолибдата аммония растворяют в 300 миллилитрах (мл) воды при нагревании. Добавляют 7,95 г ванадата аммония и растворяют при перемешивании в течение 30 мин. Затем добавляют 4,68 г дигидрата теллуровой кислоты и растворяют. Затем добавляют 2,97 г оксида сурьмы(III). Раствор нагревают при температуре 90°С в течение 1 час, а затем дают охладиться до 35°С.
Раствор B готовят следующим образом: 20,6 г дигидрата щавелевой кислоты растворяют в 150 мл в теплой воде при нагревании. Добавляют 4,7 г ниобиевой кислоты и раствор нагревают до температуры в диапазоне от 95°С до 100°С в течение одного часа. Затем раствор B охлаждают до комнатной температуры.
Раствор В добавляют к раствору А. Полученный раствор сушат распылительной сушкой и получают твердый предшественник катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 час, затем разлагают при температуре 300°С в течение 5 час. Затем предшественник катализатора прокаливают в атмосфере аргона при температуре 600°С в течение 2 час. Полученный порошок измельчают, спрессовывают и просеивают через сито 18/35 меш, получая активный катализатор, катализатор 1.
ПРИГОТОВЛЕНИЕ КАТАЛИЗАТОРОВ 2-4
Катализаторы 2-4 включают Ag, Ga, и Pd, соответственно, их готовят таким образом, чтобы получить номинальный состав Mo1V0,3Nb0,12Sb0,09Te0,09MeOx, где х обозначает число, необходимое для того, чтобы сбалансировать валентности композиции катализатора, а количество М приведено ниже:
Катализатор M y Исходное вещество Количество (г) Вода
2 Ag 0,05 Нитрат серебра 1,92 Отсутствует
3 Ga 0,05 Оксид галлия 1,06 Отсутствует
4 Pd 0,05 Тетраамин Палладий(II) нитрат 3,38 10% масс.
Раствор A готовят следующим образом: 40,0 г парамолибдата аммония растворяют в 300 мл воды при нагревании. Добавляют 7,95 г ванадата аммония и растворяют при перемешивании в течение 30 мин. Затем добавляют 4,68 г дигидрата теллуровой кислоты и растворяют. Затем добавляют 2,97 г оксида сурьмы(III). Наконец, в каждом случае добавляют обозначенное количество M, как указано выше в таблице. Раствор нагревают при температуре 90°С в течение 1 час, а затем дают охладиться до 35°С.
Раствор B готовят следующим образом: 20,6 г дигидрата щавелевой кислоты растворяют в 150 мл в теплой воде при нагревании. Добавляют 4,7 г ниобиевой кислоты. Раствор закрывают и нагревают до температуры в диапазоне от 95°С до 100°С в течение одного часа. Раствор B охлаждают до комнатной температуры.
Раствор В добавляют к раствору А. Полученный раствор сушат распылительной сушкой и получают твердый предшественник катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 час, затем разлагают при температуре 300°С в течение 5 час. Предшественник катализатора после разложения прокаливают в атмосфере аргона при температуре 600°С в течение 2 час. Полученный порошок измельчают, спрессовывают и просеивают через сито 18/35 меш, получая активные катализаторы, катализаторы 2-4.
ПРИГОТОВЛЕНИЕ КАТАЛИЗАТОРА 5
Готовят катализатор 5, имеющий номинальный состав Mo1V0,3Nb0,12Sb0,09Te0,09Pt0,05Ox, где х обозначает число, необходимое для того, чтобы сбалансировать валентности в композиции катализатора.
Раствор A готовят следующим образом: 40,0 г парамолибдата аммония растворяют в 270 мл воды при нагревании. Добавляют 7,95 г ванадата аммония и растворяют при перемешивании в течение 30 мин. Затем добавляют 4,68 г дигидрата теллуровой кислоты и растворяют. Затем добавляют 2,97 г оксида сурьмы(III). 4,39 г нитрата тетраамин платины (II) растворяют в 45 мл воды, а затем добавляют к указанному раствору. Раствор нагревают при температуре 90°С в течение 1 час, а затем дают охладиться до 35°С.
Раствор B готовят следующим образом: 20,6 г дигидрата щавелевой кислоты растворяют в 150 мл в теплой воде при нагревании. Добавляют 4,7 г ниобиевой кислоты и раствор течение одного часа нагревают до температуры в диапазоне от 95°С до 100°С в. Раствор B охлаждают до комнатной температуры.
Раствор В добавляют к раствору А. Полученный раствор сушат распылительной сушкой и получают твердый предшественник катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 час, затем разлагают при температуре 300°С в течение 5 час. Предшественник катализатора после разложения прокаливают в атмосфере аргона при температуре 600°С в течение 2 час. Полученный порошок измельчают, спрессовывают и просеивают через сито 18/35 меш, получая активный катализатор, катализатор 5.
ПРИГОТОВЛЕНИЕ КАТАЛИЗАТОРОВ 6-8
Катализаторы 6-8 содержат различные количества Pt и их готовят таким образом, чтобы получить номинальные составы Mo1V0,3Nb0,12Sb0,09Te0,09PtyOx, Mo1V0,3Nb0,12Sb0,09Te0,09Ox, где х обозначает число, необходимое для того, чтобы сбалансировать валентности в композиции катализатора, а y обозначает количество Pt, которое указано ниже:
Катализатор y Исходное вещество Количество (г) Вода (мл)
6 0,013 Тетраамин палладий(II) нитрат 1,10 45
7 0,006 Тетраамин палладий(II) нитрат 0,55 45
8 0,003 Тетраамин палладий(II) нитрат 0,27 45
Раствор A готовят следующим образом: 40,0 г парамолибдата аммония растворяют в 270 мл воды при нагревании. Добавляют 7,95 г ванадата аммония и растворяют при перемешивании в течение 30 мин. Затем добавляют 4,68 г дигидрата теллуровой кислоты и растворяют. Затем добавляют 2,97 г оксида сурьмы(III). Наконец, к указанному раствору добавляют y граммов нитрата тетраамин платины(II) (как указано выше в таблице), растворенного в 45 мл воды. Раствор нагревают при температуре 90°С в течение 1 час, а затем дают охладиться до 35°С.
Раствор B готовят следующим образом: 20,6 г дигидрата щавелевой кислоты растворяют в 150 мл в теплой воде при нагревании. Добавляют 4,7 г ниобиевой кислоты. Раствор закрывают и течение одного часа нагревают до температуры в диапазоне от 95°С до 100°С в. Раствор B охлаждают до комнатной температуры.
Раствор В добавляют к раствору А. Полученный раствор сушат распылительной сушкой и получают твердый предшественник катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 час, разлагают при температуре 300°С в течение 5 час, а затем прокаливают в атмосфере аргона при температуре 600°С в течение 2 час. Полученный порошок измельчают, спрессовывают и просеивают через сито 18/35 меш, получая активные катализаторы, катализаторы 6-8.
ИСПЫТАНИЯ КАТАЛИЗАТОРОВ
Авторы настоящего изобретения протестировали эффективность базового катализатора MoV0,3Nb0,12Sb0,09Te0,09, катализатора 1, для окисления СО в CO2 в условиях окисления пропана с отношением O2 к пропану, равным 0,5, в условиях ограниченного доступа кислорода. Испытание на окисление CO проводят, как указано в таблице 1, а результаты приведены на фигурах 1 и 2.
Таблица I
Состав поступающих в реактор исходных веществ в экспериментах с СО при отношении O2 к пропану, равном 0,5
Исходные вещества, куб. см/мин % в исходных веществах
Пропанкуб. см/мин O2 куб. см/мин N2 куб. см/мин CO куб. см/мин Водяной пар куб. см/мин Всего куб. см/мин Пропан % O2 % N2 % CO % Во-дяной пар %
20,0 10 90 0 65 185 10,8 5,4 48,7 0,0 35,0
20,0 10 90 2 65 187 10,7 5,4 48,2 1,1 34,7
20,0 10 90 4 65 189 10,6 5,3 47,7 2,1 34,3
20,0 10 90 6 65 191 10,5 5,2 47,2 3,1 33,9
20,0 10 90 8 65 193 10,4 5,2 46,7 4,2 33,6
Данные показывают, что катализатор 1 не способен совместно окислять СО в СО2 при окислении пропана в условиях ограниченного доступа кислорода, как графически показано на фигуре 1. Данные также показывают, что по мере того, как количество СО увеличивается в исходном сырье, количество CO увеличивается и в отходящем потоке. Кроме того, нетто количество CO (COвыход-COвход) показывает небольшое уменьшение по мере того, как количество CO увеличивается в исходном сырье. Кроме того, не наблюдается существенного увеличения количества СО2 в отходящем потоке или значительного уменьшения количества О2 в отходящем потоке, когда количество CO увеличивается, как показано графически на фиг. 2. Указанные факты, вместе взятые, указывают на то, что базовый катализатор, катализатор 1, не превращает СО в СО2 при окислении пропана в условиях ограниченного доступа кислорода. Все испытания проводят при отношении кислорода к пропану, равном 0,5, в условиях ограниченного доступа кислорода, при этом объемные скорости потока всех компонентов поддерживаются постоянными, за исключением скорости потока CO, которая меняется от 0 стандартных кубических сантиметров в минуту (куб.см/мин) до 8 куб.см/мин. Общая объемная скорость потока увеличивается с 185 куб.см/мин до 193 куб.см/мин вследствие увеличения скорости потока CO.
МОДИФИКАЦИЯ КАТАЛИЗАТОРА
Авторы настоящего изобретения выбрали вариант модифицирования катализатора 1 путем добавления металлов, которые, как полагают авторы настоящего изобретения, позволяют получить композиции катализаторов, способные одновременно частично окислять алканы и совместно окислять CO. Авторы настоящего изобретения протестировали металлы Ag, Ga, Pd и Pt. Указанные металлы были выбраны вследствие их свойств в реакциях окисления. Композиции и физические свойства модифицированного катализатора, катализаторов 2-5, которые включают Ag, Ga, Pd и Pt, соответственно, приведены в таблице II.
Таблица II
Физические свойства модифицированного MoV0,3Nb0,12Sb0,09Te0,09Xm
Обозначение катализатора 1 2 3 4 5
Xm Отсутствует Ag0,05 Ga0,05 Pd0,05 Pt0,05
Измельчение в шаровой мельнице да да да да да
SA12/г) 10,9 8,8 10 11,8 11,5
PV2 (куб.см/г) 0,074 0,065 0,074 0,09 0,08
ASP3, Å 270 294 270 305 279
Размер, определенный рентгеновскими методами4, Å 377 648 591 578 455
XRF
Te 5,33 5,21 5,35 5,05 5,26
Sb 6,26 5,72 6,04 5,87 6,02
Mo 48,17 47,32 47,25 47,52 47,28
Nb 5,24 5,12 5,14 5,4 5,29
V 7,16 6,93 7,08 7,34 7,15
Другой металл 2,17 (Ag) 1,452 (Ga) Неизвестно 0,06 (Pt)
1SA (м2/г) = площадь поверхности в квадратных метрах на грамм
2PV = объем пор в кубических сантиметрах на грамм
3ASP = средний размер пор (т.е. диаметр) в ангстремах
4Размер, определенный рентгеновскими методами = размер кристалла в ангстремах
Катализаторы 2-5 испытывают в реакции окисления пропана в условиях с ограниченным поступлением пропана при отношении кислорода к пропану, равном 3, и в условиях проведения реакции с ограниченным доступом кислорода при отношении пропана к кислороду, равном 0,5. Итоговые данные об эффективности катализаторов 2-5, по сравнению с эффективностью катализатора 1, приведены в таблице III.
Таблица III
Эффективность окисления пропана в присутствии катализаторов 2-5 в сравнении с катализатором 1
Катализатор Загрузка (г) Т (°С) SV GHSV‡ P % конверсии O2 % конверсии % Sel COx % Sel ††C3= % Sel AA Kg AA/ м3 кат-час* CO/CO2 CO CO2
Условия проведения реакции с ограниченным поступлением пропана: C3:O2:N2:H2O=1:3:27:14; 32 фунта на кв. дюйм
1 0,78 410 0,59 16493 41,2 30,1 14,3 8,6 65,9 339 2,2 9,8 4,5
2 0,77 410 0,59 16487 25,3 24,1 15,7 12,4 63,9 232 3,3 12 3,6
3 0,76 410 0,6 16486,8 36,1 31,6 12,4 8,3 68,5 360 3,5 9,6 2,8
4 0,76 410 0,61 16563 28,6 19,9 10,6 13,0 67,7 282 2,4 7,5 3,1
5 0,77 410 0,60 16563,2 26,5 22,1 14,3 13,4 61,0 238 0,1 1,7 12,6
Условия ограниченного доступа кислорода: C3:O2:N2:H2O=1:0,5:4,5:3,5; 32 фунта на кв. дюйм
1 0,78 400 3,59 20760 16,9 69,9 5,5 20,6 59,6 904 2,3 3,8 1,6
2 0,77 410 3,51 20875 10,4 42,5 7,4 32,7 50,5 440 3,2 5,8 1,8
3 0,76 410 3,55 20874,7 17,6 73,1 6 20,3 61,1 921 3,1 4,6 1,5
4 0,76 410 3,69 20824 14,0 54,0 4,8 27,1 57,5 706 2,4 3,3 1,4
5 0,77 410 3,65 20823,7 12,6 53,1 5,7 28,7 54,8 607 0,7 2,3 3,3
SV = объемная скорость пропана на грамм катализатора в час (пропан/г кат-ч)
‡GHSV = газовая часовая объемная скорость в литрах газа на литр катализатора в час (л газ/л катализатора в час)
1T обозначает температуру в °C
** Процент конверсии пропана
АА обозначает акриловую кислоту
††C3= обозначает пропилен
* Количество акриловой кислоты на единицу объема катализатора (кг АА на кубический метр катализатора в час)
Все эксперименты по окислению пропана проводят с использованием постоянного объема катализатора 0,5 куб.см (кубических сантиметров). Во всех случаях добавление вспомогательного металла слегка снижает активность катализатора, по сравнению с катализатором 1, как в условиях проведения реакции с ограниченным поступлением пропана, так и в условиях проведения реакции с ограниченным доступом кислорода, о чем свидетельствуют данные по конверсии пропана, приведенные в таблице III. Добавление Ag и Pd, в катализаторе 2 и катализаторе 4, наиболее сильно снижает активность катализатора, в то время как Ga, в катализаторе 3, умеренно влияет на активность. При исследовании отношений СО в СО2 в отходящем потоке для каждого из модифицированных катализаторов, как следует из таблиц III, выделяется катализатор, модифицированный платиной, катализатор 5. Неожиданно в случае катализатора 5 отношение CO к CO2 меняется в диапазоне от 0,1 до 0,7, в то время как для всех других катализаторов отношение CO к CO2 меняется в диапазоне от 2,2 до 3,5. Таким образом, катализатор 5, модифицированный платиной катализатор, определен как хороший кандидат для одновременного окисления СО в СО2 в условиях окисления пропана, независимо от того, ограничены ли они условиями недостатка пропана или недостатка кислорода. Результаты оказались неожиданными, поскольку все вспомогательные металлы обладают свойствами в процессах окисления, которые делают их хорошими кандидатами для совместного окисления СО в условиях окисления пропана, но лишь платина демонстрирует указанную возможность, когда ее добавляют с низкими концентрациями к базовому катализатору, катализатору 1.
Затем модифицированный платиной катализатор, катализатор 5, испытывают при температуре 410°С для окисления СО в условиях окисления пропана, приведенных в таблице I, т.е. в условиях, применяемых для проверки базового катализатора, катализатора 1, которой испытывают при температуре 380°C. Данные по эффективности катализатора 5 для совместного окисления СО в условиях окисления пропана, приведенные в таблице I, представлены графически на фиг. 3. Как видно из фигуры 3, количество CO увеличилось в исходном сырье, а количество СО2 повысилось в отходящем потоке. Более того, "Нетто количество CO" (выход-вход) снижается по мере того, как количество СО увеличивается в исходном сырье. Количество O2 в отходящем потоке также снижается по мере того, как количество CO увеличивается в исходном сырье. Указанные данные в значительной степени подтверждают тот факт, что O2 реагирует с СО с образованием СО2 в условиях окисления пропана, указанных в таблице I.
СРАВНИТЕЛЬНОЕ ИСПЫТАНИЕ КАТАЛИЗАТОРА 1 И КАТАЛИЗАТОРА 5
Проводят сравнение эффективности катализатора 5 с эффективностью базового катализатора, катализатора 1, для совместного окисления СО. Из фиг. 4 видно, что катализатор 5, показывает лучшую способность совместно окислять СО в условиях окисления пропана, чем катализатор 1. Таким образом, катализатор 5 способен окислять СО в СО2 и тем самым позволяет удалять СО в виде СО2 при рециклировании и избежать использования дорогостоящих альтернативных способов удаления СО.
Полную эффективность катализатора 1 и катализатора 5 проверяют как в условиях проведения реакции с ограниченным доступом кислорода, так и в условиях проведения реакции с ограниченным поступлением пропана. Результаты тестирования полной каталитической эффективности катализатора 5 как в условиях проведения реакции с ограниченным доступом кислорода, так и в условиях проведения реакции с ограниченным поступлением пропана представлены графически на фиг. 5 и 6, соответственно. Аналогично, результаты тестирования полной каталитической эффективности катализатора 1 в условиях проведения реакции с ограниченным доступом кислорода, так и в условиях проведения реакции с ограниченным поступлением пропана представлены графически на фиг. 7 и фиг. 8, соответственно. Катализатор 5 показывает лишь небольшое снижение активности и селективности катализатора, по сравнению с катализатором 1, как в условиях проведения реакции с ограниченным доступом кислорода, так и в условиях проведения реакции с ограниченным поступлением пропана. В указанных испытаниях количество исследованного катализатора составляет 0,5 мл, что соответствует 0,77 г катализатора 5 и 0,78 г катализатора 1. Слой катализатора разбавляют с помощью 3 мл кварца, чтобы образовать нужный объем слоя катализатора. Катализатор 1 и катализатор 5 испытывают при температуре в диапазоне от 370°С и 420°С и при избыточном давлении 32 фунта на квадратный дюйм. Условия ограниченного доступа кислорода следующие: отношение C3/O2/H2O/N2 1/0,5/3,5/4,5 (10,5%/5,3%/38,6%/47,4%) при скорости потока C3/O2+N2/H2O 20 куб.см/мин /100 куб.см/мин /0,052 мл жидкости. Условия ограниченного поступления пропана следующие: отношение C3/O2/H2O/N2 1/3/14/27 (2,2%/6,7%/31,1%/60%) при скорости потока C3/O2 + N2/H2O 3,3 куб.см/мин /100 куб.см/мин /0,035 мл жидкости. Следует отметить, что расчетная селективность АА (Расчетная селективность AA при рециклировании, как показано на чертежах) представляет собой теоретическое значение, рассчитанное на основе наблюдаемой однопроходной эффективности катализатора. Выходящий из реактора поток анализируют с помощью газовой хроматографии, так что значение производительности по AA при одном проходе является величиной, измеренной так же, как и все другие однопроходные величины для исходных веществ и продуктов.
ВАРЬИРОВАНИЕ КОНЦЕНТРАЦИИ ПЛАТИНЫ
Катализатор 5 содержит приблизительно 4,5% масс. платины. Авторы настоящего изобретения изменяли количество платины в катализаторе с тем, чтобы определить, как концентрация платины влияет на конверсию СО в CO2 в условиях окисления пропана. Авторы настоящего изобретения приготовили несколько содержащих платину катализаторов, в которых массовый процент (% масс.) платины изменялся в диапазоне от 4,5% масс. до 0,3% масс. Катализаторы готовили, как указано выше, и они содержали: 1,2 % масс. платины, катализатор 6; 0,6% масс. платины, катализатор 7; и 0,3% масс. платины, катализатор 8. Физические свойства катализаторов 5-8 приведены в таблице IV и сравниваются с физическими свойствами катализатора 1.
Таблица IV
Физические свойства модифицированного MoV0,3Nb0,12Sb0,09Te0,09Ptm
Обозначение катализатора 5 6 7 8 1
m Pt0,05 Pt0,013 Pt0,006 Pt0,003 отсутствует
Измельчение в шаровой мельнице да да да да да
SA12/г) 11,5 13,9 11,3 11,5 10,9
PV2 (куб.см/г) 0,08 0,076 0,068 0,071 0,074
ASP3 (Å) 279 219 239 248 270
Размер, определенный рентгеновскими методами4, Å 455 497 880 516 377
XRF
Te 5,26 5,43 5,56 5,39 5,33
Sb 6,02 6,05 6,14 6,19 6,26
Mo 47,28 48,09 47,98 47,91 48,17
Nb 5,29 5,29 5,20 5,26 5,24
V 7,15 7,20 7,14 7,11 7,16
Теоретическое содержание Pt % масс. 4,5 1,2 0,6 0,3 0
1SA (м2/г) = площадь поверхности в квадратных метрах на грамм
2PV = объем пор в кубических сантиметрах на грамм
3ASP = средний размер пор (т.е. диаметр) в ангстремах
4 Размер, определенный рентгеновскими методами = размер кристалла в ангстремах
Данные рентгенофлуоресцентного анализа (XRF) показывают, что концентрации Te, Sb, Mo, Nb и V схожи, как и значения PV. Площадь поверхности измельченных в шаровой мельнице катализаторов 5, 7 и 8 приблизительно составляет 11 квадратных метров на грамм (м2/г), что аналогично площади поверхности катализатора 1, в то время как катализатор 6 имеет площадь поверхности, равную 13,9. Размер, определенный рентгеновскими методами (A), показывает заметные различия для модифицированных платиной катализаторов, катализаторов 5-8, по сравнению с катализатором 1.
Эффективность модифицированных платиной катализаторов, катализаторов 5-8, в реакции окисления пропана исследуют при двух условиях окисления пропана: в условиях с ограниченным поступлением пропана с отношением кислорода к пропану, равным 3:1, и в условиях с ограниченным доступом кислорода с отношением кислорода к пропану, равным 0,5:1. Результаты указанных тестов обобщены в таблице V и таблице VI.
Таблица V
Обобщенные данные по эффективности катализаторов 5-8 в сравнении с катализатором 1
Катализатор 5 6 7 8 1 5 6 7 8 1
Теоретическое содержание Pt, % масс. 4,5 1,2 0,6 0,3 0 4,5 1,2 0,6 0,3 0
Масса катализатора, г Объем=0,5 см. куб 0,77 0,72 0,76 0,78 0,78 0,77 0,72 0,76 0,78 0,78
Состав исходного сырья Условия ограниченным поступлением пропана: C3/O2/H2O/N2=1/3/14/27 Условия с ограниченным доступом кислорода: C3/O2/H2O/N2=1/0.5/3,5/4,5
Температура слоя катализатора (°С) 400 400 400 400 400 400 400 400 400 400
Давление, фунт на кв.дюйм 32 32 32 32 32 32 32 32 32 32
% масс. конверсии пропана 23,9 32,2 34,0 34,3 34,1 11,8 14,6 13,5 15,7 16,8
% масс. конверсии кислорода 18,6 27,4 28,6 29,9 28,6 45,4 57,5 62,2 66,1 73,2
Селективность
COx 14,0 10,5 9,6 10,8 11,0 4,8 4,4 4,7 4,6 6,7
Пропилен (P) 15,0 9,7 8,8 9,2 9,4 28,7 25,4 25,2 23,9 22,2
Уксусная кислота 11,0 8,6 9,2 9,1 10,3 7,9 6,5 6,6 7,0 8,8
Акриловая кислота (АА) 58,3 69,4 70,6 69,3 67,3 54,1 59,9 58,5 61,1 57,8
Выход акриловой кислоты 13,9 22,3 24,0 23,8 22,9 6,4 8,7 7,9 9,6 9,7
Селективность при рециклировании 67,0 76,1 76,8 75,6 73,6 69,6 75,1 73,3 75,6 70,6
Таблица VI
Обобщенные данные по эффективности катализаторов 5-8 в сравнении с катализатором 1
Катализатор Загрузка (г) Т (°С) SV GHSV‡ P % кон-версии O2 % кон-версии % Sel COx % Sel ††C3= % Sel AA Kg AA/м3 кат-час* CO/CO2 CO CO2
Условия проведения реакции с ограниченным поступлением пропана: C3:O2:N2:H2O=1:3:27:14; 32 фунта на кв. дюйм
5 0,77 400 0,60 16563,2 23,9 18,6 14,0 15,0 58,3 199 0,1 1,6 12,4
5 0,77 410 0,60 16563,2 26,5 22,1 14,3 13,4 61,0 238 0,1 1,7 12,6
6 0,72 400 0,64 16526,6 32,2 27,4 10,5 9,7 69,4 329 0,24 2,0 8,4
6 0,72 410 0,64 16433,3 34,6 29,7 11,4 9,7 70,2 348 0,301 2,6 8,7
7 0,76 400 0,61 16502,1 34,0 28,6 9,6 8,8 70,6 339 0,146 1,2 8,3
7 0,76 410 0,61 16502,1 37,0 32,3 10,6 7,6 71,1 386 0,155 1,4 9,2
8 0,78 400 0,59 16486,8 34,3 29,9 10,8 9,2 69,3 339 0,404 3,1 7,7
8 0,78 410 0,59 16486,8 37,5 33,7 11,5 8,5 71,1 388 0,471 3,7 7,8
1 0,78 410 0,59 16493 41,2 30,1 14,3 8,6 65,9 339 2,2 9,8 4,5
Условия ограниченного доступа кислорода: C3:O2:N2:H2O=1:0,5:4,5:3,5; 32 фунта на кв. дюйм
5 0,77 400 3,65 20830,7 11,8 45,4 4,8 28,7 54,1 550 0,8 2,0 2,7
5 0,77 410 3,65 20823,7 12,6 53,1 5,7 28,7 54,8 607 0,7 2,3 3,3
6 0,72 400 3,90 20760,4 14,6 57,5 4,4 25,4 59,9 749 1,062 2,2 2,1
6 0,72 410 3,90 20751,6 15,4 65,9 5,1 25,1 60,4 815 0,907 2,4 2,7
7 0,76 400 3,70 20827,4 13,5 62,2 4,7 25,2 58,5 710 0,912 2,2 2,4
7 0,76 410 3,71 20873,4 14,6 70,1 4,9 24,4 60,2 809 0,826 2,2 2,7
8 0,78 400 3,57 20928,7 15,7 66,1 4,6 23,9 61,1 821 0,936 2,2 2,4
8 0,78 410 3,57 20928,7 17,9 78,5 5,7 21,1 62,8 988 1,2 3,1 2,6
1 0,78 400 3,59 20760 16,9 69,9 5,5 20,6 59,6 904 2,3 3,8 1,6
SV = объемная скорость пропана на грамм катализатора в час (пропан/г кат-ч)
‡GHSV = газовая часовая объемная скорость в литрах газа на литр катализатора в час (л газ/л катализатора в час)
1T обозначает температуру в °C
** Процент конверсии пропана
АА обозначает акриловую кислоту
††C3 = обозначает пропилен
* Количество акриловой кислоты на единицу объема катализатора (кг АА на кубический метр катализатора в час)
Из приведенных в таблице V данных видно, что большие количества платины (4,5% масс.) оказывают небольшое отрицательное влияние на эффективность катализатора. Тем не менее, количества платины меньше чем 1% масс. не оказывает неблагоприятного воздействия на эффективность катализатора, по сравнению с катализатором 1. Кроме того, катализаторы, в которых уровень платины составляет больше 4,5% масс. менее удобны как с точки зрения эффективности катализатора, так и точки зрения возможной стоимости катализатора.
В соответствии с результатами испытаний, полученными в условиях проведения реакции с ограниченным поступлением пропана, которые представлены в таблице VI, отношение CO/CO2 в отходящем потоке для катализатора 8, содержащем наименьшее протестированное количество платины (0,3% масс.), составляет 0,47, в то время как отношение CO/CO2 для базового катализатора, катализатора 1, в тех же условиях составляет 2,2. Из данных, представленных в таблице VI, можно заключить, что катализаторы окисление пропана с небольшими количествами платины эффективны для одновременного окисления СО в СО2 в условиях проведения реакции с ограниченным поступлением пропана, оказывая при этом практически незначительное или не оказывая вовсе неблагоприятного воздействия на активность или селективность катализатора. Таким образом, бифункциональная активность модифицированного платиной катализатора может быть достигнута при относительно низких концентрациях платины, что предоставляет значительное преимущество бифункциональному катализатору по настоящему изобретению с точки зрения стоимости.
Аналогично, в соответствии с результатами испытаний, полученными в условиях проведения реакции с ограниченным доступом кислорода, которые представлены в таблице VI, отношение CO/CO2 в отходящем потоке для катализатора 8 составляет 1,2, в то время как отношение CO/CO2 для базового катализатора, катализатора 1, в тех же условиях составляет 2,3. Из представленных в таблице VI данных можно сделать вывод, что катализаторы с относительно небольшими количествами платины эффективны для совместного окисления СО в СО2 даже в условиях проведения реакции с ограниченным доступом кислорода.
Полная эффективность катализатора 6 для реакции окисления пропана в условиях проведения реакции с ограниченным доступом кислорода и в условиях проведения реакции с ограниченным поступлением пропана также представлена графически на фиг. 9 и фиг. 10. Полная эффективность катализатора 7 для реакции окисления пропана условиях проведения реакции с ограниченным доступом кислорода и в условиях проведения реакции с ограниченным поступлением пропана также представлена графически на фиг. 11 и фиг. 12. А полная эффективность катализатора 8 для реакции окисления пропана условиях проведения реакции с ограниченным доступом кислорода и в условиях проведения реакции с ограниченным поступлением пропана также представлена графически на фиг. 13 и фиг. 14. В указанных испытаниях объем протестированного катализатора составляет 0,5 куб.см, что соответствует 0,72 г для катализатора 6, 0,76 г для катализатора 7 и 0,78 г для катализатора 8. Слой катализатора разбавляют с помощью 3 куб.см кварца, чтобы увеличить объем слоя катализатора. Катализаторы 6-8 испытывают при температуре в диапазоне от 370°С до 420°С при давлении 32 фунтов на квадратный дюйм. Условия проведения реакции с ограниченным доступом кислорода: отношение C3/O2/H2O/N2 1/0,5/3,5/4,5 (10,5%/5,3%/38,6%/47,4%) при скорости потока C3/O2+N2/H2O 20 куб.см/мин/100 мл куб.см/мин/0,052 мл жидкости. Условия проведения реакции с ограниченным поступлением пропана: отношение C3/O2/H2O/N2 1/3/14/27 (2,2%/6,7%/31,1%/60%) при скорости потока C3/O2+N2/H2O 3,3 куб.см/мин/100 куб.см/мин/0,035 мл жидкости.
Из представленных фигур видно, что эффективность катализатора, модифицированного небольшими количествами платины (1% масс.), аналогична катализатору 1, как показано графически на фиг. 7 и фиг. 8. Так, в некоторых вариантах осуществления настоящего изобретения в катализаторах по настоящему изобретению содержание платины составляет меньше или равно приблизительно 1% масс. В других вариантах осуществления настоящего изобретения содержание платины составляет меньше или равно приблизительно 0,8% масс. В других вариантах осуществления настоящего изобретения содержание платины составляет меньше или равно приблизительно 0,6% масс. В других вариантах осуществления настоящего изобретения содержание платины составляет меньше или равно приблизительно 0,5% масс. В других вариантах осуществления настоящего изобретения содержание платины составляет меньше или равно приблизительно 0,4% масс. В других вариантах осуществления настоящего изобретения содержание платины составляет меньше или равно приблизительно 0,3% масс. Из представленных в настоящем описании данных легко видно, что катализатор окисления пропана, содержащий относительно небольшие количества платины, способен in situ совместно окислять СО в СО2 в реакции окисления пропана. Использование относительно небольшого количества платины для модифицирования базового катализатора имеет следующие преимущества: 1) сводит к минимуму стоимость необходимой платины и 2) упрощает способ за счет снижения образования и накопления CO.
Способность модифицированного платиной катализатора совместно окислять СО дополнительно подтверждают, проводя испытания по окислению СО, данные о которых приведены в таблице I для каждого из модифицированных платиной катализаторов, катализатора 6, катализатора 7 и катализатора 8. Результаты указанных испытаний по окислению СО приведены на фиг. 15, фиг. 16 и фиг. 17, соответственно. Можно сделать вывод, что когда CO присутствует в исходном сырье, то CO окисляется до СО2 в условиях реакции окисления пропана.
Все приведенные в данном описании ссылки включены в данное описание посредством ссылки. Несмотря на то, настоящее изобретение раскрыто со ссылкой на предпочтительные варианты его осуществления, после ознакомления с данным описанием специалистам должны быть понятны изменения и модификации, которые можно внести, не отступая от сущности и не выходя за объем настоящего изобретения, как описано выше и как указано в приведенной ниже формуле изобретения.

Claims (46)

1. Композиция катализатора для одновременного окисления пропана в акриловую кислоту и монооксида углерода в диоксид углерода, содержащая соединение следующей общей формулы:
MoVaNbbPtcSbd1Ted2ZeOx,
где а обозначает число, имеющее значение в диапазоне от 0,15 до 0,50,
b обозначает число, имеющее значение в диапазоне от 0,05 до 0,30,
с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,10,
d1 представляет собой число, имеющее значение в диапазоне от более 0 до 0,30,
d2 представляет собой число, имеющее значение в диапазоне от 0,01 до 0,30,
е обозначает число, имеющее значение в диапазоне от 0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z представляет собой один или несколько элементов, выбранных из группы, состоящей из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В, а если присутствует больше одного элемента Z, то каждый элемент Z изменяется независимо в диапазоне значений е.
2. Композиция по п. 1, где с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,05.
3. Композиция по п. 1, где с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,03.
4. Композиция по п. 1, где с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,01.
5. Композиция по любому из пп. 1-4, где соединение содержит платину с концентрацией от 0,1 мас.% до 4,5 мас.%.
6. Композиция по любому из пп. 1-4, где соединение содержит платину с концентрацией от 0,1 мас.% до 1,2 мас.%.
7. Композиция по любому из пп. 1-4, где соединение содержит платину с концентрацией от 0,1 мас.% до 0,6 мас.%.
8. Композиция по любому из пп. 1-4, где соединение содержит платину с концентрацией от 0,1 мас.% до 0,3 мас.%.
9. Способ превращения углеводорода в ненасыщенную карбоновую кислоту, который включает:
контактирование потока, содержащего углеводород, который имеет от трех до пяти атомов углерода, кислород и инертный компонент, выбранный из группы, состоящей из газообразного азота, водяного пара и их смесей, в присутствии композиции по любому из пп. 1-8;
образование отходящего потока со стадии контактирования; и
извлечение ненасыщенной карбоновой кислоты из отходящего потока.
10. Способ по п. 9, дополнительно включающий рециклирование по меньшей мере части отходящего потока на указанную стадию контактирования.
11. Способ по п. 9 или 10, где указанный углеводород представляет собой один или несколько углеводородов, имеющих три атома углерода, а ненасыщенной карбоновой кислотой является акриловая кислота.
12. Способ получения бифункционального катализатора окисления, способного одновременно окислять пропан в акриловую кислоту и монооксид углерода - в диоксид углерода, включающий:
приготовление первого водного раствора, включающего источник молибдена, источник ванадия, источник платины, источник сурьмы и источник теллура;
приготовление второго водного раствора, включающего органическую кислоту и источник ниобия;
добавление второго водного раствора к первому водному раствору с образованием суспензии предшественника катализатора;
сушку предшественника катализатора и
разложение предшественника катализатора с образованием композиции катализатора;
где платина присутствует в количестве, достаточном для формирования катализатора, массовый процент платины в котором составляет от 0,1 до 4,5 в пересчете на общую массу катализатора, где композиция катализатора имеет следующую общую формулу
MoVaNbbPtcSbd1Ted2ZeOx,
где а обозначает число, имеющее значение в диапазоне от 0,15 до 0,50,
b обозначает число, имеющее значение в диапазоне от 0,05 до 0,30,
с обозначает число, имеющее значение в диапазоне от 0,0001 до 0,10,
d1 представляет собой число, имеющее значение в диапазоне от более 0 до 0,30,
d2 представляет собой число, имеющее значение в диапазоне от 0,01 до 0,30,
е обозначает число, имеющее значение в диапазоне от 0 до 0,10,
х обозначает число, зависящее от относительного количества и валентности элементов, отличных от кислорода, в формуле (I), и
Z представляет собой один или несколько элементов, выбранных из группы, состоящей из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В, а если присутствует больше одного элемента Z, то каждый элемент Z изменяется независимо в диапазоне значений е.
13. Способ по п. 12, где первый водный раствор дополнительно включает источник одного или нескольких металлов, выбранных из группы, которая состоит из Ru, Mn, Sc, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Rh, Pd, In, Ce, Pr, Nd, Sm, Tb, Та, W, Re, Ir, Au, Pb и В.
14. Способ по п. 12 или 13, где сушку осуществляют на воздухе при температуре 120°С в течение 1 часа, а разложение осуществляют при температуре 300°С в течение 5 часов.
15. Способ по п. 12 или 13, который дополнительно включает прокаливание предшественника катализатора в атмосфере аргона при температуре 600°С в течение 2 часов.
16. Способ по п. 12 или 13, дополнительно включающий:
перед стадией добавления, нагревание первого водного раствора при первой температуре и в течение первого времени, чтобы растворить исходные вещества, и охлаждение нагретого второго водного раствора; и
перед стадией добавления, нагревание второго водного раствора при второй температуре и в течение второго времени, чтобы растворить исходные вещества, и охлаждение нагретого первого водного раствора.
17. Способ по п. 16, где первая температура составляет 90°С, и первое время равно 1 ч, и первый водный раствор охлаждают до температуры 35°С, а вторая температура составляет от 95°С до 100°С, и второе время равно 1 ч.
RU2014126870A 2011-12-02 2012-11-30 Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения RU2621033C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/310,693 US8921257B2 (en) 2011-12-02 2011-12-02 Dual function partial oxidation catalyst for propane to acrylic acid conversion
US13/310,693 2011-12-02
PCT/US2012/067422 WO2013082514A1 (en) 2011-12-02 2012-11-30 Dual function partial oxidation catalyst for propane to acrylic acid conversion and a process of making thereof

Publications (2)

Publication Number Publication Date
RU2014126870A RU2014126870A (ru) 2016-01-27
RU2621033C2 true RU2621033C2 (ru) 2017-05-31

Family

ID=47352026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014126870A RU2621033C2 (ru) 2011-12-02 2012-11-30 Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения

Country Status (7)

Country Link
US (1) US8921257B2 (ru)
EP (1) EP2785451A1 (ru)
JP (1) JP6038169B2 (ru)
CN (1) CN103958054A (ru)
RU (1) RU2621033C2 (ru)
TW (1) TWI568494B (ru)
WO (1) WO2013082514A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271234A (zh) * 2012-05-04 2015-01-07 国际壳牌研究有限公司 用于烷烃氧化脱氢和/或烯烃氧化的催化剂
EP3178805B1 (en) * 2014-10-07 2021-09-29 LG Chem, Ltd. Method and apparatus for continuous manufacturing of acrylic acid through propane partial oxidation
CN106542993A (zh) * 2015-09-17 2017-03-29 中国科学院大连化学物理研究所 丙烷一步氧化制备丙烯酸的系统及方法
KR20180071393A (ko) 2015-11-16 2018-06-27 에이치헬리, 엘엘씨 에너지 저장 용도, 촉매 용도, 광전지 용도 및 센서 용도를 위한 합성된 표면-관능화된, 산성화 금속 산화물 재료
CN108369384A (zh) 2015-12-09 2018-08-03 Asml控股股份有限公司 具有灵活性的照射器
CN107935836B (zh) * 2016-10-13 2021-01-22 中国科学院大连化学物理研究所 Co选择性氧化脱除方法、丙烷一步氧化制备丙烯酸的方法及系统
WO2018093945A1 (en) 2016-11-15 2018-05-24 Hheli, Llc. A surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system
KR20200015476A (ko) 2017-04-10 2020-02-12 에이치헬리, 엘엘씨 신규 성분을 가진 배터리
CA3172066A1 (en) 2017-05-17 2018-11-22 HHeLI, LLC Battery with acidified cathode and lithium anode
KR20220044222A (ko) 2017-05-17 2022-04-06 에이치헬리, 엘엘씨 신규 구성을 가진 배터리 셀
US10978731B2 (en) 2017-06-21 2021-04-13 HHeLI, LLC Ultra high capacity performance battery cell
KR102632805B1 (ko) 2018-09-10 2024-02-02 에이치헬리, 엘엘씨 초고용량 성능 배터리 셀의 사용 방법
CN109364943A (zh) * 2018-12-12 2019-02-22 辽宁大学 一种低温高效脱硝催化剂及其制备方法和应用
CN112156795A (zh) * 2020-10-30 2021-01-01 山东玉皇化工有限公司 一种催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143928A (en) * 1998-08-10 2000-11-07 Saudi Basic Industries Corporation Catalysts for low temperature selective oxidation of propylene, methods of making and using the same
RU2000107117A (ru) * 1998-06-23 2001-12-20 Пантошим С.А. Высокопроизводительный способ получения малеинового ангидрида из н-бутана
US20040249204A1 (en) * 2001-10-16 2004-12-09 Brian Ellis Ethane oxidation catalyst and process utilising the catalyst
WO2006008177A1 (en) * 2004-07-22 2006-01-26 Fritz Haber Institut Der Max Planck Gesellschaft Metal oxide catalyst and method for the preparation thereof
RU2285690C2 (ru) * 2000-06-20 2006-10-20 Басф Акциенгезельшафт Способ получения акролеина и/или акриловой кислоты
US20060293539A1 (en) * 2005-06-22 2006-12-28 Holtcamp Matthew W Oxidation of alkanes
EP1930074A1 (en) * 2006-12-08 2008-06-11 Robert Prof. Dr. Schlögl Novel mesoporous mixed metal oxide catalyst and method for the preparation thereof
RU2342991C2 (ru) * 2004-03-23 2009-01-10 Сауди Бейсик Индастриз Корпорейшн Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции

Family Cites Families (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933751A (en) 1967-05-15 1976-01-20 The Standard Oil Company Promoted catalysts for the oxidation of olefins
US3963645A (en) 1969-02-27 1976-06-15 The Lummus Company Supported metal oxides
US3959384A (en) 1969-05-02 1976-05-25 Nippon Kayaku Kabushiki Kaisha Oxidation catalyst and process for oxidation of olefins to unsaturated aldehydes
US3993673A (en) 1970-02-26 1976-11-23 Union Carbide Corporation Production of olefin oxides
CA939676A (en) 1970-03-24 1974-01-08 David Naden Catalytic oxidation
US3907712A (en) 1970-05-26 1975-09-23 Nippon Catalytic Chem Ind Catalyst composition for the preparation of unsaturated carbonyl compounds
US3928462A (en) 1970-07-08 1975-12-23 Sumitomo Chemical Co Catalytic process for the preparation of methacrolein
JPS494441B1 (ru) 1970-11-07 1974-02-01
US4182907A (en) 1971-02-04 1980-01-08 The Standard Oil Company (Ohio) Process for the oxidation of olefins to aldehydes and acids
US4323703A (en) 1971-02-04 1982-04-06 Standard Oil Company Process for the oxidation of olefins to aldehydes and acids
US4176234A (en) 1971-02-04 1979-11-27 Standard Oil Company Process for the oxidation of olefins to aldehydes and acids
US4078004A (en) 1971-09-07 1978-03-07 Rohm And Haas Company Methacrolein production utilizing novel catalyst
US4151117A (en) 1971-09-07 1979-04-24 Rohm And Haas Company Novel oxidation catalyst and production of unsaturated aldehydes, acids and nitriles therewith
US3929899A (en) 1971-12-07 1975-12-30 Standard Oil Co Ohio Process for the oxidation of olefins to unsaturated aldehydes and catalysts therefore
DE2201411C3 (de) 1972-01-13 1980-02-07 Bayer Ag, 5090 Leverkusen Verfahren zur oxydativen Spaltung von ungesättigten Kohlenwasserstoffen
USRE31088E (en) 1972-02-09 1982-11-23 Standard Oil Company Process for the manufacture of unsaturated aldehydes and acids from the corresponding olefins
US3956378A (en) 1972-02-09 1976-05-11 The Standard Oil Company (Ohio) Process for the manufacture of unsaturated aldehydes and acids from the corresponding olefins
US3936505A (en) 1972-02-22 1976-02-03 Asahi Glass Company, Ltd. Process for preparing unsaturated aldehyde having three to four carbon atoms
US4025565A (en) 1972-02-22 1977-05-24 Asahi Glass Co., Ltd. Process for preparing unsaturated aldehyde having three to four carbon atoms
US4052462A (en) 1972-06-09 1977-10-04 Daicel Ltd. Catalyst composition for oxidation of olefins
US4171454A (en) 1972-07-13 1979-10-16 The Standard Oil Company Oxidation process utilizing amphora catalysts
DE2249922C2 (de) 1972-10-12 1982-05-27 Basf Ag, 6700 Ludwigshafen Verfahren zur katalytischen Oxidation von Propylen oder Isobutylen zu Acrolein oder Methacrolein in der Gasphase mit molekularem Sauerstoff
US4380664A (en) 1973-06-11 1983-04-19 Mitsubishi Rayon Company, Ltd. Process for producing unsaturated aldehydes, and unsaturated fatty acids
US3972920A (en) 1973-06-11 1976-08-03 Mitsubishi Rayon Co., Ltd. Process for producing unsaturated aldehydes, unsaturated fatty acids or conjugated dienes
US4111984A (en) 1973-06-11 1978-09-05 Mitsubishi Rayon Co., Ltd. Process for producing unsaturated aldehydes, and unsaturated fatty acids
NL7411227A (nl) 1973-08-29 1975-03-04 Mitsubishi Rayon Co Werkwijze voor het bereiden van methacroleine en metha-crylzuur.
US4174354A (en) 1973-09-04 1979-11-13 Standard Oil Company (Ohio) Oxidative dehydrogenation using chromium-containing catalysts
PH12128A (en) 1973-09-04 1978-11-07 Standard Oil Co Chromium-containing catalysts useful for oxidation reactions
GB1489399A (en) 1973-12-11 1977-10-19 Daicel Ltd Catalyst for production of alpha,beta-unsaturated aldehydes
JPS5230278B2 (ru) 1973-12-11 1977-08-06
US4225466A (en) 1973-12-29 1980-09-30 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalytic oxide composition for preparing methacrylic acid
DE2460541C3 (de) 1973-12-29 1979-10-18 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka (Japan) Phosphor, Molybdän und Vanadium sowie gegebenenfalls Kupfer, Kobalt, Zirkon, Wismut, Antimon und/oder Arsen enthaltender Oxydkatalysator und dessen Verwendung zur Herstellung von Methacrylsäure
US4190608A (en) 1974-07-22 1980-02-26 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
US4162234A (en) 1974-07-22 1979-07-24 The Standard Oil Company Oxidation catalysts
US4001317A (en) 1974-07-22 1977-01-04 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
US4778930A (en) 1974-08-05 1988-10-18 The Standard Oil Company Process for the oxidation of olefins using catalysts contaning antimony
US4034008A (en) 1975-08-25 1977-07-05 Union Carbide Corporation Process for preparing unsaturated acids and aldehydes
US4124634A (en) 1974-10-23 1978-11-07 Asahi Glass Company, Ltd. Process for producing methacrylic acid from isobutylene by two step oxidation
JPS5163112A (en) 1974-11-27 1976-06-01 Nippon Kayaku Kk Metakuroreinno seizoho
US4397771A (en) 1975-01-13 1983-08-09 The Standard Oil Co. Oxidation catalysts
US4045478A (en) 1975-02-28 1977-08-30 Ube Industries, Ltd. Method for the preparation of methacrylic acid
GB1489559A (en) 1975-03-03 1977-10-19 Mitsubishi Rayon Co Catalytic process for the preparation of acrylic acid or methacrylic acid
US4111985A (en) 1975-03-12 1978-09-05 Mitsubishi Rayon Co., Ltd. Process for producing unsaturated aldehydes and unsaturated carboxylic acids
GB1490683A (en) 1975-03-12 1977-11-02 Mitsubishi Rayon Co Process and a catalyst for producing unsaturated aldehydes unsaturated carboxylic acids or conjugated diene
GB1513335A (en) 1975-03-17 1978-06-07 Mitsubishi Rayon Co Process and a catalyst for the preparation of unsaturated carboxylic acid
US4339355A (en) 1975-10-09 1982-07-13 Union Carbide Corporation Catalytic oxide of molybdenum, vanadium, niobium and optional 4th metal
US4040978A (en) 1975-11-28 1977-08-09 Monsanto Company Production of (amm)oxidation catalyst
US4118419A (en) 1975-12-03 1978-10-03 Mitsubishi Rayon Company, Ltd. Catalytic process for the preparation of an unsaturated carboxylic acid
US4049577A (en) 1975-12-15 1977-09-20 The Dow Chemical Company Catalyst for making acrolein
JPS5946934B2 (ja) 1976-02-09 1984-11-15 東ソー株式会社 メタクリル酸の製法
SU1310384A1 (ru) 1976-02-20 1987-05-15 Институт Химической Физики Ан Ссср Способ получени метакриловой кислоты
US4060545A (en) 1976-05-28 1977-11-29 The Standard Oil Company Preparation of unsaturated carboxylic esters from propylene or isobutylene
US4065507A (en) 1976-08-02 1977-12-27 Standard Oil Company Preparation of methacrylic derivatives from tertiary butyl-containing compounds
JPS5945415B2 (ja) 1976-12-13 1984-11-06 日本ゼオン株式会社 オレフイン酸化用触媒
JPS5319188A (en) 1976-08-06 1978-02-22 Nippon Zeon Co Ltd Olefin oxidation catalyst
FR2364061A1 (fr) 1976-09-14 1978-04-07 Rhone Poulenc Ind Nouveau catalyseur pour la preparation d'aldehydes a-b insatures par oxydation d'olefines en phase gazeuse et son procede de preparation
US4087382A (en) 1976-11-24 1978-05-02 Halcon International, Inc. Catalyst
US4292203A (en) 1977-04-04 1981-09-29 The Standard Oil Company Oxidation catalysts
US4556731A (en) 1977-07-28 1985-12-03 The Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
US4195187A (en) 1977-09-12 1980-03-25 Celanese Corporation Process for selectively oxidizing isobutylene to methacrolein and methacrylic acid
US4184981A (en) 1977-09-12 1980-01-22 Celanese Corporation Selective oxidation catalyst
JPS5462193A (en) 1977-10-26 1979-05-18 Nitto Chem Ind Co Ltd Regenerating method for iron antimony type oxide catalyst
US4230640A (en) 1977-11-01 1980-10-28 Halcon International, Inc. Process for the preparation of acrolein and methacrolein
JPS584691B2 (ja) 1977-11-07 1983-01-27 宇部興産株式会社 メタクロレインの製造方法
JPS5492908A (en) 1977-12-28 1979-07-23 Nippon Zeon Co Ltd Catalysts for oxidation use of isobutylene
US4170570A (en) 1978-01-03 1979-10-09 Standard Oil Company (Ohio) Process for preparing oxidation catalysts
JPS5498717A (en) 1978-01-17 1979-08-03 Nippon Zeon Co Ltd Preparation of unsaturated carboxylic acid
JPS54103819A (en) 1978-02-03 1979-08-15 Nippon Zeon Co Ltd Production of unsaturated carboxylic acid
US4240931A (en) 1978-05-01 1980-12-23 Standard Oil Company Oxidation catalysts
US4217309A (en) 1978-06-12 1980-08-12 Ube Industries, Ltd. Process for producing methacrolein
US4374759A (en) 1978-09-05 1983-02-22 The Halcon Sd Group, Inc. Catalysts and process for unsaturated aldehydes
GB2033775B (en) 1978-10-13 1983-02-09 Asahi Chemical Ind Catalysts and process for the production of methacrolein catalysts
US4272408A (en) 1978-10-17 1981-06-09 Air Products And Chemicals, Inc. Stable molybdenum catalysts for high conversion of C3 and C4 olefins to corresponding unsaturated aldehydes and acids
US4212767A (en) 1978-10-17 1980-07-15 Air Products And Chemicals, Inc. Method of preparing an oxidation catalyst containing a molybdate anion
US4224187A (en) 1978-11-13 1980-09-23 Celanese Corporation Olefin oxidation catalyst and process for its preparation
US4224193A (en) 1978-11-13 1980-09-23 Celanese Corporation Olefin oxidation catalyst and process for its preparation
US4267386A (en) 1978-11-13 1981-05-12 Celanese Corporation Olefin oxidation catalyst
JPS6039255B2 (ja) 1978-12-22 1985-09-05 東ソー株式会社 メタクロレインの製造方法
JPS5945422B2 (ja) 1978-12-05 1984-11-06 日東化学工業株式会社 アンチモン含有酸化物触媒の再生方法
DD148728A5 (de) 1978-12-13 1981-06-10 Nippon Kayaku Kk Verfahren zur herstellung eines katalysators mit heteropolysaeurestruktur
US4271040A (en) 1978-12-26 1981-06-02 Halcon Research And Development Corp. Catalyst and process for producing methacrylic acid
US4205181A (en) 1978-12-26 1980-05-27 National Distillers And Chemical Corporation Process for preparing unsaturated esters
US4252683A (en) 1978-12-26 1981-02-24 Halcon Research And Development Corp. Catalyst for producing methacrylic acid
US4454346A (en) 1978-12-26 1984-06-12 The Halcon Sd Group, Inc. Process for producing methacrylic acid
US4377501A (en) 1978-12-26 1983-03-22 The Halcon Sd Group, Inc. Catalyst and process for producing methacrylic acid
US4261858A (en) 1979-04-06 1981-04-14 Halcon Research & Development Corp. Catalyst for producing methacrylic acid
JPS584694B2 (ja) 1978-12-27 1983-01-27 宇部興産株式会社 アクロレインまたはメタクロレインの製造方法
US4230639A (en) 1979-01-19 1980-10-28 Halcon International, Inc. Process for the preparation of methacrolein
YU41495B (en) 1979-01-23 1987-08-31 Nippon Kayaku Kk Process for obtaining methacrolein and methacrylic acid
DE2909597A1 (de) 1979-03-12 1980-09-25 Basf Ag Verfahren zur herstellung von 3 bis 4 c-atome enthaltenden alpha , beta -olefinisch ungesaettigten aldehyden
DE2909671A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
JPS55124734A (en) 1979-03-22 1980-09-26 Nippon Kayaku Co Ltd Preparation of methacrylic acid
US4499301A (en) 1979-04-20 1985-02-12 National Distillers And Chemical Corporation Process for the preparation of unsaturated aldehydes and carboxylic acids
US4503247A (en) 1979-06-12 1985-03-05 The Halcon Sd Group, Inc. Process for producing methacrylic acid
JPS5612331A (en) 1979-07-09 1981-02-06 Sumitomo Chem Co Ltd Preparation of methacrolein
US4332971A (en) 1979-08-09 1982-06-01 Celanese Corporation Process for the oxidation of olefinically unsaturated hydrocarbons to aldehydes using attrition resistant catalysts
US4276196A (en) 1979-08-09 1981-06-30 Celanese Corporation Attrition resistant catalysts
US4280929A (en) 1979-09-17 1981-07-28 Standard Oil Company Attrition resistant-higher active component fluid bed catalysts
US4453006A (en) 1979-09-17 1984-06-05 The Standard Oil Company Oxidation of propylene or isobutylene with attrition resistant catalysts
US4248803A (en) 1979-09-19 1981-02-03 Celanese Corporation Olefin oxidation catalyst
US4547588A (en) 1979-10-03 1985-10-15 The Halcon Sd Group, Inc. Process for producing methacrylic acid
US4280928A (en) 1979-10-12 1981-07-28 Rohm And Haas Company Catalyst compositions and their use for the preparation of methacrolein
US4306090A (en) 1979-10-12 1981-12-15 Rohm And Haas Company Catalyst compositions and their use for the preparation of methacrolein
USRE30545E (en) 1979-10-18 1981-03-10 Halcon Research And Development Corporation Catalyst
US4321160A (en) 1979-12-27 1982-03-23 Standard Oil Company Method for the activation of phosphomolybdic acid based catalysts
US4471062A (en) 1979-12-27 1984-09-11 The Standard Oil Company Method for the reactivation of deactivated phosphomolybdic acid based catalysts
US4316856A (en) 1979-12-28 1982-02-23 The Standard Oil Co. Molybdenum-promoted antimony phosphate oxide complex catalysts also containing at least one of bismuth and tellurium
US4303550A (en) 1979-12-28 1981-12-01 Standard Oil Company Methods for the regeneration of deactivated phosphomolybdic acid based catalysts
US4471061A (en) 1979-12-31 1984-09-11 The Standard Oil Company Methods for treatment of phosphomolybdic acid based catalysts during reactor shutdown
GB2070601B (en) 1980-03-05 1984-05-23 Asahi Chemical Ind Producing unsaturated carboxylic esters
US4404397A (en) 1980-03-24 1983-09-13 Air Products And Chemicals, Inc. High conversion of C3 and C4 olefins to corresponding unsaturated aldehydes and acids with stable molybdenum catalysts
US4446328A (en) 1980-05-19 1984-05-01 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing methacrolein
JPS56166140A (en) 1980-05-24 1981-12-21 Asahi Chem Ind Co Ltd Preparation of methacrolein
US4419270A (en) 1980-06-26 1983-12-06 Nippon Shokubai Kagaku Kogyo Co. Ltd. Oxidation catalyst
EP0046840B1 (de) 1980-08-28 1983-10-05 Röhm Gmbh Verfahren zur oxydativen Dehydrierung von Isobuttersäure zu Methacrylsäure
JPS5756044A (en) 1980-09-20 1982-04-03 Mitsui Toatsu Chem Inc Method for reactivation of catalyst
US4414134A (en) 1981-01-05 1983-11-08 The Standard Oil Co. Impregnating catalysts
US4424141A (en) 1981-01-05 1984-01-03 The Standard Oil Co. Process for producing an oxide complex catalyst containing molybdenum and one of bismuth and tellurium
US4388225A (en) 1981-01-23 1983-06-14 Phillips Petroleum Company Olefin oxidation with supported CuO catalyst
US4337364A (en) 1981-01-23 1982-06-29 Phillips Petroleum Company Olefin oxidation with supported CuO catalyst
US4351963A (en) 1981-01-23 1982-09-28 Phillips Petroleum Company Aliphatic olefin oxidation using catalyst containing Sn, P, O, Li
US4388223A (en) 1981-04-06 1983-06-14 Euteco Impianti S.P.A. Catalyst for the conversion of unsaturated hydrocarbons into diolefins or unsaturated aldehydes and nitriles, and process for preparing the same
US4558154A (en) 1981-04-27 1985-12-10 Atlantic Richfield Company Oxidation of isobutylene oxide to methacrylic acid and methacrolein
US4537998A (en) 1981-04-27 1985-08-27 Atlantic Richfield Company Process for the oxidation of isobutylene oxide to methacrolein
US4528398A (en) 1981-06-08 1985-07-09 The Standard Oil Company (Ohio) Method for the preparation of unsaturated carboxylic acid with high activity phosphomolybdic acid based catalysts
US4444906A (en) 1981-06-08 1984-04-24 The Standard Oil Company Method for the preparation of high activity phosphomolybdic acid based catalysts
US4443555A (en) 1981-06-08 1984-04-17 The Standard Oil Company Method for the preparation of high activity phosphomolybdic acid based catalysts
DE3125061C2 (de) 1981-06-26 1984-03-15 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Acrolein bzw. Methacrolein durch katalytische Oxidation von Propylen bzw. Isobutylen oder tertiär-Butanol in sauerstoffhaltigen Gasgemischen
US4400364A (en) 1981-07-17 1983-08-23 The Halcon Sd Group, Inc. Process for oxidizing carbon monoxide in the presence of methacrolein
JPS5867349A (ja) 1981-10-20 1983-04-21 Asahi Chem Ind Co Ltd 触媒組成物
US4415482A (en) 1981-11-12 1983-11-15 Monsanto Company Oxidation and ammoxidation catalyst
US4479013A (en) 1981-12-07 1984-10-23 The Halcon Sd Group, Inc. Catalyst and process for unsaturated aldehydes
JPS58112050A (ja) 1981-12-24 1983-07-04 Ube Ind Ltd メタクリル酸製造用触媒の製法
DE3208572A1 (de) 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen Verfahren und katalysator zur herstellung von methacrylsaeure
DE3208571A1 (de) 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen Oxidationskatalysator, insbesondere fuer die herstellung von methacrylsaeure durch gasphasenoxidation von methacrolein
US4535188A (en) 1982-04-14 1985-08-13 The Halcon Sd Group, Inc. Conversion of isobutane to methacrolein
US4413147A (en) 1982-04-14 1983-11-01 The Halcon Sd Group, Inc. Conversion of isobutane to methacrolein
US4532365A (en) 1982-09-20 1985-07-30 The Halcon Sd Group, Inc. Conversion of alkanes to unsaturated aldehydes
USRE32082E (en) 1982-04-14 1986-02-11 The Halcon Sd Group, Inc. Conversion of isobutane to methacrolein
US4552860A (en) 1982-05-14 1985-11-12 National Distillers And Chemical Corporation Catalyst for the preparation of unsaturated aldehydes and carboxylic acids
US4596784A (en) 1982-06-07 1986-06-24 Rohm And Haas Company Catalyst compositions and their use for the preparation of unsaturated carboxylic acids
JPS5946132A (ja) 1982-09-06 1984-03-15 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレイン合成用触媒
US4558029A (en) 1982-09-13 1985-12-10 The Standard Oil Company Antimony-containing C4 oxidation catalysts
US4537874A (en) 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
JPS59115750A (ja) 1982-12-22 1984-07-04 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒
US4518523A (en) 1983-03-04 1985-05-21 The Standard Oil Company Method for adding make-up fluid bed oxidation catalysts for fluid bed oxidation catalysts containing the mixed oxides of vanadium and phosphorus
US4585883A (en) 1984-03-28 1986-04-29 Union Carbide Corporation Preparation of organometalates
JPS6122040A (ja) 1984-07-10 1986-01-30 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
JPS6133234A (ja) 1984-07-23 1986-02-17 Mitsubishi Petrochem Co Ltd 触媒の再生法
DE3508649A1 (de) 1985-03-12 1986-09-18 Röhm GmbH, 6100 Darmstadt Heteropolysaeure h(pfeil abwaerts)8(pfeil abwaerts)pmo(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)vo(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)9(pfeil abwaerts), deren anhydrid pmo(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)vo(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)5(pfeil abwaerts)und ihre verwendung
US4677084A (en) 1985-11-27 1987-06-30 E. I. Du Pont De Nemours And Company Attrition resistant catalysts, catalyst precursors and catalyst supports and process for preparing same
SU1665870A3 (ru) 1986-03-24 1991-07-23 Мицубиси Петрокемикал Компани Лимитед (Фирма) Способ приготовлени окисного катализатора дл окислени пропилена
JPS62234548A (ja) 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
US5198578A (en) 1986-07-17 1993-03-30 Union Carbide Chemicals Anhydrous diluents for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
US5183936A (en) 1986-08-21 1993-02-02 Union Carbide Chemicals & Plastics Technology Corporation Anhydrous diluent process for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
JPS63122642A (ja) 1986-11-11 1988-05-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
US5208371A (en) 1986-11-11 1993-05-04 Mitsubishi Rayon Co., Ltd. Process for production of methacrolein and methacrylic acid
JPS63137755A (ja) 1986-11-28 1988-06-09 Nippon Shokubai Kagaku Kogyo Co Ltd 触媒の再活性化法
DE3867249D1 (de) 1987-02-17 1992-02-13 Nippon Catalytic Chem Ind Katalysator zur oxydation von olefin oder tertiaerem alkohol und verfahren zu seiner herstellung.
US5218146A (en) 1987-05-27 1993-06-08 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for production of acrylic acid
JPH0764774B2 (ja) 1987-07-24 1995-07-12 三井東圧化学株式会社 メタクロレインの後酸化防止方法
JPH0712434B2 (ja) 1987-11-27 1995-02-15 日東化学工業株式会社 リン・アンチモン含有酸化物触媒の製法
DE3740271A1 (de) 1987-11-27 1989-06-01 Basf Ag Verfahren zur herstellung einer fuer die gasphasenoxidation von propylen zu acrolein und acrylsaeure katalytisch aktiven masse
US4855275A (en) 1988-02-18 1989-08-08 The Standard Oil Company Catalyst performance improvement via separate boron addition
JPH0813778B2 (ja) 1988-07-11 1996-02-14 住友化学工業株式会社 メタクリル酸の製造方法
DE3827639A1 (de) 1988-08-16 1990-02-22 Basf Ag Katalysator fuer die oxidation und ammonoxidation von (alpha),ss-ungesaettigten kohlenwasserstoffen
US5155262A (en) 1988-09-26 1992-10-13 Union Carbide Chemicals & Plastics Technology Corporation Anhydrous diluents for the isobutylene oxidation reaction to methacrolein and methacrolein oxidation to methacrylic acid
JP2747920B2 (ja) 1989-02-16 1998-05-06 日東化学工業株式会社 酸化反応に適するモリブデン含有金属酸化物流動層触媒の製法
JP2950851B2 (ja) 1989-06-23 1999-09-20 三菱レイヨン株式会社 鉄・アンチモン・リン含有金属酸化物触媒組成物およびその製法
EP0415347B2 (en) 1989-08-29 2002-06-05 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalyst for the production of methacrylic acid
DE3930534A1 (de) 1989-09-13 1991-03-21 Degussa Verfahren zur herstellung von acrolein durch katalytische gasphasenoxidation von propen
DE3930533C1 (ru) 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
JPH0813332B2 (ja) 1989-09-25 1996-02-14 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造用触媒の調製法
KR950006522B1 (ko) 1989-12-06 1995-06-16 가부시끼가이샤 닛뽕쇼꾸바이 메타크롤레인 및 메타크릴산의 제조방법
US5206431A (en) 1990-02-08 1993-04-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for producing methacrylic acid
JPH03238051A (ja) 1990-02-15 1991-10-23 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の調製法
JPH0784400B2 (ja) 1990-04-03 1995-09-13 株式会社日本触媒 不飽和アルデヒドおよび不飽和酸の製造方法
JP2841324B2 (ja) 1990-06-06 1998-12-24 三井化学株式会社 メタクロレインの製造方法
EP0460932B1 (en) 1990-06-06 1995-05-17 MITSUI TOATSU CHEMICALS, Inc. Method for preparing acrolein or methacrolein
US5221767A (en) 1990-07-12 1993-06-22 Basf Aktiengesellschaft Compositions of the formula Mo12 Pa Vb X1 c X2 d X3 e Sbf Reg Sh On
DE4022212A1 (de) 1990-07-12 1992-01-16 Basf Ag Massen der allgemeinen formel mo(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)2(pfeil abwaerts)(pfeil hoch)p(pfeil hoch)(pfeil abwaerts)a(pfeil abwaerts)(pfeil hoch)v(pfeil hoch)(pfeil abwaerts)b(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)1(pfeil hoch)(pfeil abwaerts)c(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)2(pfeil hoch)(pfeil abwaerts)d(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)3(pfeil hoch)(pfeil abwaerts)e(pfeil abwaerts)(pfeil hoch)s(pfeil hoch)(pfeil hoch)b(pfeil hoch)(pfeil abwaerts)f(pfeil abwaerts)(pfeil hoch)r(pfeil hoch)(pfeil hoch)e(pfeil hoch)(pfeil abwaerts)g(pfeil abwaerts)(pfeil hoch)s(pfeil hoch)(pfeil abwaerts)h(pfeil abwaerts)(pfeil hoch)o(pfeil hoch)(pfeil abwaerts)n(pfeil abwaerts)
JP3142549B2 (ja) 1990-09-10 2001-03-07 三菱レイヨン株式会社 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JP3371112B2 (ja) 1990-09-18 2003-01-27 ダイヤニトリックス株式会社 鉄・アンチモン含有金属酸化物触媒組成物およびその製法
US5081314A (en) 1990-12-07 1992-01-14 Kissel Charles L Process for producing acrolein
FR2670686B1 (fr) 1990-12-20 1994-08-12 Rhone Poulenc Chimie Composition catalytique pour la preparation d'aldehydes alpha,beta-insatures par oxydation d'olefines en phase gazeuse et procede d'oxydation.
FR2670685B1 (fr) 1990-12-20 1995-03-10 Rhone Poulenc Chimie Procede de preparation de catalyseurs enrobes a base de molybdates de bismuth et de fer dopes par du phosphore et du potassium.
US5245083A (en) 1991-02-27 1993-09-14 Mitsui Toatsu Chemicals, Inc. Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP3272745B2 (ja) 1991-06-06 2002-04-08 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
JP2509049B2 (ja) 1991-07-09 1996-06-19 株式会社日本触媒 メタクリル酸の製造方法
JP2974826B2 (ja) 1991-07-17 1999-11-10 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸製造用触媒の調製法
JP3108511B2 (ja) 1992-02-27 2000-11-13 三菱レイヨン株式会社 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造法
BE1005723A5 (fr) 1992-03-25 1993-12-28 Univ Catholique Louvain Systeme catalytique pour l'oxydation selective de compose organique et procede de preparation d'un tel systeme.
US5532199A (en) 1992-06-19 1996-07-02 Mitsubishi Rayon Co., Ltd. Carrier-supported catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids and process for preparing the same
JP3276984B2 (ja) 1992-06-19 2002-04-22 三菱レイヨン株式会社 不飽和アルデヒド及び不飽和カルボン酸合成用担持触媒及びその製造法
DE4220859A1 (de) 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
EP0608838B1 (en) 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Method for producing an unsaturated carboxylic acid
KR100277241B1 (ko) 1993-06-25 2001-02-01 고오사이 아끼오 불포화 알데하이드 및 불포화 카복실산의 제조방법
CA2148292A1 (en) 1994-05-05 1995-11-06 Barrie W. Jackson Liquid phase prparation of (meth)-acrylate from alpha-olefin
TW309513B (ru) 1994-05-31 1997-07-01 Nippon Catalytic Chem Ind
TW349033B (en) 1994-05-31 1999-01-01 Nippon Catalytic Chem Ind Catalyst for production of methacrylic acid and method for production of methacrylic acid by the use of the catalysta catalyst for the production of methacrylic acid by the vapor-phase catalytic oxidation and/or oxidative dehydrogenation of at least one compound
KR100186659B1 (ko) 1994-06-22 1999-05-15 유미꾸라 레이이찌 메타크롤레인의 제조 방법
DE4431957A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Propen zu Acrolein
DE4431949A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
EP0799642A4 (en) 1994-12-21 1999-05-19 Mitsubishi Rayon Co METHOD FOR PRODUCING A SUPPORT CATALYST FOR SYNTHESIS OF METHACROLEIN AND METHACRYLIC ACID
KR0144645B1 (ko) 1994-12-26 1998-07-15 황선두 메타크릴산 제조용 촉매
ES2135120T3 (es) 1995-03-10 1999-10-16 Basf Ag Procedimiento de oxidacion en fase gaseosa de propileno a acroleina, acido acrilico, o su mezcla, realizada continuamente, catalizada por via heterogenea.
DE19600955A1 (de) 1996-01-12 1997-07-17 Basf Ag Verfahren zur Herstellung von Acrylsäure und deren Ester
JP3476307B2 (ja) 1996-05-09 2003-12-10 三菱レイヨン株式会社 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の充填方法
JP3793317B2 (ja) 1996-05-14 2006-07-05 日本化薬株式会社 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
DE19630832A1 (de) * 1996-07-31 1998-02-05 Hoechst Ag Verfahren zur selektiven Herstellung von Essigsäure
JP3775872B2 (ja) 1996-12-03 2006-05-17 日本化薬株式会社 アクロレイン及びアクリル酸の製造方法
US5948683A (en) 1997-10-18 1999-09-07 Engelhard Corporation Catalyst for selective oxidation of unsaturated hydrocarbons and methods of making and using the same
JP3948798B2 (ja) 1997-10-27 2007-07-25 株式会社日本触媒 アクリル酸の製造方法
US5877108A (en) 1997-12-05 1999-03-02 The Standard Oil Company Performance of used molybdenum based catalysts by the addition of ammonium dimolybdate
US6043184A (en) 1998-01-05 2000-03-28 Sunoco, Inc. (R&M) Heteropoly acids supported on polyoxometallate salts and their preparation
US6060419A (en) 1998-01-05 2000-05-09 Sunoco, Inc. (R&M) Wells-Dawson type heteropolyacids, their preparation and use as oxidation catalysts
US5990348A (en) 1998-01-05 1999-11-23 Sunoco, Inc. Conversion of alkanes to unsaturated carboxylic acids over heteroploy acids supported on polyoxometallate salts
CA2271397A1 (en) * 1998-05-21 1999-11-21 Rohm And Haas Company A process for preparing a catalyst
US6114278A (en) 1998-11-16 2000-09-05 Saudi Basic Industries Corporation Catalysts for catalytic oxidation of propane to acrylic acid, methods of making and using the same
US6171571B1 (en) 1999-05-10 2001-01-09 Uop Llc Crystalline multinary metal oxide compositions, process for preparing and processes for using the composition
KR100814702B1 (ko) 2000-09-28 2008-03-18 롬 앤드 하스 캄파니 불포화 니트릴 제조방법
GB0124835D0 (en) * 2001-10-16 2001-12-05 Bp Chem Int Ltd Catalyst and process
US6919472B2 (en) * 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
EP1407819A3 (en) * 2002-10-01 2004-06-23 Rohm And Haas Company Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons
EP1411043A1 (en) * 2002-10-18 2004-04-21 Rohm And Haas Company Preparation of unsaturated carboxylic acids and unsaturated carboxylic acid esters from alkanes and/or alkenes
JP2005144432A (ja) * 2003-11-18 2005-06-09 Rohm & Haas Co アルカンをアルケン、およびそれらの対応する酸素化生成物に転化するための触媒系
EP2179793A1 (en) 2008-10-21 2010-04-28 Sued-Chemie AG Phosphorous-containing mixed oxide catalysts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2000107117A (ru) * 1998-06-23 2001-12-20 Пантошим С.А. Высокопроизводительный способ получения малеинового ангидрида из н-бутана
US6143928A (en) * 1998-08-10 2000-11-07 Saudi Basic Industries Corporation Catalysts for low temperature selective oxidation of propylene, methods of making and using the same
RU2285690C2 (ru) * 2000-06-20 2006-10-20 Басф Акциенгезельшафт Способ получения акролеина и/или акриловой кислоты
US20040249204A1 (en) * 2001-10-16 2004-12-09 Brian Ellis Ethane oxidation catalyst and process utilising the catalyst
RU2342991C2 (ru) * 2004-03-23 2009-01-10 Сауди Бейсик Индастриз Корпорейшн Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции
WO2006008177A1 (en) * 2004-07-22 2006-01-26 Fritz Haber Institut Der Max Planck Gesellschaft Metal oxide catalyst and method for the preparation thereof
US20060293539A1 (en) * 2005-06-22 2006-12-28 Holtcamp Matthew W Oxidation of alkanes
EP1930074A1 (en) * 2006-12-08 2008-06-11 Robert Prof. Dr. Schlögl Novel mesoporous mixed metal oxide catalyst and method for the preparation thereof

Also Published As

Publication number Publication date
CN103958054A (zh) 2014-07-30
US8921257B2 (en) 2014-12-30
JP6038169B2 (ja) 2016-12-07
TW201334867A (zh) 2013-09-01
US20130144085A1 (en) 2013-06-06
TWI568494B (zh) 2017-02-01
EP2785451A1 (en) 2014-10-08
JP2015505805A (ja) 2015-02-26
WO2013082514A1 (en) 2013-06-06
RU2014126870A (ru) 2016-01-27

Similar Documents

Publication Publication Date Title
RU2621033C2 (ru) Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения
US6610629B2 (en) Process for producing an oxide catalyst for oxidation or ammoxidation
US6710207B2 (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
JP4794727B2 (ja) アルカンの酸化に有用な触媒
US7208445B2 (en) Single crystalline phase catalyst
JP6629394B2 (ja) 改良された選択的アンモ酸化触媒
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
US8350075B2 (en) Mixed metal oxide ammoxidation catalysts
US20080194871A1 (en) Process for Preparing Improved Catalysts for Selective Oxidation of Propane Into Acrylic Acid
EP1192983A1 (en) Promoted multi-metal oxide catalyst
EP1254707A1 (en) Method for improving a vanadium based mixed metal oxide catalyst by treating it with a liquid, the catalyst thereby obtainable and its use in oxidation and ammoxidation reactions
EP1254709A2 (en) Recalcined catalyst
KR100905950B1 (ko) Nox로 처리한 혼합 금속 산화물 촉매
US8420566B2 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
KR20020084419A (ko) 고온 혼합
KR102356413B1 (ko) 선택적인 부산물 hcn 생성을 갖는 암모산화 촉매
US20050277547A1 (en) NOx treated mixed metal oxide catalyst
JP2017517393A (ja) 改良された選択的アンモ酸化触媒
EP1346766B1 (en) Process for producing oxygen-containing unsaturated compound
EP1306129A1 (en) Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions
JP4666334B2 (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法