RU2342991C2 - Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции - Google Patents

Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции Download PDF

Info

Publication number
RU2342991C2
RU2342991C2 RU2006137281/04A RU2006137281A RU2342991C2 RU 2342991 C2 RU2342991 C2 RU 2342991C2 RU 2006137281/04 A RU2006137281/04 A RU 2006137281/04A RU 2006137281 A RU2006137281 A RU 2006137281A RU 2342991 C2 RU2342991 C2 RU 2342991C2
Authority
RU
Russia
Prior art keywords
catalyst
catalytic composition
antimony
gallium
niobium
Prior art date
Application number
RU2006137281/04A
Other languages
English (en)
Other versions
RU2006137281A (ru
Inventor
Полетт Н. ХАЗИН (US)
Полетт Н. ХАЗИН
Пол Э. Мл. ЭЛЛИС (US)
Пол Э. Мл. ЭЛЛИС
Original Assignee
Сауди Бейсик Индастриз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сауди Бейсик Индастриз Корпорейшн filed Critical Сауди Бейсик Индастриз Корпорейшн
Publication of RU2006137281A publication Critical patent/RU2006137281A/ru
Application granted granted Critical
Publication of RU2342991C2 publication Critical patent/RU2342991C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/686Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к каталитической композиции для получения ненасыщенной карбоновой кислоты из алкана. Описана каталитическая композиция, содержащая соединение формулы:
Mo1VaSbbNbcMdOx
в которой Мо представляет собой молибден, V означает ванадий, Sb означает сурьму, Nb означает ниобий, М представляет собой галлий, а составляет от 0,01 до 1, b составляет от 0,01 до 1, с составляет от 0,01 до 1, d составляет от 0,01 до 1 и х определяется требованиями валентности других присутствующих элементов.
Технический эффект - повышение степени конверсии алкана, повышение селективности каталитической композиции в одностадийном процессе превращения алкана в ненасыщенную карбоновую кислоту. 8 з.п. ф-лы, 1 табл.

Description

Область техники, к которой относится изобретение
Это изобретение относится к способу получения ненасыщенных карбоновых кислот из алканов. В частности, это изобретение относится к способу получения акриловой кислоты из пропана с помощью одностадийного процесса окисления в паровой фазе.
Уровень техники
Получение ненасыщенных карбоновых кислот, таких как акриловая кислота или метакриловая кислота, традиционно осуществляют путем каталитического взаимодействия олефинов, таких как пропилен или изобутилен, с кислородом с образованием алкенилальдегидов, таких как акролеин или метакролеин, которые затем каталитически окисляют кислородом. Алканы, такие как пропан, обладают преимуществами по стоимости и доступности по сравнению с олефинами. Кроме того, одностадийный способ будет иметь преимущества по сравнению с существующим промышленным процессом.
Известны отдельные примеры получения акриловой кислоты и других ненасыщенных карбоновых кислот из пропана и других алканов в одностадийном каталитическом процессе окисления в паровой фазе. В патенте США №5380933 описан способ получения ненасыщенной карбоновой кислоты, такой как акриловая кислота, в присутствии смешанного металлоксидного катализатора, содержащего молибден, ванадий, теллур и, по меньшей мере, один из ниобия, тантала, вольфрама, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, палладия, платины, сурьмы, висмута, бора, индия и церия. В качестве компонента катализатора не были упомянуты ни галлий, ни серебро, ни золото. В патенте отсутствует предположение о выборе сурьмы в качестве возможного компонента для катализатора. Теллур является необходимым компонентом этого катализатора по уровню техники.
В опубликованной заявке на патент Японии Н10-57813 раскрыт металлоксидный катализатор, содержащий молибден, ванадий, теллур и/или сурьму и элемент, который выбирают из ниобия, тантала, вольфрама, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, палладия, платины, висмута, бора, индия, фосфора, редкоземельных элементов, щелочных металлов, щелочно-земельных металлов. В качестве компонента катализатора не были описаны ни галлий, ни серебро, ни золото. Отсутствует предположение о выборе висмута в качестве возможного компонента катализатора.
В опубликованной заявке на патент Японии Н10-45664 описан катализатор из оксидов молибдена, ванадия, сурьмы и элемента, который выбирают из ниобия, тантала, вольфрама, титана, циркония, хрома, железа, марганца, рутения, кобальта, родия, никеля, палладия, платины, бора, индия, щелочных металлов, щелочно-земельных металлов, и редкоземельных элементов. Ни галлий, ни висмут, ни серебро, ни золото не описаны в качестве компонента катализатора.
В опубликованной заявке ЕР 0962253 описан катализатор, содержащий оксиды молибдена, вольфрама, железа, ниобия, тантала, циркония, рутения и их смеси; ванадий, церий, хром и их смеси; теллур, висмут, сурьма, селен, и их смеси; и ниобий, тантал, вольфрам, титан, алюминий, цирконий, хром, марганец, железо, рутений, кобальт, рений, никель, палладий, платина, сурьма, висмут, бор, индий, церий и их смеси. Ни галлий, ни серебро, ни золото не раскрыты в качестве компонента катализатора. Отсутствует предположение о выборе сурьмы или висмута в качестве возможного компонента катализатора.
В опубликованном патенте Японии №10-120617 описан нанесенный катализатор, содержащий оксиды молибдена, ванадия, сурьмы, один из оксидов ниобия, тантала, олова, вольфрама, титана, никеля, железа, хрома или кобальта и, по меньшей мере, один из оксидов натрия, калия, рубидия, цезия, фосфора и мышьяка. Ни галлий, ни висмут, ни серебро, ни золото не были упомянуты в качестве компонента катализатора.
В опубликованной заявке на патент Японии Н6-218286 раскрыт гетерополикислотный катализатор, имеющий оксиды фосфора, молибдена, ванадия, по меньшей мере, один из оксидов мышьяка и сурьмы и, по меньшей мере, один из оксидов олова, свинца, церия, кобальта, железа, циркония, тория, вольфрама, германия, никеля, рения, висмута, хрома, бора, магния, кальция, бария, стронция, селена, теллура, серебра, алюминия, цинка, меди, титана, калия, рубидия, цезия и таллия. Ни галлий, ни золото, ни ниобий не были раскрыты в качестве компонента катализатора. Отсутствует предположение о выборе сурьмы и серебра в качестве возможных компонентов катализатора.
В патентах США №№6160162 и 6114278 раскрыт прокаленный катализатор, содержащий молибден, ванадий, галлий, палладий, ниобий и, по меньшей мере, один из лантана, теллура, германия, цинка, кремния, индия и вольфрама. Ни сурьма, ни висмут, ни золото, ни серебро не раскрыты в качестве компонента катализатора.
В патентах США №№5994580 и 6060422 раскрыт способ получения акриловой кислоты из пропана и кислорода на смешанном металлоксидном катализаторе, содержащем молибден, ванадий, сурьму и, по меньшей мере, один из ниобия, тантала, олова, вольфрама, титана, никеля, железа, хрома и кобальта. Ни галлий, ни висмут, ни серебро, ни золото не раскрыты в качестве компонента катализатора.
В патенте Японии №11114418 описан катализатор, содержащий оксиды ниобия, молибдена, сурьмы, по меньшей мере, один из оксидов фосфора, мышьяка, бора, кремния и германия и, по меньшей мере, один из оксидов калия, цезия, рубидия, кальция, магния, теллура, хрома, марганца, железа, кобальта, никеля, меди, серебра, свинца, висмута, алюминия, галлия, индия, олова, цинка, лантана, церия, иттрия, вольфрама, тантала, рутения, родия, палладия, платины, иридия, осмия, рения и гафния. Ни золото, ни ванадий не описаны в качестве компонента катализатора. Отсутствует предположение о выборе галлия, висмута или серебра в качестве возможного компонента катализатора.
В заявке на патент Китая 1159960 описаны катализаторы на основе висмута с ванадием, ниобием или танталом и хромом, молибденом или вольфрамом, необязательно с литием, натрием, калием, медью, серебром или золотом. Ни сурьма, ни галлий не описаны в качестве компонента катализатора. Отсутствует предположение о выборе золота или серебра в качестве возможного компонента катализатора.
В патенте США №4339355 раскрыт катализатор, содержащий молибден, ванадий и ниобий с хромом, медью, марганцем или иттрием. Ни сурьма, ни галлий, ни золото, ни серебро не раскрыты в качестве компонента катализатора.
В патенте США №6252122 описан катализатор, содержащий молибден, висмут и фосфор с ванадием, ниобием, танталом, хромом, вольфрамом, галлием, церием или лантаном; литием, натрием, калием, рубидием, цезием, медью, серебром, золотом, палладием или платиной; оловом, свинцом, сурьмой, висмутом, теллуром, железом, кобальтом или никелем; и кремнием, алюминием, титаном или цирконием. Отсутствует предположение о выборе галлия или золота в качестве возможного компонента катализатора.
В патенте США №5807531 раскрыт катализатор, содержащий молибден и ванадий с вольфрамом, ниобием, титаном, цирконием, гафнием, танталом, хромом, кремнием или германием. Ни сурьма, ни галлий, ни висмут, ни серебро, ни золото не раскрыты в качестве компонента катализатора.
В заявке на патент Японии №246108 (2000) описан катализатор, содержащий молибден, ванадий и сурьму с ниобием или танталом и серебром, цинком, оловом, свинцом, мышьяком, медью, таллием или селеном. Ни галлий, ни висмут, ни золото не описаны в качестве компонента катализатора. Отсутствует предположение о выборе серебра в качестве возможного компонента катализатора.
В патентах США №№6114278 и 6160162 описан катализатор для получения акриловой кислоты путем каталитического парофазного парциального окисления пропана в одну стадию. Этот катализатор содержит молибден, ванадий, галлий, палладий, ниобий и, по меньшей мере, один из лантана, теллура, германия, цинка, кремния, индия или вольфрама. Отсутствует описание сурьмы, висмута, серебра или золота в качестве компонента катализатора.
В документе РСТ/ЕР 01/06821 (WO 01/98246) раскрыт способ получения акриловой кислоты с помощью катализатора, содержащего молибден, ванадий и теллур или сурьму и, по меньшей мере, один из ниобия, тантала, вольфрама, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, палладия, галлия, платины, висмута, бора или церия. Ни серебро, ни золото не описаны в качестве компонента катализатора этого изобретения. Отсутствует предположение о выборе галлия и сурьмы в качестве возможного компонента. Отсутствуют экспериментальные примеры для катализатора, содержащего сурьму или галлий.
В патенте США №6383978 описан катализатор для окисления в паровой фазе алкана в ненасыщенную карбоновую кислоту и для парофазного аммоокисления алкана в ненасыщенный нитрил. Этот катализатор содержит молибден, ванадий, по меньшей мере, один из теллура, сурьмы, олова, германия или висмута, по меньшей мере, один из ниобия, тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, бора, индия, мышьяка, лития, натрия, калия, рубидия, цезия, франция, бериллия, магния, кальция, стронция, бария, гафния, свинца, фосфора, прометия, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, лантана, скандия, золота, серебра, палладия, галлия, празеодима, рения, иридия, неодима, иттрия, самария, тербия, вольфрама, церия, меди или цинка и, по меньшей мере, один из селена или висмута. Отсутствует предположение о выборе галлия, золота, серебра и сурьмы в качестве возможного компонента. Катализатор этого изобретения должен содержать селен или висмут.
В патенте США №6407280 описан катализатор для окисления пропана или изобутана до акриловой кислоты или метакриловой кислоты. Этот катализатор содержит молибден или вольфрам; ванадий или церий; теллур, сурьму или селен; необязательно, по меньшей мере, один из ниобия, тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, сурьмы, висмута, бора, индия, мышьяка, германия, олова, лития, натрия, калия, рубидия, цезия, франция, бериллия, магния, кальция, стронция, бария, радия, гафния, свинца, фосфора, прометия, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, иттербия и лютеция; и, по меньшей мере, один из никеля, палладия, меди, серебра или золота. Галлий не был раскрыт в качестве компонента катализатора этого изобретения. Отсутствует предположение о выборе сурьмы в качестве возможного компонента. Отсутствует экспериментальный пример для катализатора, содержащего сурьму или галлий.
В патенте США №6403525 раскрыт катализатор для окисления или аммоокисления алканов. Этот катализатор содержит молибден, ванадий, по меньшей мере, один из теллура, сурьмы, олова, германия или висмута, по меньшей мере, один из ниобия, тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, бора, мышьяка, лития, натрия, калия, рубидия, цезия, франция, бериллия, магния, кальция, стронция, бария, гафния, свинца, фосфора, прометия, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, лантана, скандия, золота, серебра, палладия, галлия, празеодима, рения, иридия, неодима, иттрия, самария, тория, вольфрама, церия, меди или цинка и, по меньшей мере, один из индия или рения. Отсутствует предположение о выборе галлия, висмута, серебра или золота и сурьмы в качестве возможного компонента. Катализатор этого изобретения должен содержать индий или рений.
Катализаторы аналогичных составов были использованы в других процессах, отличающихся от получения акриловой кислоты и других ненасыщенных карбоновых кислот из пропана и других алканов в одностадийном каталитическом процессе окисления в паровой фазе.
В патенте США №4250346 раскрыт катализатор для каталитического окислительного дегидрирования этана в этилен, причем указанный катализатор содержит молибден с хромом, марганцем, ниобием, танталом, титаном, ванадием или вольфрамом или висмутом, церием, кобальтом, медью, железом, калием, магнием, никелем, фосфором, свинцом, сурьмой, кремнием, оловом, таллием или ураном. Ни галлий, ни серебро, ни золото не раскрыты в качестве компонента катализатора. Отсутствует предположение о выборе ванадия, ниобия и сурьмы в качестве возможного компонента катализатора.
В заявке на патент Японии №10-310539 описан катализатор получения пропилена из пропана, причем катализатор содержит молибден, ванадий и ниобий. Ни галлий, ни висмут, ни серебро, ни золото не раскрыты в качестве компонента катализатора.
В патенте США №6043185 раскрыт катализатор для получения акрилонитрила или метакрилонитрила путем каталитического взаимодействия пропана или изобутана с кислородом и аммиаком в паровой фазе. Этот катализатор содержит молибден, ванадий, сурьму, галлий и, по меньшей мере, один из мышьяка, теллура, селена, ниобия, тантала, вольфрама, титана, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, палладия, платины, бора, индия, церия, рения, иридия, германия, олова, висмута, иттрия, празеодима, щелочных металлов и щелочно-земельных металлов, а означает 1; b составляет от 0,0 до 0,99; с равно 0,01-0,9; d равно 0,01-0,5; е равно 0,0-1,0; и х определяется состоянием окисления присутствующих катионов, и предпочтительно катализатор не содержит теллура (меньше чем 0,01). Для сырья, содержащего пропан, аммиак, кислород, азот и воду, в сравнительном примере для катализатора без галлия получены значения селективности по акрилонитрилу 50,7% и по акриловой кислоте 1,5%, и в примерах для катализатора, промотированного галлием, получены значения селективности по акрилонитрилу 45,8-60,3% и по акриловой кислоте от 0,4 до 3,4%. Ни серебро, ни золото не раскрыты в качестве компонента катализатора. Отсутствует предположение о выборе висмута в качестве возможного компонента катализатора.
В патенте США №6036880 описано окисление пропана на катализаторе, содержащем молибден, ванадий, ниобий и теллур и/или сурьму, в котором ниобий растворен в конкретном количестве дикарбоновой кислоты. Галлий, висмут, серебро и золото не были раскрыты в качестве компонентов катализатора.
В патентах США №№5973186 и 6080882 раскрыт катализатор для получения ненасыщенного нитрила из алкана по реакции аммоокисления, который содержит молибден, ванадий, ниобий или теллур, или сурьму, и, необязательно, тантал, вольфрам, титан, цирконий, гафний, железо, хром, марганец, рений, рутений, кобальт, родий, никель, палладий, осмий, иридий, платину, медь, серебро, цинк, кадмий, бор, алюминий, галлий, индий, таллий, германий, олово, свинец, фосфор, висмут, селен, скандий, иттрий, лантан, церий, празеодим, неодим, самарий, гадолиний, щелочные металлы и щелочноземельные металлы. Отсутствует предположение о выборе галлия, висмута или серебра в качестве возможного компонента. Золото не описано в качестве компонента катализатора.
В патенте США №6063728 раскрыт катализатор аммоокисления для получения акрилонитрила или метакрилонитрила. Этот катализатор содержит молибден, ванадий, ниобий и теллур или сурьму и, по меньшей мере, один из тантала, вольфрама, хрома, титана, циркония, висмута, олова, гафния, марганца, рения, железа, рутения, кобальта, родия, никеля, палладия, платины, серебра, цинка, бора, алюминия, галлия, индия, германия, свинца, фосфора, редкоземельных элементов и щелочно-земельных металлов. Отсутствует предположение о выборе галлия, серебра и сурьмы в качестве возможного компонента. Отсутствует описание золота в качестве компонента катализатора.
В патенте США №6395936 раскрыт катализатор, содержащий оксиды висмута, теллура, сурьмы, олова и/или меди и молибдена и/или вольфрама и оксиды щелочных металлов, таллия и/или самария; щелочно-земельных металлов, никеля, кобальта, меди, марганца, цинка, олова, кадмия и/или ртути; железа, хрома, церия и/или ванадия; фосфора, мышьяка, бора и/или сурьмы; редкоземельных металлов, титана, циркония, ниобия, тантала, рения, рутения, родия, серебра, золота, алюминия, галлия, индия, кремния, германия, свинца, тория и/или урана и молибдена и/или вольфрама. Отсутствует предположение о выборе ванадия, серебра, золота, галлия, ниобия и сурьмы в качестве возможного компонента.
Раскрытие изобретения
Это изобретение относится к катализатору, используемому в одностадийном способе получения ненасыщенных карбоновых кислот, таких как акриловая кислота или метакриловая кислота, из алканов, таких как пропан или изобутан, к способу получения катализатора и способу получения ненасыщенных карбоновых кислот, таких как акриловая кислота или метакриловая кислота, из алканов, таких как пропан или изобутан. Катализатор представляет собой композицию общей формулы:
Mo1VaSbbNbcMdOx
в которой М представляет собой один или несколько элементов из галлия, висмута, серебра или золота, а составляет от 0,01 до 1, предпочтительно от 0,01 до 0,75, наиболее предпочтительно от 0,1 до 0,5; b составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно от 0,1 до 0,5; с составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно от 0,01 до 0,1; d составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно 0,01 до 0,1, и х определяется требованиями валентности других компонентов. Каталитическая композиция может быть представлена формулой:
Mo1VaSbbNbcMdM'eOx
в которой М' представляет собой один или несколько элементов из тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, бора, мышьяка, лития, натрия, калия, рубидия, кальция, бериллия, магния, церия, стронция, гафния, фосфора, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, тербия, иттербия, лютеция, лантана, скандия, палладия, празеодима, неодима, иттрия, тория, вольфрама, цезия, цинка, олова, германия, кремния, свинца, бария и таллия и е составляет от 0,0 до 1, предпочтительно от 0,0 до 0,5, наиболее предпочтительно от 0,0 до 0,1.
Этот катализатор получают путем соосаждения соединений молибдена, ванадия, сурьмы, ниобия, и галлия, висмута, серебра или золота и, необязательно, других элементов с образованием смешанного металлоксидного катализатора. Этот катализатор может быть использован для селективного превращения алканов в ненасыщенные карбоновые кислоты в одностадийном процессе.
Это изобретение вообще относится к смешанному металлоксидному катализатору и, более конкретно, молибдованадатному катализатору. Катализатор настоящего изобретения представляет собой смесь оксидов молибдена, ванадия, сурьмы, ниобия и либо галлия, висмута, серебра, или золота общей формулы:
Mo1VaSbbNbcMdOx
в которой М представляет собой один или несколько элементов из галлия, висмута, серебра или золота, а составляет от 0,01 до 1, предпочтительно от 0,01 до 0,75, наиболее предпочтительно от 0,1 до 0,5; b составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно от 0,1 до 0,5; с составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно от 0,01 до 0,1; d составляет от 0,01 до 1, предпочтительно от 0,01 до 0,5, наиболее предпочтительно от 0,01 до 0,1, и х определяется требованиями валентности других компонентов. Предпочтительно М представляет собой галлий.
Катализатор настоящего изобретения может иметь состав, описанный следующей формулой:
Mo1VaSbbNbcMdM'eOx
в которой необязательный элемент М' может быть одним или несколькими элементами, выбранными из тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, бора, мышьяка, лития, натрия, калия, рубидия, кальция, бериллия, магния, церия, стронция, гафния, фосфора, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, тербия, иттербия, лютеция, лантана, скандия, палладия, празеодима, неодима, иттрия, тория, вольфрама, цезия, цинка, олова, германия, кремния, свинца, бария и таллия и е составляет от 0,0 до 1, предпочтительно от 0,0 до 0,5, наиболее предпочтительно 0,0 до 0,1.
Конкретными примерами катализатора настоящего изобретения являются
Mo1V0,3Sb0,15Nb0,05Ga0,03Ox; Mo1V0,3Sb0,08Nb0,05Ga0,03Ox; Mo1V0,3Nb0,05Sb0,15Bi0,03Ox;
Mo1V0,3Sb0,15Nb0,05Ag0,06Ox; Mo1V0,3Sb0,15Nb0,05Au0,015Ox и Mo1V0,3Nb0,05Sb0,15Ga0,03W0,012Ox.
Этот катализатор может быть использован в одностадийном способе получения ненасыщенных карбоновых кислот, таких как акриловая кислота или метакриловая кислота, из алканов, таких как пропан или изобутан. Предпочтительно алкан имеет от трех до восьми атомов углерода, и наиболее предпочтительными являются пропан или изобутан. Предпочтительно этот способ осуществляют в паровой фазе, в которой катализатор приводят в контакт с алканом и кислородом. Предпочтительно молярное соотношение алкан:кислород находится в диапазоне от 0,01:1 до 10:1. Предпочтительно время контакта реагентов находится в диапазоне от 0,1 до 10 секунд, предпочтительно от 0,1 до 5 секунд. В реакционную газовую смесь может быть добавлен водяной пар. Если используется пар, то молярное соотношение алкан:водяной пар находится в диапазоне от 0,05:1 до 10:1. Кроме того, может быть использован инертный газ, такой как азот, аргон или гелий, в качестве носителя. Если используется газообразный носитель, то предпочтительно молярное соотношение алкан:носитель предпочтительно находится в диапазоне от 0,01:1 до 10:1.
Реакционная температура в способе согласно настоящему изобретению составляет 320-450°С, предпочтительно 350-400°С. Реакционное давление составляет от 0 до 100 фунт/кв. дюйм (0-689,48 кПа), предпочтительно от 5 до 50 фунт/кв. дюйм (34,47-344,74 кПа).
Кроме ненасыщенных карбоновых кислот, в способе согласно настоящему изобретению могут образоваться побочные продукты, в том числе олефины. Например, когда алкан представляет собой пропан, могут образоваться побочные продукты: монооксид углерода, диоксид углерода, уксусная кислота и пропилен. Олефин, такой как пропилен, можно отделять от других побочных продуктов и рециркулировать в сырьевой поток. Катализатор в способе настоящего изобретения может превращать олефины в ненасыщенные карбоновые кислоты, например пропилен в акриловую кислоту. В качестве альтернативы олефины могут быть отделены от других побочных продуктов и превращены в ненасыщенные карбоновые кислоты в другом процессе с использованием известных катализаторов превращения олефинов в ненасыщенные карбоновые кислоты или использованы в других процессах для получения других продуктов.
Катализатор настоящего изобретения может быть использован как неосажденный катализатор или нанесенный катализатор. В случае нанесенного катализатора носитель должен представляет собой инертное твердое вещество, не обладающее реакционной способностью в отношении любого активного компонента катализатора, и предпочтительным носителем является диоксид кремния, оксид алюминия, оксид ниобия, оксид титана, оксид циркония или их смеси. Катализатор может быть закреплен на носителе способами, известными из уровня техники, которые включают пропитку по влагоемкости, реакции в суспензии и распылительную сушку. Форма, размер или распределение частиц катализатора не ограничиваются, и, в зависимости от ситуации, катализатор может быть получен в реакционной емкости в процессе. Примеры представляют собой порошки, гранулы, сферы, цилиндры, подушки и др.
Предпочтительно катализатор готовят из раствора растворимых в воде соединений каждого из компонентов металлов. Если соединения не растворимы в воде, то может быть получена взвесь или суспензия, и ее тщательно диспергируют или перемешивают. В качестве альтернативы, могут быть использованы растворители, отличающиеся от воды, такие как кислоты или щелочи. Для облегчения растворения растворитель можно нагреть. Обычно растворяется смесь соединений элементов, таких как соли или комплексы, в приблизительно желательном молярном соотношении, с образованием раствора. Этот раствор может быть нагрет для того, чтобы способствовать взаимодействию соединений, и чтобы образовались желаемые фазы. Чтобы применять повышенные температуры и давления в растворе, могут быть использованы известные из уровня техники гидротермальные способы. Жидкий растворитель удаляют, и образовавшиеся каталитические композиции сушат и затем прокаливают.
Подходящие предшественники соединений молибдена представляют собой соли молибдена, такие как парамолибдат аммония, оксиды молибдена, молибденовые кислоты или хлориды молибдена. Подходящие предшественники соединений ванадия представляют собой соли ванадия, такие как метаванадат аммония, оксиды ванадия, оксалаты ванадия или сульфаты ванадия.
Подходящие предшественники соединений сурьмы представляют собой оксиды сурьмы, хлориды сурьмы, сульфат сурьмы, тартрат сурьмы и ацетат сурьмы.
Подходящие предшественники соединений ниобия представляют собой оксалат ниобия, оксалат аммоний-ниобия, оксид ниобия, гидратированный оксид ниобия или ниобиевая кислота. Щавелевая кислота и ниобиевая кислота могут быть растворены воде, чтобы получить раствор. Что касается полученного раствора, является предпочтительным, чтобы молярное соотношение щавелевой кислоты к ниобию находилось в диапазоне от 1:1 до 12:1, предпочтительно от 3:1 до 6:1. Для образования раствора могут быть использованы дикарбоновые кислоты, отличающиеся от щавелевой кислоты, такие как малоновая кислота, янтарная кислота, глутаровая кислота и адипиновая кислота, или трикарбоновые кислоты, такие как лимонная кислота, с ниобиевой кислотой или без нее.
Подходящие предшественники соединений галлия представляют собой оксид галлия, нитрат галлия, хлорид галлия, ацетилацетонат галлия и сульфат галлия.
Подходящие предшественники соединений серебра представляют собой оксид серебра, ацетат серебра, карбонат серебра, нитрат серебра или галогениды серебра, такие как хлорид серебра.
Подходящие предшественники соединений висмута представляют собой ацетат висмута, гидроксид висмута, нитрат висмута, гидраты нитрата висмута, нитрат оксида висмута(III), оксид висмута(III), цитрат висмута, фторид висмута, хлорид висмута, бромид висмута, иодид висмута, оксихлорид висмута(III), оксинитрат висмута(III), фосфат висмута(III), субкарбонат висмута, субнитрат висмута, моногидрат субнитрата висмута, субсалицилат висмута и сульфид висмута(III).
Подходящие предшественники соединений золота представляют собой бромид золота, хлорид золота, гидроксид золота, иодид золота или золотохлористоводородную кислоту.
Подходящие предшественники соединений других металлов, таких как тантала, титана, алюминия, циркония, хрома, марганца, железа, рутения, кобальта, родия, никеля, платины, бора, мышьяка, лития, натрия, калия, рубидия, кальция, бериллия, магния, церия, стронция, гафния, фосфора, европия, гадолиния, диспрозия, гольмия, эрбия, тулия, тербия, иттербия, лютеция, лантана, скандия, палладия, празеодима, неодима, иттрия, тория, вольфрама, цезия, цинка, олова, германия, кремния, свинца, бария и таллия, представляют собой соли, такие как оксалаты, тартраты, цитраты, нитраты, галогениды, карбонаты, бикарбонаты, гидроксиды, оксиды и т.п., причем нитраты и оксалаты являются предпочтительными и доступными. Для фосфора и мышьяка подходящие соединения-предшественники могут включать гидрофосфат аммония, фосфат аммония, пентоксид фосфора, фосфорную кислоту, фосфористую кислоту, мышьяковую кислоту и оксид мышьяка.
Жидкий растворитель может быть удален путем фильтрации, выпаривания или центрифугирования. Если при удалении жидкости используют нагревание, то предпочтительно температура находится в диапазоне от 40 до 100°С. Каталитическую композицию высушивают, используя известные из уровня техники способы. Распылительная сушка может быть использована в качестве средства для удаления жидкого растворителя и сушки катализатора в одной операции. Типичная температура на выходе аппарата распылительной сушки катализатора этого изобретения составляет 90-105°С. После сушки каталитической композиции предпочтительно ее подвергают термической обработке на воздухе при температуре в диапазоне 250-350°С в течение от 1 до 10 часов. Предпочтительно прокаливание каталитической композиции проводят в инертном газе, таком как аргон или азот, при температуре в диапазоне 550-650°С в течение от 1 до 10 часов.
Кроме того, твердый катализатор может быть приготовлен с помощью высокоэнергетической шаровой мельницы с планетарно движущимися шарами или низкоэнергетического средства измельчения или дробления для того, чтобы получить желаемый размер кристаллитов, размер частиц, форму частиц и/или распределение частиц по размеру.
Известны два фактора, с помощью которых оценивают эффективность катализатора для окисления алканов в ненасыщенные карбоновые кислоты. Первый фактор представляет собой степень превращения алкана (конверсия, %). Второй фактор представляет собой степень получения желаемого продукта (селективность, %). Произведение этих двух факторов, в свою очередь, определяет суммарный выход ненасыщенных карбоновых кислот при каталитическом окислении алкана. Катализатор настоящего изобретения может обеспечить степень превращения пропана 50% и селективность по акриловой кислоте 56,2%, то есть суммарный выход 28,2%.
Осуществление изобретения
После общего описания изобретения приведены следующие примеры, показывающие конкретные варианты воплощения изобретения и его практическое осуществление и преимущества. Разумеется, эти примеры приведены с целью иллюстрации и не предназначаются для какого-либо ограничения описания или формулы изобретения.
Сравнительный пример 1
Готовят смешанную металлоксидную композицию следующего состава:
Mo1V0,3Nb0,05Sb0,15Ox.
Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при 90°С. Добавляют оксид сурьмы (III) (4,92 г), и смесь продувают азотом и нагревают при 92°С приблизительно в течение 4,5 ч. Нагревание прекращают, и смесь охлаждают в течение ночи в атмосфере азота. Воду (105 мл) удаляют с помощью роторного испарителя. Добавляют парамолибдат аммония (40,0 г), и смесь перемешивают в атмосфере азота в течение 4,5 ч.
Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение 5 ч. Раствор В добавляют в раствор А, и образовавшуюся смесь подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем проводят разложение при 300°С в течение 5 ч, затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (1 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/О2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Сравнительный пример 2
Смешанный металлоксидный катализатор (1 г), полученный в сравнительном примере 1, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Сравнительный пример 3
Смешанный металлоксидный катализатор (1 г), полученный в сравнительном примере 1, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/О2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 1
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,15Ga0,03Ox следующим образом.
Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при 90°С. Добавляют оксид сурьмы (III) (4,92 г), и смесь нагревают при 98°С приблизительно в течение 5 ч.
Нагревание прекращают, и смесь охлаждают. Удаляют часть воды с помощью роторного испарителя. Добавляют парамолибдат аммония (40,0 г), и смесь перемешивают в течение ночи. Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение ночи. Раствор С. Оксид галлия (0,645 г) перемешивают в 20 мл воды в течение ночи. К раствору А добавляют раствор В и затем раствор С, и через 20 минут образовавшуюся смесь подвергают распылительной сушке, чтобы получить твердый предшественник катализатора. Этот предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч, затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (1 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 2
Смешанный металлоксидный катализатор (1 г), полученный в примере 1, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 3
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,08Ga0,03Ox следующим образом.
Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при нагревании. Добавляют оксид сурьмы (III) (2,64 г), и смесь нагревают при 92°С приблизительно в течение 7 ч. Нагревание прекращают, смесь продувают азотом и охлаждают в течение ночи. Часть воды (153 г) удаляют с помощью роторного испарителя (20 мл воды). Добавляют парамолибдат аммония (40,0 г), и смесь перемешивают в течение 3,5 ч. Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение ночи. Раствор С. Оксид галлия (0,645 г) перемешивают в 20 мл воды в течение ночи. Раствор В добавляют к раствору А, затем добавляют раствор С, и через 5 минут образовавшуюся смесь подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч, прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (1 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/О2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 4
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,15Ca0,03W0,012Ox следующим образом.
Раствор А. Ванадат аммония (7,95 г) растворяют в 170 мл воды при нагревании, Добавляют оксид сурьмы (III) (4,92 г), и смесь нагревают при 96-100°С приблизительно в течение 4 часов в токе азота. Нагревание прекращают, и смесь охлаждают в течение ночи в атмосфере азота. Добавляют парамолибдат аммония (40,0 г). Часть воды (100 г) удаляют с помощью роторного испарителя. Смесь перемешивают всего в течение 1,5 ч. Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение ночи. Раствор С. Оксид галлия (0,654 г) перемешивают в 20 мл воды в течение ночи. Раствор В добавляют к раствору А, затем добавляют раствор С, и через 20 минут образовавшуюся смесь подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч. Эту смесь (9,23 г) после разложения пропитывают 0,156 г вольфрамата аммония в 5 мл воды. Твердое вещество сушат при 50°С, затем при 300°С в течение 30 минут и затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (1 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/О2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 5
Смешанный металлоксидный катализатор (1 г), полученный в примере 4, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/3,0/27/14. Эти результаты показаны в таблице.
Пример 6
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,15Ag0,06Ox следующим образом. Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при нагревании. Добавляют оксид сурьмы (III) (4,92 г), и смесь продувают азотом и нагревают при 95°С приблизительно в течение 5 ч. Нагревание прекращают, и смесь охлаждают в течение ночи в атмосфере азота. Часть воды (130 мл) удаляют с помощью роторного испарителя. Добавляют парамолибдат аммония (40,0 г), и смесь перемешивают в течение 4 ч в атмосфере азота. Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение ночи. Раствор С. Нитрат серебра (2,31 г) растворяют в 20 мл воды. Раствор В добавляют к раствору А, затем добавляют раствор С, и образовавшуюся смесь выдерживают в атмосфере азота в течение 20 минут, затем подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч, затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (2,6 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 7
Смешанный металлоксидный катализатор (1,8 г), полученный в примере 6, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/0,5/4,5/1,3. Эти результаты показаны в таблице.
Пример 8
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,15Au0,015Ox следующим образом. Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при нагревании. Добавляют оксид сурьмы (III) (4,92 г), и смесь нагревают при 94°С приблизительно в течение 4,5 ч. Нагревание прекращают, и смесь охлаждают в течение ночи. Часть воды (105 мл) удаляют с помощью роторного испарителя. Добавляют парамолибдат аммония (40,0 г), и смесь перемешивают в течение 2,5 ч в атмосфере азота. Раствор В. Монооксалат оксалата ниобия (7,12 г) перемешивают в 40 мл воды в течение ночи. Раствор С. Гидроксид золота (0,843 г) суспендируют в 60 мл воды. Раствор В добавляют к раствору А, затем добавляют раствор С, образовавшуюся смесь перемешивают в течение 15 минут, и затем ее подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатора нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч, затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (2,7 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 9
Смешанный металлоксидный катализатор (2,7 г), полученный в примере 8, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/3,0/27/14. Эти результаты показаны в таблице.
Пример 10
Смешанный металлоксидный катализатор (2,7 г), полученный в примере 8, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/1,6/14,4/15. Эти результаты показаны в таблице.
Пример 11
Готовят смешанную металлоксидную композицию номинального состава Mo1V0,3Nb0,05Sb0,15Bi0,03Ox следующим образом. Раствор А. Ванадат аммония (7,95 г) растворяют в 165 мл воды при нагревании. Добавялют оксид сурьмы (III) (4,92 г), и смесь нагревают при 95°С в течение 4 ч.
Нагревание прекращают, и смесь охлаждают в атмосфере азота в течение ночи. Воду (109 г) удаляют с помощью роторного испарителя. Добавляют твердый парамолибдат аммония (40,0 г), и смесь перемешивают в течение 4 ч. Раствор В. Монооксалат оксалат ниобия (7,12 г) перемешивают в 40 мл воды в течение 4 ч. Раствор С. Пентагидрат нитрата висмута (3,298 г) суспендируют в 60 мл воды в течение 4 ч. Раствор В добавляют к раствору А, затем добавляют раствор С, и через 5 минут образовавшуюся смесь подвергают распылительной сушке, чтобы получить предшественник твердого катализатора. Предшественник катализатор нагревают на воздухе при 120°С в течение 1 ч, затем разлагают при 300°С в течение 5 ч, затем прокаливают в аргоне при 600°С в течение 2 ч. Образовавшийся порошок измельчают путем раздавливания и просеивают через сито 18/35 меш. Этот катализатор (2,65 г) тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/3,0/27/14. Эти результаты показаны в таблице.
Пример 12
Смешанный металлоксидный катализатор (1 г), полученный в примере 11, тестируют в процессе окисления пропана с сырьем, имеющим соотношение пропан/O2/N2/вода, равное 1/3,0/27/14. Эти результаты показаны в таблице.
Для каждого из катализаторов из приведенных выше примеров указанную массу катализатора смешивают с достаточным количеством кварцевой крошки, чтобы получить слой катализатора 5,0 мл в реакторе с подачей сырья сверху вниз. Реактор нагревают до температуры, указанной в каждом примере. Смесь пропана, кислорода, азота и водяного пара, имеющая состав и скорость потока, указанные в таблице, подают в реактор.
Реакцию проводят под давлением, указанным в таблице, по меньшей мере, в течение трех часов. Расчетные величины степени превращения (%), селективности (%) по акриловой кислоте (АК) и производительности (кг АК/(м3кат.ч) - килограмм акриловой кислоты на кубометр катализатора в час) приведены в таблице.
Таблица
Примеры, № Температура в слое катализатора (°С) Давление на входе в реактор фунт/кв. дюйм (кПа) Время контакта реагента (с) Подача газа (л/л(кат)ч) Конверсия пропана, % Селективность по АК, % Выход АК, % Производительность, кг АК/м3(кат)ч
Сравнит.1 400 20 (137,9) 0,36 9703 40 40,0 16,2 169,7
Сравнит.2 400 20 (137,9) 0,22 15363 30 45,7 13,8 216,6
Сравнит.3 400 20 (137,9) 0,27 12785 33 41,4 13,8 190,4
1 400 32 (241,32) 0,27 16934 47 53,3 25,3 435,3
2 400 20 (137,9) 0,31 11068 51 48,8 25,0 281,5
3 400 20 (137,9) 0,30 11666 37 39,1 14,4 177,0
4 400 32 (241,32) 0,33 14141 31 39,5 12,3 180
5 380 32 (241,32) 0,71 6760 45 29,9 13,6 67
6 400 32 (241,32) 1,19 3911 50 56,2 28,2 118
7 360 20 (137,9) 0,44 8266 13 57,1 7,6 280
8 400 10 (68,9) 0,53 4614 32 40,7 13,2 59,8
9 400 32 (241,32) 1,04 4457 58 39,2 22,6 74,1
10 400 32 (241,32) 1,01 4602 48 39,5 19,0 86,0
11 380 20 (137,9) 0,81 4372 56 44,5 25,1 85,0
Приведенные выше примеры демонстрируют эффективность смешанного металлоксидного молибдованадатного катализатора, содержащего сурьму, ниобий и один из элементов - галлий, серебро или золото, для превращения алкана в ненасыщенную карбоновую кислоту в одностадийном процессе. Более того, применение такого катализатора, который содержит галлий, как показывают приведенные выше данные, обеспечивает следующие преимущества: улучшается конверсия пропана, селективность по акриловой кислоте, выход акриловой кислоты и производительность по акриловой кислоте. При заданных условиях способа имеются преимущества применения такого катализатора, который содержит серебро или золото, или галлий и вольфрам.
Очевидно, что в свете описанных рекомендаций возможны многочисленные модификации и вариации настоящего изобретения. Поэтому следует понимать, что в пределах объема прилагаемой формулы изобретения изобретение может быть практически осуществлено по-другому, чем конкретно указано в описании.
Катализатор и способ настоящего изобретения применим к другим реакционным системам, таким как реакторы с неподвижным слоем, с движущимся слоем и флюидизированным слоем. Для желаемых реакционных систем размер частиц катализатора и технологические условия могут быть изменены.
Катализатор настоящего изобретения должен быть применим для других процессов, таких как аммоокисление алканов и олефинов, например, получение акрилонитрила из пропана, кислорода и аммиака или получение метакрилонитрила из изобутана, кислорода и аммиака.

Claims (9)

1. Каталитическая композиция для получения ненасыщенной карбоновой кислоты из алкана, содержащая соединение формулы:
Mo1VaSbbNbcMdOx,
в которой Мо представляет собой молибден, V означает ванадий, Sb означает сурьму, Nb означает ниобий, М представляет собой галлий, а составляет от 0,01 до 1, b составляет от 0,01 до 1, с составляет от 0,01 до 1, d составляет от 0,01 до 1 и х определяется требованиями валентности других присутствующих элементов.
2. Каталитическая композиция по п.1, которая дополнительно содержит М' в количестве е, где М' представляет собой тантал, титан, алюминий, цирконий, хром, марганец, железо, рутений, кобальт, родий, никель, платину, бор, мышьяк, литий, натрий, калий, рубидий, кальций, бериллий, магний, церий, стронций, гафний, фосфор, европий, гадолиний, диспрозий, гольмий, эрбий, тулий, тербий, иттербий, лютеций, лантан, скандий, палладий, празеодим, неодим, иттрий, торий, вольфрам, цезий, цинк, олово, германий, кремний, свинец, барий и таллий и е составляет от 0,0 до 1.
3. Каталитическая композиция по п.1, в которой а равно 0,3.
4. Каталитическая композиция по п.1, в которой b равно 0,15.
5. Каталитическая композиция по п.1, в которой с равно 0,05.
6. Каталитическая композиция по п.1 или 2, которую выбирают из группы, состоящей из Mo1V0,3Sb0,15Nb0,05Ga0,03Ox; Mo1V0,3Sb0,08Nb0,05Ga0,03Ox; и Mo1V0,3Nb0,05Sb0,15Ga0,03W0,012Ox.
7. Каталитическая композиция по п.1, в которой каталитическая композиция нанесена на инертный носитель.
8. Каталитическая композиция по п.7, в которой инертный носитель представляет собой диоксид кремния, оксид алюминия, оксид ниобия, оксид титана, оксид циркония или их смеси.
9. Каталитическая композиция по п.1, в которой каталитическую композицию формуют в виде порошка, гранул, сфер, цилиндров или подушек.
RU2006137281/04A 2004-03-23 2005-03-23 Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции RU2342991C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/806,862 2004-03-23
US10/806,862 US7229946B2 (en) 2003-03-24 2004-03-23 Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof

Publications (2)

Publication Number Publication Date
RU2006137281A RU2006137281A (ru) 2008-04-27
RU2342991C2 true RU2342991C2 (ru) 2009-01-10

Family

ID=35064402

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006137281/04A RU2342991C2 (ru) 2004-03-23 2005-03-23 Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции

Country Status (7)

Country Link
US (3) US7229946B2 (ru)
EP (1) EP1732681A4 (ru)
JP (1) JP2007530257A (ru)
CN (2) CN1933904A (ru)
MY (1) MY139920A (ru)
RU (1) RU2342991C2 (ru)
WO (1) WO2005094506A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621033C2 (ru) * 2011-12-02 2017-05-31 Сауди Бейсик Индастриз Корпорейшн Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения
RU2635922C2 (ru) * 2011-12-19 2017-11-17 Эвоник Дегусса Гмбх Катализатор для синтеза алкилмеркаптанов и способ его получения

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229946B2 (en) * 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
US20050054869A1 (en) * 2003-06-06 2005-03-10 Lugmair Claus G. Mixed metal oxide catalysts for propane and isobutane oxidation and ammoxidation, and methods of preparing same
US8193387B2 (en) * 2003-12-19 2012-06-05 Saudi Basic Industries Corporation Process for producing an unsaturated carboxylic acid from an alkane
JP5190994B2 (ja) 2006-03-20 2013-04-24 旭化成ケミカルズ株式会社 酸化又はアンモ酸化用触媒及びその製造方法
KR100986898B1 (ko) 2006-07-27 2010-10-08 주식회사 엘지화학 복합 금속 산화물 촉매 및 상기 촉매를 사용한(메타)아크릴산 제조 방법
US8697596B2 (en) * 2007-04-03 2014-04-15 Ineos Usa Llc Mixed metal oxide catalysts and catalytic conversions of lower alkane hydrocarbons
US20090005586A1 (en) * 2007-06-29 2009-01-01 Brazdil Jr James F Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
KR20110025746A (ko) * 2008-06-02 2011-03-11 니폰 가야꾸 가부시끼가이샤 촉매 및 불포화 알데히드와 불포화 카르복시산의 제조방법
EP2179793A1 (en) 2008-10-21 2010-04-28 Sued-Chemie AG Phosphorous-containing mixed oxide catalysts
EP2179790A1 (en) 2008-10-21 2010-04-28 Sued-Chemie AG Bismuth-containing mixed oxide catalysts
WO2010087262A1 (ja) * 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 シリカ担持触媒の製造方法、及び不飽和カルボン酸又は不飽和ニトリルの製造方法
US8105971B2 (en) * 2009-04-02 2012-01-31 Lummus Technology Inc. Process for making catalysts useful for the conversion of paraffins to olefins
AU2010237203B2 (en) 2009-04-17 2013-08-01 Centre Hospitalier Universitaire De Montpellier Methods for selecting oocytes and competent embryos with high potential for pregnancy outcome
JP5785369B2 (ja) * 2010-05-13 2015-09-30 旭化成ケミカルズ株式会社 混合物触媒
KR101446851B1 (ko) 2010-05-13 2014-10-01 아사히 가세이 케미칼즈 가부시키가이샤 혼합물 촉매
JP5785370B2 (ja) * 2010-05-13 2015-09-30 旭化成ケミカルズ株式会社 混合物触媒
CN102000559B (zh) * 2010-11-18 2012-06-27 中国海洋石油总公司 一种采用负载氧化铌催化剂制备甲缩醛的方法
US8722940B2 (en) * 2012-03-01 2014-05-13 Saudi Basic Industries Corporation High molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
CN103586072B (zh) * 2012-08-14 2016-02-24 中国石油化工股份有限公司 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN103586077B (zh) * 2012-08-14 2016-03-30 中国石油化工股份有限公司 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586076B (zh) * 2012-08-14 2016-03-30 中国石油化工股份有限公司 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586070B (zh) * 2012-08-14 2016-03-30 中国石油化工股份有限公司 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN103007971B (zh) * 2012-12-24 2014-10-22 山东大学 钨酸锌/碘氧化铋异质结可见光光催化材料及其制备方法
WO2014167482A1 (en) 2013-04-08 2014-10-16 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
WO2015021126A1 (en) * 2013-08-06 2015-02-12 The Scripps Research Institute Conversion of alkanes to organoseleniums and organotelluriums
CN104645984B (zh) * 2013-11-20 2017-09-19 正大能源材料(大连)有限公司 一种饱和烷烃氨氧化制取不饱和腈的催化剂及其应用
JP6517316B2 (ja) * 2014-03-18 2019-05-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 炭素担持触媒を生成するための方法
CN105268462A (zh) * 2015-07-03 2016-01-27 西南石油大学 一种低温下n掺杂铋系氧化物的制备方法
CN106423286B (zh) * 2016-09-14 2018-08-24 江南大学 一种BiOCOOH-Bi2O2CO3复合光催化剂及其制备方法
CN106391076B (zh) * 2016-09-14 2018-10-16 江南大学 一种灰色Bi2O2CO3光催化剂及其制备方法
CN109305902A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 适于丙烯酸的生产方法
CN107866213B (zh) * 2017-11-09 2020-05-29 南京大学(苏州)高新技术研究院 一种粉末催化材料、含酚醛树脂复合多孔纳米催化材料的制备及应用
CN110142063B (zh) * 2018-02-11 2021-12-17 中国科学院大连化学物理研究所 用于异丁烷选择氧化制甲基丙烯酸催化剂及其制备方法
JP7456727B2 (ja) 2019-03-27 2024-03-27 旭化成株式会社 アクリロニトリル合成触媒、アクリロニトリル合成触媒の製造方法及びアクリロニトリルの製造方法
FR3099390B1 (fr) * 2019-07-31 2021-10-29 Ifp Energies Now Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
CN113230704A (zh) * 2021-05-11 2021-08-10 李晟贤 一种增强滤料过滤性能的方法
CN115677569B (zh) * 2021-07-23 2024-05-28 重庆大学 基于铁催化芳基卤代物与烷基卤代物还原偶联反应的吡啶类和取代苯类化合物合成方法
CN115999550A (zh) * 2023-01-06 2023-04-25 浙江大学 一种多孔氨合成催化剂及其制备方法与应用

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339355A (en) * 1975-10-09 1982-07-13 Union Carbide Corporation Catalytic oxide of molybdenum, vanadium, niobium and optional 4th metal
US4405498A (en) * 1979-12-17 1983-09-20 Monsanto Company Oxidation and ammoxidation catalysts
US4250346A (en) * 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
US5472925A (en) * 1991-08-08 1995-12-05 Mitsubishi Chemical Corporation Catalyst for the production of nitriles
JP3328340B2 (ja) 1992-12-02 2002-09-24 三井化学株式会社 アクロレインまたはアクリル酸の製造法、およびそれに使用する触媒
EP0608838B1 (en) * 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Method for producing an unsaturated carboxylic acid
US5750760A (en) * 1995-10-05 1998-05-12 Mitsubishi Chemical Corporation Method for producing a nitrile
DE19542755A1 (de) * 1995-11-16 1997-05-22 Basf Ag Multimetalloxide
CN1087653C (zh) 1996-03-20 2002-07-17 中国科学院大连化学物理研究所 一种丙烷氧化制丙烯醛反应用催化剂及其反应工艺
DE19622331A1 (de) * 1996-06-04 1997-12-11 Basf Ag Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein
JPH1045664A (ja) 1996-07-30 1998-02-17 Mitsubishi Chem Corp α,β−不飽和カルボン酸の製造方法
JPH1057813A (ja) 1996-08-22 1998-03-03 Mitsubishi Chem Corp 複合金属酸化物触媒の製造方法、及び該触媒を用いるアクリル酸の製造方法
US6271169B1 (en) * 1996-09-24 2001-08-07 E.I. Du Pont De Nemours And Company Molybdenum based oxidation catalysts
FR2754817B1 (fr) * 1996-10-21 2000-03-17 Toagosei Co Ltd Procede de production d'acide acrylique a partir de propane et d'oxygene gazeux
JP3924824B2 (ja) 1996-10-21 2007-06-06 東亞合成株式会社 アクリル酸の製造方法
JPH10310539A (ja) 1997-05-09 1998-11-24 Mitsubishi Chem Corp 炭化水素の気相接触酸化反応方法
UA54409C2 (ru) * 1997-07-16 2003-03-17 Асахі Касеі Кабусікі Кайся Способ получения акрилонитрила или метакрилонитрила из пропана или изобутана путем амоксидирования
ID20670A (id) * 1997-08-05 1999-02-11 Asahi Chemical Ind Katalis amoksidasi untuk digunakan dalam memproduksi akrilonitril atau metakrilonitril dari propana atau isobutana dengan amoksidasi
ID20720A (id) * 1997-08-05 1999-02-18 Asahi Chemical Ind Larutan berair yang mengandung niobium untuk digunakan dalam pembuatan katalis oksida yang mengandung niobium
JP4182237B2 (ja) 1997-09-30 2008-11-19 住友化学株式会社 イソブタンの気相接触酸化反応用触媒およびこれを用いてなるアルケンおよび/または含酸素化合物の製造方法
CA2271397A1 (en) 1998-05-21 1999-11-21 Rohm And Haas Company A process for preparing a catalyst
US6114278A (en) * 1998-11-16 2000-09-05 Saudi Basic Industries Corporation Catalysts for catalytic oxidation of propane to acrylic acid, methods of making and using the same
JP2000246108A (ja) 1999-03-01 2000-09-12 Toagosei Co Ltd 金属酸化物触媒およびそれを用いるアクリル酸の製造方法
MY121141A (en) * 1999-03-10 2005-12-30 Basf Ag Method for the catalytic gas-phase oxidation of propene into acrolein
US6043185A (en) * 1999-04-02 2000-03-28 The Standard Oil Company Gallium promoted molybdenum vanadium-antimony-oxide based catalyst for selective paraffin ammoxidation
US6337424B1 (en) * 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
RU2285690C2 (ru) 2000-06-20 2006-10-20 Басф Акциенгезельшафт Способ получения акролеина и/или акриловой кислоты
US6403525B1 (en) * 2000-09-28 2002-06-11 Rohm And Haas Company Promoted multi-metal oxide catalyst
US6407031B1 (en) * 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
US6407280B1 (en) * 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
US6734136B2 (en) * 2000-09-28 2004-05-11 Rohm And Haas Company IR and/or SM promoted multi-metal oxide catalyst
JP4530595B2 (ja) * 2000-12-13 2010-08-25 旭化成ケミカルズ株式会社 酸化またはアンモ酸化用酸化物触媒
JP4878684B2 (ja) * 2001-01-24 2012-02-15 旭化成ケミカルズ株式会社 低比重シリカ担持触媒
TW548133B (en) * 2001-04-12 2003-08-21 Rohm & Haas NOx treated mixed metal oxide catalyst
US6943135B2 (en) * 2001-04-12 2005-09-13 Rohm And Haas Company NOx treated mixed metal oxide catalyst
US6383978B1 (en) * 2001-04-25 2002-05-07 Rohm And Haas Company Promoted multi-metal oxide catalyst
EP1262235A3 (en) * 2001-05-23 2003-04-16 Rohm And Haas Company Mixed-metal oxide catalysts containing molybdenum and vanadium and processes for preparing the same
US6919472B2 (en) * 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
JP4180317B2 (ja) * 2002-07-09 2008-11-12 旭化成ケミカルズ株式会社 酸化反応触媒の製造方法
US7038082B2 (en) * 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
US7229946B2 (en) * 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
US7009075B2 (en) * 2004-06-30 2006-03-07 Saudi Basic Industries Corporation Process for the selective conversion of alkanes to unsaturated carboxylic acids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621033C2 (ru) * 2011-12-02 2017-05-31 Сауди Бейсик Индастриз Корпорейшн Бифункциональный катализатор частичного окисления для превращения пропана в акриловую кислоту и способ его получения
RU2635922C2 (ru) * 2011-12-19 2017-11-17 Эвоник Дегусса Гмбх Катализатор для синтеза алкилмеркаптанов и способ его получения

Also Published As

Publication number Publication date
WO2005094506A3 (en) 2006-10-05
EP1732681A2 (en) 2006-12-20
CN1933904A (zh) 2007-03-21
US7229946B2 (en) 2007-06-12
US20070232828A1 (en) 2007-10-04
US20040192966A1 (en) 2004-09-30
RU2006137281A (ru) 2008-04-27
EP1732681A4 (en) 2009-11-11
US7345199B2 (en) 2008-03-18
JP2007530257A (ja) 2007-11-01
MY139920A (en) 2009-11-30
WO2005094506A2 (en) 2005-10-13
CN103223336A (zh) 2013-07-31
US20070238608A1 (en) 2007-10-11
US7504357B2 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
RU2342991C2 (ru) Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции
EP1771405B1 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
JP4231374B2 (ja) 炭化水素を選択的に酸化する、水熱的に合成したmo−v−m−nb−x酸化物触媒
US7365041B2 (en) Method for producing ammoxidation catalyst
JP4180297B2 (ja) 改良された触媒
EP1270068B1 (en) Preparation of hydrothermally synthesized Mo-V-M-X oxide catalysts for the selective oxidation of hydrocarbons
CA2029277A1 (en) Method for production of acrylic acid
JP2000143244A (ja) 複合金属酸化物の製造方法
US20080103325A1 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
KR100999329B1 (ko) 산화촉매 및 그의 제조
US6919472B2 (en) Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
US7754910B2 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
JPH10128112A (ja) イソブタンの気相接触酸化反応用触媒およびその製造方法
US7531681B2 (en) Process for the ammoxidation of propane and isobutane
US20080103326A1 (en) Lithium containing mixed metal oxide catalysts for ammoxidation of propane and isobutane
JP2002097015A (ja) シアン化水素の製造法
KR100322390B1 (ko) 암모니아산화에 의한 프로판 또는 이소부탄으로부터의 아크릴로니트릴 또는 메타크릴로니트릴 제조용 암모니아산화 촉매
US20090005586A1 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180324