CN103586072B - 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法 - Google Patents

一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法 Download PDF

Info

Publication number
CN103586072B
CN103586072B CN201210289345.4A CN201210289345A CN103586072B CN 103586072 B CN103586072 B CN 103586072B CN 201210289345 A CN201210289345 A CN 201210289345A CN 103586072 B CN103586072 B CN 103586072B
Authority
CN
China
Prior art keywords
catalyst
donut
meso
titanium dioxide
porous titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210289345.4A
Other languages
English (en)
Other versions
CN103586072A (zh
Inventor
亢宇
张明森
黄文氢
杨菁
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201210289345.4A priority Critical patent/CN103586072B/zh
Publication of CN103586072A publication Critical patent/CN103586072A/zh
Application granted granted Critical
Publication of CN103586072B publication Critical patent/CN103586072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种负载型三氟甲磺酸铜催化剂及其制备方法以及环己酮乙二醇缩酮的制备方法,其中,该催化剂由载体以及负载在所述载体上的三氟甲磺酸铜组成,所述载体为面包圈状介孔二氧化硅,且以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述载体的含量为10-90重量%;所述载体的粒子直径为3-20微米,比表面积为600-1000平方米/克,最可几孔径为7-10纳米,孔壁厚度为3-4纳米,内径与外径的比值为0.3-0.9。本发明的催化剂中三氟甲磺酸铜负载在特定的面包圈状介孔二氧化硅载体上,该催化剂催化缩酮反应的活性较高,而且重复使用时该催化剂催化缩酮反应的活性仍然较高,使得该催化剂被回收并循环再利用。

Description

一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
技术领域
本发明涉及一种负载型三氟甲磺酸铜催化剂及其制备方法,还涉及使用该负载型三氟甲磺酸铜催化剂在缩酮合成中的应用,以及环己酮乙二醇缩酮的制备方法。
背景技术
1992年Mobile公司合成出介孔材料(BeckJS,VartuliJC,RothWJ,etal.J.Am.Chem.Soc.,1992,114(27):10834-10843),该介孔材料具有高的比表面,规整的孔道结构以及窄的孔径分布,使得介孔材料在催化、分离、医药等领域的应用得到了很大的关注;1998年赵东元等人合成出一种新型材料-介孔材料SBA-15(D.Y.Zhao,J.L.Feng,Q.S.Huo,etalScience279(1998)548-550),该材料具有高度有序的立方单晶介孔材料孔径(6-30nm)、孔体积大(1.0cm3/g)、较厚的孔壁(4-6nm)保持的高机械强度以及良好的催化吸附性能;赵东元、余承忠、余永豪发明一种介孔分子筛载体材料的制备方法(CN1341553A),该介孔材料作为多相反应催化剂载体,容易实现催化剂与产物的分离(Wight,A.P.;Davis,M.E.Chem.Rev.2002,102,3589;DeVos,D.E.;Dams,M.;Sels,B.F.;Jacobs,P.A.Chem.Rev.2002,102,3615.)。然而目前常用的有序介孔材料SBA-15具有较强的吸水、吸潮能力,棒长度在接近5μm,并且棒与棒之间存在粘连,在催化反应过程中不利于物料在介孔孔道内传输,这将进一步加剧有序介孔材料的团聚,给有序介孔材料的存储、输运、后加工及应用带来不便。
随着化学工业的迅速发展,对缩酮品种及需求量不断增加。缩酮是一类可用于有机化合物的羰基保护或制药工业的中间体,甚至用作特殊反应溶剂。缩酮的合成一般是在强酸催化下,由酮与醇类合成的,所用的催化剂有硫酸、磷酸、氯化氢气体、对甲基苯磺酸,其优点是催化剂价廉易得。但是,反应结束后催化剂与产物的分离需进行中和和水洗等过程,不仅工艺复杂还产生废水污染环境,随着人民生活水平的提高,对环境保护提出了越来越高地要求;并且质子酸对设备具有较强的腐蚀作用。
因此,开发出一种新型的用于合成缩酮的催化剂成为迫切需要解决的问题。
发明内容
本发明的目的在于克服现有用于催化合成缩酮的催化剂存在的对设备腐蚀严重、工艺复杂等缺点,提供一种新型的用于合成缩酮的催化剂以及缩酮的制备方法。
本发明提供了一种负载型三氟甲磺酸铜催化剂,其特征在于,该催化剂由面包圈状介孔二氧化硅载体以及负载在所述面包圈状介孔二氧化硅载体上的三氟甲磺酸铜组成,且以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述面包圈状介孔二氧化硅载体的含量为10-90重量%;且所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,比表面积为600-1000平方米/克,最可几孔径为7-10纳米,孔壁厚度为3-4纳米,内径与外径的比值为0.3-0.9,平均厚度为0.1-2微米。
本发明还提供了一种负载型三氟甲磺酸铜催化剂的制备方法,其中,该方法包括:将所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜一起球磨,使所述三氟甲磺酸铜负载在所述面包圈状介孔二氧化硅载体上,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述面包圈状介孔二氧化硅载体的用量为10-90重量%;所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,比表面积为600-1000平方米/克,最可几孔径为7-10纳米,孔壁厚度为3-4纳米,内径与外径的比值为0.3-0.9,平均厚度为0.1-2微米。
此外,本发明还提供了所述催化剂在缩酮反应中的应用。
还有,本发明还提供了一种环己酮乙二醇缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其中,所述催化剂为本发明提供的负载型三氟甲磺酸铜催化剂。
本发明的催化剂中三氟甲磺酸铜负载在特定的面包圈状介孔二氧化硅载体上,一方面,该催化剂催化缩酮反应的活性较高,而且重复使用时该催化剂催化缩酮反应的活性仍然较高,使得该催化剂被回收并循环再利用。另一方面还由于将具有腐蚀性的三氟甲磺酸铜负载到特定的面包圈状介孔二氧化硅载体上,防止了设备腐蚀,因此该负载型三氟甲磺酸铜催化剂是一种绿色环保的催化剂。
本发明中,通过球磨法将三氟甲磺酸铜负载于特定的面包圈状介孔二氧化硅载体上,整个球磨过程中未引入溶剂,过程简便易行,球磨过程后所得催化剂亦保持面包圈状,且使用这种催化剂来催化环己酮和乙二醇的缩酮反应时,催化剂可以经过回收而反复使用,并且本发明提供的负载型三氟甲磺酸铜催化剂能够减少副反应,提高产品纯度,不腐蚀设备,有利于环保。
附图说明
图1是X-射线衍射图谱,其中,a为面包圈状介孔二氧化硅载体(MBQ)的XRD谱图、b为通过球磨法负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的XRD谱图,横坐标为2θ,纵坐标为强度。
图2是TEM透射电镜图,其中a为面包圈状介孔二氧化硅载体(MBQ)的孔结构示意图、b为通过球磨法负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的孔结构示意图。
图3是SEM扫描电镜图,其中,a为面包圈状介孔二氧化硅载体(MBQ)的微观形貌图,b为通过球磨法负载了三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的微观形貌图。
图4是SEM扫描电镜图,其中,a为棒状介孔材料SBA-15的微观形貌图,b为通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌图。
具体实施方式
本发明提供了一种负载型三氟甲磺酸铜催化剂,其中,该催化剂由面包圈状介孔二氧化硅载体以及负载在所述面包圈状介孔二氧化硅载体上的三氟甲磺酸铜组成,且以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述面包圈状介孔二氧化硅载体的含量为10-90重量%;更优选情况下,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为30-60重量%,所述面包圈状介孔二氧化硅载体的含量为40-70重量%。
根据本发明,所述负载型三氟甲磺酸铜催化剂的比表面积可以为250-400平方米/克,优选为270-350平方米/克,更优选为292平方米/克;孔体积可以为0.4-1.2毫升/克,优选为0.5-0.9毫升/克,更优选为0.6毫升/克;最可几孔径可以为1-10纳米,优选为3-8纳米,更优选为6.5纳米;孔壁厚度为2.0-10.0纳米,优选为4-8纳米,更优选为5.0纳米;内径与外径的比值为0.5-1,优选为0.6。
根据本发明,所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,优选为3-10微米,更优选为5微米;比表面积为600-1000平方米/克,优选为650-800平方米/克,更优选为706平方米/克;孔体积为0.5-3.0毫升/克,优选为1-2毫升/克,更优选为1.5毫升/克;最可几孔径为7.0-10.0纳米,优选为8-9纳米,更优选为8.4纳米;孔壁厚度为3-4纳米,优选为3.5纳米;内径与外径的比值为0.3-0.9,优选为0.5-0.85,更优选为0.5;平均厚度为0.1-2微米,优选为1-2μm,尤其优选为2μm。本发明中所述的面包圈状可以为本领域通常认为的各种面包圈状,例如可以为具有开口或不具有开口的各种圆环状或类圆环状,所述内径和外径分别是指所述面包圈的内周所在的圆形的半径和外周所在圆形的半径;所述平均厚度是指多个面包圈状MBQ的厚度的平均值;每个面包圈状MBQ的厚度是指该面包圈状MBQ的各个位置的平均厚度。
根据本发明,所述的载体为面包圈状介孔二氧化硅,所述面包圈状介孔二氧化硅可以通过包括以下步骤的方法制备得到:
(1)将模板剂、N,N-二甲基甲酰胺和盐酸混合至固体物充分溶解;
(2)将步骤(1)所得溶液与硅酸酯在25-60℃温度、机械搅拌速率为100-400r/min下搅拌10-40小时;
(3)将步骤(2)所得产物在晶化条件下晶化;
(4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥;
(5)将步骤(4)干燥所得产物加热,脱除模板剂;
所述模板剂为聚氧化乙烯-聚氧化丙烯-聚氧化乙烯。
优选情况下,所述硅酸酯为正硅酸乙酯。
优选情况下,所述晶化条件包括温度为25-100℃,优选为30-50℃,时间为10-40小时,优选为15-35小时。
优选情况下,所述脱除模板剂的条件包括温度为250-800℃,优选为300-600℃,时间为10-40小时,优选为15-35小时。
优选情况下,按摩尔比计,聚氧化乙烯-聚氧化丙烯-聚氧化乙烯:N,N-二甲基甲酰胺:水:氯化氢:硅酸酯=1:300-700:10000-20000:100-500:50-100,优选为1:400-600:12000-18000:150-400:55-70,特别优选为1:596:11411:326:60。其中,聚氧乙烯-聚氧丙烯-聚氧乙烯的摩尔数根据聚氧乙烯-聚氧丙烯-聚氧乙烯的平均分子量计算得到。
所述模板剂可以是本领域常规使用的各种三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯模板剂,例如可以是Aldrich公司生产的商品名为P123,分子式为EO20PO70EO20的模板剂。
本发明还提供了一种制备催化剂的制备方法,其中,该方法包括:将所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜一起球磨,使三氟甲磺酸铜负载在所述面包圈状介孔二氧化硅载体上,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述面包圈状介孔二氧化硅载体的用量为10-90重量%,更优选地,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为30-60重量%,所述面包圈状介孔二氧化硅载体的用量为40-70重量%。
根据本发明,所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,优选为3-10微米,更优选为5微米;比表面积为600-1000平方米/克,优选为650-800平方米/克,更优选为706平方米/克;孔体积为0.5-3.0毫升/克,优选为1-2毫升/克,更优选为1.5毫升/克;最可几孔径为7.0-10.0纳米,优选为8-9纳米,更优选为8.4纳米;孔壁厚度为3-4纳米,更优选为3.5纳米;内径与外径的比值为0.3-0.9,优选为0.5-0.85,更优选为0.5;平均厚度为0.1-2微米,优选为1-2μm,尤其优选为2μm。本发明中所述的面包圈状可以为本领域通常认为的各种面包圈状,例如可以为具有开口或不具有开口的各种圆环状或类圆环状,所述内径和外径分别是指所述面包圈的内周所在的圆形的半径和外周所在圆形的半径;所述平均厚度是指多个面包圈状MBQ的厚度的平均值;每个面包圈状MBQ的厚度是指该面包圈状MBQ的各个位置的平均厚度。
对研磨的条件和具体操作方法没有特别的限定,以不破坏或基本不破坏载体结构并使三氟甲磺酸铜进入载体孔道内为准。本领域技术人员可以根据上述原则选择各种合适的条件来实施本发明。
根据本发明的一种实施方式,所述负载型三氟甲磺酸铜催化剂的制备方法包括:将所述面包圈状介孔二氧化硅和三氟甲磺酸铜加入到球磨机的球磨罐中,球磨罐内壁为聚四氟乙烯内衬,磨球的直径为2-3mm,转速为300-500r/min。在球磨罐内温度为15-100℃下连续研磨0.1-100小时,之后取出固体粉末,即得到负载型三氟甲磺酸铜的面包圈状介孔二氧化硅。磨球的数量取决于球磨罐的大小,对于大小为50-150ml的球磨罐,可以使用1个磨球。所述磨球的材质可以是玛瑙、聚四氟乙烯,优选为聚四氟乙烯。
根据本发明的一种具体实施方式,所述负载型三氟甲磺酸铜催化剂的制备方法包括以下步骤:
第1步,将三嵌段共聚物聚氧化乙烯-聚氧化丙烯-聚氧化乙烯(EO20PO70EO20,缩写为P123)和N,N-二甲基甲酰胺(DMF),加入到盐酸中,按摩尔投料比,
三嵌段共聚物聚氧化乙烯-聚氧化丙烯-聚氧化乙烯:N,N-二甲基甲酰胺(DMF):水:氯化氢=1:300-700:10000-20000:100-500(实际比为1:596:11411:326),
混合至固体物充分溶解;
第2步,在上一步所得溶液中加入正硅酸乙酯,在25℃-60℃温度下,机械搅拌速率为100-400r/min下搅拌10小时-40小时;按摩尔投料比,
三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯:正硅酸乙酯=1:50-100;优选为1:55-70;更优选为1:60;
第3步,将上步所得溶液置于密闭反应容器中,在25-100℃温度下晶化10-40小时;
第4步,将晶化后产物过滤(优选用去离子水稀释后)、将过滤所得固体用去离子水洗涤、干燥,得到面包圈状介孔材料原粉;
第5步,将所得面包圈状介孔材料原粉在马弗炉中在250-800℃温度下煅烧10-40小时,脱除模板剂,得到脱除模板剂的面包圈状介孔材料;
第6步,将上步所得脱除模板剂的面包圈状介孔二氧化硅和三氟甲磺酸铜加入到球磨机的球磨罐中,在转速为300-500r/min下在球磨罐内温度为15-100℃下连续研磨0.1-100小时,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述面包圈状介孔二氧化硅载体的用量为10-90重量%;优选为所述三氟甲磺酸铜的用量为30-60重量%,所述面包圈状介孔二氧化硅载体的用量为40-70重量%;之后取出固体粉末,即得到负载三氟甲磺酸铜的面包圈状介孔二氧化硅。
所述模板剂可以是本领域常规使用的各种三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯模板剂,例如可以是Aldrich公司生产的商品名为P123,分子式为EO20PO70EO20的模板剂。
所述晶化和脱除模板剂的方法和条件已经为本领域技术人员公知,例如,晶化温度为25-100℃,优选为30-50℃,时间为10-40小时,优选为15-35小时;所述脱除模板剂的条件包括温度为250-800℃,优选为300-600℃,时间为10-40小时,优选为15-35小时。
此外,本发明还提供了所述催化剂在缩酮反应中的应用。
还有,本发明还提供了一种缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其中,所述催化剂为本发明提供的负载型三氟甲磺酸铜催化剂。
根据本发明,在缩酮反应中,环己酮和乙二醇的摩尔比可以在很大范围内改变,例如,环己酮和乙二醇的摩尔比可以为1:0.1-0.2,所述负载型三氟甲磺酸铜催化剂的用量没有特别的限制,本领域技术人员可以根据反应的需要进行适当的调整,但优选情况下,相对于100重量份的环己酮,所述催化剂的用量可以为1-15重量份,更优选为2-14重量份。
本发明中,所述缩酮反应的条件为本领域技术人员所公知,例如,所述缩酮反应的条件可以包括:回流反应条件下,反应的时间为1-10小时,优选地,反应的时间可以为2-8小时。
根据本发明,在缩酮反应结束后,可以对最终的反应混合物进行离心分离,将离心得到的固相物在25-200℃下真空干燥1-24小时,优选在50-120℃下真空干燥6-10小时,可以得到回收的催化剂。
以下结合实施例对本发明进行详细的描述。
以下实施例中,P123,分子式为EO20PO70EO20,在美国化学文摘的登记号为9003-11-6的物质,其平均分子量Mn=5800。
以下实施例中,三氟甲磺酸铜购自ACROS,CAS:34946982-2。
以下实施例中,X射线衍射分析在购自德国BrukerAXS公司的型号为D8Advance的X射线衍射仪上进行;透射电镜分析在购自荷兰FEI公司的型号为Tecnai20的透射电子显微镜上进行;扫描电镜分析在购自美国FEI公司的型号为XL-30的扫描电子显微镜上进行;氮气吸脱附仪购自美国康塔公司的型号为Autosorb-1的氮气吸脱附仪上进行。
实施例1
本实施例用于说明根据本发明的负载型三氟甲磺酸铜催化剂及其制备方法。
将2.0克P123和15克N,N-二甲基甲酰胺(DMF)加入到11.2克37%的盐酸和64ml水的溶液中,混合搅拌至P123完全溶解;再将4.45克正硅酸乙酯加入到上述溶液中在40℃温度下,在机械搅拌速率为350r/min下搅拌24小时;将所得溶液转移到聚四氟乙烯内衬的反应釜中,在100℃晶化24小时后经过过滤、洗涤、干燥后得到面包圈状介孔材料原粉;将面包圈状介孔材料原粉在马弗炉中600℃煅烧24小时,脱除模板剂,得到脱除模板剂的面包圈状介孔二氧化硅(MBQ)。
将上述1克面包圈状介孔二氧化硅MBQ在室温状态与1克三氟甲磺酸铜一起放入100ml球磨罐中,其中,球磨罐和磨球的材质均为聚四氟乙烯,磨球的直径为3mm,数量为1个,转速为400r/min。封闭球磨罐,在球磨罐内温度为60℃下球磨1小时,得到2克目标产物负载型三氟甲磺酸铜催化剂,命名为MBQ-HPA,其中,根据载体的含量=加入的载体的重量/负载型三氟甲磺酸铜催化剂的重量×100%计算得到,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为50重量%,面包圈状介孔二氧化硅载体的含量为50重量%。
用XRD、扫描电镜、透射电镜和氮气吸脱附仪来对该负载型三氟甲磺酸铜催化剂进行表征。
图1是X-射线衍射图谱,其中,a为面包圈状介孔二氧化硅载体(MBQ)的XRD谱图,b为通过球磨法负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的XRD谱图,横坐标为2θ,纵坐标为强度。由XRD谱图中可以明显地看出样品MBQ和MBQ-Cu(OTf)2在小角区出现1个衍射峰。说明面包圈状介孔二氧化硅载体(MBQ)和通过球磨法负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)具有很好的介孔相结构,并且具有二维六方结构,这和文献报道的介孔材料XRD谱图相一致(孙锦玉,赵东元,“面包圈”状高度有序大孔径介孔分子筛SBA-15的合成,高等学校化学学报,2000,1(21):21~23)。
图2是TEM透射电镜图,其中,a均为面包圈状介孔二氧化硅载体(MBQ)的孔结构示意图,b为通过球磨法负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的孔结构示意图。由TEM透射电镜图可知,面包圈状介孔二氧化硅载体(MBQ)在负载三氟甲磺酸铜前、后均显示介孔材料所特有的二维六方孔道结构,表明样品的孔道结构在负载催化剂后基本保持不变,这一结论和XRD谱图得到的结论保持一致。
图3是SEM扫描电镜图,其中,a为面包圈状介孔二氧化硅载体(MBQ)的微观形貌图,b为通过球磨法负载了三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的微观形貌图。由图可知,面包圈状介孔二氧化硅MBQ微观形貌为颗粒度3-20μm的面包圈形,球磨法制备的MBQ-Cu(OTf)2微观形貌依旧基本保持面包圈状,颗粒度3-20μm。
图4是SEM扫描电镜图,其中,a为棒状介孔材料SBA-15的微观形貌图,b为通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌图。由图4可知,通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌则完全被破坏。
表1为面包圈状介孔二氧化硅载体MBQ与本发明的负载三氟甲磺酸铜的面包圈状介孔二氧化硅(MBQ-Cu(OTf)2)的孔结构参数。
表1
注:平均孔壁厚度=(a0*31/2)/2-平均孔径;
晶胞参数a0=d100*21/2
d100为100面晶面间距。
由上表1的数据可以看出,面包圈状介孔二氧化硅在负载三氟甲磺酸铜后,孔体积和比表面积均大幅减小,这说明在负载反应过程中三氟甲磺酸铜进入到面包圈状介孔二氧化硅复合材料内部。
实施例2
本实施例用于说明根据本发明的负载型三氟甲磺酸铜催化剂及其制备方法。
按照实施例1的方法制备得到面包圈状介孔二氧化硅(MBQ)。
将上述1克面包圈状介孔二氧化硅MBQ在室温状态与2克三氟甲磺酸铜一起放入100ml球磨罐中,其中,球磨罐和磨球的材质均为聚四氟乙烯,磨球的直径为3mm,数量为1个,转速为400r/min。封闭球磨罐,在球磨罐内温度为60℃下球磨1小时,得到3克目标产物负载型三氟甲磺酸铜催化剂,命名为MBQ-Cu(OTf)2-2,其中,根据载体的含量=加入的载体的重量/负载型三氟甲磺酸铜催化剂的重量×100%计算得到,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为67重量%,面包圈状介孔二氧化硅载体的含量为33重量%。
用氮气吸脱附测试和气相色谱质谱联用分析仪来对该负载型三氟甲磺酸铜催化剂进行表征。
表2
实施例3
本实施例用于说明根据本发明的负载型三氟甲磺酸铜催化剂及其制备方法。
按照实施例1的方法制备得到面包圈状介孔二氧化硅(MBQ)。
将上述1克面包圈状介孔二氧化硅MBQ-3在室温状态与1.5克三氟甲磺酸铜一起放入100ml球磨罐中,其中,球磨罐和磨球的材质均为聚四氟乙烯,磨球的直径为3mm,数量为1个,转速为400r/min。封闭球磨罐,在球磨罐内温度为60℃下球磨1小时,得到2.5克目标产物负载型三氟甲磺酸铜催化剂,命名为MBQ-Cu(OTf)2-3,其中,根据载体的含量=加入的载体的重量/负载型三氟甲磺酸铜催化剂的重量×100%计算得到,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为33重量%,面包圈状介孔二氧化硅载体的含量为67重量%。
用氮气吸脱附测试和气相色谱质谱联用分析仪来对该负载型三氟甲磺酸铜催化剂进行表征。
表3
实施例4
本实施例用于说明用浸渍方法负载三氟甲磺酸铜的面包圈状二氧化硅的制备
将实施例1制备的1克面包圈状介孔二氧化硅MBQ在氮气保护下400℃煅烧10小时,以脱除羟基和残存水分,从而得到经热活化的面包圈状介孔二氧化硅。
将上述1克经热活化的面包圈状介孔二氧化硅MBQ在150℃下真空干燥6小时,冷却至室温后,再将30ml甲醇以及1g三氟甲磺酸铜一起放入100ml聚四氟乙烯内衬的反应釜中,封闭反应釜,在35℃条件下搅拌24小时,得到1.25克目标产物负载型三氟甲磺酸铜催化剂,命名为MBQ-Cu(OTf)2-JZ,其中,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为20重量%,面包圈状介孔二氧化硅载体的含量为80重量%。
用气相色谱质谱联用分析仪来对该负载型三氟甲磺酸铜催化剂进行表征。
对比例1
制备负载型三氟甲磺酸铜的棒状介孔二氧化硅
将1克棒状介孔二氧化硅SBA-15(购自吉林大学高科技股份有限公司)在室温状态下与1克三氟甲磺酸铜一起放入100ml球磨罐中,其中,球磨罐和磨球的材质均为聚四氟乙烯,磨球的直径为3mm,数量为1个,转速为400r/min。封闭球磨罐,在室温条件下球磨1小时,得到负载三氟甲磺酸铜的棒状介孔材料(命名为SBA-15-Cu(OTf)2)。其中,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为50重量%,棒状介孔二氧化硅载体的含量为50重量%。
用扫描电镜和气相色谱质谱联用分析仪来对该负载型三氟甲磺酸铜催化剂进行表征。
实验实施例1
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂的催化活性。
将实施例1中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)在150℃下真空干燥6小时,冷却至室温后,称取1.2克,再称取7.44克乙二醇、60克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:环己酮的转化率为96%,环己酮-乙二醇缩酮选择性为99%。
实验实施例2
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂回收后的催化活性。
将实验实施例1中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)回收,并在150℃下真空干燥6小时,冷却至室温后,称取2.4克,再称取14.88克乙二醇、120克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:环己酮的转化率为98%,环己酮-乙二醇缩酮选择性为99%。
实验实施例3
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂的催化活性。
将实施例2中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2-2)在150℃下真空干燥6小时,冷却至室温后,称取3.6克,再称取22.32克乙二醇、180克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:己酮的转化率为92%,环己酮-乙二醇缩酮选择性为99%。
实验实施例4
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂回收后的催化活性。
将实验实施例3中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2-2)回收,并在150℃下真空干燥6小时,冷却至室温后,称取4.8克,再称取29.76克乙二醇、240克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:环己酮的转化率为90%,环己酮-乙二醇缩酮选择性为99%。
实验实施例5
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂的催化活性。
将实施例3中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2-3)在150℃下真空干燥6小时,冷却至室温后,称取1.2克,再称取7.44克乙二醇、60克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:环己酮的转化率为91%,环己酮-乙二醇缩酮选择性为99%。
实验实施例6
本实验实施例用来说明根据本发明的负载型三氟甲磺酸铜催化剂回收后的催化活性。
将实验实施例5中的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2-3)回收,并在150℃下真空干燥6小时,冷却至室温后,称取2.4克,再称取14.88克乙二醇、120克环己酮一起放入100ml三口烧瓶中,再加上冷凝管,在100℃加热回流的条件下搅拌1小时,冷却至室温后,离心分离,采用气相色谱质谱联用分析法分析反应产物液体成分,结果为:环己酮的转化率为90%,环己酮-乙二醇缩酮选择性为99%。
实验实施例7
按照实验实施例1的方法制备缩酮,不同的是,负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)由相同重量的实施例4通过浸渍方法制得的负载型三氟甲磺酸铜的面包圈状介孔材料MBQ(命名为MBQ-Cu(OTf)2-JZ)代替,结果为:环己酮的转化率为89%,环己酮-乙二醇缩酮选择性为99%。
实验实施例8
按照实验实施例2的方法制备缩酮,不同的是,回收的实验实施例1的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)由相同重量的回收的实验实施例7负载型三氟甲磺酸铜的面包圈状介孔材料MBQ(命名为MBQ-Cu(OTf)2-JZ)代替,结果为:环己酮的转化率为88%,环己酮-乙二醇缩酮选择性为99%。
实验对比例1
按照实验实施例1的方法制备缩酮,不同的是,负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)由相同重量的对比例1制得的负载三氟甲磺酸铜的棒状介孔材料SBA-15(命名为SBA-15-Cu(OTf)2)代替,结果为:环己酮的转化率为75%,环己酮-乙二醇缩酮选择性为99%。
实验对比例2
按照实验实施例2的方法制备缩酮,不同的是,回收的实验实施例1的负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2)由相同重量的回收的实验对比例1的负载三氟甲磺酸铜的棒状介孔材料SBA-15(命名为SBA-15-Cu(OTf)2)代替,结果为:环己酮的转化率为76%,环己酮-乙二醇缩酮选择性为99%。
实验对比例3
按照实验实施例1的方法制备缩酮,不同的是,不加入负载型三氟甲磺酸铜催化剂(MBQ-Cu(OTf)2),结果为:环己酮的转化率为56%,环己酮-乙二醇缩酮选择性为99%。
通过以上实施例1-4和对比例1以及实验实施例-8、实验对比例1-3的数据可以看出,实验实施例1-8明显比实验对比例1-3的效果好,并且实验实施例1-6的效果好,说明采用球磨法将三氟甲磺酸铜负载于面包圈状介孔二氧化硅载体上,获得的负载型三氟甲磺酸铜催化剂的催化性能较好,使得应用这种催化剂来催化环己酮和乙二醇的缩酮反应时,副反应少同时也不对设备产生腐蚀,并且本发明的负载型催化剂可以经过回收而反复使用,后处理工艺简单。

Claims (13)

1.一种负载型三氟甲磺酸铜催化剂,其特征在于,该催化剂由面包圈状介孔二氧化硅载体以及负载在所述面包圈状介孔二氧化硅载体上的三氟甲磺酸铜组成,且以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述面包圈状介孔二氧化硅载体的含量为10-90重量%;且所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,比表面积为600-1000平方米/克,最可几孔径为8-9纳米,孔壁厚度为3-4纳米,内径与外径的比值为0.3-0.9,平均厚度为0.1-2微米;
其中,所述面包圈状介孔二氧化硅载体由包括以下步骤的方法制得:
(1)将模板剂、N,N-二甲基甲酰胺和盐酸混合至固体物充分溶解;
(2)将步骤(1)所得溶液与硅酸酯在25-60℃温度、机械搅拌速率为100-400r/min下搅拌10-40小时;
(3)将步骤(2)所得产物在晶化条件下晶化;
(4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥;
(5)将步骤(4)干燥所得产物加热,脱除模板剂;
所述模板剂为聚氧化乙烯-聚氧化丙烯-聚氧化乙烯。
2.根据权利要求1所述的负载型三氟甲磺酸铜催化剂,其中,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为30-60重量%,所述面包圈状介孔二氧化硅载体的含量为40-70重量%;所述面包圈状介孔二氧化硅载体的粒子直径为3-10微米,比表面积为650-800平方米/克,孔壁厚度为3-4纳米,内径与外径的比值为0.5-0.85,平均厚度为1-2微米。
3.根据权利要求1所述的负载型三氟甲磺酸铜催化剂,其中,所述硅酸酯为正硅酸乙酯,所述晶化条件包括:温度为25-100℃,时间为10-40小时;所述脱除模板剂的条件包括温度为250-800℃,时间为10-40小时。
4.根据权利要求1所述的负载型三氟甲磺酸铜催化剂,其中,按摩尔比计,聚氧化乙烯-聚氧化丙烯-聚氧化乙烯:N,N-二甲基甲酰胺:水:氯化氢:硅酸酯=1:300-700:10000-20000:100-500:50-100。
5.一种负载型三氟甲磺酸铜催化剂的制备方法,其中,该方法包括:将面包圈状介孔二氧化硅载体与三氟甲磺酸铜一起球磨,使所述三氟甲磺酸铜负载在所述面包圈状介孔二氧化硅载体上,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述面包圈状介孔二氧化硅载体的用量为10-90重量%;所述面包圈状介孔二氧化硅载体的粒子直径为3-20微米,比表面积为600-1000平方米/克,最可几孔径为8-9纳米,孔壁厚度为3-4纳米,内径与外径的比值为0.3-0.9,平均厚度为0.1-2微米;
其中,所述面包圈状介孔二氧化硅载体由包括以下步骤的方法制得:
(1)将模板剂、N,N-二甲基甲酰胺和盐酸混合至固体物充分溶解;
(2)将步骤(1)所得溶液与硅酸酯在25-60℃温度、机械搅拌速率为100-400r/min下搅拌10-40小时;
(3)将步骤(2)所得产物在晶化条件下晶化;
(4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥;
(5)将步骤(4)干燥所得晶化产物加热,脱除模板剂;
所述模板剂为聚氧化乙烯-聚氧化丙烯-聚氧化乙烯。
6.根据权利要求5所述的制备方法,其中,以所述面包圈状介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为30-60重量%,所述面包圈状介孔二氧化硅载体的用量为40-70重量%;所述面包圈状介孔二氧化硅载体的粒子直径为3-10微米,比表面积为650-800平方米/克,孔壁厚度为3-4纳米,内径与外径的比值为0.5-0.85,平均厚度为1-2微米。
7.根据权利要求5所述的制备方法,其中,所述球磨的条件包括:磨球直径为2-3mm,转速为300-500r/min,球磨罐内温度为15-100℃,时间为0.1-100小时。
8.根据权利要求5的制备方法,其中,所述硅酸酯为正硅酸乙酯,所述晶化条件包括:温度为25-100℃,时间为10-40小时;所述脱除模板剂的条件包括温度为250-800℃,时间为10-40小时。
9.根据权利要求5或8所述的制备方法,其中,按摩尔比计,聚氧化乙烯-聚氧化丙烯-聚氧化乙烯:N,N-二甲基甲酰胺:水:氯化氢:硅酸酯=1:300-700:10000-20000:100-500:50-100。
10.权利要求5-9中任意一项所述的制备方法制得的催化剂。
11.权利要求1-4和10中任意一项所述催化剂在缩酮反应中的应用。
12.一种环己酮乙二醇缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其特征在于,所述催化剂为权利要求1-4和10中任意一项所述的催化剂。
13.根据权利要求12所述的制备方法,其中,环己酮和乙二醇的摩尔比为1:0.1-0.2,且以所述催化剂中负载的三氟甲磺酸铜计,相对于100重量份的环己酮,所述催化剂的用量为1-15重量份。
CN201210289345.4A 2012-08-14 2012-08-14 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法 Active CN103586072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210289345.4A CN103586072B (zh) 2012-08-14 2012-08-14 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210289345.4A CN103586072B (zh) 2012-08-14 2012-08-14 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法

Publications (2)

Publication Number Publication Date
CN103586072A CN103586072A (zh) 2014-02-19
CN103586072B true CN103586072B (zh) 2016-02-24

Family

ID=50076511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210289345.4A Active CN103586072B (zh) 2012-08-14 2012-08-14 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法

Country Status (1)

Country Link
CN (1) CN103586072B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933904A (zh) * 2004-03-23 2007-03-21 沙特基础工业公司 烷烃选择性转化成不饱和羧酸的催化剂组合物,其制造方法和使用方法
CN102451756A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 负载型三氟甲烷磺酸锌催化剂及其制备方法和丁酮-乙二醇缩酮的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933904A (zh) * 2004-03-23 2007-03-21 沙特基础工业公司 烷烃选择性转化成不饱和羧酸的催化剂组合物,其制造方法和使用方法
CN102451756A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 负载型三氟甲烷磺酸锌催化剂及其制备方法和丁酮-乙二醇缩酮的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
面包圈"状高有序度大孔径介孔分子筛SBA-15的合成;孙锦玉等;《高等学校化学学报》;20000131;第21卷(第1期);第21-23页 *

Also Published As

Publication number Publication date
CN103586072A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN102962084B (zh) 一种负载型磷钨酸催化剂及其制备方法和乙酸甲酯的制备方法
CN104248970B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及环己酮丙三醇缩酮的制备方法
CN103586070B (zh) 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN104248979B (zh) 球形介孔二氧化硅复合载体和催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248981A (zh) 三维立方孔道的球形复合载体和催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN106622377A (zh) 一种球形含铝介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586076B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586059B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586079B (zh) 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN103586058B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248971B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及环己酮丙三醇缩酮的制备方法
CN103586086B (zh) 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN103586065B (zh) 一种负载型硝酸银催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN103586072B (zh) 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN103586057B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586082B (zh) 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN103586078B (zh) 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN103586056B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586077B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN103586080B (zh) 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN103586071B (zh) 一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
CN108003261B (zh) 一种乙烯聚合的方法和聚乙烯
CN103586081B (zh) 一种负载型茂金属催化剂及其制备方法和应用以及乙酸正丁酯的制备方法
CN107417820B (zh) 球形硅藻土介孔复合材料和负载型催化剂及其制备方法
CN104248974B (zh) 一种负载型磷钨酸催化剂及其制备方法和应用以及环己酮丙三醇缩酮的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant