RU2531950C2 - Способ производства высокопрочного стекловолокна и изделия, формованные из него - Google Patents

Способ производства высокопрочного стекловолокна и изделия, формованные из него Download PDF

Info

Publication number
RU2531950C2
RU2531950C2 RU2011126891/03A RU2011126891A RU2531950C2 RU 2531950 C2 RU2531950 C2 RU 2531950C2 RU 2011126891/03 A RU2011126891/03 A RU 2011126891/03A RU 2011126891 A RU2011126891 A RU 2011126891A RU 2531950 C2 RU2531950 C2 RU 2531950C2
Authority
RU
Russia
Prior art keywords
glass
weight percent
melting furnace
charge
production
Prior art date
Application number
RU2011126891/03A
Other languages
English (en)
Other versions
RU2011126891A (ru
Inventor
Питер Бернард МАКГИННИС
Дуглас ХОФМАНН
Дэвид БЕЙКЕР
Джон УИНГЕРТ
Байрон БЕМИС
Original Assignee
ОСВ ИНТЕЛЛЕКЧУАЛ КЭПИТАЛ, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/341,985 external-priority patent/US8338319B2/en
Application filed by ОСВ ИНТЕЛЛЕКЧУАЛ КЭПИТАЛ, ЭлЭлСи filed Critical ОСВ ИНТЕЛЛЕКЧУАЛ КЭПИТАЛ, ЭлЭлСи
Publication of RU2011126891A publication Critical patent/RU2011126891A/ru
Application granted granted Critical
Publication of RU2531950C2 publication Critical patent/RU2531950C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/065Means for thermal conditioning or controlling the temperature of the glass by combustion with pure oxygen or oxygen-enriched air
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Изобретение относится к способу формования высокопрочных стеклянных волокон и к изделиям, сформированным из них. Волокна получают в стеклоплавильной печи, свободной от платины или других материалов на основе благородных металлов. Одна из композиций для изготовления волокон включает, масс.%: от 50 до 75 SiO2; от 15 до 30 Al2O3; от 5 до 20 MgO; от 0 до 10 CaO; и от 0 до 5 R2O, где R2O равно сумме Li2O, Na2O и K2O. Композиция имеет более высокую температуру образования волокон, от 2400°F (1316°C) до 2900°F (1593°C), и/или температуру жидкой фазы ниже, чем температура волокнообразования, до 45°F (25°C). Другая композиция включает, масс.%: от 64 до 75 SiO2; от 16 до 24 Al2O3; от 8 до 12 MgO; и от 0.25 до 3 R2O, где R2O равно сумме Li2O, Na2O и K2O, и имеет температуру образования волокон менее 2650°F (1454°C) и °ΔТ не менее 80°F (45°C). Техническим результатом изобретения является возможность производства высококачественных волокон в печах и каналах питателя, свободных от платины и других материалов на основе благородных металлов, и снижение стоимости изготовления стеклянных волокон. 4 н. и 14 з.п. ф-лы, 7 ил., 4 табл.

Description

Область техники и промышленная применимость изобретения
Настоящее изобретение в целом относится к способу производства непрерывных стеклянных волокон для применения в областях, требующих высокой прочности, и изделиям, изготовленным из них, таким как бронежилет, аппараты высокого давления, конструкционные авиационно-космические материалы, конструкционные судостроительные материалы и конструкционные материалы для ветроэнергетики, такие как мачты и лопасти ветряных мельниц электростанций.
Предпосылки создания изобретения
Армированные стекловолокном композитные материалы некоторое время применяли в судостроительных и авиационно-космических материалах. Другие волокнистые материалы, такие как углеродные и арамидные волокна, применяют, несмотря на значительно более высокие затраты. Для производства изделий настоящего изобретения можно использовать любой известный способ, включающий прессование, ламинирование, распыление, нанесение слоев вручную, укладку предварительно изготовленных слоев (препрег), прессование в пресс-форме, формование методом вакуумного мешка, формование с помощью мешка под давлением, прессование в форме, трансферное формование, трансферное формование пластмасс с помощью вакуума, пултрузию, формование намоткой нити, литье, автоклавное формование, трансферное формование центробежным литьем и непрерывное литье. Свойства композита контролируются волокнами и смолой, и взаимный эффект их обоих, формирующий свойства материала, невозможно получить при использовании материалов по отдельности.
Ряд смол, включающих полиэфирную смолу, винилэфирную смолу и эпоксидную смолу, являются эффективными для производства композитных изделий. Полиэфирные смолы являются пригодными во многих случаях. Винилэфирная смола имеет более низкую вязкость на стадии предварительного отверждения и более эластичное отверждение на последующей стадии, чем полиэфирная смола, и обычно является более устойчивой к деструкции. Эпоксидная смола, как правило, прозрачная при отверждении. Эпоксидная смола представляет собой полиэфирную смолу, образованную путем полимеризации бисфенола А, бисфенола F, бисфенола С и соединений аналогичной структуры с эпихлоргидрином, что приводит к образованию реакционно-способной оксирановой связи. Эпоксидные смолы могут вступать во взаимодействие с разными отверждающими агентами, включающими амины, ангидриды, меркаптаны, сложные полиэфиры с образованием тугоплавких твердых веществ. Реакция является реакцией конденсации, как правило, без образования побочных продуктов. Отвержденные эпоксидные смолы имеют высокую прочность и малую усадку при отверждении. Они используются в качестве покрытий, адгезивов, литья, композитов или пены. Также эпоксидные смолы предпочтительно использовать в областях, требующих высокой прочности, в качестве структурных материалов матриц или в качестве конструкционного клея. Фенольные смолы являются термоотверждающимися смолами, образованными путем конденсации фенола или производного фенола с альдегидом, как правило, формальдегидом. Фенольные смолы используются главным образом в производстве красок и пластиков. Другие специфические смолы с высоким модулем прочности включают бисмалеимид, полиамид, сополимеры винилового эфира и фенола, сополимеры этиленакрилата или метакрилата, высокопрочные термопласты со средним модулем, такие как иономер (т.е. поперечно-сшитый этиленметилакрилатный или метилметакрилатный сополимер), поликарбонат, полиуретан, найлон, арамид, модифицированные эпоксидные смолы.
Самой распространенной высокопрочной стекольной композицией для изготовления непрерывных прядей стекловолокна является «S-стекло». S-стекло представляет собой семейство стекол, которые состоят, главным образом, из оксидов магния, алюминия и кремния, с химическим составом, который позволяет вырабатывать стеклянные волокна, имеющие более высокую механическую прочность, чем стекловолокна марки Е. Обычно использующийся член семейства S-стекла известен как S2-стекло. S2-стекло включает примерно 65 масс.% SiO2, 25 масс.% Al2O3 и 10 масс.% MgO. S-стекло имеет состав, который был изначально разработан для использования в областях, требующих высокой прочности, таких как бронежилет.
R-стекло представляет собой семейство стекол, которые состоят, главным образом, из оксидов кремния, алюминия, магния и кальция, с химическим составом, который позволяет вырабатывать стеклянные волокна, имеющие более высокую механическую прочность, чем стекловолокна марки Е. R-стекло имеет композицию, которая содержит примерно 58-60 масс.% SiO2, 23.5-25.5 масс.% Al2O3 и 14-17 масс.% CaO плюс MgO, 0% B2O3, 0% F2 и меньше, чем 2 масс.% прочих компонентов. R-стекло содержит большее количество оксидов алюминия и кремния, чем Е-стекло, и требует более высоких температур плавления и переработки во время формования волокна. Как правило, температуры плавления и переработки для R-стекла по меньшей мере на 160°C выше, чем для Е-стекла. Данное повышение температуры переработки, как правило, требует использования дорогостоящей футерованной платиной плавильной печи. К тому же, непосредственная близость температуры ликвидуса к температуре формования у R-стекла требует, чтобы волокно вырабатывалось при более высокой температуре, чем Е-стекло.
Другие известные высокопрочные стекольные композиции можно найти в Американской патентной заявки 2008/0009403 с названием «Композиция для высококачественного стекла, высококачественные стеклянные волокна и изделия, изготовленные из них».
Оба стекла, R-стекло и S-стекло, получают плавлением компонентов композиции в футерованном платиной стеклоплавильном сосуде. Затраты на формование стекловолокон марок R и S значительно выше, чем затраты на стекловолокна марки Е из-за высоких затрат на производство волокон в таких плавильных печах. Таким образом, существует потребность в данной области в способах формования стекольных композиций, эффективных для формирования высококачественных стеклянных волокон методом прямой плавки в печи, главным образом свободной от платины или других материалов на основе благородных металлов, а также продуктов, формованных из них.
Сущность изобретения
Настоящее изобретение включает способ производства осветленного стекла из сырой стекольной шихты в стеклоплавильной печи, главным образом свободной от платины или других материалов на основе благородных металлов. Способ включает загрузку сырой стекольной шихты в зону плавления стеклоплавильной печи, плавление сырой стекольной шихты в зоне плавления и формование непрерывных волокон из расплава. Настоящее изобретение также включает волокна, формованные таким способом, и изделия, изготовленные из таких волокон.
В одном варианте изобретение включает способ формования высокопрочных стеклянных волокон в непрерывной системе, имеющей плавильную печь, канал питателя и фильеру. Способ включает обеспечение стеклоплавильной печи для приемки стекольной шихты и выгрузки стекломассы, и футеровку, по меньшей мере, части печи материалом, в основном свободным от материалов на основе благородных металлов, для образования контактной поверхности печи со стеклом. Стекольная шихта подается в плавильную печь, при этом стекольная шихта способна формовать стекломассу, из которой можно вырабатывать стекловолокно, при температуре ΔТ выше чем 45°F (25°C), и для производства стеклянных волокон имеет композицию, включающую примерно от 50 до 75 массовых процентов SiO2; примерно от 15 до 30 массовых процентов Al2O3; примерно от 5 до 20 массовых процентов MgO; примерно от 0 до 10 массовых процентов CaO; и примерно от 0 до 5 массовых процентов R2O, где R2O равно сумме Li2O, Na2O и K2O. Стекольная шихта плавится в печи путем обеспечения тепла от теплового источника печи, а именно кислородно-топливных горелок, образуя ванну стекломассы, соприкасающейся с контактной поверхностью печи со стеклом. Канал накопителя предназначен для переноса стекломассы из печи в фильеру и, по меньшей мере, часть канала накопителя футерована материалом, главным образом свободным от материалов на основе благородных металлов, для образования контактной поверхности канала накопителя со стеклом. Стекломасса переносится в канал накопителя при обеспечении тепла от источника тепла канала накопителя и протекает через канал накопителя, главным образом, по горизонтальному пути течения, образованному контактной поверхностью канала накопителя со стеклом. Стекломасса разгружается из канала накопителя в фильеру при температуре примерно от 2400°F (1316°С) до 2900°F (1593°С) и предварительно заданной вязкости (например, 1000 пуаз), и формуется в непрерывные волокна.
Изобретение включает способ производства стекольной композиции для формирования непрерывных стеклянных волокон и продуктов, изготовленных из них, которые являются пригодными для использования в областях, требующих высокой прочности. Композиции, эффективные в настоящем изобретении, могут быть экономично формованы в стеклянные волокна с использованием низкозатратного метода прямой плавки в печи, главным образом свободной от платины или других материалов на основе благородных металлов, включая их сплавы.
Одна композиция, эффективная в настоящем изобретении, включает 64-75 масс.% SiO2, 16-26 масс.% Al2O3, 8-12 масс.% MgO и от 0 до 3.0 масс.% R20, где R20 является суммой Li2O, Na2P и K2O.
Другая композиция, эффективная в настоящем изобретении, включает 64-75 масс.% SiO2, 16-24 масс.% Al2O3, 8-12 масс.% MgO и от 0.25 до 3.0 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O. В определенных вариантах в стекольную композицию входит 64-70 масс.% SiO2, 17-22 масс.% Al2O3, 9-12 масс.% MgO и от 1.75 до 3.0 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O. В другом варианте в стекольную композицию, эффективную в настоящем изобретении, входит 64-70 масс.% SiO2, 17-22 масс.% Al2O3, 9-12 масс.% MgO и от 1.75 до 3.0 масс.% Li2O.
Еще другая композиция, эффективная в настоящем изобретении, включает 50-75 масс.% SiO2, 13-30 масс.% Al2O3, 5-20 масс.% MgO, 0-10 масс.% CaO, от 0 до 5 масс.% R2O, где R2O является суммой Li2O, Na2O и К2O.
В определенных иллюстративных вариантах композиция содержит не более чем примерно 5.0 масс.% таких соединений, как CaO, P2O5, ZnO, ZrO2, SrO, BaO, SO3, F, B2O3, TiO2, Fe2O3, CeO2 и BeO2. В других иллюстративных вариантах композиция свободна от специально добавленных CeO2 и BeO2. В еще других иллюстративных вариантах композиция предпочтительно содержит не более чем примерно4 масс.% соединений или галогенов, а именно ZnO, SO3, фтор, B2O3, TiO2, ZrO2 и Fe2O3.
В некоторых иллюстративных вариантах требуемые свойства высококачественных волокон, произведенных с помощью настоящего изобретения, включают температуру выработки стекловолокна меньше чем 2650°F (1454°С) и температуру ликвидуса, которая предпочтительно ниже температуры выработки стекловолокна по меньшей мере на 80°F (44°C), более предпочтительно по меньшей мере на 120°F (67°C) и более всего предпочтительно по меньшей мере на 150°F (83°C).
В других иллюстративных вариантах желательные свойства высококачественных волокон, произведенных с помощью настоящего изобретения, включают температуру выработки стекловолокна 2400-2900°F (1316-1593°C) и температуру ликвидуса, которая ниже температуры выработки стекловолокна, по меньшей мере, на 45°F (25°C).
Настоящее изобретение также обеспечивает конструкционную часть, имеющую улучшенные конструкционные свойства с уменьшенными затратами и улучшенной технологичностью. При формовании методом прямой плавки непрерывных стеклянных волокон используется низкозатратное плавление в стеклоплавильной печи, главным образом свободной от платины или других материалов на основе благородных металлов. Относительно низкая температура выработки стеклянных волокон, использующихся в областях по настоящему изобретению, требующих высокой прочности, позволяет улучшить переработку волокон при пониженных затратах. Изделия настоящего изобретения обычно формуют прессованием в пресс-форме, формованием методом вакуумного мешка, формованием с помощью мешка под давлением, прессованием в форме, трансферным формованием, трансферным формованием пластмасс с помощью вакуума, пултрузией, формованием намоткой нити, литьем, автоклавным формованием, трансферным формованием центробежным литьем и непрерывным литьем.
Волокна, произведенные и применяемые в настоящем изобретении, требуют значительно меньших затрат на изготовление и, кроме того, обладают хорошими свойствами прочности и плотности. Плотность волокон, используемых в настоящем изобретении, изменяется в диапазоне 2.434-2.520 г/см3, и более предпочтительно 2.434-2.486 г/см3, и измеренный модуль больше чем 12.7 MPsi, и измеренную прочность свежевыработанного волокна больше чем 680 KPsi.
Краткое описание чертежей
ФИГ.1 представляет собой вид вдоль оси в поперечном разрезе стеклоплавильной печи, эффективной в способе настоящего изобретения;
ФИГ.2 представляет собой вид в поперечном разрезе стеклоплавильной печи ФИГ.1, сделанный по линии 2-2;
ФИГ.3 представляет собой вид в поперечном разрезе стеклоплавильной печи ФИГ.1, сделанный по линии 3-3, показывающий две горелки в верхней части торцевой стенки печи;
ФИГ.4 представляет собой другой вид в поперечном разрезе стеклоплавильной печи ФИГ.1, сделанный по линии 3-3, показывающий одну горелку, примыкающую к верхней части торцевой стенки печи;
ФИГ.5 представляет собой вид сбоку, частично в поперечном разрезе, сборочного узла/опорной конструкции фильеры для производства непрерывных стеклянных волокон, эффективных в способе настоящего изобретения.
ФИГ.6 представляет собой вид сверху в поперечном разрезе иллюстративного канала питателя, эффективного в способе настоящего изобретения, предназначенного для переноса стекломассы из стеклоплавильной печи в сборочный узел/опору фильеры.
ФИГ.7 представляет собой вертикальный вид сбоку в разрезе другого иллюстративного канала питателя, эффективного в способе настоящего изобретения.
Подробное описание изобретения
Настоящее изобретение описано с дополнительным обращением на конкретные варианты изобретения. Однако данное изобретение может быть воплощено в разных формах и не должно рассматриваться как ограничение представленных здесь далее вариантов. Скорее данные варианты обеспечены для всестороннего и полного раскрытия сущности изобретения и будут полностью передавать объем изобретения опытным специалистам в данной области.
Если не указано иное, все технические и научные термины, используемые здесь, имеют такое же значение, которое обычно понимается средним специалистом в данной области, к которому относится данное изобретение. Терминология, которая используется здесь в описании изобретения, предназначена для описания только конкретных вариантов и не предполагается быть ограничением изобретения. Используемые в описании изобретения и прилагаемой формуле формы единственного числа «a», «an» и «the» предполагают также включение множественных форм, если в контексте четко не указано иное.
Если не указано иное, все числа, выражающие количества ингредиентов, свойства, такие как молекулярная масса, условия реакции и прочие, используемые в описании и формуле, следует понимать как измененные во всех случаях термином «примерно». Соответственно, если не указано иное, количественные характеристики, представленные далее в описании и формуле, являются приближениями, которые могут изменяться в зависимости от требуемых свойств, которые необходимо получить в вариантах настоящего изобретения.
Несмотря на то, что числовые диапазоны и параметры, описывающие широкий масштаб изобретения, являются приближениями, числовые значения, представленные в конкретных примерах, являются по возможности точными. Любые числовые значения, однако, по существу содержат определенные ошибки, неизбежно возникающие в результате ошибок, обнаруженных в их соответствующих измерениях.
Свойства стекольной композиции, характеризующие способность стекольной композиции вырабатывать стеклянные волокна настоящего изобретения, включают температуру выработки стекловолокна, ликвидус и дельта-Т. Если не определено здесь иначе, температура выработки стекловолокна определяется как температуре, которая соответствует вязкости 1000 пуаз (температура log 3). Опытному специалисту в данной области будет понятно, что могут быть определены другие температуры выработки стекловолокна, например, температура выработки может быть определена как температура, которая соответствует вязкости 316 пуаз (температура log 2.5).
Как отмечено более подробно ниже, в определенных вариантах пониженная температура выработки стекловолокна снижает затраты на производство волокон, обеспечивает более длительный срок службы фильеры, повышает производительность, позволяет стеклу расплавляться в стеклоплавильной печи, главным образом свободной от платины или других материалов на основе благородных металлов, и сокращает потребление энергии. Например, при более низкой температуре выработки стекловолокна фильера функционирует при более холодной температуре и не «изгибается» так быстро. Изгиб является феноменом, который возникает в фильерах, которые содержатся при повышенной температуре в течение длительного времени. При понижении температуры выработки стекловолокна скорость изгиба фильеры может быть снижена и срок службы фильеры может быть увеличен. К тому же более низкая температура выработки стекловолокна обеспечивает более высокую производительность, так как больше стекла может быть расплавлено за определенный период при определенном потреблении энергии. В результате затраты на производство могут быть снижены. К тому же более низкая температура выработки стекловолокна обеспечивает формование стекла способом изобретения и плавление состава в стеклоплавильной печи с огнеупорной футеровкой или в плавильной печи с сильно охлажденными стенками, так как обе температуры, плавления и выработки стекловолокна, находятся ниже верхних температур эксплуатации многих коммерчески доступных огнеупорных материалов или других материалов при подаче внешнего охлаждения.
Ликвидус определен как самая высокая температура, при которой существует равновесие между жидким стеклом и его исходной кристаллической фазой. При всех температурах выше ликвидуса стекло является свободным от кристаллов в его первичной фазе. При температурах ниже ликвидуса может происходить образование кристаллов.
Другой характеристикой выработки стекловолокна является дельта-Т (ΔТ), которая определена как разность между температурой выработки стекловолокна и ликвидусом. Большая величина ΔТ предполагает более высокую степень гибкости при формовании стеклянных волокон и помогает ингибировать расстекловывание стекла (то есть образование кристаллов в расплаве) во время плавления и выработки стекловолокна. Повышение ΔТ также снижает затраты на производство стеклянных волокон путем обеспечения большее длительного срока службы фильеры и путем обеспечения более широкого окна процесса для формования волокон.
Напротив, более высокая температура выработки стекловолокна и/или меньшая величина ΔТ означает, что процесс образования волокон является менее щадящим, более чувствительным к изменениям температур, холодным пятнам и медленному движению стекла.
Стекольные композиции, используемые в настоящем изобретении, являются предпочтительно пригодными для плавления в печи или стеклоплавильной печи, главным образом, свободной от платины или других материалов на основе благородных металлов и их сплавов, включая традиционные, коммерчески доступные стеклоплавильные печи, футерованные огнеупорным материалом, и коммерчески доступные стеклоплавильные печи, футерованные охлаждаемыми с внешней стороны стенками, например, охлаждаемыми водой стенками.
Компоненты исходной шихты обычно включают SiO2 (кварцевый песок) и Al2O3 (кальцинированный оксид алюминия), Li2CO3 (карбонат лития), H3BO3 (борная кислота), NaCaB5O9·8H2O (улексит), 2CaO-3B2O3-5H2O (колеманит), а также модификаторы из сырьевых материалов, таких как MgCO3 (магнезит), CaCO3 (известняк), BaCO3 (витерит), ZrSiO4 (циркон) и Na2CO3 (натрит). Опытному специалисту в данной области следует учесть, что могут быть использованы другие исходные материалы. Дополнительные неограничивающие примеры пригодных компонентов исходной шихты включают каолинит (Al2Si2O5(OH)4), пирофиллит (Al2Si4O10(OH)2), бауксит (AlO(OH)), волластонит (CaSiO3), сподумен (LiAlSi2O6), фелдспар (CaAl2Si2O8), доломит (СаМg(CO2)2), известь (CaO), доломитовую известь (CaMgO2) и гидратированную известь (Ca(OH)2).
Стеклоплавильная печь
На ФИГ.1-4 изображена стеклоплавильная печь (10), эффективная в способе формования стеклянных волокон, описанных здесь, и представлена в примерах и формуле далее. Также желательно использовать кислородные горелки внутри стеклоплавильной печи, как раскрыто в Американском патенте 7,509,819 с названием «Обогреваемая кислородными горелками передняя часть для способа формования стекла», авторов David J Baker et al., включенном здесь полностью в виде ссылки. Стеклоплавильная печь (10) обеспечивает поступление стекломассы в канал питателя (12).
В одном иллюстративном варианте стекломасса состоит из 50-75 масс.% SiO2, 13-30 масс.% Al2O3, 5-20 масс.% MgO, 0-10 масс.% CaO, от 0 до 5 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O. Данный иллюстративный вариант включает стекольную композицию, имеющую более высокую температуру выработки стекловолокна, например, 2400-2900°F (1316-1593°C) и/или температуру ликвидуса, которая ниже температуры выработки стекловолокна только на 45°F (25°C).
В другом иллюстративном варианте стекломасса состоит примерно из 64-75 масс.% SiO2, 16-26 масс.% Al2O3, 8-12 масс.% MgO, 0-3.0 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O.
В еще другом иллюстративном варианте стекломасса состоит из примерно 64-75 масс.% SiO2, 16-26 масс.% Al2O3, 8-12 масс.% MgO, 0.25-3.0 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O. Волокна, формованные в соответствии со способом данного иллюстративного варианта, будут иметь температуру выработки стекловолокна меньше чем 2650°F (1454°C), и в определенных вариантах меньше чем примерно 2625°F (1458°C), в других вариантах меньше чем примерно 2600°F (1427°C), и в определенных вариантах меньше чем примерно 2575°F (1413°C), и температуру ликвидуса, которая ниже температуры выработки стекловолокна в определенных вариантах по меньшей мере на 80°F (44°C) и в других вариантах по меньшей мере на 120°F (67°C), и в еще других вариантах по меньшей мере на 150°F (83°C).
В еще другом иллюстративном варианте стекломасса состоит из 50-75 масс.% SiO2, 13-30 масс.% Al2O3, 5-20 масс.% MgO, 0-10 масс.% CaO, от 0 до 5 масс.% R2O, где R2O является суммой Li2O, Na2O и K2O. Данный иллюстративный вариант включает стекольную композицию, имеющую температуру ликвидуса, которая выше температуры log 3 выработки стекловолокна, т.е. отрицательную ДТ, а именно -122°F (-68°C). Такая композиция может быть выработана в стекловолокно при более высокой температуре, например, температуре log 2.5 выработки стекловолокна, соответствующей вязкости 316 пуаз.
В определенных иллюстративных вариантах композиция содержит не больше чем примерно 5.0 масс.% оксидов или соединений, таких как CaO, P2O5, ZnO, ZrO2, SrO, BaO, SO3, фтор, B2O3, TiO2, K2O, CeO2 и BeO2. В других иллюстративных вариантах композиция свободна от специально добавленных CeO2 и BeO2.
Волокна, произведенные и применяющиеся в настоящем изобретении, являются менее дорогостоящими для изготовления и, кроме того, имеют хорошие характеристики прочности и плотности. Плотность волокон, которые используются в настоящем изобретении, изменяется в диапазоне 2.434-2.520 г/см3 и, более предпочтительно, 2.434-2.486 г/см3. Кроме того, стеклянные волокна настоящего изобретения в определенных вариантах имеют прочность свежевыработанного волокна, равную 680 KPSI, и в определенных других вариантах прочность превышает примерно 700 KPSI, и в еще других вариантах прочность превышает примерно 730 KPSI. Кроме того, стеклянные волокна предпочтительно имеют модуль больше чем 12.0 MPSI, и в определенных вариантах больше чем примерно 12.18 MPSI, и в некоторых вариантах больше чем примерно 12.7 MPSI.
Способ настоящего изобретения предпочтительно осуществляется с использованием стеклоплавильной печи (10), которая включает вытянутый канал, имеющий верхнюю торцевую стенку (14), нижнюю торцевую стенку (16), боковые стенки (18), днище (20) и свод (22). Каждый из компонентов стеклоплавильной печи (10) изготовлен из соответствующих огнеупорных материалов, таких как глинозем, оксид хрома, кремнезем, алюмосиликат, циркон, оксиды алюминия-циркония-кремния или аналогичных материалов на основе оксидов, в частности поверхности, которые находятся в контакте со стекломассой. Свод (22), как правило, имеет изогнутую форму поперек продольной оси канала; однако свод может иметь любой пригодный дизайн. Свод (22) обычно расположен на расстоянии примерно 3-10 футов над поверхностью стекольной шихты (30). Стекольная шихта (30) представляет собой смесь сырьевых материалов, которые используются в производстве стекла согласно настоящему изобретению.
Стеклоплавильная печь (10) может дополнительно включать один или более барботеров (24) и/или электрических бустерных электродов (не показано). Барботеры (24) и электрические бустерные электроды повышают температуру стекломассы и увеличивают циркуляцию стекломассы под люковым закрытием.
Барботеры (24) и/или электрические бустерные электроды могут быть особенно эффективными во втором и третьем иллюстративных вариантах, которые включают стекольные композиции, имеющие более высокую температуру выработки стекловолокна, например, 2400-2900°F (1316-1593°C) и/или низкую ΔТ, например, до 45°C (25°F) или даже отрицательную ΔТ, такую как -122°F (-68°C), где возможность для расстеклования выше.
К тому же стеклоплавильная печь (10) может включать две последовательные зоны, верхнюю зону плавления (26) и нижнюю зону осветления (28). В зоне плавления (26) стекольная шихта (30) загружается в печь с помощью загрузочного устройства (32), хорошо известного в данной области типа.
В одной приемлемой конфигурации плавильной печи материал стекольной шихты (30) образует слой шихты, состоящий из твердых частиц, на поверхности стекломассы в зоне плавления (26) стеклоплавильной печи (10). Двигающиеся твердые частицы композиции стекольной шихты (30) являются, по меньшей мере, частично расплавленными по меньшей мере одной горелкой (34), имеющей контролируемую форму пламени и длину, вмонтированной внутри свода (22) стеклоплавильной печи (10).
В одном предпочтительном варианте, как показано на ФИГ.1, стеклоплавильная печь (10) включает три горелки (34). Одна горелка (34) расположена выше двух расположенных рядом в нижней части горелок (34). Однако следует учесть, что любое количество горелок (34) может быть расположено в любом приемлемом месте в своде (22) печи (10) над шихтой для плавления стекольной шихты (30). Например, две горелки (34) могут быть расположены в ряд (ФИГ.3) или может быть использована одна горелка (ФИГ. 4).
Следует отметить, что горелки (34) стеклоплавильной печи (10) могут быть расположены в вершине (своде) печи, в боковых стенах, торцевых стенках, погруженных в шихту или стекломассу, или в их комбинации.
Другие плавильные печи могут быть использованы без отступления от настоящего изобретения. Приемлемые плавильные печи включают воздушно-газовые плавильные печи, кислородно-газовые плавильные печи, электрически нагреваемые плавильные печи или любые плавильные печи на ископаемом топливе. Возможно добавление электрического бустера или барботеров в любой из способов плавления. Также возможно включение отдельной зоны осветления (как показано на ФИГ.1) или включение зоны осветления в основной резервуар плавильной печи.
Устройство канала питателя
Канал питателя принимает стекломассу, разгружаемую из стеклоплавильной печи, переносит стекломассу, разгружая в надлежащем состоянии в место формования. Детали канала питателя могут быть футерованы соответствующими огнеупорными материалами, такими как глинозем, оксид хрома, кремнезем, алюмосиликат, циркон, цирконий-алюмосиликат или аналогичными материалами на основе оксидов, в частности поверхности, которые находятся в контакте со стекломассой. Предпочтительно, чтобы такие контактные поверхности канала питателя со стеклом были футерованы материалами на основе оксида хрома, циркона или их комбинаций.
Для композиций, имеющих температуру выработки стекловолокна меньше чем 2650°F (1454°C) и температуру ликвидуса ниже температуры выработки стекловолокна по меньшей мере на 80°F (44°C), может быть использован типовой канал питателя.
Для других композиций, в которых температура выработки стекловолокна является высокой и/или ΔТ низкой, целесообразно использовать другую конструкцию канала питателя для того, чтобы способствовать изотермическому состоянию стекломассы, тем самым предотвращая расстеклование. Например, перенос стекломассы через канал питателя при небольшой глубине (D), например, меньше чем примерно 8 дюймов или предпочтительно меньше чем примерно 3.5 дюймов, будет улучшать перенос тепла по всему объему стекломассы. В этом отношении, установленные кислородно-топливные горелки являются особенно эффективными в качестве источника тепла канала питателя. Типичные кислородно-топливные системы поставляются компанией BH-F (Engineering) Ltd., Англия. Как определено здесь, кислородно-топливные горелки представляют собой горелки, которые используют кислород (например, с чистотой обычно от 90 до 99 процентов, с примесями, являющимися комбинацией азота и аргона) с высокой чистотой в качестве окислителя вместо атмосферного воздуха, использующегося в воздушно-топливных горелках, и ископаемое топливо для подачи легко воспламеняемого углеводорода, но могут включать горелки, использующие обогащенный кислородом воздух (например, с чистотой от 30 до 90 процентов). Температура пламени кислородно-газовой горелки составляет примерно от 4200 до 5200°F (примерно от 2315 до 2871°C). При этой температуре пламя и продукты горения излучают энергию при длинах волн, которые стекломасса может абсорбировать. Это способствует однородному распределению температуры горизонтально по поверхности стекломассы и вертикально через стекломассу.
Воздушно-топливные горелки также могут применяться в качестве теплового источника канала питателя, в частности при установке на малом расстоянии, например, на расстоянии 4 дюймов.
Иллюстративные конструкции канала питателя, эффективные в настоящем изобретении, показаны на ФИГ.6 и 7. Канал питателя (322А) приспособлен для подачи расплавленной субстанции (например, расплавленного стекла G) из стеклоплавильной печи в канал питателя (т.е. место формования, описанное ниже). Расплавленное стекло (G) не контактирует с верхней частью канала питателя (322А). Таким образом, эта часть может быть сконструирована из относительно недорогих огнеупорных материалов (т.е. суперструктурный огнеупорный материал, такой как кремнезем, муллит или другие материалы, от которых не требуется устойчивость к коррозионному действию расплавленного стекла (G)).
Нижняя часть канала питателя (322А) находится ниже уровня стекла (L) и таким образом формирует контактную поверхность, которая соприкасается с расплавленным стеклом (G). Таким образом, эта часть канала питателя (322А) сконструирована из более дорогого соприкасающегося со стеклом материала. Керамический огнеупорный материал (т.е. циркон, оксид хрома или другие приемлемые материалы) является пригодным огнеупорным материалом для контакта со стеклом, так как он может быть устойчивым к коррозионному воздействию расплавленного стекла (G).
Канал питателя (322А) может включать вершину или свод (не показано), днище (также не показано) и боковые стенки (328А). Канал питателя (322А) имеет верхнюю часть, в целом указанную как (330А), и нижнюю часть, в целом указанную как (322А). Открытый конец (344) может быть расположен в нижней части (332А) канала питателя (322А). Торцевая стенка (336А) может находиться в верхней части (330А) канала питателя (322А). Одно или более стеклянных отверстий (338) могут располагаться в донной части канала питателя (322А), рядом, примыкая или близко к торцевой стенке (336А). Канал питателя передней части, как представлено выше, является такой частью канала питателя (322А), которая имеет торцевую стенку (336А) и стеклянные отверстия (338) в днище.
Горелки канала питателя (344), такие как кислородно-топливные горелки, расположенные выше уровня стекла (L), показаны на ФИГ.7. Горелки канала питателя (344) ориентированы в плоскости (например, главным образом горизонтальной плоскости) перпендикулярно поверхностям (340) и под острым углом относительно поверхностей (340). Горелки канала питателя (344) направлены в сторону нижней части 332А канала питателя (322А) под углом примерно от 5 до 85 градусов относительно поверхностей (340), как показано на ФИГ.6. Горелки канала питателя (344) могут быть расположены в шахматном порядке или же на расстоянии таким образом, чтобы противоположные горелки канала питателя (344) на противоположных боковых стенках (328А) были смещены в сторону или не выровнены по боковой линии (не выровнены вертикально при обращении на ФИГ.6) друг с другом.
Температура пламени кислородно-топливной горелки составляет примерно 4200-5200°F. Однако предпочтительно, чтобы пламя было очень маленьким. Таким образом, пламя напрямую не контактирует с боковыми стенками (328А). Однако тепло, излучаемое пламенем, является значительным. Несмотря на то, что пламя напрямую не контактирует с боковыми стенками (328А), боковые стенки (328А) значительно нагреваются конвекцией или теплом, излучаемым пламенем. Эта теплота излучения достаточна для поддержания в определенном состоянии расплавленного стекла (G) и сохранения расплавленного стекла G при требуемой температуре без риска нарушения целостности канала питателя (322А) воздействием чрезмерно высоких температур. Это сохраняется, даже если горелки (344) расположены на расстоянии от 1 до 5 футов друг от друга.
Следует отметить, что другие конструкции горелок канала питателя являются возможными и находятся в пределах объема изобретения. Например, другая иллюстративная конструкция горелок канала питателя показана на ФИГ.7. Горелки канала питателя (344) ориентированы в плоскости (например, главным образом в вертикальной плоскости) перпендикулярно поверхности (346) и под острым углом относительно поверхности (346). Горелки канала питателя (344) могут быть направлены в сторону верхней части (330С) канала (322С) под углом примерно от 5 до 85 градусов относительно поверхности 346, как показано на ФИГ.7. Или же горелки канала питателя (344) могут быть направлены в сторону нижней части (332С) канала (322С) под углом примерно от 95 до 175 градусов относительно поверхности (346).
Следует отметить, что горелки могут быть расположены в своде (потолке) канала питателя, в боковых стенках, торцевых стенках, погруженных в шихту или стекломассу, или их комбинации.
Сборочный узел фильеры
Как показано на ФИГ.5, узел фильеры 100 включает фильеру (110) и раму фильеры 210. Фильера (110) включает основной корпус фильеры (120) с боковыми стенками (122) и концевую пластину (124), проходящую между боковыми стенками (122). Основной корпус (120) расположен ниже фильерного блока (300), который, в свою очередь, расположен ниже канала питателя (310). При практическом осуществлении способа изобретения, поток стекломассы поступает в основной корпус (120) из канала питателя (310). В канала питателя (310) поступает стекломасса из стеклоплавильной печи (10) (показано на ФИГ.1). Напорный канал (40) расположен между стеклоплавильной печью (10) и каналом питателя (310), и предназначен для доставки стекломассы (30) из стеклоплавильной печи (10) в канала питателя (310). канала питателя (310) и блок фильеры (300) могут иметь типовую конструкцию и быть изготовленными из огнеупорных материалов.
Верхняя пластина (124) содержит множество сопел (124а) (также называемых как отверстия), через которые может вытекать множество потоков стекломассы. Потоки расплавленного материала могут механически вытекать из верхней пластины (124) для формования непрерывных волокон (125) с помощью типового наматывающего устройства (400), такого как наматывающий аппарат или чоппер, или других средств вытягивания. Волокна (125) могут быть собраны в одну или множество непрерывных прядей (125а) после нанесения защитного покрытия проклеивающим составом замасливателя (410). Непрерывные волокна (125а) можно наматывать на вращающуюся бобину (402) наматывающего устройства (400) для формирования паковки (125b). Непрерывные волокна (125) также могут вырабатываться в другие требуемые композитные стеклянные материалы, включающие, без ограничения, влажное рубленого волокна, сухое рубленого волокна, мат из рубленого стекловолокна, влажные формованные маты или пневмоуложенные маты.
В высокопрочных изделиях настоящего изобретения применяются формованные волокна, описанные выше, для армирования стекловолокном материала полимерной матрицы. Типовые материалы матриц включают эпоксидные смолы, фенольные смолы, виниловые эфиры и полиэфиры. Изделия могут быть формованы любым приемлемым способом, включающим прессование, ламинирование, распыление, нанесение слоев вручную, укладку предварительно изготовленных слоев (препрег), прессование в пресс-форме, формование методом вакуумного мешка, формование с помощью мешка под давлением, прессование в форме, трансферное формование, трансферное формование пластмасс с помощью вакуума, пултрузию, формование намоткой нити, литье, автоклавное формование, трансферное формование центробежным литьем и непрерывное литье.
Помимо общего описания данного изобретения, дополнительное понимание можно получить при обращении к определенным конкретным примерам, представленным далее, которые даны только для иллюстрации и не предполагаются быть исчерпывающими или ограничивающими, если не указано иное.
ПРИМЕРЫ
Стекла в примерах, перечисленных в Таблицах IIА-IIС, были расплавлены в платиновых тиглях или в непрерывной футерованной платиной стеклоплавильной печи для определения механических и физических свойств стекла и выработанных из них волокон. Единицами измерения для физических свойств являются: вязкость (°F), температура ликвидуса (°F) и ΔТ (°F). В некоторых примерах стекла были выработаны в стекловолокно и измерены прочность (KPsi), плотность (г/см3) и модуль (MPsi).
Температуру выработки стекловолокна измеряли с помощью ротационного шпиндельного вискозиметра. Вязкость выработки стекловолокна была определена как 1000 пуаз. Ликвидус измеряли путем помещения платинового контейнера, заполненного стеклом, в печь с градиентом температур на 16 часов. Самая большая температура, при которой присутствовали кристаллы, была принята как температура ликвидуса. Модуль измеряли ультразвуковым методом на единичном волокне стекла. Прочность на разрыв измеряли на свежевыработанном единичном волокне.
Таблица II-А
Стекло Пример 1 Пример 2 Пример 3 Пример 4 Пример 5 Пример 6
SiO2 67.2 69 67 70 70 65
Al2O3 20 22 22 17 17 21
MgO 9.8 9 11 11 10 11
Li2O 3 0 0 2 3 3
Измеренная вязкость (°F) 2531 1388 2761 1516 2648 1453 2557 1403 2558 1403 2461 1349
1-й измеренный ликвидус (°F) 2313 1267 2619 1437 2597 1425 2332 1278 2302 1261 2296 1258
2-й измеренный ликвидус (°F) 2302 1261 2620 1438 2614 1434 2346 1286 2308 1264 2318 1270
ΔТ (°F) 218 121.1 142 78.89 51 28.33 225 125 256 142.2 165 91.67
Измеренная плотность (г/см3) 2.459 2.452 2.481 2.450 2.441 2.482
Таблица II-В
Стекло Пример 7 Пример 8 Пример 9 Пример 10 Пример 11 Пример 12
SiO2 70 69 70 65 66 65
Al2O3 18 17 21 22 22 22
MgO 9 11 9 11 9 10
Li2O 3 3 0 2 3 3
Измеренная вязкость °F (°C) 2544 (1396) 2496 (1369) 2752 (1511) 2525 (1385) 2523 (1384) 2486 (1363)
1-й измеренный ликвидус °F (°C) 2311 (1266) 2234 (1223) 2597 (1425) 2468 (1353) 2391 (1311) 2361 (1294)
2-й измеренный ликвидус °F (°C) 2324 (1273) 2343 (1284) 2603 (1428) 2462 (1350) 2394 (1312) 2382 (1306)
ΔТ°F (°C) 233 (129.44) 262 (145.56) 155 (86.11) 57 (31.67) 132 (73.33) 125 (69.44)
Измеренная плотность (г/см3) 2.434 2.455 2.443 2.486 2.460 2.474
Таблица II-C
Стекло Пример 13 Пример 14 Пример 15 Пример 16 Пример 17 Пример 18
SiO2 70 67.32 67.57 68.27 68.02 67.76
Al2O3 19 20.49 20.49 20.10 20.10 20.10
MgO 11 10.00 10.00 9.69 9.69 9.69
Li2O 0 2.00 1.75 1.75 2.00 2.25
Измеренная вязкость °F (°C) 2679 (1471) 2563 (1406) 2584 (1418) 2598 (1426) 2578 (1414) 2547 (1397)
1-й измеренный ликвидус °F (°C) 2596 (1424) 2456 (1347) 2486 (1363) 2446 (1341) 2431 (1333) 2399 (1315)
2-й измеренный ликвидус °F (°C) 2582 (1417) 2447 (1342) 2469 (1354) 2469 (1354) 2437 (1354) 2406 (1319)
ΔТ °F (°C) 83 (46.11) 111.5 (61.94) 106.5 (59.17) 140.5 (78.06) 144 (80) 144.5 (80.28)
Измеренная
плотность (г/см3)
2.453 2.461 2.452
Композиции, эффективные в настоящем изобретении, могут также включать модификаторы, такие как Na2O, CaO и B2O3. Такие композиции показаны в Таблице II-D (ниже).
Таблице II-D
Стекло Пример 19 Пример 21 Пример 22 Пример 22 Пример 23 Пример 24
SiO2 75 66 65 65 66 74
Al2O3 15 20 20 24 19 15
MgO 8 9 8 8 9 8
Li2O 1 1 2 0 0 0
Na2O 1 2 1 1 2 3
CaO 2 4
B2O3 2 4
Измеренная 2765 2607 2469 2669 2809
вязкость °F (°C) (1518) (1431) (1354) (1465) (1543)
1-й 2422 2729 2614 2630 2680
измеренный ликвидус °F (°C) (1328) (1498) (1434) (1443) (1471)
ΔT °F (°C) 343 -122 55 129
(190.56) (-67.78) (30.56) (71.67)
Волокна, произведенные с помощью настоящего изобретения, имеют превосходные характеристики модуля и прочности. Волокна Примера 1 имеют измеренный модуль, равный 12.71 MPsi, и измеренную прочность 688 KPsi. Волокна Примера 3 имеют измеренный модуль, равный 12.96 MPsi, и измеренную прочность 737 KPsi. Волокна Примера 17 имеют измеренный модуль, равный 12.75 MPsi, и измеренную прочность 734 KPsi.
Как понимается в данной области, приведенные выше иллюстративные стекольные композиции изобретения не всегда составляют 100% перечисленных компонентов из-за статистических допусков (таких как округление и усреднение), а также из-за того, что некоторые составы могут включать не перечисленные примеси. Разумеется, что в композиции фактическое количество всех компонентов, включая любые примеси, всегда составляет 100%. Кроме того, следуют понимать, что при указании в композиции незначительных количеств компонентов, например, порядка 0.05 массовых процентов или менее, такие компоненты могут присутствовать скорее в виде следовых количеств примесей, присутствующих в сырьевых материалах, чем специально добавленные.
К тому же, в композицию шихты могут быть добавлены компоненты, например, для способствования переработке, которые в дальнейшем удаляются, образуя тем самым стекольные композиции, в основном свободные от таких компонентов. Таким образом, например, незначительные количества компонентов, такие как фтор и сульфат, могут присутствовать в виде следовых количеств в сырых материалах, обеспечивающих компоненты кремния, лития, алюминия и магния в коммерческом использовании изобретения, или они могут быть обрабатывающими добавками, которые в основном удаляются во время производства.
Как видно из приведенных выше примеров, определенные композиции стеклянных волокон, эффективные в изобретении, обладают полезными свойствами, такими как низкие температуры выработки стекловолокна и большие разницы между температурами ликвидуса и температурами выработки стекловолокна (высокие величины ΔТ). Другие преимущества и очевидные изменения изобретения будут очевидны специалисту из приведенного выше описания и, кроме того, при осуществления изобретения на практике.
В определенных вариантах высококачественное стекло, полученное с помощью настоящего изобретения, плавится и осветляется при относительно низких температурах, имеет рабочую вязкость в широком диапазоне относительно низких температур, и диапазоне низких температур ликвидуса.
В других вариантах высококачественное стекло, полученное с помощью настоящего изобретения, плавится и осветляется при относительно высоких температурах и имеет рабочую вязкость в относительно малом температурном диапазоне.
Изобретение по данной заявке было описано в целом и в отношении конкретных вариантов. Несмотря на то, что изобретение изложено в виде предпочтительных вариантов, много альтернативных вариантов, известных опытным в данной области специалистам, может быть выбрано на основании раскрытия. Другие преимущества и очевидные модификации изобретения будут очевидны для специалиста из вышеуказанного описания и, кроме того, при осуществлении изобретения на практике.
Изобретение не ограничено каким-либо образом, за исключением перечисления пунктов формулы изобретения, изложенной далее.

Claims (20)

1. Способ выработки стекловолокна из сырой стекольной шихты в стеклоплавильной печи с огнеупорной футеровкой, включающий следующие стадии:
загрузку сырой стекольной шихты в зону плавления стеклоплавильной печи с огнеупорной футеровкой, при этом стекольная шихта содержит:
64-75 массовых процентов SiO2;
16-26 массовых процентов Al2O3;
8-12 массовых процентов MgO;
не более 2 массовых процентов CaO и
0.25-3 массовых процентов R2O, где R2O равно сумме Li2O, Na2O и K2O;
нагревание стекольной шихты до температуры формования, превышающей температуру ликвидуса полученного стекла, для образования стекломассы, предназначенной для выработки стекловолокна; и
выработку стекловолокна из указанной стекломассы, при этом
стекловолокна имеют температуру выработки не более чем 2650°F (1454°C) и прочность 688-737 KPsi.
2. Способ по п.1, отличающийся тем, что стекольная шихта включает:
примерно 68 массовых процентов SiO2;
примерно 20 массовых процентов Al2O3;
примерно 10 массовых процентов MgO; и
примерно 2 массовых процента Li2O.
3. Способ по п.1, отличающийся тем, что стекольная шихта включает:
примерно 68 массовых процентов SiO2;
примерно 20 массовых процентов Al2O3;
примерно 9.7 массовых процентов MgO; и
примерно 2 массовых процента Li2O.
4. Способ по п.1, отличающийся тем, что стекольная шихта включает:
меньше чем 5 массовых процентов всех соединений, выбранных из группы, состоящей из P2O5, ZnO, ZrO2, SrO, BaO, SO3, фтора, B2O3, TiO2, Fe2O3, CeO2 и BeO2.
5. Способ по п.1, отличающийся тем, что полученное из шихты стекло имеет ΔT по меньшей мере 80°F (44.44°C).
6. Способ по п.5, отличающийся тем, что стекло имеет ΔT, по меньшей мере, 120°F (66.67°C).
7. Способ по п.1, отличающийся тем, что стеклоплавильная печь футерована огнеупорным материалом на основе оксидов.
8. Способ по п.1, отличающийся тем, что стеклоплавильная печь футерована огнеупорным материалом, выбранным из группы, состоящей из глинозема, кремнезема, оксида хрома, глинозема-кремнезема, циркона, циркона-глинозема-кремнезема и их комбинации.
9. Способ по п.1, отличающийся тем, что стекло, полученное из шихты, вырабатывается в стекловолокно при температуре формования меньше чем 2600°F (1427°C).
10. Способ по п.1, отличающийся тем, что стекло имеет ΔT по меньшей мере 140°F (77.78°C).
11. Способ по п.1, отличающийся тем, что шихта включает 1,75-3,0 массовых процента Li2O.
12. Способ по п.1, включающий следующие стадии:
соединение волокон с матричным материалом;
формование изделия; и
твердение матричного материала.
13. Способ по п.12, включающий дополнительно:
формование промежуточной стеклянной структуры, выбранной из группы, состоящей из влажного рубленого стекловолокна, мата из непрерывного волокна, мата из рубленого волокна, влажного мата и пневмоуложенного мата.
14. Способ получения стекла из сырого стеклообразующего материала в стеклоплавильной печи, футерованной огнеупорным материалом, при этом стеклоплавильная печь имеет свод (22), днище и боковые стенки (328A), определяющие вытянутый канал (322C), имеющий зону плавления и нижнюю зону осветления (16), при этом способ включает следующие стадии:
загрузку сырой стекольной шихты (30) в зону плавления стеклоплавильной печи, футерованной огнеупорным материалом, при этом стекольная шихта включает:
68-69 массовых процентов SiO2;
20-22 массовых процентов Al2O3;
9-10 массовых процентов MgO; и
не более чем 2,5 массовых процентов CaO и
1-3 массовых процентов Li2O;
использование по меньшей мере одной горелки (34) на внутренней стороне свода (22) стеклоплавильной печи (10); и
плавление стекольной шихты для образования стекломассы, предназначенной для выработки стекловолокна.
15. Стекловолокно, выработанное из сырой стекольной шихты в стеклоплавильной печи, футерованной огнеупорным материалом (10), способом, включающим следующие стадии:
загрузку сырой стекольной шихты (30) в зону плавления стеклоплавильной печи, футерованной огнеупорным материалом, при этом стекольная шихта включает:
64-75 массовых процентов SiO2;
16-24 массовых процентов Al2O3;
8-12 массовых процентов MgO; и
1-3 массовых процентов Li2O;
нагрев стекольной шихты до температуры формования, превышающей температуру ликвидуса полученного стекла, для образования стекломассы, предназначенной для выработки стекловолокна; и
выработку указанной стекломассы в стекловолокно, при этом стекловолокно имеет прочность свыше 700 KPsi.
16. Высокопрочное изделие, включающее:
матрицу; и
множество стекловолокон, формованных из композиции стекольной шихты, включающей:
64-75 массовых процентов SiO2;
16-24 массовых процентов Al2O3;
8-12 массовых процентов MgO;
не более чем 2,5 массовых процентов CaO и
0.25-3 массовых процентов R2O, где R2O равно сумме Li2O, Na2O и K2O, при этом стекловолокна имеют температуру выработки не более чем 2650°F (1454°C) и прочность 688-737 KPsi.
17. Высокопрочное изделие по п.16, отличающееся тем, что стекловолокно имеет плотность 2.434-2.486 г/см3.
18. Высокопрочное изделие по п.16, отличающееся тем, что стекловолокно имеет модуль 12.71-12.96 MPsi.
RU2011126891/03A 2008-12-22 2009-12-21 Способ производства высокопрочного стекловолокна и изделия, формованные из него RU2531950C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/341,985 US8338319B2 (en) 2008-12-22 2008-12-22 Composition for high performance glass fibers and fibers formed therewith
US12/341,985 2008-12-22
US12/403,955 2009-03-13
US12/403,955 US9187361B2 (en) 2005-11-04 2009-03-13 Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
PCT/US2009/068965 WO2010075267A1 (en) 2008-12-22 2009-12-21 Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from

Publications (2)

Publication Number Publication Date
RU2011126891A RU2011126891A (ru) 2013-01-27
RU2531950C2 true RU2531950C2 (ru) 2014-10-27

Family

ID=42107325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011126891/03A RU2531950C2 (ru) 2008-12-22 2009-12-21 Способ производства высокопрочного стекловолокна и изделия, формованные из него

Country Status (17)

Country Link
US (3) US9187361B2 (ru)
EP (1) EP2379462B1 (ru)
JP (1) JP5675641B2 (ru)
KR (1) KR101652140B1 (ru)
CN (1) CN102317226B (ru)
AU (1) AU2009330204B2 (ru)
BR (1) BRPI0923560B8 (ru)
CA (1) CA2748000C (ru)
ES (1) ES2851224T3 (ru)
MA (1) MA32987B1 (ru)
MX (1) MX336956B (ru)
RU (1) RU2531950C2 (ru)
SA (1) SA109310016B1 (ru)
TN (1) TN2011000311A1 (ru)
TR (1) TR201106169T1 (ru)
TW (1) TWI478884B (ru)
WO (1) WO2010075267A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738698C2 (ru) * 2016-07-13 2020-12-15 Сэн-Гобэн Изовер Стекловолокна
RU2774345C1 (ru) * 2019-09-25 2022-06-17 Цзюйши Груп Ко., Лтд. Композиция стекловолокна электронной чистоты, а также стекловолокно и изготовленная из него электронная ткань
US11919802B2 (en) 2019-09-25 2024-03-05 Jushi Group Co., Ltd. Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856055B1 (fr) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9656903B2 (en) * 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US8338319B2 (en) * 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US7758803B2 (en) * 2006-01-11 2010-07-20 Jiang Chang Resorbable macroporous bioactive glass scaffold and method of manufacture
US9156728B2 (en) 2006-12-14 2015-10-13 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US8697591B2 (en) 2006-12-14 2014-04-15 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass
US9056786B2 (en) 2006-12-14 2015-06-16 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US9394196B2 (en) 2006-12-14 2016-07-19 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for reinforcement applications
US8252707B2 (en) * 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
CN102858877B (zh) * 2010-03-08 2015-04-29 宇部兴产株式会社 聚酰胺树脂组合物
CN108947261B (zh) * 2010-06-30 2022-05-24 欧文斯科宁智识资本有限责任公司 制备高强度、轻质玻璃纤维的组合物及其用途
MX2013002775A (es) * 2010-09-14 2013-10-28 Ppg Ind Ohio Inc Fibras de vidrio de baja densidad y alta resistencia para aplicacones balisticas.
US9878941B2 (en) * 2010-10-18 2018-01-30 Ocv Intellectual Capital, Llc Glass composition for producing high strength and high modulus fibers
US9783454B2 (en) 2010-12-22 2017-10-10 Agy Holding Corp. High strength glass composition and fibers
TWI565675B (zh) * 2011-01-11 2017-01-11 Agy控股公司 具低熱膨脹係數之玻璃組合物及由其製成之玻璃纖維
CN106517771B (zh) 2011-09-09 2023-07-21 电子玻璃纤维美国有限责任公司 玻璃组合物和由其制造的纤维
FR2986227B1 (fr) 2012-01-27 2014-01-10 Saint Gobain Isover Procede de production de laine minerale
CN102643013B (zh) * 2012-04-28 2014-01-29 浙江德和绝热科技有限公司 一种利用废弃玻纤增强酚醛树脂模塑料生产泡沫玻璃的方法
PL2703436T3 (pl) * 2012-08-28 2017-07-31 Ems-Patent Ag Poliamidowa masa formierska i jej stosowanie
CN103011580B (zh) * 2012-12-26 2015-09-30 中材科技股份有限公司 一种高强玻璃纤维池窑拉丝方法及其装置
CN103508652B (zh) * 2013-09-06 2016-09-21 巨石集团有限公司 玻璃纤维池窑结构及玻璃熔制方法
CN104193164A (zh) * 2014-09-05 2014-12-10 安山纤维有限公司 一种生产安山岩连续纤维的设备及利用该设备生产连续纤维的方法
WO2016086498A1 (zh) * 2014-12-01 2016-06-09 杨德宁 一种低析晶温度、低析晶速度、特高铝玻璃纤维的应用及其制备方法、复合材料
CN104692646B (zh) * 2015-03-26 2017-03-15 山东聚源玄武岩纤维股份有限公司 一种用于生产玄武岩连续纤维的窑炉拉丝系统
CN108779595A (zh) * 2015-07-31 2018-11-09 查尔斯·道格拉斯·斯皮特勒 制造连续玻璃长丝的体系及方法
CN105731814B (zh) 2016-02-29 2019-01-01 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105859146A (zh) * 2016-04-07 2016-08-17 乌海市世环新型陶瓷建材有限公司 一种高强度玻璃纤维料块及制备方法
CN109896746A (zh) * 2017-12-07 2019-06-18 齐鲁师范学院 分子生物学显微注射针玻璃纤维生产方法
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition
CN108178507A (zh) * 2018-02-13 2018-06-19 江苏奥蓝工程玻璃有限公司 一种耐热玻璃的制备方法
CN109534682A (zh) * 2018-11-16 2019-03-29 泰州中来光电科技有限公司 一种玻璃纤维
CN112679099B (zh) * 2021-03-12 2021-05-28 山东墨匠新材料科技有限公司 一种高强度高模量玻璃纤维组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851932A (en) * 1997-10-06 1998-12-22 Isorco, Inc. Ballistic armor laminate
RU2167835C1 (ru) * 2000-07-25 2001-05-27 Открытое акционерное общество "Научно-производственное объединение Стеклопластик" Фильерный питатель для выработки непрерывного волокна из расплава горных пород

Family Cites Families (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US606786A (en) * 1898-07-05 Corrugated pipe compressing machine
GB428720A (en) 1934-03-02 1935-05-17 Owens Illinois Glass Co Improvements in and relating to a method and apparatus for the production of glass wool or other inorganic fibrous material
US3044888A (en) 1960-07-05 1962-07-17 Houze Glass Corp Glass fiber
US3220915A (en) 1960-08-05 1965-11-30 Owens Corning Fiberglass Corp Structures comprising vitrified and devitrified mineral fibers
BE639230A (ru) 1962-05-11
FR1357393A (fr) 1962-05-25 1964-04-03 Owens Corning Fiberglass Corp Compositions de verre à très haute résistance mécanique et à la température
US3402055A (en) 1962-05-25 1968-09-17 Owens Corning Fiberglass Corp Glass composition
US3360386A (en) 1963-10-10 1967-12-26 Aerojet General Co Glass fiber composition
US3408213A (en) 1963-10-10 1968-10-29 Aerojet General Co Glass fiber compositions
BE639229A (ru) 1963-10-30
GB1006524A (en) 1963-11-05 1965-10-06 Goodrich Co B F High tensile strength magnesium aluminium silicate glass compositions
FR1435073A (fr) 1965-03-02 1966-04-15 Verre Textile Soc Du Compositions de verre
US3524738A (en) 1965-12-07 1970-08-18 Owens Illinois Inc Surface stressed mineral formed glass and method
JPS4511228Y1 (ru) 1965-12-30 1970-05-20
GB1200732A (en) 1966-07-11 1970-07-29 Nat Res Dev Improvements in or relating to glass fibres and compositions containing glass fibres
US3901720A (en) 1966-07-11 1975-08-26 Nat Res Dev Glass fibres and compositions containing glass fibres
US3484259A (en) 1966-08-31 1969-12-16 Glass Fibers Products Inc High strength-high modulus glass fibers
GB1147718A (en) 1966-08-31 1969-04-02 Aerojet General Co High strength glass fibres
GB1209244A (en) 1967-04-05 1970-10-21 Owens Corning Fiberglass Corp Glass composition
US3709705A (en) 1967-07-14 1973-01-09 Owens Illinois Inc Opalizable alkaline earth alumino silicate glass compositions
US3535096A (en) 1967-09-14 1970-10-20 Ppg Industries Inc Differential pressure control in manufacture of fiber glass fibers
US3498805A (en) 1968-06-05 1970-03-03 Owens Corning Fiberglass Corp Opalescent glass fibers
US3804646A (en) 1969-06-11 1974-04-16 Corning Glass Works Very high elastic moduli glasses
GB1290528A (ru) 1969-07-28 1972-09-27
JPS4824411Y1 (ru) 1970-02-25 1973-07-16
JPS4824411B1 (ru) * 1970-06-08 1973-07-20
US3902881A (en) 1971-06-04 1975-09-02 Owens Illinois Inc Method of forming an opalescent article having a colored bulk and at least one surface strata of a different color than the bulk
US3833388A (en) 1972-07-26 1974-09-03 Ppg Industries Inc Method of manufacturing sheet and float glass at high production rates
US3876481A (en) 1972-10-18 1975-04-08 Owens Corning Fiberglass Corp Glass compositions, fibers and methods of making same
CH607986A5 (en) 1973-03-30 1978-12-15 Dyckerhoff Zementwerke Ag Calcium silicate fibres having a glassy structure which are stable in basic medium
US4090882A (en) 1973-03-30 1978-05-23 Dyckerhoff Zementwerke Aktiengesellschaft Glassy calcium silicate fibers made from phosphorus slag
US3904423A (en) 1973-04-16 1975-09-09 Evans Prod Co Alkali resistant glass
US3892581A (en) 1973-09-10 1975-07-01 Ppg Industries Inc Glass fiber compositions
US3945838A (en) 1974-08-12 1976-03-23 Owens-Corning Fiberglas Corporation Glass compositions and their fibers
JPS5155308U (ru) 1974-10-25 1976-04-28
JPS5320043B2 (ru) 1974-11-09 1978-06-24
US4325724A (en) 1974-11-25 1982-04-20 Owens-Corning Fiberglas Corporation Method for making glass
US4002482A (en) 1975-02-14 1977-01-11 Jenaer Glaswerk Schott & Gen. Glass compositions suitable for incorporation into concrete
US4063001A (en) 1975-04-09 1977-12-13 Ppg Industries, Inc. Method of preparing acid resistant glass fibers
US4046948A (en) 1975-04-09 1977-09-06 Ppg Industries, Inc. Acid resistant glass fibers
US4012131A (en) 1975-08-20 1977-03-15 American Optical Corporation High strength ophthalmic lens
GB1531287A (en) 1976-05-21 1978-11-08 Owens Corning Fiberglass Corp Method for making glass
US4090802A (en) * 1976-12-27 1978-05-23 Otto Bilz Werkzeugfabrik Radio detector for detecting dull and broken tools
US4199364A (en) 1978-11-06 1980-04-22 Ppg Industries, Inc. Glass composition
CH640664A5 (de) 1979-11-05 1984-01-13 Sprecher & Schuh Ag Mechanisch beanspruchbares glasfaserverstaerktes kunststoff-isolierteil.
US4366251A (en) 1981-06-15 1982-12-28 Owens-Corning Fiberglas Corporation Glass compositions and their fibers
JPS5864243A (ja) 1981-10-13 1983-04-16 Asahi Glass Co Ltd 高弾性耐熱性のガラス組成物
JPS5888138A (ja) 1981-11-20 1983-05-26 Asahi Fiber Glass Co Ltd 繊維用硝子組成
JPS5888138U (ja) 1981-12-10 1983-06-15 横河電機株式会社 差圧測定装置
US4386164A (en) 1981-12-14 1983-05-31 Owens-Illinois, Inc. Barium-free Type I, Class B laboratory soda-alumina-borosilicate glass
SE445942B (sv) 1982-04-06 1986-07-28 Volvo Ab Ljuddempare samt sett och anordning for framstellning av denna
US4491951A (en) 1983-07-11 1985-01-01 Owens-Corning Fiberglas Corporation Electric glass melting furnace
US4582748A (en) 1984-01-26 1986-04-15 Owens-Corning Fiberglas Corporation Glass compositions having low expansion and dielectric constants
US4764487A (en) 1985-08-05 1988-08-16 Glass Incorporated International High iron glass composition
JPH0450144Y2 (ru) 1985-12-17 1992-11-26
US5332699A (en) 1986-02-20 1994-07-26 Manville Corp Inorganic fiber composition
JPS62226839A (ja) 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd 低誘電率ガラス繊維
US4882302A (en) 1986-12-03 1989-11-21 Ensci, Inc. Lathanide series oxide modified alkaline-resistant glass
JP2582361B2 (ja) 1986-12-23 1997-02-19 日本グラスフアイバ−工業株式会社 遮音断熱材の製造方法
US4857485A (en) 1987-10-14 1989-08-15 United Technologies Corporation Oxidation resistant fiber reinforced composite article
EP0322947B1 (en) 1987-12-31 1992-07-15 Structural Laminates Company Composite laminate of metal sheets and continuous filaments-reinforced synthetic layers
JPH01189985A (ja) 1988-01-26 1989-07-31 Matsushita Electric Works Ltd 電気用積層体
JPH01239039A (ja) 1988-03-18 1989-09-25 Nippon Sheet Glass Co Ltd 多孔体用ガラス組成物
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US4892846A (en) 1988-11-17 1990-01-09 National Research Development Corporation Reinforceable sintered glass-ceramics
JPH03112650A (ja) 1989-09-27 1991-05-14 Shin Kobe Electric Mach Co Ltd 熱硬化性樹脂積層板および積層板用ガラス織布基材
JPH0710598Y2 (ja) 1989-09-29 1995-03-15 シロキ工業株式会社 ランバーサポート
JPH0711320Y2 (ja) 1990-02-16 1995-03-15 リンナイ株式会社 燃焼器具のリモコンコード導入構造
US5212121A (en) 1990-06-13 1993-05-18 Mitsui Mining Company, Limited Raw batches for ceramic substrates, substrates produced from the raw batches, and production process of the substrates
JPH0450144A (ja) 1990-06-18 1992-02-19 Asahi Fiber Glass Co Ltd ゴム補強用繊維
EP0500325A1 (en) 1991-02-19 1992-08-26 Nippon Electric Glass Company., Ltd. Chemically resistant glass fiber composition
DE69206466T2 (de) 1991-04-24 1996-08-08 Asahi Glass Co Ltd Glasfaser mit hohem thermischen Widerstand und Verfahren zu ihrer Herstellung.
AU663155C (en) 1992-01-17 2005-12-15 Morgan Crucible Company Plc, The Saline soluble inorganic fibres
GB2264296B (en) 1992-02-07 1995-06-28 Zortech Int Microporous thermal insulation material
IL105107A (en) 1992-03-18 1996-06-18 Advanced Wind Turbines Inc Wind turbines
FR2692248B1 (fr) 1992-06-16 1995-08-04 Vetrotex France Sa Fibres de verre resistant au milieu acide.
JP2582361Y2 (ja) 1992-08-25 1998-09-30 日野自動車工業株式会社 シートの取付け構造
IT1256359B (it) 1992-09-01 1995-12-01 Enichem Spa Procedimento per la preparazione di componenti e dispositivi ottici indimensioni finali o quasi finali, e prodotti cosi' ottenuti
WO1994006724A1 (en) 1992-09-14 1994-03-31 Schuller International, Inc. Method and apparatus for melting and refining glass in a furnace using oxygen firing
JPH06211543A (ja) 1993-01-14 1994-08-02 Nippon Electric Glass Co Ltd ガラス繊維
JPH06219780A (ja) 1993-01-20 1994-08-09 Nippon Electric Glass Co Ltd 低誘電率ガラス繊維
JP3132234B2 (ja) 1993-04-28 2001-02-05 日本板硝子株式会社 ガラス長繊維
JP3409806B2 (ja) 1993-06-22 2003-05-26 日本電気硝子株式会社 低誘電率ガラス繊維
US5691255A (en) 1994-04-19 1997-11-25 Rockwool International Man-made vitreous fiber wool
CN1113893A (zh) 1994-06-07 1995-12-27 国家建筑材料工业局南京玻璃纤维研究设计院 高强度玻璃纤维成分
US5569629A (en) 1994-08-23 1996-10-29 Unifrax Corporation High temperature stable continuous filament glass ceramic fibers
JP3786424B2 (ja) 1994-11-08 2006-06-14 ロックウール インターナショナル アー/エス 人造ガラス質繊維
US6169047B1 (en) 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
DE19506123C2 (de) 1995-02-22 1997-01-09 Cerdec Ag Bleifreie Glasfritte, Verfahren zu ihrer Herstellung und deren Verwendung
JPH08231240A (ja) 1995-02-28 1996-09-10 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
US6089021A (en) 1995-04-06 2000-07-18 Senanayake; Daya Ranjit Power production plant and method of making such a plant
CN1063123C (zh) 1995-04-10 2001-03-14 N·V·欧文斯科尔宁格公司 发配增强纤维的方法
US5576252A (en) 1995-05-04 1996-11-19 Owens-Corning Fiberglas Technology, Inc. Irregularly-shaped glass fibers and insulation therefrom
EP0832046B1 (en) 1995-06-06 2000-04-05 Owens Corning Boron-free glass fibers
JP3483999B2 (ja) 1995-09-14 2004-01-06 東レ・ダウコーニング・シリコーン株式会社 プリプレグおよびガラス繊維強化樹脂成形物
GB9525475D0 (en) 1995-12-13 1996-02-14 Rockwool Int Man-made vitreous fibres and their production
JP3581469B2 (ja) 1995-12-25 2004-10-27 大三工業株式会社 洗浄剤組成物
US5962354A (en) 1996-01-16 1999-10-05 Fyles; Kenneth M. Compositions for high temperature fiberisation
CN1178736C (zh) 1996-02-28 2004-12-08 Hoya株式会社 光催化剂过滤器
GB9604264D0 (en) 1996-02-29 1996-05-01 Rockwool Int Man-made vitreous fibres
US5719092A (en) 1996-05-31 1998-02-17 Eastman Kodak Company Fiber/polymer composite for use as a photographic support
US6214429B1 (en) 1996-09-04 2001-04-10 Hoya Corporation Disc substrates for information recording discs and magnetic discs
JP3989988B2 (ja) 1996-09-04 2007-10-10 Hoya株式会社 情報記録媒体用基板及び磁気ディスク、並びにその製造方法
KR20010013171A (ko) * 1997-05-30 2001-02-26 그래햄 이. 테일러 장쇄 분지를 갖는 신디오택틱 비닐 방향족 중합체로부터제조된 섬유
US5997977A (en) 1997-06-05 1999-12-07 Hoya Corporation Information recording substrate and information recording medium prepared from the substrate
JPH1121147A (ja) 1997-07-02 1999-01-26 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
US6044667A (en) 1997-08-25 2000-04-04 Guardian Fiberglass, Inc. Glass melting apparatus and method
FR2768144B1 (fr) 1997-09-10 1999-10-01 Vetrotex France Sa Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
ATE235875T1 (de) 1997-10-16 2003-04-15 Jeneric Pentron Inc Dentalverbundmaterial mit gemahlenem, verdichtetem und versprödetem glasfaserfüllstoff
US6069100A (en) 1997-10-27 2000-05-30 Schott Glas Glass for lamb bulbs capable of withstanding high temperatures
US6237369B1 (en) * 1997-12-17 2001-05-29 Owens Corning Fiberglas Technology, Inc. Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner
JP3427714B2 (ja) 1998-01-23 2003-07-22 日本板硝子株式会社 ゴム補強用ガラス繊維コード
GB9804743D0 (en) 1998-03-06 1998-04-29 Horsell Graphic Ind Ltd Printing
JP4086211B2 (ja) 1998-04-17 2008-05-14 Hoya株式会社 ガラス組成物およびその製造方法
US6376403B1 (en) 1998-04-17 2002-04-23 Nippon Sheet Glass Co., Ltd. Glass composition and process for producing the same
JP2000086283A (ja) 1998-09-08 2000-03-28 Ohara Inc 発光性ガラス
DK173460B2 (da) 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
US6038949A (en) 1998-09-14 2000-03-21 Nv Owens-Corning S.A. Method for dispensing reinforcement fibers
US6399527B1 (en) 1998-09-22 2002-06-04 Nippon Sheet Glass Co., Ltd. Glass composition and substrate for information recording medium
EP0997445B1 (en) 1998-10-27 2004-03-10 Corning Incorporated Low expansion glass-ceramics
US6258739B1 (en) 1998-10-30 2001-07-10 Ppg Industries Ohio, Inc. Double sided needled fiber glass mat for high flow thermoplastic composite
JP4547093B2 (ja) 1998-11-30 2010-09-22 コーニング インコーポレイテッド フラットパネルディスプレイ用ガラス
JP2000247677A (ja) 1999-02-24 2000-09-12 Nitto Boseki Co Ltd 耐食性ガラス繊維組成
JP2000247683A (ja) 1999-03-04 2000-09-12 Nitto Boseki Co Ltd 耐食性を有するガラス繊維
US6358871B1 (en) 1999-03-23 2002-03-19 Evanite Fiber Corporation Low-boron glass fibers and glass compositions for making the same
DE19916296C1 (de) 1999-04-12 2001-01-18 Schott Glas Alkalifreies Aluminoborosilicatglas und dessen Verwendung
US6686304B1 (en) 1999-05-28 2004-02-03 Ppg Industries Ohio, Inc. Glass fiber composition
US6962886B2 (en) 1999-05-28 2005-11-08 Ppg Industries Ohio, Inc. Glass Fiber forming compositions
EP1065177A1 (en) 1999-07-02 2001-01-03 Corning Incorporated Glass for tungsten-halogen lamp envelope
US6496706B1 (en) 1999-07-23 2002-12-17 Qualcomm Incorporated Method and system for transmit gating in a wireless communication system
US6422041B1 (en) 1999-08-16 2002-07-23 The Boc Group, Inc. Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner
JP4518291B2 (ja) 1999-10-19 2010-08-04 Hoya株式会社 ガラス組成物ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置
AU2263101A (en) 1999-12-15 2001-06-25 Hollingsworth And Vose Company Low boron containing microfiberglass filtration media
CN1113893C (zh) 1999-12-30 2003-07-09 广东省食品工业研究所 由植物油沥青或塔尔油沥青中提取植物甾醇的方法
DE10000837C1 (de) 2000-01-12 2001-05-31 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendungen
JP3584966B2 (ja) 2000-01-21 2004-11-04 日東紡績株式会社 耐熱性ガラス繊維及びその製造方法
JP2001316961A (ja) 2000-05-09 2001-11-16 Toyobo Co Ltd 吸音構造体
GB2363056B (en) 2000-06-07 2003-07-16 Otter Controls Ltd A liquid heating appliance with a retractable handle
JP3759378B2 (ja) 2000-06-16 2006-03-22 大陽日酸株式会社 繊維状ガラス廃棄物の処理方法及びガラス溶解炉
JP2002060252A (ja) 2000-08-21 2002-02-26 Nippon Electric Glass Co Ltd ガラス繊維
JP4126151B2 (ja) 2000-08-28 2008-07-30 ニチアス株式会社 無機繊維及びその製造方法
JP3629417B2 (ja) 2000-08-30 2005-03-16 住友金属建材株式会社 遮音壁
CN100522857C (zh) 2000-09-06 2009-08-05 Ppg工业俄亥俄公司 形成玻璃纤维的组合物
JP2002081022A (ja) 2000-09-07 2002-03-22 Bridgestone Corp 吸音材収納ケース
US6540508B1 (en) 2000-09-18 2003-04-01 The Boc Group, Inc. Process of installing roof mounted oxygen-fuel burners in a glass melting furnace
US6809050B1 (en) 2000-10-31 2004-10-26 Owens Corning Fiberglas Technology, Inc. High temperature glass fibers
JP3674943B2 (ja) 2000-11-13 2005-07-27 日東紡績株式会社 ガラス繊維用ガラス組成物
JP2002293574A (ja) 2001-03-28 2002-10-09 Paratekku Kk 無機繊維の製造方法
US6764988B2 (en) 2001-04-18 2004-07-20 Kimberly-Clark Worldwide, Inc. Skin cleansing composition incorporating anionic particles
JP2003137590A (ja) 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス、それを用いたガラス繊維及びガラス繊維織物
US6772299B2 (en) 2001-07-16 2004-08-03 Sun Microsystems, Inc. Method and apparatus for caching with variable size locking regions
JP4244605B2 (ja) 2001-09-28 2009-03-25 日東紡績株式会社 ガラス繊維用ガラス組成物
JP4041298B2 (ja) 2001-10-05 2008-01-30 日本板硝子株式会社 レーザ光照射によるガラスの加工方法
CA2359535A1 (en) 2001-10-22 2003-04-22 Paul Stearns Wind turbine blade
JP4000834B2 (ja) 2001-11-22 2007-10-31 日東紡績株式会社 ガラス繊維用原料配合物
DE10161791A1 (de) 2001-12-07 2003-06-26 Dbw Fiber Neuhaus Gmbh Endlosglasfaser mit verbesserter thermischer Beständigkeit
AU2002366619A1 (en) 2001-12-12 2003-06-23 Rockwool International A/S Fibres and their production
JP2003183031A (ja) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd ガラス繊維製造用電気溶融炉及び繊維用ガラスの溶融方法
DE50302060D1 (de) 2002-01-24 2006-02-02 Schott Ag Antimikrobielles, wasserunlösliches silicatglaspulver und mischung von glaspulvern
JP2003239847A (ja) 2002-02-15 2003-08-27 Energy Products Co Ltd 発電用風車翼
JP3533606B2 (ja) 2002-02-15 2004-05-31 世明 白鳥 超撥水性膜の製造方法
US6998361B2 (en) * 2002-03-04 2006-02-14 Glass Incorporated High temperature glass fiber insulation
US20030166446A1 (en) 2002-03-04 2003-09-04 Albert Lewis High temperature glass fiber insulation
US7509819B2 (en) 2002-04-04 2009-03-31 Ocv Intellectual Capital, Llc Oxygen-fired front end for glass forming operation
JP2003321247A (ja) 2002-05-07 2003-11-11 Nitto Boseki Co Ltd ガラス繊維用ガラス組成物
US7309671B2 (en) 2002-05-24 2007-12-18 Nippon Sheet Glass Co., Ltd. Glass composition, glass article, glass substrate for magnetic recording media, and method for producing the same
JP2004091307A (ja) 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd ガラス製造方法
JP5072055B2 (ja) 2002-08-30 2012-11-14 ハンツマン ペトロケミカル エルエルシー ポリエーテルポリアミン剤およびこれらの混合物
US6927135B2 (en) * 2002-12-18 2005-08-09 Micron Technology, Inc. Methods of fabricating multiple sets of field effect transistors
WO2004058656A1 (ja) 2002-12-25 2004-07-15 Nippon Sheet Glass Company, Limited 赤外波長域で蛍光を発するガラス組成物
JP4264255B2 (ja) 2002-12-25 2009-05-13 日本板硝子株式会社 ポーリング用ガラス組成物
DE10309495B4 (de) 2003-02-25 2006-02-16 Schott Ag Aluminosilikatglas und dessen Verwendung
DE112004000553T5 (de) 2003-03-31 2006-03-02 Asahi Glass Co., Ltd. Alkalifreies Glas
EP1464800A1 (en) 2003-04-02 2004-10-06 3M Innovative Properties Company Exhaust system component having insulated double wall
FR2856055B1 (fr) 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
US7022634B2 (en) 2003-07-07 2006-04-04 Johns Manville Low boron E-glass composition
US7449419B2 (en) 2003-09-09 2008-11-11 Ppg Industries Ohio, Inc. Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
US7727917B2 (en) 2003-10-24 2010-06-01 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
FR2867775B1 (fr) 2004-03-17 2006-05-26 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
FR2867776B1 (fr) 2004-03-17 2006-06-23 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7645426B2 (en) 2004-04-14 2010-01-12 3M Innovative Properties Company Sandwich hybrid mounting mat
FI117867B (fi) 2004-12-10 2007-03-30 Metso Paper Inc Lajitin ja menetelmä kuitumassan lajittelemiseksi
FR2879591B1 (fr) 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7344353B2 (en) 2005-05-13 2008-03-18 Arrowind Corporation Helical wind turbine
US7189671B1 (en) 2005-10-27 2007-03-13 Glass Incorporated Glass compositions
US8402652B2 (en) 2005-10-28 2013-03-26 General Electric Company Methods of making wind turbine rotor blades
US9656903B2 (en) 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US8338319B2 (en) 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US7823417B2 (en) 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US7799713B2 (en) 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US7829490B2 (en) 2006-12-14 2010-11-09 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass for electronic applications
US8113018B2 (en) 2006-12-14 2012-02-14 Ocv Intellectual Capital, Llc Apparatuses for controlling the temperature of glass forming materials in forehearths
FR2910462B1 (fr) 2006-12-22 2010-04-23 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
JP2007217280A (ja) 2007-04-27 2007-08-30 Nippon Sheet Glass Co Ltd カレットを原料としたガラス短繊維の製造方法
FR2916438B1 (fr) 2007-05-23 2010-08-20 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
FR2930543B1 (fr) 2008-04-23 2010-11-19 Saint Gobain Technical Fabrics Fils de verre et composites a matrice organique et/ou inorganique contenant lesdits fils
US20100009351A1 (en) * 2008-07-11 2010-01-14 Handylab, Inc. Polynucleotide Capture Materials, and Method of Using Same
US8252707B2 (en) 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
CN101549958B (zh) 2009-05-05 2011-01-26 中材科技股份有限公司 高性能玻璃纤维用组成物
CN101580344B (zh) 2009-06-29 2012-10-17 巨石集团有限公司 一种高强度玻璃纤维组合物
CN101597140B (zh) 2009-07-02 2011-01-05 重庆国际复合材料有限公司 一种高强度高模量玻璃纤维
CN101691278A (zh) 2009-10-16 2010-04-07 巨石集团有限公司 能作为先进复合材料增强基材的玻璃纤维
CN101838110B (zh) 2010-05-19 2014-02-26 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
US9029279B2 (en) 2010-06-30 2015-05-12 Ocv Intellectual Capital, Llc Glass composition for producing high strength and high modulus fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851932A (en) * 1997-10-06 1998-12-22 Isorco, Inc. Ballistic armor laminate
RU2167835C1 (ru) * 2000-07-25 2001-05-27 Открытое акционерное общество "Научно-производственное объединение Стеклопластик" Фильерный питатель для выработки непрерывного волокна из расплава горных пород

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738698C2 (ru) * 2016-07-13 2020-12-15 Сэн-Гобэн Изовер Стекловолокна
RU2774345C1 (ru) * 2019-09-25 2022-06-17 Цзюйши Груп Ко., Лтд. Композиция стекловолокна электронной чистоты, а также стекловолокно и изготовленная из него электронная ткань
US11919802B2 (en) 2019-09-25 2024-03-05 Jushi Group Co., Ltd. Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof

Also Published As

Publication number Publication date
TN2011000311A1 (en) 2012-12-17
TR201106169T1 (tr) 2011-11-21
MX2011006711A (es) 2011-10-06
CN102317226B (zh) 2015-01-21
US20170283310A1 (en) 2017-10-05
RU2011126891A (ru) 2013-01-27
US10407342B2 (en) 2019-09-10
CA2748000C (en) 2020-08-18
AU2009330204B2 (en) 2015-08-27
CN102317226A (zh) 2012-01-11
ES2851224T3 (es) 2021-09-03
BRPI0923560B8 (pt) 2022-08-23
MA32987B1 (fr) 2012-01-02
US9187361B2 (en) 2015-11-17
US9695083B2 (en) 2017-07-04
BRPI0923560A2 (pt) 2019-10-15
SA109310016B1 (ar) 2014-04-14
EP2379462A1 (en) 2011-10-26
KR101652140B1 (ko) 2016-08-29
MX336956B (es) 2016-02-05
TWI478884B (zh) 2015-04-01
KR20110104971A (ko) 2011-09-23
JP5675641B2 (ja) 2015-02-25
AU2009330204A1 (en) 2011-07-14
TW201031611A (en) 2010-09-01
EP2379462B1 (en) 2020-11-11
JP2012513363A (ja) 2012-06-14
US20100069220A1 (en) 2010-03-18
BRPI0923560B1 (pt) 2021-03-09
CA2748000A1 (en) 2010-07-01
US20150315067A1 (en) 2015-11-05
WO2010075267A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
RU2531950C2 (ru) Способ производства высокопрочного стекловолокна и изделия, формованные из него
US9206068B2 (en) Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
EP1951634B1 (en) Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
CN108947261B (zh) 制备高强度、轻质玻璃纤维的组合物及其用途
EP2630095B1 (en) Glass composition for producing high strength and high modulus fibers
CN115504675B (zh) 高性能玻璃纤维组合物
US9586856B2 (en) High strength glass fibers with controlled refractive index, composition for making such fibers and composite materials formed therefrom

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20211222