RU2474060C2 - Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием - Google Patents

Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием Download PDF

Info

Publication number
RU2474060C2
RU2474060C2 RU2008106482/07A RU2008106482A RU2474060C2 RU 2474060 C2 RU2474060 C2 RU 2474060C2 RU 2008106482/07 A RU2008106482/07 A RU 2008106482/07A RU 2008106482 A RU2008106482 A RU 2008106482A RU 2474060 C2 RU2474060 C2 RU 2474060C2
Authority
RU
Russia
Prior art keywords
streams
spatial
several
data
mimo
Prior art date
Application number
RU2008106482/07A
Other languages
English (en)
Other versions
RU2008106482A (ru
Inventor
Дж. Родни УОЛТОН
Джон У. КЕТЧУМ
Марк С. УОЛЛЭЙС
Стивен Дж. ГОВАРД
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2008106482A publication Critical patent/RU2008106482A/ru
Application granted granted Critical
Publication of RU2474060C2 publication Critical patent/RU2474060C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • H04L25/03955Spatial equalizers equalizer selection or adaptation based on feedback in combination with downlink estimations, e.g. downlink path losses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0256Channel estimation using minimum mean square error criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03961Spatial equalizers design criteria
    • H04L25/03968Spatial equalizers design criteria mean-square error [MSE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Abstract

Изобретение относится к технике связи и может использоваться в системе радиосвязи с многоканальным входом и выходом и пространственным мультиплексированием. Технический результат состоит в повышении эффективности использования многих режимов терминала. Для этого терминал пользователя поддерживает несколько режимов пространственного мультиплексирования (SM), таких как направленный режим и не направленный режим. Для передачи данных несколько потоков данных кодируются и модулируются в соответствии с их выбранными скоростями для получения нескольких потоков символов данных. Затем осуществляется пространственная обработка этих потоков, в соответствии с выбранным режимом SM для получения нескольких потоков символов передачи для передачи из нескольких антенн. Для приема данных осуществляется пространственная обработка нескольких потоков принятых символов, в соответствии с выбранным режимом SM для получения нескольких потоков восстановленных символов данных. Эти потоки демодулируются и декодируются в соответствии с их выбранными скоростями для получения нескольких потоков декодированных данных. 4 н.п. ф-лы, 6 ил., 7 табл.

Description

Требование приоритета по §119 U.S.C. 35 (свода законов США).
Настоящая заявка на патент притязает на приоритет предварительной заявки с порядковым номером 60/421.309, называемой "MIMO WLAN System", зарегистрированной 25 октября 2002 г., право на которую передано правопреемнику настоящего изобретения и которая включена в настоящее описание во всей своей полноте по ссылке.
Область техники, к которой относится изобретение
Настоящее изобретение, в основном, относится к связи и, более конкретно, к терминалу пользователя в системе связи с многоканальным входом, многоканальным выходом (МВМВ, MIMO).
Уровень техники
MIMO-система использует для передачи данных несколько (NT) передающих антенн и несколько (NR) приемных антенн и обозначается как система (NT, NR). MIMO-канал, сформированный NT передающими и NR приемными антеннами, может быть разложен на NS пространственных каналов, где NS≤min{NT, NR}. Для достижения большей общей пропускной способности для передачи NS независимых потоков данных могут использоваться NS пространственных каналов. В основном, для одновременной передачи и восстановления нескольких потоков данных пространственная обработка обычно выполняется в приемнике и может выполняться или не выполняться в передатчике.
Стандартная MIMO-система обычно использует определенную схему передачи для одновременной передачи нескольких потоков данных. Эта схема передачи может быть выбрана на основе компромисса между различными факторами, такими как требования к системе, количество обратной связи из приемника в передатчик, возможности передатчика и приемника и так далее. Передатчик, приемник и система, к тому же, разработаны для поддержки выбранной схемы передачи и функционирования в соответствии с ней. Указанная схема передачи обычно имеет предпочтительные признаки, а также неблагоприятные признаки, которые могут воздействовать на эффективность системы.
Следовательно, в технике существует потребность в терминале пользователя, выполненном с возможностью достижения повышенной эффективности.
Раскрытие изобретения
Здесь описан терминал пользователя, который поддерживает несколько режимов пространственного мультиплексирования (ПМ, SM) для повышенной эффективности и большей гибкости. Пространственное мультиплексирование относится к одновременной передаче нескольких потоков данных через несколько пространственных каналов MIMO-канала. Несколько режимов SM могут включать в себя (1) направленный режим, при котором осуществляется передача нескольких потоков данных по ортогональным пространственным каналам, и (2) не направленный режим, при котором осуществляется передача нескольких потоков данных из нескольких антенн.
Терминал выбирает из нескольких поддерживаемых режимом SM режим SM для использования при передаче данных. Выбор режимов SM может основываться на различных факторах, таких как статус калибровки терминала, количество данных для передачи, параметры канала, возможности другого объекта связи и так далее. Для передачи данных несколько потоков данных кодируются и модулируются, в соответствии с их выбранными скоростями, для получения нескольких потоков символов данных. Затем, в соответствии с выбранным режимом SM, осуществляется пространственная обработка этих потоков символов данных для получения нескольких потоков символов передачи. Пространственная обработка передачи осуществляется матрицей направляющих векторов для направленного режима и единичной матрицей для не направленного режима. Потоки символов передачи передаются из нескольких антенн и через первую линию связи (например, обратную линию связи).
Для приема данных в соответствии с выбранным режимом SM осуществляется пространственная обработка нескольких потоков принятых символов для второй линии связи (например, прямой линии связи) для получения нескольких потоков восстановленных символов данных. Пространственная обработка приема может основываться на собственных векторах канала для направленного режима и матрицей пространственного фильтра для не направленного режима. Как описано ниже, матрица пространственного фильтра может быть выведена на основе различных способов пространственной обработки приемника. Затем потоки восстановленных символов данных демодулируются и декодируются в соответствии с их выбранными скоростями для получения нескольких потоков декодированных данных для второй линии связи. Терминал также передает/принимает пилот-сигналы и выбранные скорости для каждой линии связи.
Ниже более подробно описаны различные аспекты, варианты осуществления и признаки изобретения.
Краткое описание чертежей
Фиг. 1 изображает MIMO-систему.
Фиг. 2 изображает пространственную обработку в передатчике и приемнике для направленных и не направленных режимов.
Фиг. 3 и 4 изображают пространственную обработку в точке доступа и терминале пользователя для направленных и не направленных режимов, соответственно.
Фиг. 5 изображает блочную диаграмму терминала пользователя и точки доступа.
Фиг. 6 изображает процесс передачи и приема данных в MIMO-системе.
Подробное описание предпочтительных вариантов осуществления
Слово "возможный" используется здесь в значении "служащий в виде возможного варианта, примера или иллюстрации". Любой вариант осуществления, описанный здесь как "возможный", не должен обязательно рассматриваться как предпочтительный или имеющий преимущества перед другими вариантами осуществления.
Фиг. 1 изображает MIMO-систему 100 с точками доступа (ТД, AP) и терминалами пользователя (ТП, UT). Для простоты, на фиг. 1 изображена только одна точка 110 доступа. Точкой доступа, в основном, является стационарная станция, которая осуществляет связь с терминалами пользователя и, также, может быть определена как базовая станция или с использованием некоторой другой терминологии. Контроллер 130 системы соединен с точками доступа и обеспечивает их координацию и управление для них. Терминал пользователя может быть стационарным или мобильным и, также, может быть определен как мобильная станция, устройство радиосвязи или с использованием некоторой другой терминологии. Терминал пользователя может осуществлять связь с точкой доступа, в этом случае устанавливаются роли точки доступа и терминала пользователя. Терминал пользователя может также осуществлять равноправную связь с другим терминалом пользователя.
MIMO-системой 100 может быть система дуплексной передачи с временным разнесением каналов (ДВР, TDD) или система дуплексной передачи с частотным разнесением каналов (ДЧР, FDD). Для системы TDD прямая и обратная линии связи совместно используют один диапазон. Для системы FDD прямая и обратная линии связи используют разные диапазоны. Прямой линией связи является линия связи из точек доступа в терминалы пользователя, и обратной линией связи является линия связи из терминалов пользователя в точки доступа. Также, MIMO-система 100 может использовать для передачи данных одну несущую или несколько несущих.
Для повышения эффективности и большей гибкости точка 110 доступа и терминал 120 пользователя, каждые, поддерживают несколько режимов пространственного мультиплексирования (ПМ, SM). Обычно направленный режим SM (или просто, направленный режим) может достигать лучшей эффективности, но может использоваться только, если передатчик имеет достаточную информацию о состоянии канала (ИСК, CSI) для ортогонализации пространственных каналов MIMO-канала через разложение или некоторый другой способ. Не направленный режим SM (или просто, не направленный режим) требует очень небольшого количества информации для одновременной передачи нескольких потоков данных через MIMO-канал, но эффективность может быть не такой хорошей, как у направленного режима. Применимый для использования режим SM может выбираться на основе различных факторов, как описано ниже.
В таблице 1 суммируются некоторые ключевые аспекты направленного и не направленного режимов. Каждый режим SM имеет различные возможности и требования.
Для направленного режима передатчик передает пилот-сигнал для обеспечения возможности оценки приемником MIMO-канала, и приемник передает обратно информацию о состоянии канала, достаточную для обеспечения возможности вывода передатчиком направляющих векторов. Или передатчик или приемник разлагает MIMO-канал на собственные моды, которые могут рассматриваться как ортогональные пространственные каналы. Приемник также передает обратно скорость для использования для каждой собственной моды. Передатчик и приемник, оба, выполняют пространственную обработку для передачи данных на собственных модах, как описано ниже.
Для не направленного режима передатчик передает пилот-сигнал для обеспечения возможности оценки приемником MIMO-канала. Приемник передает обратно скорость для использования для каждого пространственного канала. Передатчик передает данные (например, из своих антенн) без какой-либо пространственной обработки, и приемник выполняет пространственную обработку для восстановления переданных данных. Передача пилот-сигнала и пространственная обработка в передатчике и приемнике для направленного и не направленного режимов описаны ниже.
Таблица 1
Требования на направленный и не направленный режимы
Направленный режим Не направленный режим
Пилот-сигнал Передатчик передает пилот-сигнал. Приемник передает обратно информацию состояния канала, используемую передатчиком для вывода направляющих векторов. Передатчик передает пилот-сигнал.
Обратная связь по скорости Приемник передает обратно скорость для каждой собственной моды. Приемник передает обратно скорость для каждого пространственного канала (например, каждой передающей антенны)
Пространственная обработка Передатчик выполняет пространственную обработку матрицей V направляющих векторов. Передатчик передает данные из каждой передающей антенны.
Приемник выполняет пространственную обработку матрицей U собственных мод. Приемник выполняет пространственную обработку CCML, MMSE, SIC и т.д. (описано ниже)
В последующем описании терминалом пользователя может быть передатчик и/или приемник и точкой доступа, аналогично, может быть передатчик и/или приемник. Равноправная связь может поддерживаться с использованием тех же базовых принципов.
1. Направленный режим
MIMO-канал, сформированный NT передающими антеннами и NR приемными антеннами, может описываться матрицей H характеристик каналов NR × NT, которая может быть выражена следующим образом:
Figure 00000001
где элемент hi,j, для i=1…NR и j=1…NT, является соединением (т.е. комплексным усилением) между передающей антенной j и приемной антенной i. Для простоты, предполагается, что MIMO-канал имеет полный ранг NS≤NT≤NR.
Разложение одного значения может быть выполнено на H для получения NS собственных мод H следующим образом:
H=UΣV H, Ур.(2)
где U является унитарной матрицей (NR×NR) левых собственных векторов H,
Σ является диагональной матрицей (NR×NT) сингулярных значений H,
V является унитарной матрицей (NT×NT) правых собственных векторов H, и
“H” обозначает сопряженное транспонирование. Унитарная матрица М описывается свойством M H М=I, где I является единичной матрицей. Столбцы унитарной матрицы ортогональны друг другу.
Правые собственные векторы H также определяются как направляющие векторы и могут использоваться для пространственной обработки передатчиком для передачи данных на NS собственных модах H. Левые собственные векторы H могут использоваться для пространственной обработки приемником для восстановления данных, переданных на NS собственных модах. Собственные моды могут рассматриваться как ортогональные пространственные каналы, полученные через разложение. Диагональными элементами Σ являются сингулярные значения H, которые представляют усиления канала для NS собственных мод.
В реальной системе может быть получена только оценка H, и могут быть выведены только оценки V, Σ и U. Из-за различных причин, таких как неточная оценка канала, NS пространственных каналов также обычно не полностью ортогональны друг другу. Для простоты, здесь в описании предполагается, что разложение и оценка канала осуществляются без ошибок. Кроме того, термин "собственная мода" охватывает случай, где делается попытка ортогонализировать пространственные каналы с использованием разложения, даже если попытка не может быть полностью успешной, например, из-за неточной оценки канала.
В таблице 2 суммируется пространственная обработка в передатчике и приемнике для направленного режима. В таблице 2 s является вектором с NS символами данных для передачи на NS собственных модах H, x st является вектором с NT символами передачи для передачи из NT передающих антенн, r st является вектором с NR принятыми символами, полученными из NR приемных антенн, ŝ st является вектором с NS восстановленными символами данных (т.е., ŝ st является оценкой s), и нижний индекс "st" обозначает направленный режим. Используемый здесь "символ данных" относится к символу модуляции для данных, и "символ пилот-сигнала" относится к символу модуляции для пилот-сигнала.
Таблица 2
Пространственная обработка для направленного режима
Передатчик Приемник
x st=Vs ŝ st= Σ -1 U H r st
Разложение собственного значения может быть выполнено также на корреляционной матрице H, которая представлена R=H H H, следующим образом:
R=H H H=VΛV H, Ур. (3),
где Λ является диагональной матрицей собственных значений, которые являются квадратами сингулярных значений в Σ. Передатчик может выполнять пространственную обработку с использованием V для получения x st, и приемник может выполнять пространственную обработку с использованием V H H H для получения ŝ st.
2. Не направленный режим
Для не направленного режима передатчик может передавать один поток символов данных из каждой передающей антенны. Пространственный канал для этого режима может соответствовать одной передающей антенне. Приемник выполняет пространственную обработку для выделения и восстановления переданного потока символов данных. Приемник может использовать различные способы обработки приемника, такие как способ инверсии корреляционной матрицы каналов (ИКМК, CCMI) (также известный как способ обращения в нуль незначащих коэффициентов (в матрице)), способ минимальной среднеквадратической ошибки (МСКО, MMSE), способ последовательного подавления помех (ППП, SIC) и так далее.
Таблица 3 суммирует пространственную обработку в передатчике и приемнике для не направленного режима. В таблице 3 x ns является вектором с NT символами данных для передачи из NT передающих антенн, r ns является вектором с NR принятыми символами, полученными из NR приемных антенн, M ccmi является матрицей пространственного фильтра для способа CCMI, M mmse является матрицей пространственного фильтра для способа MMSE, D mmse является диагональной матрицей для способа MMSE (которая содержит диагональные элементы M mmse H), и нижний индекс "ns" обозначает не направленный режим.
Figure 00000002
Для простоты, предполагается, что шум n MIMO-канала является аддитивным белым гауссовским шумом (АБГШ, AWGN) со средним значением в нуле, дисперсией σ2 и автоковариационной матрицей φ nn=E[nn H]=σ2 I.
Для способа SIC приемник обрабатывает NR принятых потоков символов на NS последовательных стадиях для восстановления одного потока символов данных на каждой стадии. Для каждой стадии λ, где λ=1…NS, приемник первоначально выполняет пространственную обработку на NR входных потоках символов для стадии λ с использованием CCMI, MMSE или некоторого другого способа и получает один поток восстановленных символов данных. NR принятых потоков символов являются NR входными потоками символов для стадии 1. Приемник далее обрабатывает (например, демодулирует, осуществляет обратное перемежение и декодирует) поток восстановленных символов данных для стадии λ для получения потока декодированных данных, оценивает помехи, вызываемые этим потоком, для других потоков символов данных, еще не восстановленных, и убирает оцененные помехи из NR входных потоков символов для стадии λ для получения NR входных потоков символов для стадии λ+1. Затем приемник повторяет идентичную обработку на NR входных потоках символов для стадии λ+1 для восстановления другого потока символов данных.
Для каждой стадии λ SIC-приемник выводит матрицу M λsic пространственного фильтра для этой стадии на основе сокращенной матрицы характеристик каналов H λ и с использованием CCMI, MMSE или некоторого другого способа. Сокращенная матрица H λ получается посредством удаления λ-1 столбцов в исходной матрице H, соответствующих λ-1 потокам символов данных, которые уже восстановлены. Матрица M λsic имеет размерность (NT-λ+1)×NR. Так как H λ различна для каждой стадии, M λsic для каждой стадии также различна.
Приемник может использовать также другие способы пространственной обработки приемника для восстановления потоков переданных символов данных.
Фиг. 2 изображает пространственную обработку в передатчике и приемнике для направленного и не направленного режимов. В передатчике вектор s данных умножается блоком 220 либо на матрицу V для направленного режима, либо на единичную матрицу I для не направленного режима для получения вектора x символов передачи. В приемнике принятый вектор r символов умножается блоком 260 либо на матрицу U H для направленного режима, либо на матрицу М пространственного фильтра для не направленного режима для получения вектора обнаруженных символов š, являющегося ненормализованной оценкой s. Матрица М может быть выведена на основе CCMI, MMSE или некоторого другого способа. Вектор š дополнительно масштабируется либо диагональной матрицей Σ -1 для направленного режима, либо диагональной матрицей D -1 для не направленного режима для получения вектора ŝ восстановленных символов данных, где D -1=I для способа CCMI и D -1=D -1mmse для способа MMSE.
3. Дополнительная служебная сигнализация для направленного и не направленного режимов.
Направленный и не направленный режимы имеют различные требования на пилот-сигнал и дополнительную служебную сигнализацию, как отражено в таблице 1 и описано ниже.
A. Передача пилот-сигнала
Для обоих, направленного и не направленного, режимов передатчик может передавать MIMO пилот-сигнал (который является не направленным пилот-сигналом) для обеспечения возможности оценки приемником MIMO-канала и получения матрицы H. MIMO пилот-сигнал содержит NT ортогональных передач пилот-сигнала, передаваемых из NT передающих антенн, где может быть получена ортогональность по времени, частоте, коду или их комбинации. Для ортогональности кода NT передач пилот-сигнала могут передаваться одновременно из NT передающих антенн с передачей пилот сигнала из каждой антенны, "покрытой" отличной ортогональной последовательностью (например, Уолша). Приемник "снимает покрытие" принятых символов пилот-сигнала для каждой приемной антенны i теми же NT ортогональными последовательностями, используемыми передатчиком, для получения оценок комплексного усиления канала между приемной антенной i и каждой из NT передающих антенн. Покрытие в передатчике и снятие покрытия в приемнике выполняются, как в системе множественного доступа с кодовым разделением каналов (МДКР, CDMA). Для ортогональности частоты NT передачи пилот-сигнала для NT передающих антенн могут передаваться одновременно на различных поддиапазонах полной ширины полосы частот системы. Для ортогональности времени NT передач пилот-сигнала для NT передающих антенн может передаваться в различных временных интервалах. В любом случае, ортогональность среди NT передач пилот-сигнала обеспечивает возможность различения приемником передач пилот-сигнала из каждой передающей антенны.
Для направленного режима приемник передает обратно информацию о состоянии канала, достаточную для обеспечения возможности вывода передатчиком направляющих векторов. Приемник может передать эту информацию непосредственно (например, передавая элементы V) или в косвенной форме (например, передавая направленный или не направленный пилот-сигнал).
B. Управление/выбор скорости
Приемник может оценивать принятое отношение "сигнала к шуму и помехам" (СШ, SNR) для каждого пространственного канала, который может соответствовать собственной моде для направленного режима или передающей антенне для не направленного режима. Принятое SNR зависит от режима SM и способа пространственной обработки, используемого передатчиком и приемником.
В таблице 4 суммируется принятое SNR для направленного и не направленного режимов. В таблице 4 Pm является мощностью передачи, используемой для пространственного канала m, σ2 является дисперсией шума, σm является сингулярным значением для собственной моды m (т.е., m-м элементом диагонали Σ), rmm является m-м элементом диагонали R (которая представлена R=H H H), qmm является m-м элементом диагонали Q, и γm является SNR для пространственного канала m. Принятые SNR для способа SIC зависят от способа пространственной обработки (например, CCMI или MMSE) и порядка, в котором восстанавливаются потоки данных. Действие SNR может быть определено как равное принятому SNR плюс SNR фактора потери мощности. SNR фактора потери мощности может быть установлено в положительное значение для учета ошибки оценки, вариации SNR во времени и так далее, но, также, может быть установлено в нуль.
Figure 00000003
MIMO-система может поддерживать набор скоростей. Каждая ненулевая скорость соответствует определенной скорости передачи данных или спектральной эффективности, определенной схеме кодирования, определенной схеме модуляции и определенному SNR, требуемому для получения целевого уровня выполнения (например, однопроцентной частоты пакетной ошибки (ЧПО, PER)). SNR, требуемое для каждой скорости, может быть определено компьютерным моделированием, эмпирическим измерением и так далее, и с предположением относительно канала AWGN. В таблице поиска (ТП, LUT) могут поддерживаться скорости, поддерживаемые системой, и требуемые для них SNR. Для каждого пространственного канала в качестве скорости для использования для пространственного канала выбирается самая высокая скорость в таблице поиска с требуемым SNR, которое не больше действующей SNR пространственного канала.
Для каждого пространственного канала или комбинации пространственных каналов может использоваться управление скоростью по замкнутому циклу. Приемник может оценивать полученный SNR для каждого пространственного канала, выбирать соответствующую скорость для пространственного канала и передавать выбранную скорость обратно. Передатчик может передавать каждый поток символов данных в соответствии с выбранной скоростью.
C. Выбор режима
Терминал 120 пользователя в любой заданный момент может использовать для связи либо направленный, либо не направленный режим. Выбор режима может быть сделан на основе различных факторов, таких как следующие.
Дополнительная служебная сигнализация - Направленный режим требует большего количества дополнительной служебной сигнализации, чем не направленный режим. Для направленного режима приемник должен передавать обратно достаточную информацию о состоянии канала, а также скорости для NS собственных мод. В некоторых случаях добавочная дополнительная служебная информация CSI не может поддерживаться или является не обоснованной. Для не направленного режима приемнику требуется передавать обратно только скорости для пространственных каналов, что представляет намного меньшее количество дополнительной служебной сигнализации.
Количество данных - Направленный режим, в основном, является более эффективным, но также требует большего количества этапов установки (например, оценка канала, разложение сингулярного значения и обратная связь CSI). Если требуется передача только небольшого количества данных, то более быстрой и более эффективной может быть передача этих данных с использованием не направленного режима.
Возможности - Терминал пользователя может осуществлять равноправную связь с другим терминалом пользователя, который поддерживает только один режим (например, или направленный, или не направленный режим). В этом случае два терминала могут осуществлять связь с использованием общего режима, поддерживаемого обоими терминалами пользователя.
Параметры канала - Направленный режим более просто может поддерживаться для статических каналов, медленно изменяющихся каналов и каналов с сильным компонентом линии прямой видимости (например, канала Раиса (Rician)).
SNR приемника - Направленный режим обеспечивает лучшую эффективность в условиях низкого SNR. Терминал пользователя может выбрать использование направленного режима, когда SNR понижается ниже некоторого порогового значения.
Статус калибровки - Направленный режим может быть выбран для использования, если передатчик и приемник "калиброваны" так, чтобы характеристики канала прямой и обратной линии связи были взаимно обратны. Как описано ниже, для направленного режима взаимно-обратные прямая и обратная линии связи могут упростить передачу пилот-сигнала и пространственную обработку и для передатчика и для приемника.
Терминал пользователя, не являющийся мобильным и осуществляющий связь с одной точкой доступа, может длительное время использовать направленный режим. Терминал пользователя, являющийся мобильным и осуществляющий связь с различными объектами (например, различными точками доступа и/или другими терминалами пользователя), может использовать не направленный режим до момента времени, когда становится более выгодным использование направленного режима. Терминал пользователя также может, соответственно, переключаться между направленным и не направленным режимами. Например, терминал пользователя может использовать не направленный режим для малых пакетов данных (или коротких сеансов передачи данных) и в начале длинных пакетов данных (или длительных сеансов передачи данных), и может использовать направленный режим для остальной части длинных пакетов данных. В виде другого возможного варианта, терминал пользователя может использовать направленный режим для канала с относительно статическими параметрами и может использовать не направленный режим, когда параметры канала изменяются более быстро.
4. TDD MIMO-система
Ниже описан многорежимный терминал пользователя для возможной MIMO-системы беспроводной локальной сети (ЛСР, WLAN). В MIMO-системе WLAN используется ортогональное мультиплексирование деления частоты (ОМДЧ, OFDM), которое является способом модуляции нескольких несущих, эффективно разделяющим полную ширину полосы частот системы на несколько (NF) ортогональных поддиапазонов. При OFDM каждый поддиапазон сопоставлен соответствующей несущей, которая может быть модулирована данными.
Возможная MIMO-система WLAN является системой TDD. Обычно для системы TDD существует высокая степень корреляции между характеристиками прямой и обратной линий связи, так как эти линии связи совместно используют один частотный диапазон. Однако характеристики каналов передачи/приема в точке доступа обычно не идентичны характеристикам каналов передачи/приема в терминале пользователя. Отличия могут быть определены и учтены посредством калибровки. Тогда может быть принято, что полные характеристики прямой и обратной линий связи являются взаимно-обратными (т.е. транспонированными). С взаимно-обратными прямой и обратной линиями связи оценка канала и пространственная обработка для направленного режима могут быть упрощены.
Фиг. 3 изображает каналы передачи/приема в точке 110 доступа и терминале 120 пользователя. В точке 110 доступа канал 324 передачи и канал 334 приема моделируются матрицами T ap(k) и R ap(k), соответственно, для каждого поддиапазона k. В терминале 120 пользователя канал 364 передачи и канал 354 приема моделируются матрицами T ut(k) и R ut(k), соответственно, для каждого поддиапазона k.
В таблице 5 суммируется калибровка и разложение сингулярного значения для прямой и обратной линий связи в MIMO-системе TDD WLAN. "Рабочие" характеристики канала прямой и обратной линий связи, H edn(k) и H edp(k), включают в себя характеристики соответствующих каналов передачи и приема. Диагональные матрицы коррекции K ap(k) и К ut(k) получаются посредством выполнения калибровки пилот-сигналами MIMO, передаваемыми и терминалом пользователя и точкой доступа. Характеристики "калиброванного" канала прямой и обратной линий связи, H cdn(k) и H cup(k), включают в себя матрицы коррекции и являются взаимно-обратными (т.е. H cup(k)=H Tcdn(k), где "T" обозначает транспонирование).
Таблица 5
Характеристики канала для MIMO-системы TDD WLAN
Прямая линия связи Обратная линия связи
Рабочая характеристика канала
Figure 00000004
Figure 00000005
Матрица коррекции
Figure 00000006
Figure 00000007
Характеристика калиброванного канала
Figure 00000008
Figure 00000009
Разложение сингулярного значения
Figure 00000010
Figure 00000011
Так как H cdn(k) и H cup(k) взаимно-обратные, то матрицы V *ut(k) и U *ap(k) левых и правых собственных векторов H cdn(k) являются комплексно сопряженными матрицам V ut(k) и U ap(k) правых и левых собственных векторов _CUP (K). Матрица U ap(k) может использоваться точкой 110 доступа для пространственной обработки и передачи и приема. Матрица V ut(k) может использоваться терминалом 120 пользователя для пространственной обработки и передачи и приема.
Сингулярное разложение может выполняться независимо для каждого из NF поддиапазонов. Для каждого поддиапазона сингулярные значения в Σ(k) могут быть упорядочены от наибольшего до наименьшего, и собственные векторы в V(k) и U(k) могут быть упорядочены соответственно. "Широкополосная" собственная мода может быть определена как набор собственных мод одного порядка для всех NF поддиапазонов после упорядочения. Требуется выполнение разложения только или терминалом 120 пользователя, или точкой 110 доступа. Если оно выполняется терминалом 120 пользователя, то точке 110 доступа могут быть обеспечены матрицы U ap(k), для k=1…NF, либо непосредственно (например, посредством передачи элементов U ap(k)), или в косвенной форме (например, посредством передачи направленного пилот-сигнала).
В таблице 6 суммируется пространственная обработка в точке 110 доступа и терминале 120 пользователя для передачи и приема данных по прямой и обратной линиям связи в MIMO-системе TDD WLAN для направленного режима. В таблице 6 нижний индекс “up” обозначает обратную линию связи, и нижний индекс "dn" обозначает прямую линию связи.
Таблица 6
Пространственная обработка для направленного режима в MIMO-системе TDD WLAN
Прямая линия связи Обратная линия связи
Точка доступа Передача:
Figure 00000012
Прием:
Figure 00000013
Терминал пользователя Прием:
Figure 00000014
Передача:
Figure 00000015
Для направленного режима точка доступа может передавать по нисходящей линии связи пилот-сигнал MIMO. Терминал пользователя может оценивать калиброванный канал прямой линии связи на основе пилот-сигнала MIMO, выполнять сингулярное разложение и передавать направленный пилот-сигнал по обратной линии связи с использованием матрицы V ut(k). Направленным пилот-сигналом является пилот-сигнал, передаваемый на собственных модах, с использованием направляющих векторов, идентичных направляющим векторам, которые используются для передачи данных на собственных модах. Точка доступа может непосредственно оценивать матрицу U ap(k) на основе направленного пилот-сигнала обратной линии связи. Для направленного режима пилот-сигналы могут также передаваться иначе. Например, терминал пользователя может передавать пилот-сигнал MIMO, и точка доступа может передавать направленный пилот-сигнал. В виде другого возможного варианта, точка доступа и терминал пользователя, оба, могут передавать пилот-сигналы MIMO.
Для не направленного режима передатчик (точка доступа или терминал пользователя) может передавать пилот-сигнал MIMO наряду с передачей данных. Приемник выполняет пространственную обработку (например, с использованием CCMI, MMSE, SIC или некоторого другого способа) для восстановления потоков символов данных, как описано выше.
В таблице 7 суммируется вариант осуществления передачи пилот-сигнала и пространственной обработки для направленного и не направленного режимов для MIMO-системы TDD WLAN.
Таблица 7
Передача данных в MIMO-системе TDD WLAN
Направленный режим Не направленный режим
Калибровка Калибровка выполняется Калибровка не требуется
Передача данных по прямой линии связи AP передает пилот-сигнал MIMO
UT передает направленный пилот-сигнал
AP передает пилот-сигнал MIMO
UT передает скорость для каждой собственной моды полосы частот прямой линии связи UT передает скорость для каждого пространственного канала полосы частот прямой линии связи
AP передает данные с использованием U ap(k)
UT принимает данные с использованием V ut(k)
AP передает данные из каждой антенны
UT принимает данные с использованием CCMI, MMSE, SIC и т.д.
Передача данных по обратной линии связи AP передает пилот-сигнал MIMO
UT передает направленный пилот-сигнал
UT передает пилот-сигнал MIMO
AP передает скорость для каждой собственной моды полосы частот обратной линии связи AP передает скорость для каждого пространственного канала полосы частот обратной линии связи
UT передает данные с использованием V ut(k)
AP принимает данные с использованием U ap(k)
UT передает данные из каждой антенны
AP принимает данные с использованием CCMI, MMSE, SIC и т.д.
Для направленного и для не направленного режимов приемник (точка доступа или терминал пользователя) может оценивать среднее принятое SNR для каждого широкополосного пространственного канала, например, усредняя принятые SNR (в dB) для NF поддиапазонов широкополосного пространственного канала. Широкополосный пространственный канал может соответствовать широкополосной собственной моде для направленного режима или передающей антенне для не направленного режима. Затем приемник вычисляет рабочее SNR для каждого широкополосного пространственного канала как сумму среднего принятого SNR плюс SNR фактора потери мощности. Затем приемник выбирает скорость для каждого широкополосного пространственного канала на основе рабочего SNR и таблицы поиска поддерживаемых скоростей и требуемых для них SNR.
Фиг. 3 изображает пространственную обработку в точке 110 доступа и терминале 120 пользователя для прямой и обратной линий связи для направленного режима в MIMO-системе WLAN. Для прямой линии связи в точке 110 доступа вектор символов данных s dn(k) умножается на матрицу U *ap(k) блоком 320 и дополнительно масштабируется матрицей коррекции K ap(k) блоком 322 для получения вектора символов передачи x dn(k) для прямой линии связи. В терминале 120 пользователя вектор принятых символов r dn(k) умножается на матрицу V Tut(k) блоком 360 и дополнительно масштабируется матрицей Σ -1(k) блоком 362 для получения вектора восстановленных символов данных ŝ dn(k) для прямой линии связи.
Для обратной линии связи в терминале 120 пользователя вектор символов данных s up(k) умножается на матрицу V ut(k) блоком 390 и дополнительно масштабируется матрицей коррекции K ut(k) модулем 392 для получения вектора символов передачи x up(k) для обратной линии связи. В точке 110 доступа принятый вектор символов r up(k) умножается на матрицу U Hap(k) блоком 340 и дополнительно масштабируется матрицей Σ -1(k) блоком 342 для получения вектора восстановленных символов данных ŝ up(k) для обратной линии связи.
Фиг. 4 изображает пространственную обработку в точке 110 доступа и терминале 120 пользователя для передачи данных по прямой и обратной линиям связи для не направленного режима в MIMO-системе WLAN. Для прямой линии связи в точке 110 доступа вектор символов данных s dn(k) умножается на единичную матрицу I блоком 420 для получения вектора символов передачи x dn(k) для прямой линии связи. В терминале 120 пользователя принятый вектор символов r dn(k) умножается на матрицу пространственного фильтра M ut(k) блоком 460 и дополнительно масштабируется диагональной матрицей D -1ut(k) блоком 462 для получения вектора восстановленных символов данных ŝ dn(k) для прямой линии связи. Матрицы M ut(k) и
D -1ut(k) выводятся на основе матрицы рабочих характеристик канала прямой линии связи H edn(k) и c использованием CCMI, MMSE, SIC или некоторого другого способа.
Для обратной линии связи в терминале 120 пользователя вектор символов данных s up(k) умножается на единичную матрицу I блоком 490 для получения вектора символов передачи x up(k) для обратной линии связи. В точке 110 доступа принятый вектор символов r up(k) умножается на матрицу пространственного фильтра M ap(k) блоком 440 и дополнительно масштабируется диагональной матрицей D -1ap(k) блоком 442 для получения вектора восстановленных символов данных ŝ up(k) для обратной линии связи. Матрицы M ap(k) и D -1ap(k) выводятся на основе матрицы рабочих характеристик канала обратной линии связи H eup(k) и c использованием CCMI, MMSE, SIC или некоторого другого способа.
Фиг. 5 изображает блочную диаграмму точки 110 доступа и терминала 120 пользователя. На прямой линии связи, в точке 110 доступа, процессор 514 (для обработки) данных передачи (TX) принимает данные трафика из источника 512 данных и данные управления из контроллера 530. Процессор 514 данных TX обрабатывает (например, кодирует, перемежает и устанавливает соответствие символов) каждый из NS потоков данных на основе схем кодирования и модуляции, соответствующих скорости, выбранной для потока, для получения потока символов данных. Процессор 520 пространственной обработки TX принимает из процессора 514 данных TX NS потоков символов данных, выполняет пространственную обработку (как требуется) на символах данных, мультиплексирует в символы пилот-сигналов и подает на Nap антенны Nap потоков символов передачи. Обработка процессором 520 пространственной обработки TX зависит от того, выбран направленный или не направленный режим для использования, и может быть выполнена, как описано выше. Каждый блок 522 передатчика (TMTR) принимает и обрабатывает (например, модулирует OFDM и согласовывает) соответствующий поток символов передачи для формирования сигнала прямой линии связи. Nap блоков 522a передатчика через 522ap подают Nap сигналов прямой линии связи для передачи из Nap антенн 524a через 524ap, соответственно.
В терминале 120 пользователя Nut антенны 552a через 552ut принимают Nap сигналов прямой линии связи, и каждая антенна подает принятый сигнал в соответствующий блок 554 приемника (RCVR). Каждый блок 554 приемника выполняет обработку (например, согласование и демодуляцию OFDM), дополняющую для выполненной блоками 522 передатчика, и обеспечивает поток принятых символов. Процессор 560 пространственной обработки (RX) выполняет пространственную обработку на Nut потоках принятых символов из Nut блоков 554 приемника и обеспечивает NS потоков восстановленных символов данных. Обработка процессором 560 пространственной обработки RX зависит от того, выбран направленный или не направленный режим для использования, и может быть выполнена, как описано выше. Процессор 570 данных RX обрабатывает (например, устанавливает обратное соответствие, осуществляет обратное перемежение и декодирует) NS потоков восстановленных символов данных для получения NS потоков декодированных данных, которые могут быть поданы на сток 572 данных для хранения и/или в контроллер 580 для дальнейшей обработки.
Блок 578 оценки канала оценивает характеристику канала прямой линии связи на основе принятых символов пилот-сигнала и обеспечивает оценки канала, которые могут включать в себя оценки усиления канала, оценки SNR и так далее. Контроллер 580 принимает оценки канала, выводит матрицы, использованные процессором 560 пространственной обработки RX и процессором 590 пространственной обработки TX для пространственной обработки, и определяет соответствующую скорость для каждого потока символов данных, переданного по прямой линии связи. Скорости и данные обратной линии связи обрабатываются процессором 588 данных TX, пространственно обрабатываются (согласно требованиям) процессором 590 пространственной обработки TX, мультиплексируются с символами пилот-сигнала, согласуются Nut блоками 554a передатчика через 554ut и передаются через антенны 552a через 552ut.
В точке 110 доступа Nut переданных сигналов обратной линии связи принимаются антеннами 524, согласуются и демодулируются блоками 522 приемника и обрабатываются процессором 540 пространственной обработки RX и процессором 542 данных RX. Скорости подаются на контроллер 530 и используются для управления передачей данных по прямой линии связи.
Точка 110 доступа и терминал 120 пользователя могут выполнять подобную или разную обработку для передачи пилот-сигнала и данных обратной линии связи.
Контроллеры 530 и 580 управляют действием различных блоков обработки в точке 110 доступа и терминале 120 пользователя, соответственно. Блоки 534 и 584 выбора режимов SM выбирают соответствующий режим пространственного мультиплексирования для использования для точки 110 доступа и терминала 120 пользователя, соответственно, на основе различных факторов, таких как описаны выше. Блоки 532 и 582 памяти осуществляют хранение данных и программных кодов, используемых контроллерами 530 и 580, соответственно.
Фиг. 6 изображает блок-схему процесса 600 передачи и приема данных в MIMO-системе. Процесс 600 может выполняться терминалом пользователя и точкой доступа для передачи данных по прямой и обратной линиям связи.
Первоначально выбирается режим SM из нескольких поддерживаемых режимов SM, которые могут включать в себя направленный и не направленный режимы, описанные выше (этап 612). Выбор режима может основываться на статусе калибровки терминала, количестве данных для передачи, SNR и/или параметрах канала, возможности другого объекта, осуществляющего связь, и так далее. Выбранный режим SM также может изменяться в продолжение сеанса передачи данных.
Для передачи данных (блок 620) несколько потоков данных для первой линии связи (например, обратной линии связи) кодируются и модулируются, в соответствии с их выбранными скоростями, для получения нескольких потоков символов данных для первой линии связи (этап 622). Затем осуществляется пространственная обработка этих потоков символов данных, в соответствии с выбранным режимом SM, для получения нескольких потоков символов передачи для передачи из нескольких антенн и через первую линию связи (этап 624). Пространственная обработка передачи осуществляется с использованием матрицы направляющих векторов для направленного режима и единичной матрицы для не направленного режима.
Для приема данных (блок 630) осуществляется пространственная обработка, в соответствии с выбранным режимом SM, нескольких потоков принятых символов, полученных из нескольких антенн, для второй линии связи (например, прямой линии связи), для получения нескольких потоков восстановленных символов данных (этап 632). Пространственная обработка приема осуществляется с использованием матрицы собственных векторов для направленного режима и матрицы пространственного фильтра для не направленного режима. Матрица пространственного фильтра может быть выведена на основе CCMI, MMSE, SIC или некоторого другого способа. Затем потоки восстановленных символов данных демодулируются и декодируются, в соответствии с их выбранными скоростями, для получения нескольких потоков декодированных данных для второй линии связи (этап 634).
Передача данных в блоке 620 и прием данных в блоке 630 могут происходить одновременно или в разное время. Также передаются и принимаются пилот-сигналы и скорости для поддержания передачи и приема данных с выбранным режимом SM.
Многорежимный терминал, и точка доступа и способы передачи/приема данных, описанные здесь, могут быть реализованы различными средствами. Например, указанные объекты и способы могут быть реализованы в аппаратных средствах, программном обеспечении или в их комбинации. Для аппаратной реализации блоки обработки для указанных объектов и способов могут быть реализованы внутри одной или большего количества специализированных интегральных схем (СИС, ASIC), цифровых процессоров сигналов (ЦПС, DSP), цифровых устройств обработки сигналов (ЦУПС, DSPD), программируемых логических устройств (ПЛУ, PLD), программируемых пользователем вентильных матриц (ППВМ, FPGA), процессоров, контроллеров, микроконтроллеров, микропроцессоров, других электронных блоков, разработанных для выполнения описанных здесь функций, или их комбинации.
Для программной реализации описанные здесь способы могут быть реализованы модулями (например, процедурами, функциями и так далее), выполняющими описанные здесь функции. Программные коды могут храниться в блоке памяти (например, блоках памяти 532 и 582 на фиг. 5) и выполняться процессором (например, контроллерами 530 и 580). Блок памяти может быть реализован внутри процессора или быть внешним по отношению к процессору, в этом случае он может быть связанным с процессором посредством связи через различные средства, как известно в технике.
Заголовки включены здесь для ссылки на некоторые разделы и для их добавления в местоположение некоторых разделов. Указанные заголовки не предназначены для ограничения контекста понятий, описанных ниже, и эти понятия могут применяться в других разделах по всему описанию.
Описание раскрытых вариантов осуществления, приведенное выше, предоставлено для обеспечения возможности любому специалисту в данной области техники произвести или использовать настоящее изобретение. Для знающих технику очевидны различные модификации указанных вариантов осуществления, и определенные здесь общие принципы могут быть применены к другим вариантам осуществления, не удаляясь от сути и не выходя из контекста изобретения. Следовательно, настоящее изобретение предназначено для предоставления в широкой области, согласующейся с раскрытыми здесь принципами и новыми признаками, и не ограничивается раскрытыми здесь вариантами осуществления.

Claims (4)

1. Терминал в системе радиосвязи с многоканальным входом, многоканальным выходом (MIMO), содержащий блок выбора режима, действующий для выбора режима пространственного мультиплексирования из нескольких режимов пространственного мультиплексирования, поддерживаемых терминалом, причем каждый из нескольких режимов пространственного мультиплексирования поддерживает одновременную передачу многих потоков символов данных через многие пространственные каналы MIMO-канала, сформированные несколькими антеннами в терминале, процессор пространственной обработки передачи, действующий для пространственной обработки первых нескольких потоков символов данных, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков символов передачи для передачи из нескольких антенн и через первую линию связи, и процессор пространственной обработки приема, действующий для пространственной обработки нескольких потоков принятых символов, полученных из нескольких антенн, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков восстановленных символов данных, которые являются оценками вторых нескольких потоков символов данных, переданных через вторую линию связи, при этом MIMO-система является системой дуплексной передачи с частотным разнесением каналов (FDD).
2. Способ обработки данных в системе радиосвязи с многоканальным входом, многоканальным выходом (MIMO), включающий выбор режима пространственного мультиплексирования из нескольких режимов пространственного мультиплексирования, причем каждый из нескольких режимов пространственного мультиплексирования поддерживает одновременную передачу многих потоков символов данных через многие пространственные каналы MIMO-канала, пространственную обработку первых нескольких потоков символов данных, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков символов передачи для передачи из нескольких антенн и через первую линию связи, и пространственную обработку нескольких потоков принятых символов, полученных из нескольких антенн, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков восстановленных символов данных, которые являются оценками вторых нескольких потоков символов данных, переданных через вторую линию связи, при этом MIMO-система является системой дуплексной передачи с частотным разнесением каналов (FDD).
3. Устройство обработки данных в системе радиосвязи с многоканальным входом, многоканальным выходом (MIMO), содержащее средство выбора режима пространственного мультиплексирования из нескольких режимов пространственного мультиплексирования, причем каждый из нескольких режимов пространственного мультиплексирования поддерживает одновременную передачу многих потоков символов данных через многие пространственные каналы MIMO-канала, средство пространственной обработки первых нескольких потоков символов данных, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков символов передачи, средство передачи нескольких потоков символов передачи из нескольких антенн и через первую линию связи, средство приема нескольких потоков принятых символов из нескольких антенн для второй линии связи, и средство пространственной обработки нескольких потоков принятых символов, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков восстановленных символов данных, которые являются оценками вторых нескольких потоков символов данных, переданных через вторую линию связи, при этом MIMO-система является системой дуплексной передачи с частотным разнесением каналов (FDD).
4. Точка доступа в системе радиосвязи с многоканальным входом, многоканальным выходом (MIMO), содержащая блок выбора режима, действующий для выбора режима пространственного мультиплексирования из нескольких режимов пространственного мультиплексирования, поддерживаемых точкой доступа, причем каждый из нескольких режимов пространственного мультиплексирования поддерживает одновременную передачу многих потоков символов данных через многие пространственные каналы MIMO-канала, сформированные несколькими антеннами в точке доступа, процессор пространственной обработки передачи, действующий для пространственной обработки первых нескольких потоков символов данных, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков символов передачи для передачи из нескольких антенн и через первую линию связи, и процессор пространственной обработки приема, действующий для пространственной обработки нескольких потоков принятых символов, полученных из нескольких антенн, в соответствии с выбранным режимом пространственного мультиплексирования, для получения нескольких потоков восстановленных символов данных, которые являются оценками вторых нескольких потоков символов данных, переданных через вторую линию связи, при этом MIMO-система является системой дуплексной передачи с частотным разнесением каналов (FDD).
RU2008106482/07A 2002-10-25 2008-02-19 Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием RU2474060C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US42130902P 2002-10-25 2002-10-25
US60/421,309 2002-10-25
US10/693,535 2003-10-23
US10/693,535 US7324429B2 (en) 2002-10-25 2003-10-23 Multi-mode terminal in a wireless MIMO system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005115861/09A Division RU2329604C2 (ru) 2002-10-25 2003-10-24 Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием

Publications (2)

Publication Number Publication Date
RU2008106482A RU2008106482A (ru) 2009-08-27
RU2474060C2 true RU2474060C2 (ru) 2013-01-27

Family

ID=32179859

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2005115861/09A RU2329604C2 (ru) 2002-10-25 2003-10-24 Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием
RU2008106482/07A RU2474060C2 (ru) 2002-10-25 2008-02-19 Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2005115861/09A RU2329604C2 (ru) 2002-10-25 2003-10-24 Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием

Country Status (13)

Country Link
US (2) US7324429B2 (ru)
EP (2) EP2267927B1 (ru)
JP (2) JP5247976B2 (ru)
KR (1) KR101041334B1 (ru)
CN (1) CN1708936B (ru)
AU (2) AU2003287326C1 (ru)
BR (1) BR0315607A (ru)
CA (1) CA2501285C (ru)
IL (1) IL202480A0 (ru)
MX (1) MXPA05004312A (ru)
RU (2) RU2329604C2 (ru)
TW (2) TWI337477B (ru)
WO (1) WO2004038985A2 (ru)

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8570988B2 (en) * 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8170513B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8169944B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7986742B2 (en) * 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
US7483675B2 (en) * 2004-10-06 2009-01-27 Broadcom Corporation Method and system for weight determination in a spatial multiplexing MIMO system for WCDMA/HSDPA
US7565114B2 (en) * 2003-07-16 2009-07-21 Nec Corporation Transmitter apparatus, receiver apparatus, and radio communication system
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US7206550B2 (en) * 2003-12-29 2007-04-17 Intel Corporation Antenna subsystem calibration apparatus and methods in spatial-division multiple-access systems
US8369790B2 (en) 2003-12-30 2013-02-05 Intel Corporation Communication overhead reduction apparatus, systems, and methods
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US7818018B2 (en) 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
US8903440B2 (en) * 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7519035B2 (en) * 2004-02-23 2009-04-14 Sharp Laboratories Of America, Inc. Method to negotiate consumed power versus medium occupancy time in MIMO based WLAN systems using admission control
US7742533B2 (en) 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
EP1766789B1 (en) * 2004-06-22 2019-02-27 Apple Inc. Methods and systems for enabling feedback in wireless communication networks
US7110463B2 (en) 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) * 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
EP1622288B1 (en) * 2004-07-27 2012-10-24 Broadcom Corporation Pilot symbol transmission for multiple-transmit communication systems
JP4744965B2 (ja) * 2004-08-09 2011-08-10 パナソニック株式会社 無線通信装置
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7978778B2 (en) * 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
KR101158153B1 (ko) * 2004-09-09 2012-06-19 에이저 시스템즈 인크 다중 안테나 통신 시스템에서의 데이터 전송 방법, 다중 안테나 통신 시스템의 송신기, 다중 안테나 통신 시스템에서의 데이터 수신 방법 및 다중 안테나 통신 시스템의 수신기
KR100905605B1 (ko) * 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
DE202005022046U1 (de) 2004-10-29 2012-08-24 Sharp Kabushiki Kaisha Funksender und Funkempfänger
US8498215B2 (en) * 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
EP2555464B1 (en) 2005-01-18 2019-03-06 Sharp Kabushiki Kaisha Wireless communication apparatus and wireless communication method
US7554952B2 (en) * 2005-02-09 2009-06-30 Alcatel-Lucent Usa Inc. Distributed multiple antenna scheduling for wireless packet data communication system using OFDM
JP2006287756A (ja) * 2005-04-01 2006-10-19 Ntt Docomo Inc 送信装置、送信方法、受信装置及び受信方法
US7872981B2 (en) * 2005-05-12 2011-01-18 Qualcomm Incorporated Rate selection for eigensteering in a MIMO communication system
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7680211B1 (en) * 2005-05-18 2010-03-16 Urbain A. von der Embse MIMO maximum-likelihood space-time architecture
US9130706B2 (en) * 2005-05-26 2015-09-08 Unwired Planet, Llc Method and apparatus for signal quality loss compensation in multiplexing transmission systems
US8358714B2 (en) * 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
KR100880991B1 (ko) * 2005-06-16 2009-02-03 삼성전자주식회사 이동통신 시스템에서 다중 안테나를 이용한 파일럿 송수신장치 및 방법
CN100574170C (zh) * 2005-06-30 2009-12-23 华为技术有限公司 实现多模网络共存的系统及方法
JP4671790B2 (ja) * 2005-07-07 2011-04-20 パナソニック株式会社 通信装置、基地局装置及び通信方法
US7242961B2 (en) * 2005-07-13 2007-07-10 Broadcom Corporation Channel reciprocity matrix determination in a wireless MIMO communication system
EP1911237A2 (en) * 2005-08-01 2008-04-16 Nokia Corporation Method, apparatus and computer program product providing widely linear interference cancellation for multi-carrier systems
KR100891448B1 (ko) 2005-08-04 2009-04-01 삼성전자주식회사 다중 안테나 시스템에서 공간 멀티플랙싱 방식의 검출 장치및 방법
US8331216B2 (en) 2005-08-09 2012-12-11 Qualcomm Incorporated Channel and interference estimation in single-carrier and multi-carrier frequency division multiple access systems
US8855704B2 (en) * 2005-08-26 2014-10-07 Qualcomm Incorporated Fast cell selection in TD-CDMA (UMTS TDD)
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
ES2333050T3 (es) 2005-09-29 2010-02-16 Interdigital Technology Corporation Sistema de acceso multiple por division de frecuencias en una sola portadora (scfdma) basado en la formacion de haz de multiples entradas y multiples salidas(mimo).
US7657244B2 (en) * 2005-10-27 2010-02-02 Samsung Electronics Co., Ltd. Methods of antenna selection for downlink MIMO-OFDM transmission over spatial correlated channels
US8068464B2 (en) 2005-10-27 2011-11-29 Qualcomm Incorporated Varying scrambling/OVSF codes within a TD-CDMA slot to overcome jamming effect by a dominant interferer
US7948959B2 (en) 2005-10-27 2011-05-24 Qualcomm Incorporated Linear precoding for time division duplex system
US8130727B2 (en) * 2005-10-27 2012-03-06 Qualcomm Incorporated Quasi-orthogonal allocation of codes in TD-CDMA systems
KR100737909B1 (ko) * 2005-11-24 2007-07-10 한국전자통신연구원 무선 통신 시스템의 데이터 전송 방법
US8107549B2 (en) 2005-11-30 2012-01-31 Qualcomm, Incorporated Multi-stage receiver for wireless communication
US8200164B2 (en) * 2005-12-01 2012-06-12 Intel Corporation Wireless communication system, associated methods and data structures
US7570210B1 (en) * 2005-12-12 2009-08-04 Marvell International Ltd. Steering matrix feedback for beamforming
ATE523978T1 (de) 2005-12-27 2011-09-15 Mitsubishi Electric Corp Verfahren und vorrichtung zur mitteilung an ein zweites telekommunikationsgerät von informationen in bezug auf in einem ersten telekommunikationsgerät in bestimmten frequenzteilbändern empfangene störungskomponenten
EP1804394A1 (en) 2005-12-27 2007-07-04 Mitsubishi Electric Information Technology Centre Europe B.V. Method and device for reporting information related to interference components received by a first telecommunication device to a second telecommunication device
CN1992554A (zh) * 2005-12-29 2007-07-04 上海贝尔阿尔卡特股份有限公司 无线通信系统中干扰消除的方法和设备
KR101222838B1 (ko) * 2006-02-14 2013-01-15 삼성전자주식회사 다중 통신 모드를 지원하는 단말의 통신 방법
JP4776565B2 (ja) * 2006-02-28 2011-09-21 パナソニック株式会社 無線通信システム、無線通信装置、およびチャネル相関行列決定方法
KR100819285B1 (ko) * 2006-03-16 2008-04-02 삼성전자주식회사 다중 사용자를 지원하는 다중 안테나 시스템에서의 피드 백 정보 송/수신방법 및 그 시스템
EP1848132A1 (en) * 2006-04-18 2007-10-24 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transferring information related to interference components and power information used by a telecommunication device for weighting at least one pilot signal
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) * 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
CN101467363B (zh) * 2006-06-14 2012-11-07 国立大学法人九州大学 传输系统、传输方法、发送装置、接收装置、解码方法及解码装置
WO2008004609A1 (en) * 2006-07-07 2008-01-10 Mitsubishi Electric Corporation Wireless communication system and communication control method
AU2006349035B2 (en) * 2006-10-05 2011-02-17 Telefonaktiebolaget L M Ericsson (Publ) MIMO mode selection at handover
US8781522B2 (en) * 2006-11-02 2014-07-15 Qualcomm Incorporated Adaptable antenna system
US8314736B2 (en) 2008-03-31 2012-11-20 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US8670704B2 (en) * 2007-03-16 2014-03-11 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US8102944B2 (en) 2007-05-18 2012-01-24 Qualcomm Incorporated Mode and rate control for MIMO transmission
WO2009009548A2 (en) * 2007-07-09 2009-01-15 Qualcomm Incorporated Methods for sending small packets in a peer-to-peer (p2p) network
US8259743B2 (en) * 2007-07-09 2012-09-04 Qualcomm Incorporated Methods for sending small packets in a peer-to-peer (P2P) network
US8149811B2 (en) 2007-07-18 2012-04-03 Marvell World Trade Ltd. Wireless network with simultaneous uplink transmission of independent data from multiple client stations
CN101755391B (zh) 2007-07-18 2013-08-07 马维尔国际贸易有限公司 具有用于多个客户站的独立数据的同步下行链路传输的接入点
KR101046691B1 (ko) * 2007-10-19 2011-07-05 삼성전자주식회사 다중 입력 다중 출력 시스템의 수신 장치 및 방법
US9829560B2 (en) 2008-03-31 2017-11-28 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
CN101282175B (zh) * 2008-05-16 2012-07-04 西安理工大学 基于垂直分层空时编码的自由空间mimo光通信系统
KR100936245B1 (ko) * 2008-05-23 2010-01-11 전자부품연구원 시변 채널 시공간 블록 부호 데이터 검출 장치 및 방법
JPWO2009157184A1 (ja) * 2008-06-24 2011-12-08 パナソニック株式会社 Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
JP5219708B2 (ja) * 2008-09-22 2013-06-26 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置、無線通信システム及び無線通信方法
EP2194740A1 (en) * 2008-12-03 2010-06-09 Nokia Siemens Network Oy Method and device for data processing in a mobile communication network
US20100231461A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Frequency selective multi-band antenna for wireless communication devices
JP5391816B2 (ja) 2009-05-08 2014-01-15 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US8515363B2 (en) * 2009-06-19 2013-08-20 Sharp Kabushiki Kaisha Systems and methods for providing a reduced power amplifier transmission mode
US8639270B2 (en) 2010-08-06 2014-01-28 Golba Llc Method and system for device positioning utilizing distributed transceivers with array processing
US9077594B2 (en) 2009-07-23 2015-07-07 Marvell International Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
CN101990230A (zh) * 2009-07-30 2011-03-23 大唐移动通信设备有限公司 一种无线网络通信系统的测量方法和设备
CN102725984B (zh) * 2010-02-10 2015-07-22 松下电器(美国)知识产权公司 终端及其通信方法
US8605810B2 (en) 2010-06-08 2013-12-10 Samsung Electronics Co., Ltd Multiplexing control and data information from a user equipment in MIMO transmission mode
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
EA038454B1 (ru) * 2010-12-09 2021-08-31 Сан Пэтент Траст Способ передачи, устройство передачи, способ приема и устройство приема
KR102092579B1 (ko) 2011-08-22 2020-03-24 삼성전자 주식회사 이동통신 시스템에서 복수 개의 주파수 밴드 지원 방법 및 장치
WO2013032584A1 (en) 2011-08-29 2013-03-07 Marvell World Trade Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US9037094B2 (en) 2011-10-17 2015-05-19 Golba Llc Method and system for high-throughput and low-power communication links in a distributed transceiver network
EP2804416B1 (en) 2012-01-09 2021-07-07 Samsung Electronics Co., Ltd. Method and apparatus for logging
CN104221422A (zh) 2012-01-27 2014-12-17 三星电子株式会社 移动通信系统中用于有效地控制接入以用于系统负载调节的方法和装置
US10051458B2 (en) * 2012-02-06 2018-08-14 Samsung Electronics Co., Ltd. Method and apparatus for efficiently transmitting small amounts of data in wireless communication systems
US9414409B2 (en) 2012-02-06 2016-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
US9253587B2 (en) 2012-08-08 2016-02-02 Golba Llc Method and system for intelligently controlling propagation environments in distributed transceiver communications
US8965217B2 (en) * 2012-12-10 2015-02-24 Corning Incorporated Superimposing optical transmission modes
US9544116B2 (en) 2014-02-14 2017-01-10 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
CN105634664A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 一种下行非正交多址接入时的解码方法及装置
CN107204838A (zh) * 2016-03-18 2017-09-26 北京邮电大学 基于时空导频调度的信道估计方法及装置
WO2018126446A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Transparent demodulation reference signal design
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
CN109104228A (zh) * 2018-07-13 2018-12-28 安徽蓝煜电子科技有限公司 一种波束赋形的算法
US11516655B2 (en) * 2019-11-08 2022-11-29 Massachusetts Institute Of Technology Physical layer key generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2111619C1 (ru) * 1990-12-07 1998-05-20 Квэлкомм Инкорпорейтед Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи
US6005876A (en) * 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
WO2001076110A2 (en) * 2000-03-30 2001-10-11 Qualcomm Incorporated Method and apparatus for measuring channel state information

Family Cites Families (415)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1261080A (en) 1985-12-30 1989-09-26 Shunichiro Tejima Satellite communications system with random multiple access and time slot reservation
US4750198A (en) 1986-12-12 1988-06-07 Astronet Corporation/Plessey U.K. Cellular radiotelephone system providing diverse separately-accessible groups of channels
US4797879A (en) 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
IT1250515B (it) 1991-10-07 1995-04-08 Sixtel Spa Rete per area locale senza fili.
US5241544A (en) 1991-11-01 1993-08-31 Motorola, Inc. Multi-channel tdm communication system slot phase correction
US6850252B1 (en) 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5295159A (en) 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
RU2015281C1 (ru) 1992-09-22 1994-06-30 Борис Михайлович Кондрашов Запорное устройство
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
GB2300337B (en) 1992-10-05 1997-03-26 Ericsson Ge Mobile Communicat Digital control channel
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
DE69423546T2 (de) 1993-07-09 2000-09-21 Koninkl Philips Electronics Nv Telekommunikationsnetzwerk, Hauptstation und Nebenstation zum Gebrauch in solchem Netzwerk
US5506861A (en) 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5490087A (en) 1993-12-06 1996-02-06 Motorola, Inc. Radio channel access control
US5493712A (en) 1994-03-23 1996-02-20 At&T Corp. Fast AGC for TDMA radio systems
BR9507859A (pt) 1994-05-02 1997-09-16 Motorola Inc Aparelho e método de registro flexivel de múltiplos subcanais
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
US6157343A (en) 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
DE4425713C1 (de) 1994-07-20 1995-04-20 Inst Rundfunktechnik Gmbh Verfahren zur Vielträger Modulation und Demodulation von digital codierten Daten
FR2724084B1 (fr) 1994-08-31 1997-01-03 Alcatel Mobile Comm France Systeme de transmission d'informations par un canal de transmission variant dans le temps, et equipements d'emission et de reception correspondants
US5710768A (en) 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
MY120873A (en) 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
JPH08274756A (ja) 1995-03-30 1996-10-18 Toshiba Corp 無線通信システム
KR0155818B1 (ko) 1995-04-29 1998-11-16 김광호 다중 반송파 전송시스템에서 적응형 전력 분배 방법 및 장치
US5606729A (en) 1995-06-21 1997-02-25 Motorola, Inc. Method and apparatus for implementing a received signal quality measurement in a radio communication system
US5729542A (en) 1995-06-28 1998-03-17 Motorola, Inc. Method and apparatus for communication system access
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US5638369A (en) 1995-07-05 1997-06-10 Motorola, Inc. Method and apparatus for inbound channel selection in a communication system
DE69535033T2 (de) 1995-07-11 2007-03-08 Alcatel Zuweisung von Kapazität bei OFDM
GB9514659D0 (en) 1995-07-18 1995-09-13 Northern Telecom Ltd An antenna downlink beamsteering arrangement
US5867539A (en) 1995-07-21 1999-02-02 Hitachi America, Ltd. Methods and apparatus for reducing the effect of impulse noise on receivers
JP2802255B2 (ja) 1995-09-06 1998-09-24 株式会社次世代デジタルテレビジョン放送システム研究所 直交周波数分割多重伝送方式及びそれを用いる送信装置と受信装置
GB9521739D0 (en) 1995-10-24 1996-01-03 Nat Transcommunications Ltd Decoding carriers encoded using orthogonal frequency division multiplexing
US5699365A (en) 1996-03-27 1997-12-16 Motorola, Inc. Apparatus and method for adaptive forward error correction in data communications
US5924015A (en) 1996-04-30 1999-07-13 Trw Inc Power control method and apparatus for satellite based telecommunications system
JPH09307526A (ja) 1996-05-17 1997-11-28 Mitsubishi Electric Corp デジタル放送受信機
EP0807989B1 (en) 1996-05-17 2001-06-27 Motorola Ltd Devices for transmitter path weights and methods therefor
US5822374A (en) 1996-06-07 1998-10-13 Motorola, Inc. Method for fine gains adjustment in an ADSL communications system
FI101920B1 (fi) 1996-06-07 1998-09-15 Nokia Telecommunications Oy Kanavanvarausmenetelmä pakettiverkkoa varten
US6798735B1 (en) 1996-06-12 2004-09-28 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6072779A (en) 1997-06-12 2000-06-06 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6097771A (en) * 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
EP0931388B1 (en) * 1996-08-29 2003-11-05 Cisco Technology, Inc. Spatio-temporal processing for communication
JP2001359152A (ja) 2000-06-14 2001-12-26 Sony Corp 無線通信システム、無線基地局装置、無線移動局装置、無線ゾーン割当て方法及び無線通信方法
US6275543B1 (en) 1996-10-11 2001-08-14 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
US5886988A (en) 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US6049548A (en) 1996-11-22 2000-04-11 Stanford Telecommunications, Inc. Multi-access CS-P/CD-E system and protocols on satellite channels applicable to a group of mobile users in close proximity
IL130034A (en) 1996-11-26 2003-04-10 Trw Inc Cochannel signal processing system
US6232918B1 (en) 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
JPH10209956A (ja) 1997-01-28 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信方法
JPH10303794A (ja) 1997-02-27 1998-11-13 Mitsubishi Electric Corp 既知系列検出器
US6084915A (en) 1997-03-03 2000-07-04 3Com Corporation Signaling method having mixed-base shell map indices
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100267856B1 (ko) 1997-04-16 2000-10-16 윤종용 이동통신시스템에서오버헤드채널관리방법및장치
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
FR2764143A1 (fr) 1997-05-27 1998-12-04 Philips Electronics Nv Procede de determination d'un format d'emission de symboles dans un systeme de transmission et systeme
US5867478A (en) 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6067458A (en) 1997-07-01 2000-05-23 Qualcomm Incorporated Method and apparatus for pre-transmission power control using lower rate for high rate communication
US6333953B1 (en) 1997-07-21 2001-12-25 Ericsson Inc. System and methods for selecting an appropriate detection technique in a radiocommunication system
EP0895387A1 (de) 1997-07-28 1999-02-03 Deutsche Thomson-Brandt Gmbh Erkennung des Übertragungsmodus eines DVB-Signales
US6141542A (en) 1997-07-31 2000-10-31 Motorola, Inc. Method and apparatus for controlling transmit diversity in a communication system
CN1086061C (zh) 1997-08-12 2002-06-05 鸿海精密工业股份有限公司 电连接器的固持装置
EP0899896A1 (de) 1997-08-27 1999-03-03 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Schätzung räumlicher Parameter von Überstragungskanälen
JP2991167B2 (ja) 1997-08-27 1999-12-20 三菱電機株式会社 Tdma可変スロット割当方法
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
US6167031A (en) 1997-08-29 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting a combination of modulation and channel coding schemes in a digital communication system
US6590928B1 (en) 1997-09-17 2003-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping piconets in an uncoordinated wireless multi-user system
AUPO932297A0 (en) 1997-09-19 1997-10-09 Commonwealth Scientific And Industrial Research Organisation Medium access control protocol for data communications
KR100234329B1 (ko) 1997-09-30 1999-12-15 윤종용 Ofdm 시스템 수신기의 fft 윈도우 위치 복원장치 및 그 방법_
US6178196B1 (en) 1997-10-06 2001-01-23 At&T Corp. Combined interference cancellation and maximum likelihood decoding of space-time block codes
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6377812B1 (en) 1997-11-20 2002-04-23 University Of Maryland Combined power control and space-time diversity in mobile cellular communications
US6122247A (en) 1997-11-24 2000-09-19 Motorola Inc. Method for reallocating data in a discrete multi-tone communication system
JPH11163823A (ja) 1997-11-26 1999-06-18 Victor Co Of Japan Ltd 直交周波数分割多重信号伝送方法、送信装置及び受信装置
US6084917A (en) 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US6088387A (en) 1997-12-31 2000-07-11 At&T Corp. Multi-channel parallel/serial concatenated convolutional codes and trellis coded modulation encoder/decoder
EP0929172B1 (en) 1998-01-06 2010-06-02 MOSAID Technologies Inc. Multicarrier modulation system, with variable symbol rates
US6608874B1 (en) 1998-01-12 2003-08-19 Hughes Electronics Corporation Method and apparatus for quadrature multi-pulse modulation of data for spectrally efficient communication
US5982327A (en) 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
US5973638A (en) 1998-01-30 1999-10-26 Micronetics Wireless, Inc. Smart antenna channel simulator and test system
EP0938208A1 (en) 1998-02-22 1999-08-25 Sony International (Europe) GmbH Multicarrier transmission, compatible with the existing GSM system
WO1999044379A1 (en) 1998-02-27 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Multiple access categorization for mobile station
JP3082756B2 (ja) 1998-02-27 2000-08-28 日本電気株式会社 マルチキャリア伝送システム及びその方法
US6141388A (en) 1998-03-11 2000-10-31 Ericsson Inc. Received signal quality determination method and systems for convolutionally encoded communication channels
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6615024B1 (en) 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
US7123628B1 (en) 1998-05-06 2006-10-17 Lg Electronics Inc. Communication system with improved medium access control sub-layer
US6205410B1 (en) 1998-06-01 2001-03-20 Globespan Semiconductor, Inc. System and method for bit loading with optimal margin assignment
US6795424B1 (en) 1998-06-30 2004-09-21 Tellabs Operations, Inc. Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems
JP2000092009A (ja) 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
AU4934399A (en) 1998-07-16 2000-02-07 Samsung Electronics Co., Ltd. Processing packet data in mobile communication system
US6154443A (en) 1998-08-11 2000-11-28 Industrial Technology Research Institute FFT-based CDMA RAKE receiver system and method
CN1237746C (zh) * 1998-08-18 2006-01-18 束达网络公司 多层载波离散多音通信技术
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6515617B1 (en) 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
DE19842712C1 (de) 1998-09-17 2000-05-04 Siemens Ag Verfahren und Anordnung zur Minimierung des Autokorrelationsfehlers bei der Demodulation eines Spreizspektrum-Signals unter Mehrwegeausbreitung
US6292917B1 (en) 1998-09-30 2001-09-18 Agere Systems Guardian Corp. Unequal error protection for digital broadcasting using channel classification
EP0993211B1 (en) 1998-10-05 2005-01-12 Sony International (Europe) GmbH Random access channel partitioning scheme for CDMA system
EP0993212B1 (en) 1998-10-05 2006-05-24 Sony Deutschland GmbH Random access channel partitioning scheme for CDMA system
DE59902484D1 (de) 1998-10-27 2002-10-02 Siemens Ag Kanalzuweisungsverfahren und vorrichtung für kodierte und kombinierte informationssätze
JP4287536B2 (ja) 1998-11-06 2009-07-01 パナソニック株式会社 Ofdm送受信装置及びofdm送受信方法
ES2185244T3 (es) 1998-12-03 2003-04-16 Fraunhofer Ges Forschung Aparato y procedimiento para transmitir informacion y aparato y procedimiento para recibir informacion.
GB9827182D0 (en) 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
FI108588B (fi) 1998-12-15 2002-02-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
JP2000244441A (ja) 1998-12-22 2000-09-08 Matsushita Electric Ind Co Ltd Ofdm送受信装置
US6310909B1 (en) 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
US6463290B1 (en) 1999-01-08 2002-10-08 Trueposition, Inc. Mobile-assisted network based techniques for improving accuracy of wireless location system
RU2152132C1 (ru) 1999-01-26 2000-06-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Линия радиосвязи с пространственной модуляцией
JP3619729B2 (ja) 2000-01-19 2005-02-16 松下電器産業株式会社 無線受信装置および無線受信方法
KR100651457B1 (ko) 1999-02-13 2006-11-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어장치 및 방법
US6574267B1 (en) 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6346910B1 (en) 1999-04-07 2002-02-12 Tei Ito Automatic array calibration scheme for wireless point-to-multipoint communication networks
US6363267B1 (en) 1999-04-07 2002-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminal decode failure procedure in a wireless local area network
EP1075093A1 (en) 1999-08-02 2001-02-07 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multi-user transmission
US6532562B1 (en) 1999-05-21 2003-03-11 Microsoft Corp Receiver-driven layered error correction multicast over heterogeneous packet networks
US6594798B1 (en) 1999-05-21 2003-07-15 Microsoft Corporation Receiver-driven layered error correction multicast over heterogeneous packet networks
US6594473B1 (en) 1999-05-28 2003-07-15 Texas Instruments Incorporated Wireless system with transmitter having multiple transmit antennas and combining open loop and closed loop transmit diversities
KR100605978B1 (ko) 1999-05-29 2006-07-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어를 위한 송수신 장치 및 방법
US7072410B1 (en) 1999-06-01 2006-07-04 Peter Monsen Multiple access system and method for multibeam digital radio systems
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US6385264B1 (en) 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6976262B1 (en) 1999-06-14 2005-12-13 Sun Microsystems, Inc. Web-based enterprise management with multiple repository capability
WO2001005067A1 (en) 1999-07-08 2001-01-18 Samsung Electronics Co., Ltd Data rate detection device and method for a mobile communication system
US6163296A (en) 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
RU2168278C2 (ru) 1999-07-16 2001-05-27 Корпорация "Самсунг Электроникс" Способ произвольного доступа абонентов мобильной станции
US6532225B1 (en) 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
JP2001044930A (ja) 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6735188B1 (en) 1999-08-27 2004-05-11 Tachyon, Inc. Channel encoding and decoding method and apparatus
US6115406A (en) 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US6278726B1 (en) 1999-09-10 2001-08-21 Interdigital Technology Corporation Interference cancellation in a spread spectrum communication system
US6426971B1 (en) 1999-09-13 2002-07-30 Qualcomm Incorporated System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
SG80071A1 (en) 1999-09-24 2001-04-17 Univ Singapore Downlink beamforming method
DE19951525C2 (de) 1999-10-26 2002-01-24 Siemens Ag Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen
US6492942B1 (en) 1999-11-09 2002-12-10 Com Dev International, Inc. Content-based adaptive parasitic array antenna system
JP3416597B2 (ja) * 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
US7088671B1 (en) 1999-11-24 2006-08-08 Peter Monsen Multiple access technique for downlink multibeam digital radio systems
US7110785B1 (en) 1999-12-03 2006-09-19 Nortel Networks Limited Performing power control in a mobile communications system
EP1109326A1 (en) 1999-12-15 2001-06-20 Lucent Technologies Inc. Peamble detector for a CDMA receiver
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6298092B1 (en) * 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
JP3975629B2 (ja) 1999-12-16 2007-09-12 ソニー株式会社 画像復号装置及び画像復号方法
US6298035B1 (en) 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
JP2001186051A (ja) 1999-12-24 2001-07-06 Toshiba Corp データ信号判定回路及び方法
AU755728B2 (en) 1999-12-28 2002-12-19 Ntt Docomo, Inc. Path search method, channel estimating method and communications device
US6718160B2 (en) 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US7254171B2 (en) 2000-01-20 2007-08-07 Nortel Networks Limited Equaliser for digital communications systems and method of equalisation
JP2001217896A (ja) 2000-01-31 2001-08-10 Matsushita Electric Works Ltd 無線データ通信システム
US7003044B2 (en) 2000-02-01 2006-02-21 Sasken Communication Technologies Ltd. Method for allocating bits and power in multi-carrier communication system
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6868120B2 (en) 2000-02-08 2005-03-15 Clearwire Corporation Real-time system for measuring the Ricean K-factor
US6704374B1 (en) 2000-02-16 2004-03-09 Thomson Licensing S.A. Local oscillator frequency correction in an orthogonal frequency division multiplexing system
DE10008653A1 (de) 2000-02-24 2001-09-06 Siemens Ag Verbesserungen an einem Funkkommunikationssystem
US6956814B1 (en) 2000-02-29 2005-10-18 Worldspace Corporation Method and apparatus for mobile platform reception and synchronization in direct digital satellite broadcast system
JP2001244879A (ja) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd 送信電力制御装置及びその方法
EP1137217A1 (en) 2000-03-20 2001-09-26 Telefonaktiebolaget Lm Ericsson ARQ parameter negociation in a data packet transmission system using link adaptation
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
DE10014676C2 (de) 2000-03-24 2002-02-07 Polytrax Inf Technology Ag Datenübertragung über ein Stromversorgungsnetz
US7113499B2 (en) 2000-03-29 2006-09-26 Texas Instruments Incorporated Wireless communication
DE60035335T2 (de) 2000-04-04 2008-03-13 Sony Deutschland Gmbh Ereignisgesteuerte Änderung der Zugriffsdienstklasse in einem Zufallzugriffskanal
DE60021772T2 (de) 2000-04-07 2006-04-20 Nokia Corp. Verfahren und vorrichtung zur übertragung mit mehreren antennen
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6757263B1 (en) 2000-04-13 2004-06-29 Motorola, Inc. Wireless repeating subscriber units
ATE513401T1 (de) 2000-04-18 2011-07-15 Aware Inc Mehrträgersystem mit einer mehrzahl von snr- abständen
US6751199B1 (en) 2000-04-24 2004-06-15 Qualcomm Incorporated Method and apparatus for a rate control in a high data rate communication system
EP1455493B1 (en) 2000-04-25 2005-11-30 Nortel Networks Limited Radio telecommunications system with reduced delays for data transmission
JP3414357B2 (ja) 2000-04-25 2003-06-09 日本電気株式会社 Cdma移動通信システムにおける送信電力制御方式
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US6744811B1 (en) 2000-06-12 2004-06-01 Actelis Networks Inc. Bandwidth management for DSL modem pool
WO2001097411A1 (en) 2000-06-12 2001-12-20 Samsung Electronics Co., Ltd Method of assigning an uplink random access channel in a cdma mobile communication system
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6760313B1 (en) 2000-06-19 2004-07-06 Qualcomm Incorporated Method and apparatus for adaptive rate selection in a communication system
SE519303C2 (sv) 2000-06-20 2003-02-11 Ericsson Telefon Ab L M Anordning för smalbandig kommunikation i ett multicarrier- system
US6891858B1 (en) 2000-06-30 2005-05-10 Cisco Technology Inc. Dynamic modulation of modulation profiles for communication channels in an access network
WO2002003557A1 (en) 2000-06-30 2002-01-10 Iospan Wireless, Inc. Method and system for mode adaptation in wireless communication
CN1140147C (zh) 2000-07-01 2004-02-25 信息产业部电信传输研究所 一种外环功率控制的方法和系统
WO2002003573A1 (fr) 2000-07-03 2002-01-10 Matsushita Electric Industrial Co., Ltd. Unite de station de base et procede de radiocommunication
EP2262151B1 (en) 2000-07-05 2017-10-04 Sony Deutschland Gmbh Pilot pattern design for multiple antennas in an OFDM system
FI109393B (fi) 2000-07-14 2002-07-15 Nokia Corp Menetelmä mediavirran enkoodaamiseksi skaalautuvasti, skaalautuva enkooderi ja päätelaite
WO2002007327A1 (en) 2000-07-17 2002-01-24 Koninklijke Philips Electronics N.V. Coding of data stream
KR100493152B1 (ko) 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
EP1176750A1 (en) 2000-07-25 2002-01-30 Telefonaktiebolaget L M Ericsson (Publ) Link quality determination of a transmission link in an OFDM transmission system
EP1178641B1 (en) 2000-08-01 2007-07-25 Sony Deutschland GmbH Frequency reuse scheme for OFDM systems
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
US6582088B2 (en) 2000-08-10 2003-06-24 Benq Corporation Optical path folding apparatus
DE60037465T2 (de) 2000-08-10 2008-12-04 Fujitsu Ltd., Kawasaki Vorrichtung zur Kommunikation mit Diversität
EP1182799A3 (en) 2000-08-22 2002-06-26 Lucent Technologies Inc. Method for enhancing mobile cdma communications using space-time transmit diversity
KR100526499B1 (ko) 2000-08-22 2005-11-08 삼성전자주식회사 두 개 이상 안테나를 사용하는 안테나 전송 다이버시티방법 및 장치
IT1318790B1 (it) * 2000-08-29 2003-09-10 Cit Alcatel Metodo per gestire il cambio di allocazione dei time-slot in reti adanello ms-spring di tipo transoceanico.
US6985434B2 (en) 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US6937592B1 (en) * 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US7009931B2 (en) 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
FR2814014B1 (fr) 2000-09-14 2002-10-11 Mitsubishi Electric Inf Tech Methode de detection multi-utilisateur
US6760882B1 (en) 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US7062294B1 (en) 2000-09-29 2006-06-13 Arraycomm, Llc. Downlink transmission in a wireless data communication system having a base station with a smart antenna system
US7110378B2 (en) 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US7016296B2 (en) 2000-10-16 2006-03-21 Broadcom Corporation Adaptive modulation for fixed wireless link in cable transmission system
JP3553038B2 (ja) 2000-11-06 2004-08-11 株式会社エヌ・ティ・ティ・ドコモ 信号送信方法、信号受信方法、送信装置、受信装置および記録媒体
US6768727B1 (en) 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
US8634481B1 (en) 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
US6980601B2 (en) 2000-11-17 2005-12-27 Broadcom Corporation Rate adaptation and parameter optimization for multi-band single carrier transmission
US7006464B1 (en) 2000-11-17 2006-02-28 Lucent Technologies Inc. Downlink and uplink channel structures for downlink shared channel system
JP3695316B2 (ja) 2000-11-24 2005-09-14 株式会社日本自動車部品総合研究所 スペクトラム拡散受信機の相関検出器
US6751480B2 (en) 2000-12-01 2004-06-15 Lucent Technologies Inc. Method for simultaneously conveying information to multiple mobiles with multiple antennas
JP4505677B2 (ja) 2000-12-06 2010-07-21 ソフトバンクテレコム株式会社 送信ダイバーシチ装置および送信電力調整方法
US6952426B2 (en) 2000-12-07 2005-10-04 Nortel Networks Limited Method and apparatus for the transmission of short data bursts in CDMA/HDR networks
KR100353641B1 (ko) 2000-12-21 2002-09-28 삼성전자 주식회사 부호분할다중접속 이동통신시스템의 기지국 전송 안테나다이버시티 장치 및 방법
US6850498B2 (en) 2000-12-22 2005-02-01 Intel Corporation Method and system for evaluating a wireless link
US7050510B2 (en) 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US20020085641A1 (en) 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
US6731668B2 (en) 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
EP1223776A1 (en) 2001-01-12 2002-07-17 Siemens Information and Communication Networks S.p.A. A collision free access scheduling in cellular TDMA-CDMA networks
US6693992B2 (en) 2001-01-16 2004-02-17 Mindspeed Technologies Line probe signal and method of use
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7164669B2 (en) 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7054662B2 (en) 2001-01-24 2006-05-30 Qualcomm, Inc. Method and system for forward link beam forming in wireless communications
JP2002232943A (ja) 2001-01-29 2002-08-16 Sony Corp データ送信処理方法、データ受信処理方法、送信機、受信機、およびセルラー無線通信システム
GB0102316D0 (en) 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6885654B2 (en) 2001-02-06 2005-04-26 Interdigital Technology Corporation Low complexity data detection using fast fourier transform of channel correlation matrix
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US7006483B2 (en) 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
WO2002069523A1 (en) 2001-02-26 2002-09-06 Magnolia Broadband, Inc Smart antenna based spectrum multiplexing using a pilot signal
GB0105019D0 (en) 2001-03-01 2001-04-18 Koninkl Philips Electronics Nv Antenna diversity in a wireless local area network
US7039125B2 (en) 2001-03-12 2006-05-02 Analog Devices, Inc. Equalized SNR power back-off
EP1241824A1 (en) 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Multiplexing method in a multicarrier transmit diversity system
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7248638B1 (en) 2001-03-23 2007-07-24 Lsi Logic Transmit antenna multi-mode tracking
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
GB2373973B (en) 2001-03-30 2003-06-11 Toshiba Res Europ Ltd Adaptive antenna
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
US6785513B1 (en) 2001-04-05 2004-08-31 Cowave Networks, Inc. Method and system for clustered wireless networks
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
FR2823620B1 (fr) 2001-04-12 2003-08-15 France Telecom Procede de codage/decodage d'un flux de donnees numeriques codees avec entrelacement sur bits en emission et en reception multiple en presence d'interference intersymboles et systeme correspondant
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
CN100446612C (zh) 2001-05-04 2008-12-24 诺基亚公司 借助定向天线的许可控制
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
DE10122788A1 (de) 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6718493B1 (en) 2001-05-17 2004-04-06 3Com Corporation Method and apparatus for selection of ARQ parameters and estimation of improved communications
US7492737B1 (en) 2001-05-23 2009-02-17 Nortel Networks Limited Service-driven air interface protocol architecture for wireless systems
ES2188373B1 (es) 2001-05-25 2004-10-16 Diseño De Sistemas En Silencio, S.A. Procedimiento de optimizacion de la comunicacion para sistema de transmision digital ofdm multiusuario sobre red electrica.
US6920194B2 (en) 2001-05-29 2005-07-19 Tioga Technologies, Ltd. Method and system for detecting, timing, and correcting impulse noise
US7158563B2 (en) 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
GB2376315B (en) 2001-06-05 2003-08-06 3Com Corp Data bus system including posted reads and writes
US20020183010A1 (en) 2001-06-05 2002-12-05 Catreux Severine E. Wireless communication systems with adaptive channelization and link adaptation
US7190749B2 (en) 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
EP1265411B1 (en) 2001-06-08 2007-04-18 Sony Deutschland GmbH Multicarrier system with adaptive bit-wise interleaving
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
US7027523B2 (en) 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
WO2003010984A1 (en) 2001-06-27 2003-02-06 Nortel Networks Limited Communication of control information in wireless communication systems
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
FR2827731B1 (fr) 2001-07-23 2004-01-23 Nexo Haut-parleur a radiation directe et rayonnement optimise
US6996380B2 (en) 2001-07-26 2006-02-07 Ericsson Inc. Communication system employing transmit macro-diversity
US6738020B1 (en) 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
EP1284545B1 (en) 2001-08-13 2008-07-02 Motorola, Inc. Transmit diversity wireless communication
KR100703295B1 (ko) 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
US20030039317A1 (en) 2001-08-21 2003-02-27 Taylor Douglas Hamilton Method and apparatus for constructing a sub-carrier map
FR2828981B1 (fr) 2001-08-23 2004-05-21 Commissariat Energie Atomique Creuset a chauffage par induction et refroidissement par caloducs
EP1289328A1 (en) 2001-08-28 2003-03-05 Lucent Technologies Inc. A method of sending control information in a wireless telecommunications network, and corresponding apparatus
US6990059B1 (en) 2001-09-05 2006-01-24 Cisco Technology, Inc. Interference mitigation in a wireless communication system
US7149254B2 (en) * 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
FR2829326A1 (fr) 2001-09-06 2003-03-07 France Telecom Procede et systeme de reception iterative sous optimale pour systeme de transmission haut debit cdma
US7133070B2 (en) 2001-09-20 2006-11-07 Eastman Kodak Company System and method for deciding when to correct image-specific defects based on camera, scene, display and demographic data
US6788948B2 (en) 2001-09-28 2004-09-07 Arraycomm, Inc. Frequency dependent calibration of a wideband radio system using narrowband channels
US7035359B2 (en) 2001-10-11 2006-04-25 Telefonaktiebolaget L.M. Ericsson Methods and apparatus for demodulation of a signal in a signal slot subject to a discontinuous interference signal
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
KR20030032875A (ko) 2001-10-19 2003-04-26 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 제공하는 이동 통신시스템에서 순방향 데이터 채널 송신 전력을 제어하는장치 및 방법
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
CN1306722C (zh) * 2001-10-31 2007-03-21 松下电器产业株式会社 无线发射装置和无线通信方法
US7218684B2 (en) 2001-11-02 2007-05-15 Interdigital Technology Corporation Method and system for code reuse and capacity enhancement using null steering
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
US7346126B2 (en) 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
CN101150556B (zh) 2001-11-28 2015-11-25 富士通株式会社 正交频分复用传输方法、发射设备以及发射系统
US7263119B1 (en) 2001-11-29 2007-08-28 Marvell International Ltd. Decoding method and apparatus
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7155171B2 (en) 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7099398B1 (en) 2001-12-18 2006-08-29 Vixs, Inc. Method and apparatus for establishing non-standard data rates in a wireless communication system
US7076514B2 (en) 2001-12-18 2006-07-11 Conexant, Inc. Method and system for computing pre-equalizer coefficients
US7573805B2 (en) 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
CA2366397A1 (en) 2001-12-31 2003-06-30 Tropic Networks Inc. An interface for data transfer between integrated circuits
US7209433B2 (en) 2002-01-07 2007-04-24 Hitachi, Ltd. Channel estimation and compensation techniques for use in frequency division multiplexed systems
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
KR100547845B1 (ko) 2002-02-07 2006-01-31 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서서빙 고속 공통 제어 채널 셋 정보를 송수신하는 장치 및방법
US7046978B2 (en) 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US6980800B2 (en) 2002-02-12 2005-12-27 Hughes Network Systems System and method for providing contention channel organization for broadband satellite access in a communications network
US7292854B2 (en) 2002-02-15 2007-11-06 Lucent Technologies Inc. Express signaling in a wireless communication system
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US20030162519A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6959171B2 (en) 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6873651B2 (en) 2002-03-01 2005-03-29 Cognio, Inc. System and method for joint maximal ratio combining using time-domain signal processing
JP3561510B2 (ja) 2002-03-22 2004-09-02 松下電器産業株式会社 基地局装置及びパケット伝送方法
US7012978B2 (en) * 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
US20040198276A1 (en) 2002-03-26 2004-10-07 Jose Tellado Multiple channel wireless receiver
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
KR100456693B1 (ko) 2002-03-28 2004-11-10 삼성전자주식회사 다중채널 통신 시스템의 비트 할당을 최적화하여 셋업시간을 최소화하는 방법
US7224704B2 (en) 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US7099377B2 (en) 2002-04-03 2006-08-29 Stmicroelectronics N.V. Method and device for interference cancellation in a CDMA wireless communication system
AU2003218506A1 (en) 2002-04-05 2003-10-27 Flarion Technologies, Inc. Phase sequences for timing and access signals
US7103325B1 (en) 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
US7623871B2 (en) 2002-04-24 2009-11-24 Qualcomm Incorporated Position determination for a wireless terminal in a hybrid position determination system
US7876726B2 (en) 2002-04-29 2011-01-25 Texas Instruments Incorporated Adaptive allocation of communications link channels to I- or Q-subchannel
US6690660B2 (en) 2002-05-22 2004-02-10 Interdigital Technology Corporation Adaptive algorithm for a Cholesky approximation
US7327800B2 (en) 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US6862440B2 (en) * 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7421039B2 (en) 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
KR100498326B1 (ko) 2002-06-18 2005-07-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치 및 방법
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7359313B2 (en) 2002-06-24 2008-04-15 Agere Systems Inc. Space-time bit-interleaved coded modulation for wideband transmission
JP4579680B2 (ja) 2002-06-27 2010-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 通信システムにおけるチャンネル特性の測定
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
US7342912B1 (en) 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
US7596134B2 (en) 2002-07-03 2009-09-29 Freescale Semiconductor, Inc. Flexible method and apparatus for performing digital modulation and demodulation
EP1379020A1 (en) 2002-07-03 2004-01-07 National University Of Singapore A wireless communication apparatus and method
US6683916B1 (en) 2002-07-17 2004-01-27 Philippe Jean-Marc Sartori Adaptive modulation/coding and power allocation system
US6885708B2 (en) 2002-07-18 2005-04-26 Motorola, Inc. Training prefix modulation method and receiver
KR20040011653A (ko) 2002-07-29 2004-02-11 삼성전자주식회사 채널 특성에 적응적인 직교 주파수 분할 다중 통신 방법및 장치
EP1540830B9 (en) 2002-07-30 2009-09-16 IPR Licensing Inc. System and method for multiple-input multiple-output (mimo) radio communication
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
DE60325921D1 (de) 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
US20040037257A1 (en) 2002-08-23 2004-02-26 Koninklijke Philips Electronics N.V. Method and apparatus for assuring quality of service in wireless local area networks
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
WO2004023674A1 (en) 2002-09-06 2004-03-18 Nokia Corporation Antenna selection method
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US20040052228A1 (en) * 2002-09-16 2004-03-18 Jose Tellado Method and system of frequency and time synchronization of a transceiver to signals received by the transceiver
US6850511B2 (en) 2002-10-15 2005-02-01 Intech 21, Inc. Timely organized ad hoc network and protocol for timely organized ad hoc network
US7961774B2 (en) 2002-10-15 2011-06-14 Texas Instruments Incorporated Multipath interference-resistant receivers for closed-loop transmit diversity (CLTD) in code-division multiple access (CDMA) systems
US7457625B2 (en) 2002-10-22 2008-11-25 Texas Instruments Incorporated Wirelessly-linked, distributed resource control to support wireless communication in non-exclusive spectrum
US7453844B1 (en) 2002-10-22 2008-11-18 Hong Kong Applied Science and Technology Research Institute, Co., Ltd. Dynamic allocation of channels in a wireless network
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
MXPA05004311A (es) 2002-10-25 2005-08-03 Qualcomm Inc Deteccion y demodulacion de datos para sistemas de comunicaciones inalambricas.
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
WO2004038972A1 (en) 2002-10-26 2004-05-06 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
EP1416688A1 (en) 2002-10-31 2004-05-06 Motorola Inc. Iterative channel estimation in multicarrier receivers
US7317750B2 (en) 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
US7280625B2 (en) 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7583637B2 (en) 2003-01-31 2009-09-01 Alcatel-Lucent Usa Inc. Methods of controlling data rate in wireless communications systems
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
EP1447934A1 (en) 2003-02-12 2004-08-18 Institut Eurecom G.I.E. Transmission and reception diversity process for wireless communications
JP2004266586A (ja) 2003-03-03 2004-09-24 Hitachi Ltd 移動通信システムのデータ送受信方法
JP4250002B2 (ja) 2003-03-05 2009-04-08 富士通株式会社 適応型変調伝送システム及び適応型変調制御方法
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
JP4259897B2 (ja) 2003-03-25 2009-04-30 シャープ株式会社 無線データ伝送システム及び無線データ送受信装置
US7242727B2 (en) 2003-03-31 2007-07-10 Lucent Technologies Inc. Method of determining transmit power for transmit eigenbeams in a multiple-input multiple-output communications system
RU2006104121A (ru) 2003-07-11 2006-07-10 Квэлкомм Инкорпорейтед (US) Динамический совместно используемый канал прямой линии связи для системы беспроводной связи
WO2005014820A1 (fr) 2003-08-08 2005-02-17 Si Chuan Heben Biotic Engineering Co. Ltd. 5-enolpyruvyl-3-phosphoshikimate synthase a bioresistance eleve au glyphosate et sequence de codage
WO2005022833A2 (en) 2003-08-27 2005-03-10 Wavion Ltd. Wlan capacity enhancement using sdm
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7356089B2 (en) 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
KR100995031B1 (ko) 2003-10-01 2010-11-19 엘지전자 주식회사 다중입력 다중출력 시스템에 적용되는 신호 전송 제어 방법
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
KR100944821B1 (ko) 2003-10-24 2010-03-03 콸콤 인코포레이티드 무선 멀티-캐리어 통신 시스템에서 다수의 데이터 스트림들의 주파수 분할 멀티플렉싱
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7231184B2 (en) 2003-12-05 2007-06-12 Texas Instruments Incorporated Low overhead transmit channel estimation
EP1698086A2 (en) 2003-12-27 2006-09-06 Electronics and Telecommunications Research Institute A mimo-ofdm system using eigenbeamforming method
US7333556B2 (en) 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
US7206354B2 (en) 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
US7746886B2 (en) 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US7274734B2 (en) 2004-02-20 2007-09-25 Aktino, Inc. Iterative waterfiling with explicit bandwidth constraints
US7848442B2 (en) 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
US7486740B2 (en) 2004-04-02 2009-02-03 Qualcomm Incorporated Calibration of transmit and receive chains in a MIMO communication system
US7110463B2 (en) 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7599443B2 (en) 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
KR100905605B1 (ko) 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
TWI296753B (en) 2004-10-26 2008-05-11 Via Tech Inc Usb control circuit for saving power and the method thereof
US8498215B2 (en) 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
US7525988B2 (en) 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
US8619620B2 (en) 2008-09-16 2013-12-31 Qualcomm Incorporated Methods and systems for transmission mode selection in a multi channel communication system
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2111619C1 (ru) * 1990-12-07 1998-05-20 Квэлкомм Инкорпорейтед Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи
US6005876A (en) * 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
WO2001076110A2 (en) * 2000-03-30 2001-10-11 Qualcomm Incorporated Method and apparatus for measuring channel state information

Also Published As

Publication number Publication date
AU2003287326A1 (en) 2004-05-13
RU2005115861A (ru) 2005-10-10
KR20050061536A (ko) 2005-06-22
AU2003287326C1 (en) 2009-10-29
CN1708936A (zh) 2005-12-14
TWI436617B (zh) 2014-05-01
EP2267927A2 (en) 2010-12-29
KR101041334B1 (ko) 2011-06-14
CA2501285C (en) 2013-02-12
CN1708936B (zh) 2011-05-11
JP5247976B2 (ja) 2013-07-24
JP2006504340A (ja) 2006-02-02
JP5296232B2 (ja) 2013-09-25
WO2004038985A2 (en) 2004-05-06
US20080069015A1 (en) 2008-03-20
US7324429B2 (en) 2008-01-29
WO2004038985A3 (en) 2004-08-19
BR0315607A (pt) 2005-08-23
TWI337477B (en) 2011-02-11
US20040146018A1 (en) 2004-07-29
EP2267927B1 (en) 2014-03-12
IL202480A0 (en) 2011-07-31
EP1556980B1 (en) 2012-07-11
TW201112671A (en) 2011-04-01
AU2003287326B2 (en) 2009-05-07
RU2329604C2 (ru) 2008-07-20
JP2012142953A (ja) 2012-07-26
EP2267927A3 (en) 2012-05-16
US8203978B2 (en) 2012-06-19
MXPA05004312A (es) 2005-08-03
CA2501285A1 (en) 2004-05-06
AU2009213094A1 (en) 2009-10-08
RU2008106482A (ru) 2009-08-27
TW200417187A (en) 2004-09-01
EP1556980A2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
RU2474060C2 (ru) Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием
US9031097B2 (en) MIMO system with multiple spatial multiplexing modes
KR101000170B1 (ko) Mimo 통신 시스템 내 공간 처리를 위한 고유 벡터들의 유도
US8259672B2 (en) Method of aiding uplink beamforming transmission
JP2006504335A (ja) Mimowlanシステム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131025

NF4A Reinstatement of patent

Effective date: 20141227