RU2111619C1 - Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи - Google Patents

Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи Download PDF

Info

Publication number
RU2111619C1
RU2111619C1 RU93043671A RU93043671A RU2111619C1 RU 2111619 C1 RU2111619 C1 RU 2111619C1 RU 93043671 A RU93043671 A RU 93043671A RU 93043671 A RU93043671 A RU 93043671A RU 2111619 C1 RU2111619 C1 RU 2111619C1
Authority
RU
Russia
Prior art keywords
signals
signal
antennas
communication
remote
Prior art date
Application number
RU93043671A
Other languages
English (en)
Other versions
RU93043671A (ru
Inventor
С.Гилхаусен Клейн
П.Антонио Фрэнклин
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU93043671A publication Critical patent/RU93043671A/ru
Application granted granted Critical
Publication of RU2111619C1 publication Critical patent/RU2111619C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0894Space-time diversity using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Abstract

Система связи с коллективным доступом и кодовым разделением каналов (CDMA), в которой в беспроводной частной телефонной станции с выходом в общую сеть (PBX) используется аппаратура сотовой связи. Описывается микросотовая система, в которой базовая станция (10) передает информационные сигналы абонентов, использующие сигналы связи CDMA в абонентских терминалах. В системе связи применяется распределенная антенная система (26), которая обеспечивает многолучевое распространение сигналов, что облегчает разнесение сигналов и улучшает функционирование системы. 3 с. и 7 з.п. ф-лы, 5 ил.

Description

Изобретение относится к беспроводным РВХ (РВХ - частная телефонная станция с выходом в общую сеть) и к беспроводным местным замкнутым системам телефонной связи.
Более конкретно изобретение относится к новой и улучшенной микросотовой системе телефонной связи и ее распределительной антенной системе, для облегчения связи внутри помещения использующей сигналы связи с расширенным спектром.
Применение модуляции на основе коллективного доступа с кодовым разделением каналов (CDMA) - это один из способов расширения возможностей связи, которой пользуются большое число абонентов. В этой области техники известны и другие способы связи с коллективным доступом, например коллективный доступ с временным разделением каналов (TDMA), коллективный доступ с частотным разделением каналов (FDMA) и схемы (AM) амплитудной модуляции, например, для компандирования амплитуд в одной боковой полосе (ACSSB). Однако модуляция в широкой полосе с частот с CDMA имеет большие преимущества над указанными способами модуляции, применяемыми в системах связи с коллективным доступом.
Применение способа CDMA в системе связи с коллективным доступом раскрыто в патенте США N 4901307, 1990, "Широкополосная система связи коллективного доступа с применением спутниковых или наземных ретрансляторов" [5]. Основные положения этого патента используются в качестве материала для ссылок.
В патенте раскрыт способ коллективного доступа, в котором множество абонентов подвижных телефонов с приемопередатчиками связываются посредством спутниковых ретрансляторов или наземных базовых станций, называемых также станциями сотовых абонентских узлов, сотовыми абонентскими узлами или просто сотами, используя сигналы с расширенным спектром и многостанционный доступ с кодовым разделением каналов (CDMA).
Применение связи на основе CDMA позволяет многократно использовать частотный спектр, что повышает пропускную способность системы. Кроме того, использование CDMA значительно повышает эффективность использования спектра по сравнению с другими способами коллективного доступа.
При переносе сигнала по наземному каналу происходит его запирание, которое характеризуется рэлеевским замиранием. Рэлеевское замирание сигнала в наземном канале связи вызвано отражениями сигнала от многочисленных объектов физического окружения. Поэтому в подвижный приемник сигнал поступает с разных сторон и с различной задержкой. При работе на частотах УВЧ-диапазона (УВЧ- и HF-ультравысокая частота), который обычно используется для подвижной радиосвязи (в том числе в системах сотовой телефонии), при прохождении сигнала по разным трактам могут наблюдаться большие фазовые сдвиги. Поэтому может происходить неправильное суммирование сигналов и как следствие - их сильное замирание.
Замирание сигнала в наземном канале сильно зависит от физического расположения подвижного объекта. Даже небольшое изменение его положения приводит к изменению физической задержки во всех каналах распространения сигналов, что в свою очередь вызывает изменение фазы сигнала в каждом канале. Таким образом, перемещение подвижного объекта в данной среде может привести к очень быстрому замиранию. Например, при работе в диапазоне 850 МГц, который используется в сотовой радиосвязи, такое изменение обычно происходит со скоростью одного замирания в секунду на одну милю в час движения автомобиля.
Такое сильное замирание сигнала, передаваемого по наземному каналу, может оказаться для него разрушительным и привести к низкому качеству связи. Для уменьшения затухания можно повысить мощность передатчика, однако это скажется как на пользователе в виде излишнего потребления мощности, так и на системе связи - в повышении уровня взаимных помех.
Способ модуляции с CDMA, описанный в [5], имеет много преимуществ над способами узкополосной модуляции, которая применяется в системах связи, использующих спутниковые или наземные ретрансляторы. Эксплуатация наземного канала ставит особые проблемы перед любой системой связи и особенно той, где применяются многолучевые сигналы. Применение способа CDMA позволяет преодолеть специфические проблемы наземного канала путем снижения вредного воздействия многолучевого распространения, например замирания, и в то же время использовать его преимущества.
В сотовой телефонной системе с CDMA для связи со всеми сотами можно использовать один и тот же широкополосный канал. Такие свойства сигнала при CDMA, который обеспечивают ускорение обработки, можно использовать и для дискриминации сигналов, занимающих один и тот же частотный диапазон. Кроме того, высокая скорость псевдослучайной (PN) модуляции позволяет разделить многие различные тракты передачи при условии, что обеспечиваются различия в задержках пересылаемых сигналов, превышающие длительность псевдослучайной элементарной посылки, т.е. более 1/ширина полосы.
Если в системе с CDMA частота следования псевдослучайных элементарных посылок примерно равна 1 МГц, то ускорение обработки всего широкополосного спектра, равное отношению ширины полосы к скорости передачи данных в системе, можно использовать для дискриминации трактов, которые друг от друга отличаются задержкой более чем на 1 мкс. Отметим, что дифференциальная задержка сигнала в канале на 1 мкс соответствует дифференциальному расстоянию тракта, примерно равному 1 тыс. футов (305 м). В городских условиях дифференциальная задержка прохождения сигнала по каналу связи обычно более 1 мкс, а в некоторых районах достигает 10-20 мкс.
В системах с узкополосной модуляцией, таких, как система аналоговой частотной модуляции (ЧМ- FM-частотная модуляция) для обычных телефонных систем, наличие каналов многолучевого распространения приводит к сильному замиранию. Но если применяется широкополосная модуляция с CDMA, то при демодуляции возможна дискриминация отдельных каналов, что значительно снижает сильное замирание при многолучевом распространении.
При использовании способа дискриминации с CDMA замирание при многолучевом распространении исключается неполностью, так как обычно могут существовать каналы с дифференциальными задержками, которые в отдельной системе могут быть меньше длительности псевдослучайной элементарной посылки. Сигналы, которые в трактах задерживаются примерно на такое же время, с помощью демодулятора выделить нельзя, что в какой-то мере обусловливает замирание.
Поэтому в сотовой телефонной сети с CDMA желательно применять какое-то разнесение, что позволит уменьшить замирание сигнала. Разнесение - это один из способов снижения ненужного эффекта замирания. Применяются три вида разнесения - временное, частотное и пространственное.
Временное разнесение лучше всего получается при помощи повторения, временного чередования, а также при помощи выявления ошибок и применения корректирующего кода, что является разновидностью повторения. В изобретении используются обе эти формы временного разнесения.
По существу в системе с CDMA используется широкополосный сигнал и применяется частотное разнесение за счет распределения энергии сигнала в широкой полосе частот. Поэтому селективное замирание частоты оказывается воздействие лишь на малую часть широкополосного сигнала с CDMA.
Пространственное разнесение или разнесение трактов получают при пропускании нескольких канализируемых сигналов по одновременно работающим каналам абонентов подвижных объектов через два или более сотовых абонентов подвижных объектов через два или более сотовых абонентских узла. Кроме того, разнесение трактов можно обеспечить при помощи многоканального средства для обработки широкополосного спектра, что позволяет принимать и обрабатывать отдельно сигналы, приходящие с различными задержками.
Примеры разнесения трактов передачи приведены в [1, 2].
В системе с CDMA вредное воздействие замирания в какой-то мере можно уменьшить регулировкой мощности передатчика. Устройство для регулирования мощности сотового абонентского узла и подвижного объекта описано в [3].
Раскрытый в [5] способ CDMA предполагает применение когерентной модуляции и демодуляции сигнала при его прохождении в обоих направлениях по каналу связи "подвижный объект - спутник". В этом патенте предлагается в каналах связи "спутник - подвижный объект" и "сот - подвижный объект" в качестве когерентного эталона фазы использовать пилот-сигнал на несущей частоте. Однако в наземной сотовой связи при многолучевом распространении наблюдается сильное замирание, что приводит к изменению фаз канализируемых сигналов и мешает применению когерентной демодуляции в канале "подвижный объект - сот". В изобретении предлагается способ устранения вредного эффекта замирания сигнала при многолучевом распространении в канале "подвижный объект - сот" путем использования некогерентной модуляции и демодуляции.
Раскрытый в [5] способ CDMA предполагает также и использование относительно длинных псевдослучайных (ПШ-PN-псевдошумовых) последовательностей, причем в каждом канале пользователя используется иная ПС последовательность. Кросс-корреляция между различными ПС последовательностями и автокорреляция ПС последовательности при любых временных сдвигах (кроме нулевого) имеют нулевые средние значения, что позволяет при приеме дискриминировать сигналы разных абонентов.
Однако такие ПС сигналы не независимы. Хотя кросс-корреляция дает среднее нулевое значение для короткого временного интервала, например равного длительности информационного бита, кросс-корреляция соответствует биноминальному распределению. При этом взаимодействие сигналов друг с другом во многом похоже на их взаимодействия в том случае, когда они представляют широкополосный гауссов шум при той же спектральной плотности мощности. Поэтому сигналы других абонентов - или взаимная шумовая помеха - полностью ограничивают пропускную способность канала.
В широкополосной системе с CDMA, использующей ПС последовательности, возможность многолучевого распространения может обеспечить разнесение сигналов. Если используются два или более каналов связи, в которых дифференциальная задержка сигнала более 1 мкс, то для раздельного приема таких сигналов можно использовать два или более приемника ПШ последовательностей. Поскольку при многолучевом распространении эти сигналы обычно замирают независимо, т.е. не одновременно, то на выходах двух приемников разнесенные сигналы можно объединить. Поэтому ухудшение функционирования будет наблюдаться только тогда, когда оба приемника принимают одновременно замирающие сигналы.
Поэтому одним из аспектов изобретения является применение двух или более приемников ПС последовательностей, работающих вместе с объединителем разнесенных сигналов. Чтобы для устранения замирания воспользоваться многолучевым распространением сигналов, нужно использовать такой вид колебаний, который позволяет совершить операции объединения разнесенных сигналов.
Способ и устройство формирования ПШ последовательностей, которые обеспечивают независимость связи пользователей в такой мере, что снижаются взаимные помехи, описаны в [4].
Применение этих способов для снижения взаимных помех позволяет иметь систему с большой пропускной способностью и с лучшими характеристиками канала связи. Если использовать ортогональные ПС коды, то в заданном временном интервале кросс-корреляция будет равна нулю, что исключает помехи между такими кодами при единственном условии, что все выделенные кодам интервалы времени будут выравнены.
Согласно предложенной в [4] сотовой подвижной системе связи с CDMA для пересылки сообщений между сотовыми абонентскими узлами и подвижными объектами используются прямые последовательности широкополосных сигналов связи. При связи между сотом и подвижным объектом определяются канал связи, пилот-сигнал, сигнал синхронизации, канал страничной памяти и речевой. Информация, передаваемая по каналам связи между сотом и подвижным объектом, обычно кодируется, чередуется и подвергается двухпозиционной фазовой манипуляции (BPSK), причем каждый символ BPSK подвергается квадратурной фазовой манипуляции (QPSK), что способствует расширению этих символов.
В канале связи "подвижный объект - сот" определяются каналы обращения и речевой. Информация, передаваемая по каналам связи между подвижным объектом и сотом, обычно кодируется, чередуется и независимо передается, будучи расширенной при помощи QPSK. Применение независимых ПШ последовательностей фактически уменьшает взаимные помехи, что повышает пропускную способность канала абонента и в добавок обеспечивает разнесение трактов, снижающее замирание сигналов.
В упомянутых выше патентах описаны новые способы коллективного доступа, с помощью которых множество абонентов подвижных телефонных систем связываются между собой при помощи спутниковых ретрансляторов или наземных базовых станций. При этом используется широкополосная модуляция на основе коллективного доступа с кодовым разделением каналов, что позволяет использовать частотный спектр многократно. Основанная на этом принципе система связи использует спектр значительно эффективнее, чем предыдущие способы коллективного доступа.
При использовании сотовых телефонных систем подвижная телефонная связь охватывает большой географический район за счет размещения ряда сотовых абонентских узлов, целиком охватывающих этот район. Если потребности в связи превосходят данную пропускную способность системы с несколькими сотовыми абонентскими узлами, то данные соты делят на более мелкие. Такая операция уже проводилась и привела к тому, что в некоторых столичных районах уже размещены почти 200 сотовых абонентских узлов.
В [5] предлагается способ CDMA, при котором достигается очень большая пропускная способность за счет незначительного снижения усиления за счет рабочих характеристик системы, а также при помощи таких операций, как применение антенн с регулируемой диаграммой направленности, активазация передачи речи и повторное использование всего частотного диапазона каждым сотом системы связи. Следствием этого является значительное повышение пропускной способности системы по сравнению с той, которую могут обеспечить другие способы коллективного доступа, например FDMA и TDMA.
При дальнейшем развитии сотовой телефонии желательно использовать несколько очень маленьких сот (или микросот), которые могли бы охватывать весьма ограниченную зону. При этом предполагается, что такие зоны могут быть ограничены одним этажом в служебном здании, и тогда подвижную телефонную связь можно рассматривать как систему беспроводной телефонной связи, которая может (или не может) совмещаться с подвижной сотовой телефонной системой.
Логическое обоснование такой связи подобно предложению использовать учрежденческую телефонную станцию с исходящей и входящей связью (РВХ) в деловых центрах. Такие системы представляют недорогую телефонную связь многочисленным бизнесменам и обеспечивают простой набор номеров телефонов.
Для подключения РВХ к общей телефонной сети используются несколько линий, что позволяет делать и принимать вызовы РВХ и телефонов, установленных в других местах. При этом желательно, чтобы микросотовая система обеспечивала такой же уровень обслуживания, а также предоставляла возможность беспроводной связи в любом месте, которое обслуживается РВХ.
При эксплуатации как беспроводных РВХ, так и беспроводных местных замкнутых систем телефонной связи время задержки сигнала в канале связи намного меньше, чем в сотовых подвижных системах. В зданиях и других внутренних помещениях, где применяются РВХ, необходимо обеспечить такое разнесение, которое позволит дискриминировать сигналы системы с CDMA.
Основная проблема, которая решается изобретением, заключается в использовании простой антенной системы, которая обеспечивает высокую пропускную способность, простоту установки, широкий охват и очень хорошие характеристики связи. Решение другой проблемы связано с обеспечением ограниченного охвата указанной выше определенной зоны при одновременной совместимости с подвижной сотовой системой, используя в то же время лишь малую часть пропускной способности подвижной системы. Эти проблемы решены в изобретении объединением пропускной способности при CDMA и новым устройством распределительной антенны, которая покрывает своим излучением очень ограниченную и тщательно контролируемую зону.
Применение техники связи с расширенным спектром и способа CDMA в оборудовании РВХ позволяет значительно повысить надежность системы и ее пропускную способность по сравнению с другими способами связи. Как отмечалось выше, применение CDMA позволяет также решать проблемы замирания и взаимных помех, которые легко преодолеваются. Кроме того, способ CDMA позволяет значительно лучше повторно использовать частотный диапазон, что позволяет намного увеличить число абонентов системы.
Основным звеном в беспроводной РВХ и беспроводной местной шлейфовой системы связи изобретения является распределительная антенна системы с CDMA. Исходя из этого в группу обычных антенн подается общий сигнал, распределение которого между этими антеннами производится лишь при его временной задержке. Из передатчика сота выходной сигнал сотового передатчика по коаксиальному кабелю подается в цепочку излучателей, излучатели подключены к кабелю, использующему делитель мощности. Полученные таким способом сигналы после необходимого усиления поступают в антенны.
Характерными особенностями такой антенной системы являются: 1) чрезвычайная простота и низкая стоимость; 2) к смежным антеннам последовательно с фидером подключены элементы задержки и поэтому принятые от двух антенн сигналы выделяются при помощи ПШ временной обработки; 3) используется возможность CDMA непосредственно обрабатывать последовательности для дискриминации сигналов при многолучевом распространении; 4) преднамеренно создается возможность многолучевого распространения, способствующая дискриминации сигналов.
Для обработки сигналов распределенной антенной системой каждая антенна системы подключена к распределительному кабелю подобно подключению кабельных телевизоров. При необходимости широкополосного усиления оно производится в самих антеннах или в кабельных отводах. Отметим, что обычно кабельная система содержит два кабеля - один для передачи, а другой для приема сигналов. Во многих случаях необходимая задержка сигнала вводится при помощи распределительного кабеля, исключая при этом применение каких-либо дополнительных устройств задержки. Если же дополнительная задержка нужна, то ее обычно получают при помощи нескольких витков коаксиального кабеля.
Очень важной особенностью такой конструкции является то, что нет необходимости в специальной обработке сигнала. В частности, нет необходимости применять такие операции, как фильтрации, преобразование со смешиванием или другие сложные виды обработки. Необходимо лишь "совместное" усиление всех проходящих по кабелю сигналов, что и делается при помощи одного усилителя.
Еще одним преимуществом данной системы является то, что для размещения специального оборудования места нужно мало. Обычно размещение антенны определяется лишь физическими ограничениями и требованием того, чтобы каждая обслуживаемая связью зона покрывалась по меньшей мере одной антенной. Это не связано с перекрытием зон. В действительности перекрытие зоны желательно, т. к. оно обеспечивает разнесение сигналов всех терминалов, находящихся в покрываемой зоне. Но необходимость в перекрытии отсутствует.
Достоинства идеи распределительной антенны становятся более очевидными, если учесть простоту аппаратуры сота, которая используется в беспроводных РВХ, в беспроводных местных шлейфовых системах связи или в дополнительных домашних радиотелефонах.
При первоначальной установке беспроводной РВХ в отеле или в служебном здании, по-видимому, понадобится система, способная обслуживать до 40 одновременных вызовов. Для системы с такой пропускной способностью нужен всего лишь один широкополосный приемопередатчик (ширина полосы 1,25 МГц). Этот приемопередатчик при помощи кабеля подключают к антенной системе. Она может состоять из одной последовательной цепочки антенных элементов.
Другой способ подключения антенны состоит в применении двух или более параллельно подключенных к приемопередатчику кабелей с необходимыми элементами задержки, размещенными в блоке приемопередатчика. Если пропускную способность такой системы понадобится повысить, чтобы одновременно обслуживать более 40 вызовов, то систему можно расширять по двум различным направлениям.
Первый и самый простой способ состоит в использовании дополнительных широкополосных радиочастотных каналов. В сотовой телефонии используется частотный диапазон с общей полосой 12,5 МГц (для каждой несущей в любом направлении), который делится на 10 отдельных каналов с полосой пропускания 1,25 МГц. Если же понадобится, например, так повысить пропускную способность сети, чтобы одновременно обслуживать до 80 вызовов без изменения антенной системы, то нужно будет подключить второй приемопередатчик и соответствующую аппаратуру в виде цифрового канального блока и вокодера. Если весь спектр этих 10 каналов для CDMA не требуется, то его оставшуюся часть можно использовать для аналоговой ЧМ (и даже для цифровой системы с TDMA), применяя стандартную канализацию сигнала в полосе 30 кГц.
Если пропускную способность нужно повысить без использования дополнительного частотного спектра, то подсистему антенн делят на "псевдосекторы". В такой конструкции подводящий антенный кабель делится так, чтобы иметь два или более порта. Обычно стараются иметь антенны в каждом псевдосекторе, чтобы как-то отделить их друг от друга, хотя это большого значения не имеет. Затем каждый псевдосектор снабжается собственным приемопередатчиком. Выходная шина приемопередатчика, по которой передаются оцифрованные выборки, подключена ко всем канальным блокам.
Канальные блоки, предназначенные для работы в сотовой системе, обеспечивают подключение при помощи кабеля до трех секторов. В сотовой системе связи это позволяет к канальному блоку подключить три смежных сектора сота. При помощи канального блока производится разнесенное во времени объединение сигналов всех трех секторов в виде символа, что обеспечивает очень высокий уровень разнесенного во времени объединения.
При использовании беспроводной РВХ к этим трем шинам подключают три последовательные антенны, обслуживающие смежные зоны. Это обеспечивает возможность "программируемой передачи" без размещения коммутатора между любыми антеннами в цепочке из трех антенн. Таким образом, есть возможность "скрыть" от коммутатора операцию передачи и ввести его в схему РВХ.
Очевидно, что такая конструкция обеспечивает значительное расширение сети. Например, при помощи 10 широкополосных каналов в трех "псевдосекторах" можно обработать примерно 1200 одновременных вызовов. Это соответствует обслуживанию около 15 тыс. линий, что примерно равно пропускной способности телефонной сети главной конторы большой фирмы. Возможно и дальнейшее повышение пропускной способности, но при этом необходимо, чтобы устройства коммутации соответствовали определенным характеристикам и требованиям сотовой системы связи.
Описанную выше систему с CDMA для беспроводной РВХ можно почти без изменения использовать для решения проблем беспроводной местной шлейфовой системы связи. В этом случае желательно использовать относительно недорогую усовершенствованную телефонную сеть для (обычно) строящейся зоны, инфраструктуру которой можно будет разместить достаточно просто. При этом аппаратура беспроводной местной шлейфовой системы связи должна быть совместима с коммутатором главной станции, обслуживающей эту зону.
Вокодеры, канальные блоки и приемопередатчики также должны размещаться вместе с оборудованием коммутатора. Приемопередатчик(и) нужно подключать к распределительной антенной системе так, как указывалось выше. В такой системе принимаемые и передаваемые радиосигналы проходят по двум кабелям, которые имеют отводы к излучающим элементам. Для сохранения определенных уровней сигналов в кабельных отводах может потребоваться (или нет) соответствующее усиление. Домашний телефонный аппарат, соединяемый с беспроводной местной замкнутой системой, включает дешевый переносной телефон системы CDMA, который приспособлен для питания от сети, и стандартную стационарную антенну.
Телефонная трубка подключается к радиочастотному блоку. При этом простота аппаратуры абонента должна полностью соответствовать обстановке в его помещении, т. е. покупатель этого устройства должен просто принести его домой, вынуть из коробки, подключить и вызвать абонента.
Конструкция такой системы связи обеспечивает достаточно простую ее эволюцию по мере расширения рынка сбыта. Размещение такой системы должно начинаться с установкой одной всенаправленной антенны на месте расположения аппаратуры. Антенна должна устанавливаться на высокой мачте, чтобы обеспечить охват данной зоны. Главной целью первоначального обслуживания является обеспечение полного охвата данной зоны, что позволит всем желающим воспользоваться данной сетью.
По мере необходимости повышения пропускной способности антенны можно делить на секторы. А если потребности в такой связи станут больше, то самые нагруженные секторы можно заменить распределительной антенной. Последняя обеспечивает более высокую пропускную способность, т.к. будут снижены помехи от соседних сотов, а аппаратура абонента будет работать при пониженной мощности и создавать меньше помех смежным сотам.
С помощью такой системы может быть обеспечена подвижная связь, если есть возможность для соответствующих соединений между соседними центральными телефонными станциями для передачи сообщения при перемещении абонентов из одной зоны обслуживания такой станцией в другую. Указанную передачу можно запрограммировать подобно тому, как это делается в сотовой системе с CDMA при использовании соответствующих программных средств и аппаратуры, включенной между коммутаторами центральных телефонных станций.
На фиг. 1 изображена схема примерной беспроводной телефонной системы CDMA; на фиг. 2 - примерное расположение диаграмм направленности распределительной антенной системы, приведенной на фиг. 1; на фиг. 3 - схема альтернативной распределительной антенной системы для использования с системой, показанной на фиг. 1; на фиг. 4 - примерная блок-схема микросотового оборудования, вводимого в РВХ беспроводную телефонную систему CDMA; на фиг. 5 - блок-схема переносного телефонного аппарата для связи с РВХ беспроводной телефонной системы CDMA.
В радиотелефонной системе связи с CDMA микросот содержит контроллер, множество широкополосных модуляторов-демодуляторов, которые также относятся к канальным блокам или модемам, приемопередатчик и распределительную антенную систему. Каждый канальный блок содержит цифровой широкополосный модулятор передаваемой мощности, цифровой широкополосный приемник данных и поисковый приемник.
Каждый модем микросота предназначен для работы с подвижным объектом и облегчает установление связи с определенным подвижным объектом. Термин "подвижный объект" или терминал абонента, которым пользуются со ссылкой на микросотовую систему - это обычный телефонный аппарат системы CDMA в виде удерживаемого рукой персонального средства связи, портативный телефон с CDMA или телефон с CDMA, постоянно находящийся в определенном месте.
В беспроводной РВХ с CDMA или в местной системе шлейфовой телефонной связи микросот передает "пилот-сигнал на несущей частоте". Этот сигнал поступает в подвижные объекты для первоначальной синхронизации системы связи и формирования устойчивых временных интервалов, частоты и фазы сигналов передаваемых микросот. Каждый микросот также передает промодулированный в широкой полосе частоты информационной сигнал, например идентификатор микросота, сигналы синхронизации системы, данные страничной организации подвижного объекта и различные управляющие сигналы.
После приема пилот-сигнала, т.е. при начальной синхронизации подвижного объекта пилот-сигналом, этот объект начинает поиск другой несущей, которую принимают все пользователи системы данного сота. Эта несущая - или канал синхронизации - передает информационное сообщение системы, предназначенное для подвижных объектов данной системы.
Это сообщение идентифицирует микросот, и система - в дополнение к переданной информации, которая позволяет длинным ПС кодам, блоку чередования кадров, вокодерам и другим сигналам синхронизации системы, предназначенным для подвижных объектов - синхронизируется без дополнительного поиска. Можно использовать и другой канал - канал страничной памяти - для передачи подвижным объектам сообщений о посылке им вызова и для ответа по определенному каналу, когда подвижный объект начинает вызов.
После возникновения вызова определяется адрес ПШ кода, которым пользуются в течение этого вызова. Адрес кода может быть присвоен микросотом или заранее задан при идентификации подвижного объекта.
На фиг. 1 представлена блок-схема базовой радиотелефонной станции 10, которая содержит коммутатор РВХ 12 и микросот 14. Коммутатор 12 используется для подключения базовой станции 10 к переключаемой телефонной сети общего пользования (PSTN) и/или к PBX проводной телефонной сети. Коммутатор PBX 12 используется для маршрутизации телефонных вызовов, поступающих в микросот 14 и исходящий из него; при этом указанный микросот обеспечивает передачу вызова соответствующему подвижному объекту с помощью сигналов связи системы CDMA. Микросот 14 содержит CDMA контроллер 18, несколько канальных блоков 20A-20N с соответствующими вокодерами 22A-22N, приемопередатчик 24 и распределительную антенную систему 26.
Коммутатор PBX 12 направляет вызовы к (или принимает их от) определенной пары "вокодер - канальный блок". В основном коммутатор PBX 12 используется для управления пересылкой сигналов в разные вокодеры. Этот коммутатор может быть цифровым устройством, которое (помимо передачи цифровых данных по общей шине) обеспечивает передачу аналогового или цифрового речевого сигнала - при помощи хорошо известных способов, например временным мультиплексированием кадров - в или от разных вокодеров.
Поступившие в коммутатор PBX 12 речевые вызовы подвергаются цифровому кодированию (если это не было сделано раньше) в вокодере определенной пары "вокодер - канальный блок"; например, вокодер 22A пары "вокодер - канальный блок " содержит вокодер 22A и канальный блок 20A. Подключенный вокодер заключает речевое сообщение в такой формат, который используется для кодирования сигнала и его передачи в системе CDMA. Подробности работы вокодера описаны ниже.
Канальный блок включенной пары "вокодер - канальный блок" производит кодирование способом CDMA (и другие операции кодирования) оцифрованного речевого сигнала, который будет передаваться подвижному объекту. Отметим, что через коммутатор PBX 12 можно передавать оцифрованные данные, которые хотя и не дискретизированы, но подготовлены для кодирования способом CDMA и передачи. Работа вокодера и канального блока подробно описаны ниже.
Вышедший из соответственного канального блока закодированный CDMA сигнал поступает в приемопередатчик 24 для преобразования частоты сигнала в рабочую частоту передачи и для задания определенной мощности передачи. Радиосигнал подается в антенную систему 26, которая представлена распределительными элементами 28A-281 с элементами задержки 30A-30J, включенными между этими антеннами.
Антенны 28A-28I могут быть всенаправленными или направленными антеннами с определенной направленностью диаграмм их излучения. Элементы задержки 30A-30J могут быть простыми линиями задержки, например, в виде длинных коаксиальных кабелей или в виде других хорошо известных активных или пассивных элементов задержки, которые способны сами обеспечить задержку сигнала на 1 мкс или вместе с включенными между ними кабелями.
В качестве передачей линии между приемопередатчиком 24 и антенной системой 26 можно использовать и другие средства, например оптоволоконные. Такие же средства можно включить между антеннами, а для сопряжения антенн можно использовать оптические устройства задержки и соответствующие радио- и оптические устройства.
На фиг. 2 приведены диаграммы направленности нескольких антенн, размещенных в соответствии с изобретением. Приведенные на этом чертеже диаграммы направленности получены от нескольких всенаправленных антенн, каждая из которых имеет свою диаграмму 40A-401, перекрывающую диаграмму направленности соседней антенны. Такое перекрытие диаграмм обеспечивает полный охват нужной зоны. Сами же антенны включены последовательно, как показано линией 24.
Конструкции антенн допускают такое их размещение, чтобы их диаграммы направленности в основном или полностью покрывали определенную зону. При этом к антенным фидерам подключают элементы задержки, чтобы обеспечить временное разнесение сигналов. В результате обеспечивается многолучевое распространение с разнесением сигналов, что позволяет дискриминировать сигналы. Такой способ можно использовать в микросотовом оборудовании при необходимости дополнительного многолучевого распространения сигналов.
Указанный способ особенно хорошо подходит для сотовой подвижной телефонии с CDMA, когда окружающая среда сама по себе не способствует многолучевому распространению сигналов. Например, это может быть в большом открытом пространстве, где отражения сигналов и, следовательно, их многолучевое распространение минимальны. Применение этого способа обеспечивает разнесение сигналов антенн при связи по каналу "сот - подвижный объект" с помощью одной антенны.
Приведенная на фиг. 1 антенная система может иметь разные модификации. Например, можно использовать параллельные цепи последовательно включенных антенн, питаемых фидером от общего источника сигнала. В таком случае при необходимости элементы задержки будут включаться в фидеры, подающие сигналы в антенны. Эти элементы будут создавать такую задержку, что один и тот же сигнал разными антеннами будет излучаться в разное время.
На фиг. 3 приведен альтернативный вариант антенной системы 26 для беспроводной PBX, показанной на фиг. 1. На фиг. 3 антенная система 26 содержит центральную или местную антенну 50, которая подключена к приемопередатчику 24 вместо антенн 28A-28I и элементов задержки 30A-30J. Несколько удаленных антенн 52A-52I находятся на некотором расстоянии от антенны 50. Каждая из удаленных антенн 52A-52I содержит антенну 54A-54I с большим усилением, элемент задержки 56A-56I и находящуюся вдали антенну 58A-58I. В этом варианте распределения сигналов в антенной системе происходит без использования кабелей.
В антенной системе 26 поступившие от приемопередатчика 24 сигналы излучаются местной антенной 50 в направлении каждой антенны 54A-54I с большим усилением (обычно это направленные антенны), где сигналы усиливаются. Затем усиленный сигнал задерживается на определенное время (обычно более 1 мкс) при помощи соответствующих элементов задержки 56A-56I. Время задержки каждого из указанных элементов разное, и обычно оно кратно одной микросекунде. После этого из указанных элементов задержки сигналы поступают в соответствующие удаленные антенны 58A-58I, где они и излучаются.
Наоборот, сигналы, переданные подвижным объектом, принимается одной или несколькими удаленными антеннами 58A-58I, а затем поступают в соответствующие элементы задержки 56A-56I. Последние этот сигнал задерживают на определенное время и передают его в соответствующие антенны с большим усилием 54A-54I. Эти антенны сигнал усиливают и излучают сигналы в направлении местной антенны 50.
Антенная система изобретения предназначена для работы с микросотовой системы связи. Упомянутая выше возможность регулирования мощности сигнала является важной особенностью телефонной системы с CDMA, которая повышает пропускную способность канала связи для пользователя. Обычная всенаправленная антенна излучает сигнал равномерно почти по всем направлениям. Мощность сигнала в радиальном направлении от антенны снижается в зависимости от характеристик распространения в данной физической среде. Законы распространения сигнала в радиальном направлении могут меняться в пределах от значения, определяемого законом обратных квадратов, до значения, определяемого законом обратной степенной зависимости 5,5.
Сот, обслуживающий зону определенного радиуса, должен давать сигнал достаточной мощности, чтобы подвижный объект принимал сигнал необходимого уровня, даже находясь на краю такой зоны. При этом более близкие к соту подвижные объекты будут принимать сигналы большей мощности.
Лепестки излучения направленных антенн можно формировать разными известными способами. Однако эти способы формирования лепестков изменить закон распространения не могут. Надежное покрытие радиосигналом необходимой площади может быть обеспечено комбинацией диаграмм направленности антенн, их размещением и мощностью передатчика.
Применение распределительной антенной системы обеспечивает необходимую диаграмму ее направленности, которая, например, перекрывает коридор здания, где каждый элемент антенны обеспечивает перекрытие определенной части зоны. Если это так, то мощность сигнала, необходимая для его надежного приема подвижным объектом внутри меньшей зоны обслуживания, соответственно уменьшается, т.к. уменьшаются потери на распространение.
Применение нескольких антенн, излучающих один и тот же сигнал, создает некоторые проблемы. При таком излучении сигнала будут зоны, которые находятся около точек, равноотстоящих от двух или более антенн, в которых принимаемые двумя антеннами сигналы подавляют друг друга. Точки, в которых сигналы взаимно нейтрализуются, разделенные расстоянием, примерно равным половине длине волны. При частоте сигнала 850 МГц это расстояние равно примерно 17,6 см.
Если в приемную антенну поступают два сигнала одинаковой мощности, но с противоположными фазами, то они могут быть подавлены друг другом. Обычно такое замирание при многолучевом распространении создается человеком. Что же касается естественного замирания при таком распространении, то разнесение сигналов это - лучший способ уменьшить их замирание. Конструкция системы CDMA позволяет использовать несколько способов разнесения для снижения замирания при многолучевом распространении.
Упомянутые выше патенты раскрывают сотовую телефонную систему, в которой используется модуляция CDMA при ширине полосы 1,25 МГц, несколько способов разнесения и тщательная регулировка мощности передатчика.
В одном из способов разнесения предлагается использовать приемник с "поисковой" конструкцией; при этом работают несколько приемников и каждый из них принимает сигнал, канализируемый по своему тракту; поэтому он имеет задержку, отличную от задержки другого сигнала. В такой конструкции используется отдельный поисковый приемник, который постоянно сканирует временную область, отыскивая наилучшие каналы и выделяя их этим приемником.
Другой способ разнесения заключается в разнесении трактов. В этом случае сигнал излучается несколькими расположенными в разных местах антеннами, что позволяет иметь более одного тракта распространения сигнала. Если две или более антенны смогут обеспечить надежные каналы связи для подвижного приемника, то при разнесении каналов замирание сигналов можно уменьшить.
В микросотовой системе связи желательно использовать несколько антенн, чтобы обеспечить перекрытие в желаемой зоне обслуживания; вместе с тем пропускная способность не требует, чтобы в каждую антенну вводились отдельные группы сигналов, как это делается в обычной сотовой системе. Вместо этого здесь для снижения затрат в некоторые или во все антенны микросотовой системы связи желательно подавать одни и те же радиосигналы. В тех зонах микросотовой системы, в которых с помощью двух или более антенн создаются надежные каналы связи, можно обеспечить их разнесение.
При подаче в антенны микросотовой системы одних и тех же одинаковых сигналов возникает проблема подавления фазы в тех местах, где от двух или более антенн принимаются почти одинаковые сигналы. Поэтому желательно использовать простой и дешевый способ разнесения сигналов, подаваемых в разные антенны, который не на много повысит стоимость данной системы связи. Реализация такого способа в изобретении состоит во включении элементов задержки в фидерные кабели между приемопередатчиком базовой станции и антеннами.
Если в фидере описанной групповой антенной системы включены линии задержки, через которые в каждую антенну сигнал подается с задержкой на 1 мкс или более относительно соседней антенны, то конструкция устройства с несколькими приемниками в подвижных объектах обеспечит отдельный прием сигнала каждой антенны и такое их когерентное объединение, что подавление сигналов не будет. В действительности замирание сигналов из-за отражений в окружающей среде может быть значительно уменьшено, т.к. обеспечивается разнесение каналов.
Микросот имеет конфигурацию, соответствующую стандартному сотовому абонентскому узлу системы CDMA. Кроме описанных в упомянутых патентах операций устройство имеет антенную систему с несколькими излучателями в зоне, обслуживаемой микросотом. В излучатели сигналы распределяться по коаксиальным кабелям или с помощью других средств. Последовательно с кабелем, соединяющим две соседние антенны, включена линия задержки сигнала на 1 или более мкс.
Подвижные объекты или терминалы имеют один или более приемников CDMA и поисковый приемник. Последний сканирует временную область, устанавливая наличие каналов и самые надежные каналы. Затем имеющимся в наличии приемникам CDMA из найденных каналов выделяются самые надежные. Таким же образом работают приемники сотового абонентского узла.
В приведенном на фиг. 3 варианте излучатели кабелями не связаны, и от других излучателей сигналы передаются при помощи антенн с большим усилием. Принятый сигнал немного усиливается, задерживается на определенное время и снова излучается.
Описанная выше система CDMA обеспечивает пропускную способность, примерно равную 40 одновременным вызовам в каждом соте такой системы при ширине полосы 1,25 МГц для каждого канала CDMA. В результате сот, описанный в изобретении, обеспечивает связью зону, площадь которой равна сумме площадей, охваченных диаграммами направленности всех антенн, подключенных к общему фидеру системы. Таким образом, во всей зоне обслуживания обеспечивается пропускная способность, равная 40 вызовам.
Хотя подвижные антенны перемещаются, тем не менее они пользуются связью независимо от того, сколько их находится в пределах данной зоны, обслуживаемой определенным сотом. Это имеет особое значение для беспроводных PBX, предназначенных для коммерческой деятельности, например в отелях, где в танцевальных залах или в других общественных местах могут в какое-то время, например, время деловых встреч, одновременно находится много абонентов такой системы. А в другое время все те же абоненты системы могут быть в своих комнатах того же отеля. Поэтому очень важно, чтобы такая беспроводная PBX была хорошо приспособлена к указанным ситуациям.
Что касается сотовых телефонных систем, то Федеральная комиссия связи (FCC) выделила в общем 25 МГц для каналов "подвижный объект - сот" и 25 МГц для каналов "сот - подвижный объект". Диапазоны этих частот FCC разделила поровну между двумя поставщиками телефонной связи. Одним из них является компания проводной телефонной связи, которая обслуживает данный район, а другой поставщик получил диапазон, разыгранный в лотерее.
Согласно правилам такого распределения, 12,5 МГц, предназначенные для каждой несущей каждого направления канала связи, разделились на два поддиапазона. Для несущих частот проводной связи поддиапазона имеют ширину 10 и 2,5 МГц, для несущих частот бесприводной связи поддиапазона имеют полосы пропускания шириной 11 и 1,5 МГц. Таким образом, сигналы, занимающие полосу частот менее 1,5 МГц, можно пересылать по любому поддиапазону, а если ширина полосы сигнала менее 2,5 МГц, то его можно пересылать по всем, кроме одного поддиапазона. Указанное распределение частотного спектра приемлемо и для микросотовой системы связи, но в ряде случаев возможно и желательно иное распределение частот.
Для обеспечения максимальной гибкости применения способа CDMA в рабочем частотном диапазоне сотовой телефонной системы связи ширина полосы сигнала должна быть менее 1,5 МГц. Было бы лучше, если сигнал занимал полосу около 2,5 МГц, что обеспечило бы максимальную гибкость использования несущей в проводной сотовой системе и почти гибкость использования несущей в беспроводных сотовых системах связи.
Использование более широкополосных сигналов имеет то преимущество, что обеспечивается лучшая дискриминация при многолучевом распространении, а недостаток - более высокая стоимость аппаратуры и меньшая гибкость при распределении частот в пределах выделенного частотного спектра.
Для связи при помощи широкополосной беспроводной РВХ или местной шлейфовой системы телефонной связи желательно использовать колебание, содержащее прямую последовательность ПС широкополосных несущих, которое применяется в сотовой телефонии [5]. Частота следования элементарных посылок ПС последовательности выбрана равной 1,2288 МГц, так что вся полоса частот, которая после фильтрации примерно равна 1,25 МГц, примерно равна 1/10 всей полосы, выделенной для одной несущей сотовой системы связи.
Другое обстоятельство, связанное с выбором точного значения частоты следования элементарных посылок, обусловлено тем, что это значение должно точно делится на значение скорости передачи данных, которое используется в данной системе. Желательно также, чтобы делитель был равен двум. При скорости передачи данных в полосе частот модулирующего сигнала 9600 бит с ПС частота следования элементарных посылок принята равной 1,2288 МГц, т.е. 128 • 9600.
В канале связи "микросот - подвижный объект" двоичные последовательности, которые применяются для расширения спектра, содержат две разные последовательности со своими характерными особенностями, связанными с выполнением разных операций. Внешний код используется во всех сигналах микросота для выделения сигналов при их многолучевом распространении. Внешний код можно использовать и для выделения сигналов, которые передаются в подвижные объекты разными микростотами, если таковые есть в данной системе. Имеется еще и внутренний код, который применяется для выделения сигналов абонентов, передаваемых в одном секторе или соте.
В предпочтительном варианте изобретения передаваемый микросотом сигнал несущей представляет собой синусоиду, которая подвергается квадратурной (четырехфазной) модуляции при помощи двух двоичных ПШ последовательностей, формирующих внешний код, передаваемый одним сектором или сотом. Эти последовательности генерируются двумя разными генераторами ПШ последовательностей одинаковой длины. Однако из них производит модуляцию вида двухпозиционной фазовой манипуляции в синфазном канале несущей (канал I), а другая последовательность производит модуляцию такого же вида квадратурной фазы несущей в канале Q. Полученные при этом сигналы суммируются и образуют сигнал несущей с четырьмя фазами.
Хотя значения логического "нуля" и логической "единицы" обычно используются в двоичных последовательностях, напряжения сигналов при модуляции равны +VB для логической "единицы" и -VB для логического "нуля". При модуляции вида двухпозиционной фазовой манипуляции синусоидального сигнала среднее значение синусоиды (OB) с помощью умножителя на напряжение +V или -V, что производится при помощи двух последовательностей. Частотный спектр результирующего сигнала можно ограничить, пропустив его через полосовой фильтр.
Известно, что если до умножения синусоидального сигнала двоичную последовательность пропустить через фильтр нижних частот, то происходит изменение порядка выполнения операций. Квадрафазный модулятор содержит два модулятора для двухпозиционной фазовой манипуляции, в каждый из которых подаются разные последовательности и синусоидальные сигналы (с фазовым сдвигом 90o относительно друг друга), которые и используются в модуляторах для двухпозиционной фазовой манипуляции.
В данном варианте изобретения длина последовательности передаваемого сигнала несущей принята равной 32 768 элементарных посылок. Последовательности такой длины можно генерировать при помощи модифицированного генератора линейных последовательностей максимальной длины, для чего к последовательности из 32 767 элементарных посылок прибавляется нулевой бит. Полученная таким образом последовательность имеет хорошие показатели кросс-корреляции и автокорреляции.
Желательно использовать последовательности такой короткой длины, чтобы свети до минимума время захвата подвижных объектов при их первичном подключении к системе связи и отсутствии данных по характеристикам системой синхронизации. Если такие характеристики синхронизации не известны, то для определения их точного значения нужно принять всю законченную последовательность. Чем больше последовательность, тем больше времени потребуется на эту операцию.
Можно использовать последовательности, содержащие менее 32768 посылок, но при этом нужно иметь в виду, что с уменьшением длины последовательности снижается качество обработки кода. Из-за этого происходит снижение подавления как помех при многолучевом распространении, так и помех от соседних сотов и от других объектов, причем такое снижение может стать недопустимым.
Поэтому желательно использовать последовательности такой наибольшей длины, которые можно принять в течение разумного времени. Желательно также во всех сотах использовать одинаковые полиноминальные коды, чтобы подвижный объект, который при первоначальном запросе синхронизации не знает характеристик данного сота, мог бы при анализе одного такого кода получить полный сигнал синхронизации.
Во всех сигналах, передаваемых микросотами по каналам I и Q, используются одни и те же внешние ПС коды. Расширение сигналов производится и при помощи внутреннего ортогонального кода, получаемого с помощью функций Уолша. Адресованный конкретному абоненту сигнал умножается на внешние ПС последовательности и на определенную последовательность Уошла, которая присваивается контроллером системы на время телефонной связи пользователя. Один и тот же внутренний код используется в обоих каналах I и Q, что обеспечивает модуляцию более эффективную, чем двухпозиционная фазовая манипуляция внутреннего кода.
Хорошо известно, что можно составить группу из n ортогональных двоичных последовательностей (каждая длиной n) для 2 в степени любого n (см. Igitai Communication with Space Application, S.W. Golomb et al Prentice-Hall Inc, 1964, p. 45-64).
Известны также самые длинные ортогональные двоичные последовательности, которые кратны четырем и имеют менее 200 знаков. Один класс такой легко генерируемой последовательности назван функцией Уошла, известной также под названием матрицы Хадамар. Последовательность Уошла входит в один из рядов матрицы функций Уошла. Функция Уошла n-го порядка содержит n последовательностей и каждая их них содержит n бит.
Функция Уошла n-го порядка (как и другие ортогональные функции) характеризуется тем, что в интервале из кодовых символов кросс-корреляция между всеми разными последовательностями данной группы равна нулю при условии, что эти последовательности относительно друг друга во времени выравнены. Это видно из того, что каждая последовательность отличается от любой другой точно в половине своих бит. Нужно также отметить, что всегда имеется одна последовательность, которая содержит только нули и что все другие последовательности содержат половину единиц и половину нулей.
Поскольку все передаваемые микросотом сигналы ортогональны относительно друг друга, то они друг другу помех не создают. В большинстве случаев применения такой системы значительно снижается уровень помех и обеспечивается большая пропускная способность.
Дополнительная возможность системы состоит в том, что в ней можно использовать речевой канал, в котором скорость передачи блоков данных может меняться от блока к блоку при минимальных задержках на регулирование скорости передачи. Использование переменной скорости передачи данных снижает взаимные помехи за счет исключения ненужных сообщений, когда не передается полезный речевой сигнал.
В вокодерах используются алгоритмы для генерации в них разного числа бит в соответствии с изменением речевой активности. При активной передачи речи вокодер формирует блоки данных длиной 20 мс, содержащие 20, 40, 80 или 160 бит в зависимости от активности речи абонента. Желательно блоки данных передавать в течение фиксированного временного интервала путем изменения скорости передачи. Желательно также не требовать передачи разрядов вызова, которые в приемник пользователя вводят информацию о том, сколько бит передается.
Указанные блоки данных далее кодируются при помощи кода с контролем циклической избыточности (CRCC), который вводит в блоки данных дополнительные контрольные разряды четности для проверки правильности кодирования этих блоков. Коды CRCC получают делением блока данных на определенный двоичный полином. Код CRCC содержит все или часть двоичных разрядов, оставшихся после деления. Этот код проверяется в приемнике воспроизведением того же остатка и проверкой того, что принятые биты остатка соответствуют повторно воспроизведенным контрольным двоичным разрядам.
В изобретении декодер приемника производит декодирование блока так, как будто он содержит 160 бит, затем снова декодирует блок, как будто он содержит 80 бит и т.д., пока не будут проверены все возможные блоки данных. При этом производится подсчет для всех попыток декодирования кода CRCC. Если одна их этих попыток установит правильность кода CRCC, то этот блок данных принимается и вводится в вокодер для дальнейшей обработки. Если же попытки декодирования выявят нарушенный код CRCC, то принятые символы поступают в системный процессор сигнала, где могут выполняться необходимые операции обработки.
При работе передатчика микросот мощность передаваемого им колебания меняется в зависимости от скорости передачи блока данных. При максимальной скорости передачи мощность несущей наибольшая. Если же скорость передачи меньше максимальной, то помимо снижения мощности передачи модулятор повторяется каждый знак закодированных данных столько раз, сколько нужно для достижения необходимой скорости передачи. Например, при минимальной скорости передачи каждый закодированный знак повторяется четыре раза.
В передатчике подвижного объекта поддерживается постоянный максимальный уровень мощности. Но передатчик запирается на 1/2, 1/4 или на 1/8 времени, соответствующего числу бит, которые должны быть переданы в блоке данных. Моменты включения передатчика меняются псевдослучайно в соответствии с кодом адреса абонента подвижного объекта.
Как описано в [4], на канал связи "сот - подвижный объект" (т.е. канал связан "микросот - подвижный объект" в контексте изобретения) значение n для функции Уошла принято равным 64 (n = 64) для указанного канала связи. Поэтому каждый из 64 различных сигналов передается в виде определенной независимой последовательности.
Поток знаков, который передается кодом с прямым исправлением ошибок (FEC), при каждом преобразовании речи умножается на определенную последовательность Уолша. Затем полученный таким кодированием поток знаков еще раз умножается на внешнее ПС закодированное колебание. Полученные после такого преобразования потоки знаков объединяются и образуют сложное колебание.
Затем это сложное колебание модулирует синусоидальную несущую, проходит через полосовой фильтр, переносится на нужную рабочую частоту, усиливается и излучается антенной системой. Другие варианты изобретения могут изменить порядок некоторых из описанных операций формирования передаваемого сотовым абонентским узлом сигнала. Например, сначала производят умножение данных каждого речевого канала на внешнее ПС закодированное колебание, производят фильтрацию, а потом суммируют все канализируемые сигналы, которые будут излучаться антенной. Специалистам хорошо известно, что для получения определенных преимуществ при реализации устройства и для создания разных конструкций порядок линейных операций преобразования можно менять.
При формировании колебания для беспроводной телефонной сети PBX, которое будет использоваться в канале "микросот - подвижный объект", применяется способ на основе пилот-сигнала на несущей, как предлагается в [5]. В этом пилот-сигнале используется содержащая одни нули последовательность Уолша, т. е. последовательность Уолша с одними нулями, которая входит во все группы функции Уолша. Использование такой последовательности во всех передаваемых сотами пилот-сигналах позволяет при первичном поиске колебаний с пилот-сигналами игнорировать функции Уолша до тех пор, пока не установится ПС случайная синхронизация внешнего кода.
Формирование кадра Уолша ограничено периодом ПС кода, т.к. длина этого кадра зависит от длины ПС последовательности. Поэтому, если заданные сотом смещения ПС кода соответствуют произведению 64 элементарных посылок (или длине кадра Уолша), то формирование кадра Уолша происходит безоговорочно в течение периода синхронизации внешнего ПС кода.
Передаваемый пилот-сигнал на несущей частоте имеет мощность, большую, чем несущая обычного речевого сигнала, что обеспечивает более высокое отношение сигнал-шум и способствует устойчивости этого сигнала к воздействию помех. Более высокий уровень мощности пилот-сигнала несущей позволяет поисковый сбор данных вести с большей скоростью и обеспечивает очень точное слежение за фазой несущей пилот-сигнала при помощи относительной широкополосной схемы слежения за фазой.
Фаза сигнала несущей, установленная при отслеживании пилот-сигнала, используется для определения фазы несущей при демодуляции несущих частот, промодулированных информационными сигналами абонента. Такой способ позволяет многим абонентам несущей частоты совместно применять единый пилот-сигнал в качестве эталона фазы несущей. Например, в системе связи, одновременно передающей 15 несущих с речевыми сообщениями, мощность передаваемого пилот-сигнала может быть равна мощности четырех несущих речевых сообщений.
Помимо пилот-сигнала на несущей частоте микросот передает и другую несущую, которая должна приниматься всеми абонентами системы данного микросота. В этой несущей, называемой каналом синхронизации, для расширения ее спектра также используется та же длина ПС последовательности, равная 32 768 посылкам, но при другой предварительно выделенной последовательности Уолша. По каналу синхронизации передаются сообщения с системой информацией для использования подвижными объектами данной системы.
Эта информация идентифицирует сотовый абонентский узел и саму систему, а также содержит данные, позволяющие использовать длинные ПС коды в информационных сигналах подвижных объектов, чтобы их можно было синхронизировать без дополнительного поиска. Можно использовать и другой канал, называемый каналом страничной памяти, для передачи подвижным объектам сообщений о посылке им вызова и для ответа по выделенному каналу на вызов абонента подвижного объекта.
При телефонном разговоре каждая несущая речевого сигнала передает оцифрованное речевое сообщение абонента. Аналоговый речевой сигнал при помощи обычной телефонной аппаратуры оцифровки преобразуется в цифровую форму, а затем уплотняется операцией кодирования речевых сигналов, что обеспечивает передачу данных со скоростью порядка 9600 бит/с.
Затем этот сигнал данных подвергается сверточному кодированию с повторением (скорость кодирования n = 1/2, ограничение по длине K = 9) и чередуется для выделения ошибки и их исправления, что позволяет системе работать с намного меньшим отношением сигнал - шум и с низким уровнем помех. Способы сверточного кодирования, повторения и чередования специалистам хорошо известны.
Полученные закодированные символы умножаются на выделенную последовательность Уолша и затем на внешний ПС код. В результате получается частоту ПС последовательности 1,2288 МГц или скорость передачи данных, равную 128 • 9600 бит/с. Затем этот сигнал модулирует радиочастоту несущей и суммируется несущими с пилот-сигнала, установочных данных и другими несущими речевых сигналов.
Указанное суммирование может выполняться на разных этапах обработки, например при получении промежуточной частоты, при формировании полосы частот модулирующих сигналов до или после умножения на ПС последовательность.
Каждая несущая речевого сигнала также умножается на значение, которое определяет ее мощность при передаче относительно мощностей несущих других речевых сообщений. Такая особенность регулирования мощности позволяет выделять ее тем каналом, которым нужна большая мощность из-за того, что предлагаемый получатель сообщения находится в неблагоприятном для приема сигналов месте. Для этого используется средства, которые позволяют подвижным объектам сообщать об отношении сигнал - шум при приеме, чтобы дать возможность задать такой уровень мощности, который обеспечит нормальное функционирование устройства без затрат лишней мощности. При разных мощностях несущих речевых сообщений ортогональность функции Уолша не разрушается, если обеспечивается временное выравнивание.
На фиг. 4 приведена приемная блок-схема варианта микросота, показанного на фиг. 1. Диплексер 100 - это блок, которым приемник и передатчик приемопередатчика 24 пользуются совместно. На фиг. 4 приемное устройство приемопередатчика 24 микросота 14 содержит аналоговый приемник 102, а соответствующими узлами канального блока - здесь это канальный блок 20A - являются поисковый приемник 104, приемник цифровых данных 106 и декодер 108. Приемное устройство может также содержать (не обязательно) приемник цифровых данных 110. Подобное описание примерного варианта аналогового приемника 100 приведено в [4].
Микросот 14, как говорилось выше, содержит контроллер 18 CDMA, который подключен к приемникам 106 и 110, а также к поисковому приемнику 104. Контроллер CDMA 18 среди всего прочего производит присвоение последовательности Уолша и кода, обработку сигнала, генерацию сигнала синхронизации, регулировку мощности и ряд других связных операций.
Принятые антенной 26 сигналы через диплексер 100 подаются в аналоговый приемник 102, а затем в поисковый приемник 104. Последний в микросоте используется для сканирования временной области принятого сигнала для проверки того, что приемник цифровых данных 106 отслеживает и обрабатывает самый мощный сигнал в этой области. Поисковый приемник 104 направляет сигнал в контроллер CDMA 18, который подает управляющие сигналы в приемник цифровых данных 106 для выделения соответствующего принятого сигнала с целью его обработки.
Обработка сигналов приемником данных микросота и в поисковом приемнике отличается рядом операций, которые в подвижном объекте выполняются подобными блоками. По каналу передачи сигнала, т.е. по тракту обратной связи или по каналу "подвижный объект - микросот", подвижный объект не передает пилот-сигнала, который можно использовать в качестве когерентного опорного сигнала при обработке информации в сотовом абонентском узле. Канал связи "подвижный объект - микросот" отличается некогерентной модуляцией и демодуляцией, использующей 64-ричные ортогональные сигналы.
При работе с 64-ричными ортогональными сигналами подвижный объект передает символы, представленные одной из 26 (т.е. 64) различных двоичных последовательностей. Группа таких выбранных последовательностей известна под названием функций Уолша. Оптимальной операцией обработки принятого закодированного m-ричного сигнала, содержащего функцию Уолша, является быстрое преобразование Хадамарда (FHT).
Снова обратимся к фиг. 4. Поисковый приемник 104 и приемник цифровых данных 106 принимают сигналы от аналогового приемника 102. Для декодирования широкополосных сигналов, поступивших в приемник определенного сотового абонентского узла (при помощи которого обеспечивается связь с подвижным объектом), нужно генерировать определенные ПС последовательности. Подробности процесса генерации сигналов подвижным объектом описаны в [4].
Декодер Витерби в схеме 108 - это устройство, способное декодировать данные, закодированные в подвижном объекте при ограничении по длине K = 9 и при скорости кодирования r = 1/3. Указанный декодер используется для определения наиболее подходящей последовательности информационных разрядов. Периодически через 1,25 мс производят оценку качества сигнала, которую передают в виде команды для регулирования мощности передачи подвижного объекта с одновременной передачей других данных. Оценка качества сигнала - это среднее значение отношения сигнал - шум в течение 1,25 мс интервала.
Каждый приемник данных из принятого им сигнала выделяет сигнал синхронизации. Эта операция выполняется хорошо известными способами корреляции принятого сигнала с немного опережающими ПС опорными сигналами местной системы связи и корреляции принятого сигнала с немного запаздывающими ПС опорными сигналами той же системы связи. Если при этом ошибки синхронизации нет, то разность этих двух корреляций усредняется до нулевого значения. Наоборот, если синхронизация нарушена, то эта разность укажет величину и знак погрешности, после чего производится соответствующая синхронизация приемника.
Под управлением контроллера CDMA 18 сигналы PBX подаются в соответствующие вокодеры 22A-22N модулятора передатчика. В качестве примера на фиг. 4 показан вокодер 22A. Канальный блок 20A содержит также модулятор передатчика 112, который под управлением контроллера CDMA 18 модулирует в широком диапазоне частот данные для передачи предназначенному для приема подвижному объекту.
Выходной сигнал модулятора передатчика 112 подается в схему управления мощностью передачи 114, которая под управлением контроллера CDMA 18 регулирует мощность передачи. Выходной сигнал схемы 114 поступает в сумматор 116, где он суммируется с выходными сигналами модулятором передатчиков и схем управления мощностью передачи других канальных блоков. Сумматор можно сгруппировать с одним из канальных блоков или рассматривать как один из узлов передатчика в приемопередатчике 24.
Из сумматора 116 сигнал подается в передающую часть приемопередатчика 24, где находится усилитель передаваемой мощности 118. Этот усилитель усиливает сигнал, который через диплексер 100 подается в антенну 26 и излучается в направлении подвижных объектов, находящихся в зоне обслуживания микросотом. Подобное описание схемы передатчика, приведенного на фиг. 4, дано в [4] .
На фиг. 4 приведен блок генератора пилот-сигналов (канал управления) и схема управления мощностью передачи 120, которая входит в один из канальных блоков или может быть отдельным блоком системы. Блок 120 под управлением контроллера CDMA 18 генерирует и регулирует мощность пилот-сигнала, канала синхронизации и канала страничной памяти; блок 120 связан с усилителем передаваемой мощности 118, который подает сигнал в диплексер 100 и через него в антенну 26.
В предпочтительном варианте изобретения для кодирования передаваемых каналом сигналов в качестве внутреннего кода используется функция Уолша. В приведенном здесь примере говорится о 64 разных последовательностях Уолша; причем три из них выделены для операций с пилот-сигналами, сигналами синхронизации и с каналом страничной памяти. В каналах синхронизации, страничной памяти и речевом производится сверточное кодирование входных данных и их чередование хорошо известными способами. Кроме того, до чередования обеспечивается повторение сверточно закодированных данных известными способами.
По каналу пилот-сигнала модулированные данные не передаются, а по нему проходят немодулированные широкополосные сигналы, которые применяются всеми пользователями данного сотового абонентского узла для сбора данных или слежения. В каждом соте или секторе (если сот разделен на секторы) используется свой собственный пилот-сигнал. Однако вместо применения разных генераторов ПС последовательностей для формирования разных пилот-сигналов более эффективно для их генерации использовать сдвиги в той же основной последовательности.
При помощи этого способа подвижные объекты последовательно просматривают всю последовательность знаков и настраиваются на смещение или сдвиг, создающий наибольшую корреляцию. Если пользоваться таким сдвигом в основной последовательности, то сдвиги должны быть такими, чтобы не происходило смешивания или уничтожения пилот-сигналов соседних сот или секторов.
Следовательно, последовательность пилот-сигналов должна быть достаточно длинной, что позволяет за счет сдвигов в основной последовательности создать много разных последовательностей, которые будут многочисленными пилот-сигналами в данной системе связи. Разделения или сдвиги должны быть достаточно большими, чтобы исключить интерференцию пилот-сигналов.
В примерном варианте изобретения длина последовательности пилот-сигнала принята равной 215. Формирование такой последовательности начинается с 215 - 1 с лишним нулем, который прибавляется к последовательности при обнаружении определенного состояния. В данном примере осуществления изобретения предлагается использовать 512 разных пилот-сигналов со смещением в основной последовательности из 64 элементарных посылок. Смещения могут быть кратны смещению 64 элементарных посылок при соответствующем уменьшении числа разных пилот-сигналов.
При генерации пилот-сигнала используется "нулевая" (wQ) последовательность Уолша, содержащая одни нули, так что модуляции пилот-сигнала не происходит, и по существу он представляется последовательностями PNI и PNQ. Таким образом, "нулевая" (wQ) последовательность Уолша умножается на последовательности PNI и PNQ при помощи вентилей "исключающее ИЛИ". В результате полученный пилот-сигнал содержит только последовательности PNI и PNQ. Для всех сотовых абонентских узлов и секторов, которые при передаче информации в качестве пилот-сигналов используют одну и ту же ПС последовательность, отличительным признаком сотовых абонентских узлов и секторов, инициирующих передачи, является фаза последовательности.
Данные канала синхронизации кодируются и затем умножаются при помощи вентилей "исключающее ИЛИ" на предварительно выделенную последовательность Уолша. В данном примере осуществления изобретения выбранной функцией Уолша является последовательность (W32), которая содержит последовательность из 32 "единиц" и 32 "нулей". Затем результирующая последовательность умножается на последовательности PNI и PNQ при помощи вентилей "исключающее ИЛИ".
В примере осуществления изобретения данные канала синхронизации обычно поступают в модулятор передатчика со скоростью 1200 бит/с. В этом варианте данные канала синхронизации в основном подвергаются сверточному кодированию со скоростью r=1/2 и с ограничением по длине K = 9, причем каждый знак кода повторяется дважды. Эта скорость кодирования и ограничение по длине относится ко всем кодируемым каналам прямой связи, т.е. каналам синхронизации, страничной памяти и речевым. В данном примере осуществления изобретения для генерации кода G1 = 753 (восьмиричный) и кода G2 = 561 (восьмиричный) применяется сдвиговый регистр. Скорость передачи знаков по каналу синхронизации в данном примере осуществления изобретения равна 4800 знаков/с, т.е. один знак соответствует 208 мкс или 256 ПС элементарным посылкам.
В данном примере осуществления изобретения кодовые знаки чередуются с интервалом 40 мс при помощи чередователя операций свертки. Опытные параметры блока чередования имеют значения I = 16 и J = 48. Подробности операции чередования приведены в Date Communication, Network and Systems, Howard W.Sams & Co, 1987, p.343-352.
Работа чередователя операций свертки сводится к такому разделению ненадежных канальных символов, чтобы любые два символа в смежной последовательности с 1 - 1 (или с меньшим числом) знаков отделялись по меньшей мере J+1 знаками на выходе обращенного чередователя. Соответственно два любых символа в смежной последовательности из J-1 знаков в выходном сигнале обращенного чередователя разделяются по меньшей мере 1 + 1 знаками. Иначе говоря, если в цепочке из 15 знаков I = 16 и J = 48, то передаваемые символы разделяются интервалами 885 мкс, что и обеспечивает временное разнесение.
Знаки канала синхронизации микросота привязаны к пилотному сигналу этого микросота. Период пилот-сигнала в данном примере осуществления изобретения равен 26,67 мс, что соответствует 128 кодовым знакам канала синхронизации или 32 информационным битам этого канала. Знаки канала синхронизации чередуются при помощи чередователя операций свертки, который задает интервал 26,67 мс. Поэтому при приеме подвижным объектом пилот-сигнала он сразу же синхронизируется по каналу синхронизации блока чередования.
Для обеспечения независимости сигнала канала синхронизации перекрываются выделенной последовательностью Уолша. В канале синхронизации один знак кода приходится на четыре перекрывающие последовательности, т.е. один кодовый знак используется при четырех повторениях последовательности, содержащей 32 "единицы" - 32 "нуля". Одна логическая "единица" характеризует наличие 32 "единичных" элементарных посылок Уолша, а один логический "нуль" характеризует наличие 32 "нулевых" элементарных посылок Уолша.
Независимость сигнала канала синхронизации сохраняется даже тогда, когда знаки этого канала сдвинуты по фазе относительно значения абсолютного времени, зависящего от взаимодействующего канала посылки пилот-сигнала, т.к. сдвиги канала синхронизации кратны длительности кадра Уолша.
В примере осуществления изобретения сообщения канала синхронизации имеют разные длины. Длина такого сообщения кратна 80 мс, что соответствует трем периодам пилот-сигнала. Введенные в канал синхронизации информационные биты - это биты циклического избыточного кода (CRC), (CRC - контроль при помощи циклического избыточного кода), которые используются для обнаружения ошибок.
Как только будет принято правильное сообщение канала синхронизации, подвижный объект сразу же синхронизируется для работы с каналом страничной памяти или с речевым каналом. При поступлении синхронизирующего пилот-сигнала, который определяет конец каждого сообщения синхронизации, начинается новый цикл работы блока чередования, равный 40 мс. В это время подвижный объект начинает обращенное чередование первого знака кода любого повторения или пары (cx, cx+1) при условии синхронизации декодера. Адрес записи блока обращенного чередования устанавливается на нуль, а адрес считывания на J, чтобы синхронизировать запоминающее устройство блока обращенного чередования.
Сообщения канала синхронизации переносят информацию о состоянии 42-разрядного генератора ПС последовательности речевого канала, который выделен для связи с подвижным объектом. Эта информация используется в приемниках цифровых данных подвижного объекта для синхронизации соответствующих генераторов ПС последовательности.
Информация канала страничной памяти также кодируется с повторением, чередованием и последующим умножением на выделенную последовательность Уолша. Затем полученная последовательность умножается на последовательности PNI и PNQ. Скорость передачи данных канала страничной памяти для определенного сектора или сота указывается в выделенном поле сообщения канала синхронизации. Хотя скорость передачи данных канала страничной памяти переменная, но в данном примере осуществления изобретения эта скорость для каждой системы связи постоянна и соответствуют одному из следующих значений: 9,6; 4,8; 2,4 и 1,2 кбит/с.
Данные каждого речевого канала также кодируются с повторением, чередованием, перемешиванием (шифрованием), умножением на выделенную последовательность Уолша и еще одним умножением на последовательности PNI и PNQ. Последовательность Уолша, которая будет использоваться в определенном канале, при запросе связи контроллером системы выделяется так же, как производится назначение каналов при вызовах в аналоговой ЧМ-системе сотовой связи. В данном примере осуществления изобретения для работы с речевыми каналами используются до 61 разных последовательностей Уолша.
В примере осуществления изобретения используется разная скорость передачи речевых сообщений. Это преследует цель снизить скорость передачи при отсутствии речи и таким образом уменьшить помехи данного речевого канала на каналы других пользователей. Вокодер, работающий на разных скоростях передачи данных, описан в [4].
Такой вокодер выдает данные с четырьмя разными скоростями - в зависимости от активности речи - кадрами протяженностью 20 мс, причем примерные значения скорости такой передачи равны 9,6 - 4,8 - 2,4 - 1,2 кбит/с. Хотя скорость передачи данных меняется с шагом 20 мс, но скорость передачи кодовых знаков постоянна и равна 19,2 кбит/с. При этом кодовые знаки повторяются соответственно 2,4 и 8 раз при соответствующих скоростях передачи 4,8 -2,4 - 1,2 кбит/с.
Передача информации с различной скоростью позволяет уменьшить уровень помех, но при этом кодовые знаки будут иметь меньшую энергию. Так, например, при скоростях передачи данных 9,6 - 4,8 - 2,4 - 1,2 кбит/с соответствующая им энергия знака (Es) будет равна соответственно ED/2, ED/8 и ED/16, где ED - энергия информационного бита при скорости передачи 9,6 кбит/с.
При помощи чередователя операций свертки знаки кода чередуются так, чтобы при работе чередователя перемешивались знаки с разным уровнем энергии. Для определения того, какую энергию должен иметь знак кода, каждому знаку придается метка, которая определяет его скорость для последующего масштабирования.
После перекрытия ортогональными функциями Уолша и расширения ПС последовательностью данные квадратурных каналов подвергаются цифровой фильтрации при помощи фильтра с конечной импульсной характеристикой (FIP). Такой фильтр будет получать сигналы, соответствующие определенному уровню значения знака, для пересчета их энергии в соответствии со скоростью передачи данных. Данные каналов I и Q будут пересчитываться при помощи коэффициентов
Figure 00000002
. В одной из схем вокодера формируется метка в виде двухразрядного (из двух бит) числа, определяющая скорость передачи данных, которая вводится в фильтр с FIR для регулирования его коэффициента пересчета.
В примере осуществления изобретения производится шифрование сигналов каждого речевого канала, чтобы обеспечивать большую защищенность передачи по каналу "сот - подвижный объект". И хотя такое шифрование не обязательно, тем не менее оно повышает защищенность канала связи. Например, перемешивание сигналов речевого канала можно сделать кодированием этих сигналов при помощи ПС кода, которое определяется адресом идентификации (ID) абонента подвижного объекта.
Такое перемешивание можно сделать при помощи последовательности PNU или устройства кодирования, о чем говорилось со ссылкой на фиг. 3 по поводу отдельного приемника для связи "подвижный объект - сот". Для этой операции соответственно можно использовать отдельный генератор ПС последовательности. Хотя здесь шифрование основано на применении ПС последовательности, эту операцию можно выполнить и другими способами, в том числе и хорошо известными.
Помимо речевых разрядов канал прямой речевой связи переносит и команды управления мощностью сигнала. Скорость передачи таких команд в данном примере осуществления изобретения равна 800 бит/с. Приемник сотового абонентского узла, в котором демодулируется сигнал канала "подвижный объект - сот", полученный от данного подвижного объекта, выдает команды управления мощностью, которые вводятся в речевой канал "сот - подвижный объект" и адресуются определенному подвижному объекту. Подробное описание операций управления мощностью приведено в [4].
Биты команды управления мощностью вводятся в выходной сигнал чередователя операций свертки способом под названием "перфорация кодовых знаков". Это значит, что при необходимости передачи бита управления мощностью два кодовых знака заменяются двумя идентичными кодовыми знаками с той полярностью, которая определяется командой управления мощностью. Кроме того, биты управления мощностью передаются с энергией, соответствующей скорости передачи 9600 бит/с.
Дополнительное ограничение потока бит управления мощностью состоит в том, что при передаче информации по каналам "подвижный объект - сот" биты должны располагаться в случайном порядке. Иначе вся энергия управляющих разрядов будет затрачена на генерацию импульсных помех через определенные промежутки, что снижает возможность детектирования таких разрядов.
Характерной особенностью функции Уолша является то, что каждая из 64 последовательностей совершенно независима от других последовательностей. Любые две последовательности отличаются именно расположением своих двоичных разрядов, например размещением 32 бит в поле из 64 символов. Поэтому если информацию для передачи кодируют при помощи последовательностей Уолша, то приемник сможет выбирать любую из этих последовательностей в качестве подходящей "несущей". Любой сигнал регулировки мощности, закодированный другими последовательностями Уолша, будет подавлен и не станет помехой для одной выбранной последовательности Уолша.
В примере осуществления изобретения применительно к каналу "сот - подвижный объект" в каналах синхронизации, страничной памяти в речевом, как уже отмечалось, применяется сверточное кодирование с ограничением по длине K = 9 и скорости кодирования r = 1/2, т.е. с каждым передаваемым информационным битом передаются два сформированных и закодированных знака. Помимо сверточного кодирования применяется и сверточное чередование знаков. При этом предполагается, что в сочетании со сверточным кодированием будет применяться и повторение.
Для декодирования такого кода в подвижном объекте оптимальным будет декодер запрограммированных решений на основе алгоритма Витерби. Но для декодирования можно использовать и обычные устройства. Полученные после декодирования информационные биты поступают в широкополосную цифровую аппаратуру подвижного объекта.
Контроллер CDMA 18 производит назначение канальных блоков и вокодеров конкретному вызову. Этот же контроллер следит за работой данного канала, за качеством сигналов и отключает канал при потере сигнала.
В канале связи "подвижный объект - микросот" характеристики канала определяют способ модуляции. В частности, использование (как это делает в канале "сот - подвижный объект") несущей пилот-сигнала в течение длительного времени недопустимо. Несущая пилот-сигнала должна быть более мощной по сравнению с несущей речевого сигнала, чтобы обеспечить надежную опорную фазу при модуляции. В микросоте, одновременно передающем много несущих речевых сигналов, один пилот-сигнал может быть использован всеми несущими речевыми сигналами; тогда в одном канале мощность пилот-сигнала будет очень малой.
В канале связи "подвижный объект - микросот" для связи с данным подвижным объектом обычно используется лишь одна несущая речевого сигнала. Если применяется пилот-сигнал, то его мощность должна быть значительно больше мощности несущей речевого сигнала. Очевидно, что такая ситуация нежелательна, т.к. полная пропускная способность системы будет значительно снижена из-за помех, обусловленных присутствием множества мощных пилот-сигналов. Поэтому нужно использовать такой способ модуляции, при котором возможна эффективная демодуляция без пилот-сигналов.
Таким образом, следует использовать такие виды передачи дискретных данных, как двоичная, четверичная или m-ричная. В данном примере осуществления изобретения применяется 64-ричная ортогональная передача данных с использованием функций Уолша. При m-ричной ортогональной передаче дискретных данных для нормальной работы демодулятора требуется когерентность канала на время передачи m-ричного знака. В данном примере осуществления изобретения это время равно времени для всего двух бит.
Передаваемые подвижными объектами сигналы - это прямая последовательность широкополосных сигналов, промодулированных псевдослучайной последовательностью, которая тактируется с определенной частотой - в предпочтительном варианте изобретения она равна 1,2288 МГц. Эта частота синхронизации выбрана так, чтобы она была кратна скорости передачи данных 9,6 кбит/с в полосе частот модулирующих сигналов.
Операции кодирования сообщения и модуляции начинаются со сверточного кодирования при ограничении длины K = 9 и скорости кодирования r = 1/3. При номинальной скорости передачи данных 9600 бит/с кодер выдает 28 800 двоичных символов/с. Они объединяются в группы (по 6 знаков в каждой) со скоростью 4800 групп/с и получают 64 группы. Каждая из них преобразуется в последовательность Уолша, содержащую 64 двоичных разрядов или "элементарных посылок". Согласно примеру осуществления изобретения, частота следования элементарных посылок в 64-ричной последовательности Уолша равна 307 200 посылок/с.
Затем элементарные посылки последовательности Уолша "перекрываются" или умножаются на ПС последовательность, поступающую с частотой 1,2288 МГц. Для этого каждому подвижному объекту выделяется отдельная ПС последовательность. Эта последовательность может быть присвоена только на время данного вызова либо постоянно присвоена подвижному объекту. Здесь такая присвоенная ПС последовательность называется ПС последовательностью абонента. Генератор таких последовательностей работает на частоте 1,2288 МГц и выдает четыре ПС элементарных посылки для каждой элементарной посылки последовательности Уолша.
Затем генерируется две короткие, т.е. с длиной 32 768, ПС последовательности. В данном примере осуществления изобретения такие же последовательности используются в канале связи "сот - подвижный объект". ПС последовательность пользователя, прекращающая элементарные посылки последовательности Уолша, затем перекрывается или умножается на каждые две короткие ПС последовательности. Полученные две последовательности затем способом двухпозиционной фазовой манипуляции модулируют квадратурную пару синусоид и суммируются в общий сигнал.
Этот сигнал проходит через полосовой фильтр, преобразуется в конечную радиочастоту, усиливается, фильтруется и излучается антенной подвижной объекта. Как ранее отмечалось (со ссылкой на операции с сигналами в канале связи "сот - подвижный объект"), порядок операций фильтрации, усиления, преобразования частоты и модуляции может быть изменен.
В альтернативном варианте предлагается создать две разные фазы ПС кода пользователя и использовать их для модуляции двух фаз несущих колебаний, сдвинутых на 90o, не используя последовательности из 32 768 посылок. В другом альтернативном варианте предлагается в канале связи "подвижный объект - сот" использовать только модуляцию вида двухпозиционной фазовой манипуляции, также обходясь без коротких последовательностей.
Для каждого сигнала приемник микросота формирует короткие ПС последовательности и ПС последовательность абонента для каждого сигнала, принятого от активного подвижного объекта. С помощью отдельных корреляторов приемник коррелирует энергию принятого сигнала с энергией каждого закодированного колебания. Затем выходные сигналы каждого коррелятора используются самостоятельно для демодуляции 64-ричного закодированного сигнала и сверточного кодирования при помощи процессора на основе быстрого преобразования Хадамарда и декодера на основе алгоритма Витерби.
На фиг. 5 приведена блок-схема телефонного аппарата с CDMA подвижного объекта. Этот аппарат имеет антенну 200, которая через диплексер 202 подключена к приемнику аналоговых сигналов 204 и к усилителю передаваемой мощности 206. Антенна 200 и диплексер 202 имеют стандартную конструкцию и обеспечивают одновременную передачу и прием через антенну. Антенна 200 принимает передаваемые сигналы и через диплексер 202 направляет их в приемник аналоговых сигналов 204.
От диплексера 202 приемник 204 принимает радиосигналы (которые обычно находятся в 850 МГц диапазоне частот) для усиления и преобразования частоты с понижением до промежуточной частоты (ПЧ - IF - промежуточная частота). Это преобразование производится с помощью синтезаторов частоты обычной конструкции, что позволяет настраивать приемник на любую частоту диапазона приема, входящего в полный диапазон рабочих частот, выделенный для сотовой радиотелефонии.
Затем сигналы фильтруются, дискретизируются и поступают в приемники цифровых данных 210, 212 и в поисковый приемник 214. Подробное описание примера реализации приемников 204, 210, 212 и 214 приведено в [4].
Приемник 204 управляет также мощностью передачи подвижного объекта. Для этого приемник 204 генерирует аналоговый сигнал управления мощностью, который поступает в схему управления мощностью передачи 208.
На фиг. 5 оцифрованный сигнал от приемника 204 подается в цифровые приемники данных 210, 212 и в поисковый приемник 214. Отметим, что в недорогом, низкокачественном подвижном объекте имеется только один приемник данных, а в более качественных объектах могут быть два и более приемника, обеспечивая прием разнесенных сигналов.
Оцифрованный сигнал промежуточной частоты может содержать сигналы нескольких одновременно поступивших вызовов вместе с пилот-сигналами на несущей, которые передаются как данным, так и всеми соседними сотовыми абонентскими узлами. Приемники 210, 212 используются для корреляции выборок ПЧ с соответствующей ПС последовательностью.
Такая корреляция предоставляет возможность, которая хорошо известна специалистам под названием "обработка данных с усилением"; она повышает отношение сигнала - помеха для того сигнала, который относится к определенной ПС последовательности, в то время как для других сигналов это отношение не повышается. Затем полученный коррелированный сигнал синхронно детектируется, для чего несущая пилот-сигнала ближайшего сотового абонентского узла используется в качестве опорной фазы. После такого детектирования выдается последовательность закодированных данных.
В изобретении используется то свойство ПС последовательности, которое обеспечивает дискриминацию сигналов при многолучевом распространении. Если в приемник подвижного объекта сигнал поступает по меньшей мере не по одному тракту, то время его приема будет разным. Разность значений времени приема соответствует разности расстояний, разделенной на скорость распространения сигнала.
Если эта разность значений времени больше 1 мкс, то при дискриминации выявится различие между трактами прохождения сигналов. При этом приемник может выбирать между операциями слежения и приема сигналов, поступающих раньше или позже. Если в телефонном аппарате работают два приемника, например 210 и 212, то аппарат может следить за двумя независимыми траекториями и обрабатывать их сигналы параллельно.
Работающий под контролем управляющего процессора 216 поисковый приемник 214 непрерывно сканирует определенный временной интервал, занимаемый принимаемым пилот-сигналом микросота, что делается для выявления других пилот-сигналов, поступивших по другим трактам. Кроме того, приемник 214 измеряет уровни всех полезных колебаний, принимающих за пределами выделенного временного интервала, и сравнивают их уровни. В управляющий процессор 216 приемник 214 посылает сигнал, характеризующий максимальный уровень принятого им сигнала. В приемники 210, 212 процессор 216 подает управляющие сигналы, под воздействием которых каждый приемник производит обработку одного из самых мощных сигналов.
Управляющий процессор 216 содержит генератор ПС последовательности, который выдает ПС последовательность в соответствии с входным адресом подвижного объекта или индентификатором абонента. Выходная ПС последовательность этого генератора поступает в схему 218 объединителя разнесенных сигналов и вокодера. Поскольку сигнал канала микросот - подвижный объект смешивается с ПС последовательностью адреса подвижного пользователя, то выходной сигнал генератора ПС последовательности используется для дешифрации переданного сотовым абонентским узлом сигнала, предназначенного данному подвижному абоненту, причем дешифровка сигнала производится так, как и в приемнике микросота.
Генератор ПС последовательности специально посылает свой сигнал в блоки обращенного чередования и декодирования, где он используется для дешифрации закодированных данных абонента. Хотя операция перемешивания рассмотрена применительно к ПС последовательности, очевидно, что можно использовать и другие способы перемешивания данных, в том числе и хорошо известные.
Выходные сигналы приемников 210, 212 поступают в блок 218, содержащий объединитель разнесенных сигналов и декодер. Входящий в блок 218 объединитель разнесенных сигналов только корректирует синхронизацию двух потоков принимаемых знаков для их выравнивания и объединения. Эту дополнительную операцию можно выполнять умножением двух потоков на число, соответствующее относительным уровням сигналов этих потоков. Эту операцию можно рассматривать как максимум того, что может объединитель разнесенных сигналов.
Затем полученный поток объединенных сигналов декодируется декодером с прямым исправлением ошибок (FEC), который также находится в блоке 218. Обычным цифровым широкополосным устройством для работы в полосе частот модулирующих сигналов является цифровой вокодер. В системе CDMA можно использовать вокодеры разных типов.
Блок 220 для работы в полосе частот модулирующих сигналов содержит цифровой вокодер (не показан), который может работать на разных частотах. Блок 220 используется так же как интерфейс с телефонной трубкой или как средство сопряжения для других периферийных устройств. В блоке 220 могут работать вокодеры разных типов. Блок 220 передает пользователю информационные сигналы согласно данным, полученным от блока 218.
В канале связи "подвижный объект - микросот" обычно абонент через телефонную трубку передает аналоговые речевые сигналы, которые вводятся в блок 220. Этот блок содержит аналого-цифровой преобразователь (АЦП - ADC), который аналоговый сигнал представляет в цифровой форме. Оцифрованный сигнал подается в цифровой вокодер, где он кодируется. Выходной сигнал вокодера поступает в схему кодирования с прямым исправлением ошибок (FEC, не показана), которая исправляет ошибки. В примере осуществления изобретения кодирование с исправлением ошибок производится в блоке сверточного кодирования. Из блока 220 оцифрованный закодированный сигнал поступает в модулятор передатчика 222.
Модулятор передатчика 222 сначала передаваемые данные кодирует с помощью функции Уолша, а затем закодированный сигнал модулирует ПС сигналом несущей, ПС последовательность которого выбирается в соответствии с присвоенной для вызова адресной функции. ПС последовательность задается управляющим процессором 216 на основании запроса вызова, который передается сотовым абонентским узлом и декодируется приемниками 210, 212 и управляющим процессором 216. В качестве альтернативы отметим, что управляющий процессор 216 может задать ПС последовательность при соответствующей подготовке сотового абонентского узла. Управляющий процессор 216 выдает ПС информационную последовательность в модулятор передатчика 222 и в приемники 210, 212 для декодирования вызова.
Выходной сигнал модулятора передатчика 22 поступает в схему управления мощностью передачи 208. Мощность передаваемого сигнала регулируется аналоговым сигналом управления мощностью, который выдается приемником 204. Управляющие биты, передаваемые микросотом в виде команды регулирования мощности, обрабатываются приемниками 210, 212. По команде регулирования мощности управляющий процессор 216 задает уровень мощности передачи подвижного объекта. Под воздействием этой команды управляющий процессор 216 выдает цифровой сигнал регулирования мощности, который поступает в схему 208. Более подробное описание взаимодействий приемников 210, 212 и 214, управляющего процессора 216 и схемы управления мощностью передачи 208 при регулировании уровня мощности приведено в [4].
Схема управления мощностью передачи 208 посылает модулированный сигнал регулирования мощности в усилитель мощности 206. Этот усилитель усиливает и преобразует сигнал ПЧ в радиосигнал при помощи смешивания входного сигнала с выходным сигналом синтезатора частоты, который и устанавливает соответствующую частоту конечного сигнала. Блок 206 содержит усилитель, который усиливает мощность до окончательного выходного уровня. Предназначенный к передаче сигнал из усилителя 206 поступает в диплексер 202, который направляет сигнал в антенну 200 для передачи в микросот.
Что касается передачи сигнала подвижным объектом, то аналоговый речевой сигнал подвижного абонента сначала проходит через цифровой вокодер. Выходной сигнал вокодера последовательно подвергается сверточному кодированию с прямым исправлением ошибок (FEC), кодируется 64-ричной ортогональной последовательностью и модулируется ПС сигналом несущей. 64-ричная ортогональная последовательность генерируется кодирующим устройством (кодером) функций Уолша.
Это устройство управляется группой из шести последовательных двоичных разрядов, которые выдаются сверточным кодером с прямым исправлением ошибок. Группа из шести двоичных разрядов определяет, какая из 64 возможных последовательностей Уолша будет передаваться. Последовательность Уолша содержит 64 бита. Поэтому частота следования "элементарных посылок" Уолша должна быть 9600 • 3 • (1/6) • 64 = 307 200 Гц при скорости передачи данных 9600 бит/с.
В канале связи "подвижный объект - микросот" обычная короткая ПС последовательность используется во всех несущих речевых сигналов, а кодирование адреса пользователя производится с помощью генератора ПС последовательности в устройстве абонента. ПС последовательность абонента предназначена только для связи с подвижным объектом в течение по меньшей мере всего вызова. ПС последовательность устройства абонента подвергается операции "исключающее ИЛИ" с обычными ПС последовательностями, длины которых, определяемые 32 768 посылками, увеличены до максимальной длины последовательности линейного сдвигового регистра.
Затем каждый полученный двоичный сигнал модулирует квадратурную несущую способом двухпозиционной фазовой манипуляции, сигналы суммируются для получения полного сигнала, проходят через полосовой фильтр и преобразуются в выходную промежуточную частоту. В примере осуществления изобретения часть операции фильтрации производится с помощью цифрового фильтра с конечной импульсной характеристикой (FIR), через который проходит последовательность выходных двоичных разрядов.
Затем выходному сигналу модулятора задается мощность, которая определяется сигналами цифрового управляющего процессора и приемника аналоговых сигналов; затем сигналы модулятора преобразуются в радиочастотные колебания путем смешивания их с сигналами синтезатора частоты, который и задает окончательную выходную частоту. Потом выходные сигналы усиливаются до необходимого уровня и через диплексер поступают в антенну для передачи.
В модуляторе передатчика 222 подвижного объекта цифровые данные из цифровой схемы с полосой частот модулирующих сигналов в устройстве абонента поступают в кодер. В примере осуществления изобретения этот кодер производит сверточное кодирование, кодирование блоков данных и кодирование функций Уолша. Кроме того, модулятор передатчика содержит генератор ПС последовательности, куда поступает адрес подвижного объекта, в соответствии с которым определяется ПС последовательность. Этот генератор в устройстве абонента выдает особую 42-разрядную последовательность, о которой говорилось применительно к микросоту. Другая особенность этого генератора, которая характерна для всех генераторов ПС последовательностей в устройствах абонентов, - это применение маски для генерации выходной ПС последовательности абонента. Например, в устройстве пользователя применяется 42-разрядная маска, каждый бит которой подвергается операции "исключающее ИЛИ" с выходным битом каждого регистра из группы сдвиговых регистров, образующих генератор ПС последовательности. Данные, полученные после маскирования и операции "исключающее ИЛИ", который подвергается бит сдвигового регистра, снова подвергается той же операции. В результате выдается ПС последовательность указанного генератора, которая и используется как ПС последовательность абонента.
Модулятор передатчика 222 содержит генераторы ПС последовательностей, которые выдают последовательности PNI и PNQ, и все они используются в подвижных объектах. В примере осуществления изобретения ПС последовательности - это последовательности со смещенными нулями, которые используются в канале "микросот - подвижный объект".
В примере осуществления изобретения в канале связи "подвижный объект - сот" при сверточном кодировании скорость кодирования r = 1/3, а ограничение по длине K = 9. Генераторы кодов имеют следующие характеристики: G1 = 557 (восьмиричный), G2 = 663 (восьмиричный) и G3 = 711 (восьмиричный). Как и в канале связи "сот - подвижный объект", применяется повторение кода для согласования четырех разных скоростей передачи данных вокодером кадрами длительностью 20 мс.
В отличие от канала "микросот - подвижный объект" повторяемые знаки кода с низким уровнем мощности не передаются. С номинальным уровнем мощности передается только один кодовый знак повторяемой группы.
В заключение отметим, что в данном примере осуществления изобретения повторение кода применяется только как возможная операция, чтобы приспособить схему задания переменной скорости передачи данных к схеме чередования и модуляции, как об этом будет сказано ниже.
В канале связи "подвижный объект - сот" работает блок чередования, который задает интервалы в 20 мс, точно равные длительности кадра вокодера. Число кодовых знаков в интервале 20 мс (при скорости передачи данных 9600 бит/с и скорости кодирования r = 1/3) равно 576.
Введем параметры N и B; в матрице блока чередования соответственно число рядов N = 32, а число колонок B = 18. В матрицу памяти блока чередования кодовые знаки записываются рядами, а считываются из колонок.
Вид модуляции - 64-ричная ортогональная передача дискретных данных. Иначе говоря, чередующиеся знаки кода объединяются в группы по 6 знаков для выбора одного из 64 независимых колебаний. Указанные колебания - это те функции Уолша, которые используются как перекрывающие последовательности в канале связи "сот - подвижный объект".
Временной интервал модуляции данных равен 208,33 мкс и считается интервалом знака функции Уолша. При скорости 9600 бит/с интервал 208,33 мкс соответствует двум информационным разрядам и эквивалентен 6 кодовым знакам при скорости передачи этих знаков 28800 знаков/с. Интервал знака функции Уолша делится на 64 одинаковых временных интервала, которые соответствуют элементарным посылкам Уолша, причем время длительности каждой посылки равно 208,33 : 64 = 3,25 мкс. Тогда частота следования элементарных посылок Уолша будет равна 1 : 3,25 мкс = 307,2 кГц. Поскольку расширение в обоих каналах симметричное и происходит с частотой 1,2288 МГц, то на элементарную посылку Уолша приходится ровно четыре ПС элементарные посылки.
В канале связи "подвижный объект - сот" используются всего три генератора ПС последовательностей: специальный 42-разрядный генератор ПС последовательности в устройстве абонента и два 15-разрядных генератора ПС последовательностей для каналов I и Q. После особой операции расширения в устройстве абонента происходит растягивание сигнала при помощи QPSK, как это делается в канале связи "сот - подвижный объект". В отличие от этого канала, где каждый сектор или сот идентифицируется определенными последовательностями длиной 215, здесь все подвижные объекты пользуются одинаковыми ПС последовательностями I и Q. Эти ПС последовательности - последовательности со смещенными нулями, которые применяются в канале "сот - подвижный объект" в качестве последовательностей пилот-сигналов.
В канале связи "микросот - подвижный объект" применяется повторение кода и масштабирование энергии для согласования переменных скоростей вокодера. В канале связи "подвижный объект - микросот" применяется другая операция на основе пакетной передачи данных.
Вокодер выдает информацию с четырьмя разными скоростями 9600, 4800, 2400 и 1200 бит/с при длительности кадра 20 мс, как и в канале связи "сот - подвижный объект". В сверточном кодере информационные разряды кодируются со скоростью r = 1/3, а кодовые знаки повторяются 2, 4 и 8 раз при трех меньших скоростях передачи. Таким образом, постоянная скорость передачи данных равна 28800 знаков/с.
После операции кодирования кодовые знаки чередуются в блоке чередования, который охватывает точно один кадр вокодера или 20 мс. Сверточный кодер каждый 20 мс выдает 576 кодовых знаков, причем некоторые из них могут повторяться.
Кадр вокодера длительностью 20 мс делится на 16 участков по 1,25 мс. Разрядность знаков в канале "подвижный объект - сот" такова, что в каждом участке помещаются 36 кодовых знаков со скоростью 28800 знаков/с, что эквивалентно 6 знакам Уолша при скорости 4800 знаков/с. Если скорость передачи в два раза меньше, т. е. 4800 бит/с, то участки объединяются в 8 групп, в каждой из которых содержится два участка. Если скорость в четыре раза меньше, т. е. 2400 бит/с, то участки объединяются в 4 группы, в каждой из которых содержится 4 участка, и, наконец, если скорость передачи в 8 раз меньше, т.е. 1200 бит/с, то участки объединяются в 2 группы по 8 участков в каждой.
Для инициации вызова подвижный объект должен иметь средства сигнализации, позволяющие прервать связь с другой системой при помощи сотового абонентского узла. В канале связи "подвижный объект - микросот" возможным способом доступа может быть ALOHA. При этом примерная скорость передачи в битах по обратному каналу равна 4800 бит/с. Разрешающий доступ к каналу пакет данных содержит заголовок и последующую информацию.
В данном примере осуществления изобретения длина заголовка - это целое число, кратное кадрам длительностью 20 мс, и представляется параметром вида сектор/сот, который подвижный объект принимает в одном из сообщений канала страничной памяти. Поскольку приемники сота используют заголовки для определения задержки при распространении, то данный способ позволяет длину заголовка менять исходя из радиуса сота. ПС код устройств абонентов, который применяется для доступа к каналу, либо предварительно компонуется, либо передается в подвижные объекты по каналу страничной памяти.
При передаче заголовка характеристики модуляции постоянны и неизменны. Применяемое для передачи заголовка ортогональное колебание соответствует функции Уолша, содержащей только нули, т.е. w0. Отметим, что ввод в сверточный кодер только нулей приводит к генерации нужного колебания w0.
Разрешающий доступ к каналу пакет данных может содержать один или максимум два кадра длительностью 20 мс. Кодирование, чередование и модуляция данных выбранного канала производится так, как это делается при работе с данными речевого канала, который передает информацию со скоростью 4800 бит/с. Различие между ними в том, что не применяется пакетная передача данных и передаются все кодовые знаки.
В примере осуществления изобретения указанное отношение сектор/сот требует, чтобы подвижные объекты передавали заголовок длительностью 40 мс, а для сообщения о запросе канала требуется один кадр. Положим, что Np - число кадров заголовка, K - количество интервалов по 20 мс, считая от заданного начала отсчета времени. Тогда подвижные объекты могут начать передачу по выделенному каналу лишь тогда, когда справедливо уравнение (K, Np + 2) = 0.
Сравнивая данный вариант с другими системами связи, отметим, что здесь возможны перестановки различных операций кодирования с исправлением ошибок, последовательности операций ортогонального кодирования и ПС кодирования, чтобы улучшить работу системы.
Описанные выше предпочтительные варианты помогут специалистам в этой области техники воспользоваться изобретением. В примере осуществления изобретения специалисты могут достаточно просто внести различные изменения, а рассмотренные общие принципы можно использовать в других вариантах.
Изобретение не ограничено рамками приведенных вариантов и может найти самое широкое применение там, где можно использовать принципы и новые рассмотренные особенности системы связи.

Claims (21)

1. Система связи с коллективным доступом и кодовым разделением каналов СДМА, содержащая множество абонентских устройств и множество базовых станций, использующих сигналы СДМА и имеющих антенную систему, отличающаяся тем, что антенная система содержит множество разнесенных антенн, средства распределения сигналов, выполненные с возможностью передачи сигналов СДМА между базовой станцией и разнесенными антеннами, и множество средств задержки, выполненных с возможностью формирования определенных временных задержек, причем указанные разнесенные антенны соединены через средства распределения сигналов с соответствующими средствами задержки и последовательно подключены через средства распределения сигналов к базовой станции.
2. Система по п.1, отличающаяся тем, что средства распределения сигналов выполнены в виде передающей кабельной сети, обеспечивающей последовательное соединение разнесенных антенн, а также подключение первой из разнесенных антенн к базовой станции.
3. Система по п.2, отличающаяся тем, что сигналы связи СДМА формируются с помощью широкополосной модуляции в соответствии с псевдослучайным расширяющим кодом, содержащим индивидуальную последовательность двоичных элементарных посылок, каждая из которых имеет предварительно определенную длительность, причем средства задержки содержат множество элементов задержки, расположенных в кабельной сети между соседними соединенными друг с другом разнесенными антеннами, и каждый элемент задержки задерживает сигналы СДМА по меньшей мере на время, соответствующее длительности одной элементарной посылки.
4. Система по п.1, отличающаяся тем, что каждая из разнесенных антенн имеет предварительно определенную диаграмму направленности, причем антенны расположены с возможностью перекрытия их диаграмм направленности.
5. Система по п.4, отличающаяся тем, что разнесенные антенны расположены с возможностью полного перекрытия их диаграмм направленности.
6. Система по п.1, отличающаяся тем, что средства распределения сигналов содержит местную антенну, электрически соединенную с базовой станцией, и множество удаленных разнесенных антенн, связанных с местной антенной электромагнитным излучением, причем каждая удаленная антенна связана с соответствующей одной из разнесенных антенн.
7. Система по п.6, отличающаяся тем, что сигналы связи СДМА формируются с помощью широкополосной модуляции в соответствии с псевдослучайным расширяющим кодом, содержащим индивидуальную последовательность двоичных элементарных посылок, каждая из которых имеет предварительно определенную длительность, причем средства задержки содержат множество элементов задержки, расположенных между разнесенными антеннами и удаленными антеннами, а каждый элемент задержки задерживает сигналы СДМА по меньшей мере на время, соответствующее длительности одной элементарной посылки.
8. Система по п.6, отличающаяся тем, что каждая из разнесенных антенн имеет предварительно определенную диаграмму направленности, причем разнесенные антенны расположены с возможностью перекрытия их диаграмм направленности.
9. Система по п.8, отличающаяся тем, что разнесенные антенны расположены с возможностью полного перекрытия их диаграмм направленности.
10. Система связи абонентских устройств по радиоканалу с удаленными абонентскими устройствами, содержащая множество абонентских устройств и базовых станций, отличающаяся тем, что каждая базовая станция содержит оконечную аппаратуру связи для приема и широкополосной модуляции информационных сигналов абонентских устройств системы, подключенную последовательно с антенной системой, выполненной с возможностью приема и многократной передачи промодулированных в широкой полосе частот информационных сигналов, причем каждый передаваемый промодулированный в широкой полосе частот информационный сигнал задерживается на предварительно определенное время относительно другого переданного информационного сигнала.
11. Система по п. 10, отличающаяся тем, что антенная система содержит множество разнесенных антенн, средства распределения сигналов для передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств от оконечной аппаратуры связи к каждой из разнесенных антенн и средства задержки, подключенные к разнесенным антеннам через соответствующие средства распределения.
12. Система по п.11, отличающаяся тем, что промодулированные в широкой полосе частот информационные сигналы абонентских устройств системы сформированы в виде прямой последовательности сигналов, промодулированных в широкой полосе частот с использованием псевдослучайного расширяющего кода, содержащего определенную последовательность двоичных элементарных посылок, каждая из которых имеет предварительно определенную длительность.
13. Система по п.11, отличающаяся тем, что средства задержки содержат множество элементов задержки, каждый из которых подключен к соответствующей антенне, причем каждый элемент задержки задерживает на предварительно определенное время промодулированный в широкой полосе частот информационный сигнал абонентского устройства системы и каждая задержка отличается одна от другой по меньшей мере на отрезок времени, соответствующий длительности одной элементарной посылки.
14. Система связи по п.10, отличающаяся тем, что абонентские устройства удаленной системы выполнены с возможностью установления связи с абонентскими устройствами системы и абонентскими устройствами другой удаленной системы через базовую станцию путем передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств удаленной системы на базовую станцию для пересылки сигналов, предназначенных для приема абонентскими устройствами системы и абонентскими устройствами удаленной системы, при этом разнесенные антенны дополнительно формируют набор сигналов, составленных из переданных абонентскими устройствами удаленных систем промодулированных в широкой полосе частот информационных сигналов с обеспечением для каждой из набора промодулированных в широкой полосе частот информационных сигналов абонентских устройств удаленных систем предварительно определенного временного сдвига относительно друг друга и с обеспечением каждого из указанных временных сдвигов промодулированных в широкой полосе частот информационных сигналов абонентских устройств удаленных систем при поступлении их в оконечную аппаратуру связи.
15. Система связи по п.11, отличающаяся тем, что абонентские устройства удаленной системы выполнены с возможностью устанавливать связь с абонентскими устройствами системы связи и другой удаленной системы связи через базовую станцию путем передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств удаленной системы на базовую станцию для передачи на предназначенные для приема абонентские устройства системы и абонентские устройства удаленной системы, причем разнесенные антенны выполнены с возможностью приема переданных абонентскими устройствами удаленной системы промодулированных в широкой полосе частот информационных сигналов, при этом средства распределения сигналов выполнены с возможностью передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств удаленной системы от разнесенных антенн к оконечной аппаратуре связи, а средства задержки выполнены с возможностью выбора для каждой из разнесенных антенн, содержащих промодулированные в широкой полосе частот информационные сигналы абонентских устройств удаленной системы, предварительно определенного временного сдвига между сигналами с помощью средства распределения сигналов к оконечной аппаратуре связи.
16. Система местной связи для усовершенствования передачи информационных сигналов между абонентскими устройствами системы местной связи, а также между абонентскими устройствами системы местной связи и абонентскими устройствами внешней сети, в которой ряд абонентских систем местной связи содержит выносную оконечную аппаратуру для связи с системой местной связи при помощи радиоканала базовой станции, с использованием сигналов коллективного доступа с кодовым разделением каналов, отличающаяся тем, что содержит учрежденческую телефонную станцию с исходящей и входящей связью, связанную с ней базовую станцию, содержащую оконечную аппаратуру связи, выполненную с возможностью приема и прямой последовательной широкополосной модуляции информационного сигнала, предназначенного для приема выносной оконечной аппаратурой абонентского устройства с использованием псевдослучайного расширяющего кода, содержащего индивидуальную последовательность двоичных элементарных посылок предварительно определенной длительности, и подключенную к ней антенную систему, выполненную с возможностью приема промодулированного в широкой полосе частот информационного сигнала и его многократной передачи, причем каждый переданный информационный сигнал, промодулированный в широкой полосе частот, задерживается относительно другого сигнала по меньшей мере на время, соответствующее длительности элементарной посылки.
17. Система по п. 16, отличающаяся тем, что антенная система содержит множество разнесенных антенн, средства распределения сигналов для передачи промодулированных в широкой полосе частот информационных сигналов от оконечной аппаратуры связи к каждой из разнесенных антенн и средства задержки, подключенные к разнесенным антеннам и средствам распределения сигналов для обеспечения увеличения времени задержки промодулированного в широкой полосе частот информационного сигнала на время, равное длительности одной элементарной посылки, подводимой с помощью средств распределения сигналов к каждой из разнесенных антенн.
18. Система по п. 16, отличающаяся тем, что учрежденческая телефонная станция с исходящей и входящей связью подключена к внешней сети и к сети местных абонентских устройств в системе местной связи.
19. Система по п.18, отличающаяся тем, что абонентские устройства выносной оконечной аппаратуры связи выполнены с возможностью установления связи с абонентскими устройствами внешней сети системы местной связи и с другими абонентскими устройствами выносной оконечной аппаратуры системы местной связи путем передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств выносной оконечной аппаратуры связи на базовую станцию, причем антенны принимают переданные от выносной оконечной аппаратуры связи абонентов промодулированные в широкой полосе частот информационные сигналы, а средства распределения сигналов выполнены с возможностью передачи промодулированных в широкой полосе частот информационных сигналов абонентских устройств выносной оконечной аппаратуры связи от антенн к указанной оконечной аппаратуре связи, а средства задержки выполнены с возможностью обеспечения для каждой выносной антенны, принимающей промодулированные в широкой полосе частот информационные сигналы абонентских устройств выносной оконечной аппаратуры связи предварительно определенного временного сдвига указанных сигналов, подводимых с помощью средства распределения сигналов к оконечной аппаратуре связи.
20. Способ формирования многолучевого распределения сигналов СДМА, согласно которому производят передачу информационных сигналов от передающей к приемной оконечной аппаратуре связи в виде сигналов связи с коллективным доступом и кодовым разделением каналов, отличающийся тем, что на передней стороне последовательно производят задержку указанного сигнала с последующей передачей сигналов с задержкой с разнесенных антенн.
21. Способ по п.20, отличающийся тем, что формируют сигналы связи с СДМА с помощью широкополосной модуляции информационных сигналов в соответствии с псевдослучайным расширяющим кодом с индивидуальной последовательностью двоичных элементарных посылок предварительно определенной длительности, причем на этапе формирования временных предварительно заданных задержек сигнала связи СДМА, доставляемого к каждой из антенн, каждая задержка отличается от другой по меньшей мере на величину длительности одной элементарной посылки.
RU93043671A 1990-12-07 1991-12-06 Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи RU2111619C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62411890A 1990-12-07 1990-12-07
US621.118 1990-12-07
US624,118 1990-12-07
PCT/US1991/009295 WO1992010890A1 (en) 1990-12-07 1991-12-06 Cdma microcellular telephone system and distributed antenna system therefor

Publications (2)

Publication Number Publication Date
RU93043671A RU93043671A (ru) 1995-12-20
RU2111619C1 true RU2111619C1 (ru) 1998-05-20

Family

ID=24500729

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93043671A RU2111619C1 (ru) 1990-12-07 1991-12-06 Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи

Country Status (17)

Country Link
US (1) US5280472A (ru)
JP (1) JP3325890B2 (ru)
KR (1) KR970000790B1 (ru)
AU (1) AU652602B2 (ru)
BG (1) BG61052B1 (ru)
BR (1) BR9107213A (ru)
CA (1) CA2097066C (ru)
CZ (1) CZ282725B6 (ru)
FI (1) FI111306B (ru)
HU (1) HU216923B (ru)
IL (1) IL100213A (ru)
MX (1) MX173446B (ru)
NO (1) NO316199B1 (ru)
RO (1) RO119761B1 (ru)
RU (1) RU2111619C1 (ru)
SK (1) SK280276B6 (ru)
WO (1) WO1992010890A1 (ru)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782810B2 (en) 2004-12-03 2010-08-24 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving packet data symbol in a mobile communication system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7991065B2 (en) 2004-06-30 2011-08-02 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US8018969B2 (en) 2004-03-12 2011-09-13 Samsung Electronics Co., Ltd Method and apparatus for constructing MAP IE using reduced CID in broadband OFDMA systems
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8102832B2 (en) 2003-05-12 2012-01-24 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
RU2446577C2 (ru) * 2007-08-24 2012-03-27 Интердиджитал Пэйтент Холдингз, Инк. Способ и устройство для надежной передачи радиоблоков с совмещенными полями acк/nack
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
RU2453077C2 (ru) * 2007-09-21 2012-06-10 Квэлкомм Инкорпорейтед Регулирование помех с использованием чередований запросов harq
US8201039B2 (en) 2003-08-05 2012-06-12 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
RU2468540C1 (ru) * 2008-12-24 2012-11-27 Нек Корпорейшн Система связи
US8325844B2 (en) 2004-01-13 2012-12-04 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8351469B2 (en) 2006-12-22 2013-01-08 Fujitsu Limited Radio communication method and a base station and user terminal thereof
RU2474060C2 (ru) * 2002-10-25 2013-01-27 Квэлкомм Инкорпорейтед Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US8433005B2 (en) 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8462643B2 (en) 2002-10-25 2013-06-11 Qualcomm Incorporated MIMO WLAN system
US8477592B2 (en) 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
US8483188B2 (en) 2002-10-25 2013-07-09 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
RU2491793C2 (ru) * 2005-10-27 2013-08-27 Квэлкомм Инкорпорейтед Способ и устройство для сбережения энергии посредством назначения чередований кадров в системах связи
US8526966B2 (en) 2003-02-18 2013-09-03 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8539119B2 (en) 2004-11-24 2013-09-17 Qualcomm Incorporated Methods and apparatus for exchanging messages having a digital data interface device message format
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8548387B2 (en) 2003-03-06 2013-10-01 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8577379B2 (en) 2003-09-25 2013-11-05 Qualcomm Incorporated Method of handling automatic call origination and system determination on multi-network mobile devices
US8576894B2 (en) 2003-03-06 2013-11-05 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
EA018838B1 (ru) * 2006-06-16 2013-11-29 Шарп Кабусики Кайся Способ идентификации сектора, мобильная станция и система мобильной связи
US8606946B2 (en) 2003-11-12 2013-12-10 Qualcomm Incorporated Method, system and computer program for driving a data signal in data interface communication data link
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US8625625B2 (en) 2004-03-10 2014-01-07 Qualcomm Incorporated High data rate interface apparatus and method
US8630318B2 (en) 2004-06-04 2014-01-14 Qualcomm Incorporated High data rate interface apparatus and method
US8635358B2 (en) 2003-09-10 2014-01-21 Qualcomm Incorporated High data rate interface
US8638870B2 (en) 2004-12-22 2014-01-28 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US8645566B2 (en) 2004-03-24 2014-02-04 Qualcomm Incorporated High data rate interface apparatus and method
US8650304B2 (en) 2004-06-04 2014-02-11 Qualcomm Incorporated Determining a pre skew and post skew calibration data rate in a mobile display digital interface (MDDI) communication system
RU2507699C2 (ru) * 2003-01-07 2014-02-20 Квэлкомм Инкорпорейтед Схема передачи пилот-сигналов для систем радиосвязи с передачей на несколько несущих
US8667363B2 (en) 2004-11-24 2014-03-04 Qualcomm Incorporated Systems and methods for implementing cyclic redundancy checks
US8670457B2 (en) 2003-12-08 2014-03-11 Qualcomm Incorporated High data rate interface with improved link synchronization
US8681817B2 (en) 2003-06-02 2014-03-25 Qualcomm Incorporated Generating and implementing a signal protocol and interface for higher data rates
US8687658B2 (en) 2003-11-25 2014-04-01 Qualcomm Incorporated High data rate interface with improved link synchronization
US8692839B2 (en) 2005-11-23 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8694663B2 (en) 2001-09-06 2014-04-08 Qualcomm Incorporated System for transferring digital data at a high rate between a host and a client over a communication path for presentation to a user
US8692838B2 (en) 2004-11-24 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8694652B2 (en) 2003-10-15 2014-04-08 Qualcomm Incorporated Method, system and computer program for adding a field to a client capability packet sent from a client to a host
US8699330B2 (en) 2004-11-24 2014-04-15 Qualcomm Incorporated Systems and methods for digital data transmission rate control
US8699452B2 (en) 2003-02-18 2014-04-15 Qualcomm Incorporated Congestion control in a wireless data network
US8705521B2 (en) 2004-03-17 2014-04-22 Qualcomm Incorporated High data rate interface apparatus and method
US8705571B2 (en) 2003-08-13 2014-04-22 Qualcomm Incorporated Signal interface for higher data rates
US8711763B2 (en) 2002-10-25 2014-04-29 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8724447B2 (en) 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
US8723705B2 (en) 2004-11-24 2014-05-13 Qualcomm Incorporated Low output skew double data rate serial encoder
RU2516252C2 (ru) * 2009-08-21 2014-05-20 Фудзицу Лимитед Ретрансляционный узел, система дуплексной связи с временным разделением и способ осуществления связи
US8730069B2 (en) 2005-11-23 2014-05-20 Qualcomm Incorporated Double data rate serial encoder
US8745251B2 (en) 2000-12-15 2014-06-03 Qualcomm Incorporated Power reduction system for an apparatus for high data rate signal transfer using a communication protocol
US8750151B2 (en) 2002-10-25 2014-06-10 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8756294B2 (en) 2003-10-29 2014-06-17 Qualcomm Incorporated High data rate interface
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
RU2528134C1 (ru) * 2013-10-11 2014-09-10 Открытое акционерное общество "Камчатский гидрофизический институт" (ОАО "КГФИ") Устройство для декодирования сигналов, прошедших многолучевой канал связи
US8837305B2 (en) 2007-11-27 2014-09-16 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
US8873365B2 (en) 2002-10-25 2014-10-28 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8873584B2 (en) 2004-11-24 2014-10-28 Qualcomm Incorporated Digital data interface device
US8909174B2 (en) 2004-05-07 2014-12-09 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
RU2544786C2 (ru) * 2013-06-03 2015-03-20 Государственное казенное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ формирования защищенной системы связи, интегрированной с единой сетью электросвязи в условиях внешних деструктивных воздействий
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
RU2562965C1 (ru) * 2014-08-05 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева", НГТУ Способ передачи данных по оптическому каналу связи и устройство для его реализации
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US9154274B2 (en) 2002-10-25 2015-10-06 Qualcomm Incorporated OFDM communication system with multiple OFDM symbol sizes
RU2574612C2 (ru) * 2009-08-21 2016-02-10 Фудзицу Лимитед Ретрансляционный узел, система дуплексной связи с временным разделением и способ осуществления связи
US9312935B2 (en) 2002-10-25 2016-04-12 Qualcomm Incorporated Pilots for MIMO communication systems
US9374791B2 (en) 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
RU2607273C2 (ru) * 2012-02-20 2017-01-10 Сони Корпорейшн Устройство и способ управления передачей данных и система управления передачей данными
RU2638149C1 (ru) * 2017-02-13 2017-12-12 АО "Научно-технический центр радиоэлектронной борьбы" Устройство передачи данных
RU2649418C2 (ru) * 2016-05-23 2018-04-03 Алексей Романович Попов Способ передачи информации шумоподобными сигналами в мобильной системе связи тактического звена

Families Citing this family (437)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE460449B (sv) * 1988-02-29 1989-10-09 Ericsson Telefon Ab L M Cellindelat digitalt mobilradiosystem och foerfarande foer att oeverfoera information i ett digitalt cellindelat mobilradiosystem
SE8802229D0 (sv) 1988-06-14 1988-06-14 Ericsson Telefon Ab L M Forfarande vid mobilradiostation
US6389010B1 (en) * 1995-10-05 2002-05-14 Intermec Ip Corp. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US6693951B1 (en) * 1990-06-25 2004-02-17 Qualcomm Incorporated System and method for generating signal waveforms in a CDMA cellular telephone system
US5602834A (en) * 1990-12-07 1997-02-11 Qualcomm Incorporated Linear coverage area antenna system for a CDMA communication system
US5513176A (en) * 1990-12-07 1996-04-30 Qualcomm Incorporated Dual distributed antenna system
US5504936A (en) * 1991-04-02 1996-04-02 Airtouch Communications Of California Microcells for digital cellular telephone systems
US5243598A (en) * 1991-04-02 1993-09-07 Pactel Corporation Microcell system in digital cellular
US5815525A (en) 1991-05-13 1998-09-29 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5694414A (en) 1991-05-13 1997-12-02 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5796772A (en) 1991-05-13 1998-08-18 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5887020A (en) 1991-05-13 1999-03-23 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5790587A (en) 1991-05-13 1998-08-04 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5285469A (en) 1991-06-03 1994-02-08 Omnipoint Data Corporation Spread spectrum wireless telephone system
US5258995A (en) * 1991-11-08 1993-11-02 Teknekron Communications Systems, Inc. Wireless communication system
ZA931077B (en) 1992-03-05 1994-01-04 Qualcomm Inc Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
JPH05268658A (ja) * 1992-03-18 1993-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> Cdma通信方式
US5313457A (en) * 1992-04-14 1994-05-17 Trimble Navigation Limited Code position modulation system and method for multiple user satellite communications
US5627879A (en) * 1992-09-17 1997-05-06 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
US5844934A (en) * 1992-10-08 1998-12-01 Lund; Van Metre Spread spectrum communication system
US5570349A (en) * 1994-06-07 1996-10-29 Stanford Telecommunications, Inc. Wireless direct sequence spread spectrum digital cellular telephone system
US5548583A (en) * 1992-11-24 1996-08-20 Stanford Telecommuncations, Inc. Wireless telephone user location capability for enhanced 911 application
US5375140A (en) * 1992-11-24 1994-12-20 Stanford Telecommunications, Inc. Wireless direct sequence spread spectrum digital cellular telephone system
JP2777861B2 (ja) * 1992-12-10 1998-07-23 国際電信電話株式会社 移動通信方式
US5289499A (en) * 1992-12-29 1994-02-22 At&T Bell Laboratories Diversity for direct-sequence spread spectrum systems
DE69432844T2 (de) * 1993-04-29 2004-05-19 Ericsson Inc. Zeitdiversityübertragungssystem zum Herabsetzung der Nachbarkanalstörung in Mobiltelefonsystemen
US5437055A (en) * 1993-06-03 1995-07-25 Qualcomm Incorporated Antenna system for multipath diversity in an indoor microcellular communication system
JP3349778B2 (ja) * 1993-07-16 2002-11-25 松下電器産業株式会社 可変レート通信におけるレート判定方法およびその装置
US5442661A (en) * 1993-08-13 1995-08-15 Motorola Inc. Path gain estimation in a receiver
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
US5377226A (en) * 1993-10-19 1994-12-27 Hughes Aircraft Company Fractionally-spaced equalizer for a DS-CDMA system
US5490165A (en) * 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
WO1995012945A1 (en) * 1993-11-01 1995-05-11 Omnipoint Corporation Despreading/demodulating direct sequence spread spectrum signals
US6005856A (en) 1993-11-01 1999-12-21 Omnipoint Corporation Communication protocol for spread spectrum wireless communication system
US6094575A (en) 1993-11-01 2000-07-25 Omnipoint Corporation Communication system and method
US6088590A (en) 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
NZ264830A (en) * 1993-11-15 1996-11-26 Alcatel Australia Extending the range of a time division multiple access cellular communication system
US5659572A (en) 1993-11-22 1997-08-19 Interdigital Technology Corporation Phased array spread spectrum system and method
US5422908A (en) * 1993-11-22 1995-06-06 Interdigital Technology Corp. Phased array spread spectrum system and method
US5475735A (en) * 1993-12-02 1995-12-12 Motorola, Inc. Method of providing wireless local loop operation with local mobility for a subscribed unit
US6157811A (en) * 1994-01-11 2000-12-05 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
ZA95797B (en) 1994-02-14 1996-06-20 Qualcomm Inc Dynamic sectorization in a spread spectrum communication system
JP2876517B2 (ja) * 1994-02-16 1999-03-31 松下電器産業株式会社 Cdma/tdd方式基地局装置およびcdma/tdd方式移動局装置およびcdma/tdd方式無線通信システムおよびcdma/tdd方式無線通信方法
GB9402942D0 (en) * 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
CA2158270C (en) * 1994-02-17 1999-09-21 Michael D. Kotzin Method and apparatus for reducing self interference in a communication system
CA2145566C (en) * 1994-04-29 1999-12-28 Nambirajan Seshadri Methods of and devices for enhancing communications that use spread spectrum technology
US5751739A (en) * 1994-04-29 1998-05-12 Lucent Technologies, Inc. Methods of and devices for enhancing communications that use spread spectrum technology
US5859874A (en) * 1994-05-09 1999-01-12 Globalstar L.P. Multipath communication system optimizer
US5758287A (en) * 1994-05-20 1998-05-26 Airtouch Communications, Inc. Hub and remote cellular telephone system
JP3450436B2 (ja) * 1994-05-30 2003-09-22 キヤノン株式会社 ファクシミリ装置
US5787344A (en) 1994-06-28 1998-07-28 Scheinert; Stefan Arrangements of base transceiver stations of an area-covering network
FI943196A (fi) * 1994-07-04 1996-01-05 Nokia Telecommunications Oy Vastaanottomenetelmä
US5596333A (en) * 1994-08-31 1997-01-21 Motorola, Inc. Method and apparatus for conveying a communication signal between a communication unit and a base site
US5614914A (en) * 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
US5692007A (en) 1994-09-09 1997-11-25 Omnipoint Corporation Method and apparatus for differential phase encoding and decoding in spread-spectrum communication systems with continuous-phase modulation
US5648982A (en) 1994-09-09 1997-07-15 Omnipoint Corporation Spread spectrum transmitter
US5754585A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Method and apparatus for serial noncoherent correlation of a spread spectrum signal
US5953370A (en) 1994-09-09 1999-09-14 Omnipoint Corporation Apparatus for receiving and correlating a spread spectrum signal
US5629956A (en) 1994-09-09 1997-05-13 Omnipoint Corporation Method and apparatus for reception and noncoherent serial correlation of a continuous phase modulated signal
US5856998A (en) 1994-09-09 1999-01-05 Omnipoint Corporation Method and apparatus for correlating a continuous phase modulated spread spectrum signal
US5757847A (en) 1994-09-09 1998-05-26 Omnipoint Corporation Method and apparatus for decoding a phase encoded signal
US5627856A (en) 1994-09-09 1997-05-06 Omnipoint Corporation Method and apparatus for receiving and despreading a continuous phase-modulated spread spectrum signal using self-synchronizing correlators
US5659574A (en) 1994-09-09 1997-08-19 Omnipoint Corporation Multi-bit correlation of continuous phase modulated signals
US5963586A (en) 1994-09-09 1999-10-05 Omnipoint Corporation Method and apparatus for parallel noncoherent correlation of a spread spectrum signal
US5832028A (en) 1994-09-09 1998-11-03 Omnipoint Corporation Method and apparatus for coherent serial correlation of a spread spectrum signal
US5610940A (en) 1994-09-09 1997-03-11 Omnipoint Corporation Method and apparatus for noncoherent reception and correlation of a continous phase modulated signal
US5680414A (en) 1994-09-09 1997-10-21 Omnipoint Corporation Synchronization apparatus and method for spread spectrum receiver
US5754584A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Non-coherent spread-spectrum continuous-phase modulation communication system
US5881100A (en) 1994-09-09 1999-03-09 Omnipoint Corporation Method and apparatus for coherent correlation of a spread spectrum signal
US5784293A (en) * 1994-11-03 1998-07-21 Motorola, Inc. Apparatus and method for determining transmitted modulation symbols
US5742583A (en) * 1994-11-03 1998-04-21 Omnipoint Corporation Antenna diversity techniques
AU5425396A (en) * 1995-03-17 1996-10-08 Bell Atlantic Network Services, Inc. Television distribution system and method
US5659353A (en) * 1995-03-17 1997-08-19 Bell Atlantic Network Services, Inc. Television distribution system and method
US5627835A (en) * 1995-04-04 1997-05-06 Oki Telecom Artificial window size interrupt reduction system for CDMA receiver
KR0140131B1 (ko) * 1995-04-26 1998-07-01 김주용 이동통신 시스템에서 셀렉터와 다수개의 보코더 인터페이스 장치 및 방법
US5781541A (en) * 1995-05-03 1998-07-14 Bell Atlantic Network Services, Inc. CDMA system having time-distributed transmission paths for multipath reception
US5745484A (en) * 1995-06-05 1998-04-28 Omnipoint Corporation Efficient communication system using time division multiplexing and timing adjustment control
US6356607B1 (en) 1995-06-05 2002-03-12 Omnipoint Corporation Preamble code structure and detection method and apparatus
US5640416A (en) * 1995-06-07 1997-06-17 Comsat Corporation Digital downconverter/despreader for direct sequence spread spectrum communications system
US6351237B1 (en) 1995-06-08 2002-02-26 Metawave Communications Corporation Polarization and angular diversity among antenna beams
US5563610A (en) * 1995-06-08 1996-10-08 Metawave Communications Corporation Narrow beam antenna systems with angular diversity
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US7929498B2 (en) * 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US6885652B1 (en) * 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7123600B2 (en) * 1995-06-30 2006-10-17 Interdigital Technology Corporation Initial power control for spread-spectrum communications
US7020111B2 (en) * 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
GB2303490A (en) * 1995-07-21 1997-02-19 Northern Telecom Ltd An omnidirectional antenna scheme
US5930727A (en) * 1995-07-21 1999-07-27 Ericsson Inc. Analog fax and modem requests in a D-AMPS multi-line terminal system
US5918154A (en) * 1995-08-23 1999-06-29 Pcs Wireless, Inc. Communications systems employing antenna diversity
US5991308A (en) * 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US5793759A (en) * 1995-08-25 1998-08-11 Terayon Corporation Apparatus and method for digital data transmission over video cable using orthogonal cyclic codes
US6356555B1 (en) 1995-08-25 2002-03-12 Terayon Communications Systems, Inc. Apparatus and method for digital data transmission using orthogonal codes
US6665308B1 (en) 1995-08-25 2003-12-16 Terayon Communication Systems, Inc. Apparatus and method for equalization in distributed digital data transmission systems
US5768269A (en) * 1995-08-25 1998-06-16 Terayon Corporation Apparatus and method for establishing frame synchronization in distributed digital data communication systems
US6307868B1 (en) 1995-08-25 2001-10-23 Terayon Communication Systems, Inc. Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops
US5745837A (en) * 1995-08-25 1998-04-28 Terayon Corporation Apparatus and method for digital data transmission over a CATV system using an ATM transport protocol and SCDMA
US5805583A (en) * 1995-08-25 1998-09-08 Terayon Communication Systems Process for communicating multiple channels of digital data in distributed systems using synchronous code division multiple access
US5859854A (en) * 1995-08-28 1999-01-12 Metawave Communications Corporation System and method for frequency multiplexing antenna signals
US5896576A (en) * 1995-12-06 1999-04-20 Rockwell International Corporation Audio mute for digital cordless telephone
US5764689A (en) * 1995-12-06 1998-06-09 Rockwell International Corporation Variable digital automatic gain control in a cordless direct sequence spread spectrum telephone
US5892792A (en) * 1995-12-06 1999-04-06 Rockwell International Corporation 12-chip coded spread spectrum modulation for direct conversion radio architecture in a digital cordless telephone
US5828692A (en) * 1995-12-06 1998-10-27 Rockwell International Corporation Baseband demodulator for polar or rectangular modulated signal in a cordless spread spectrum telephone
US5732111A (en) * 1995-12-06 1998-03-24 Rockwell International Corporation Frequency error compensation for direct sequence spread spectrum systems
US5930286A (en) * 1995-12-06 1999-07-27 Conexant Systems, Inc. Gain imbalance compensation for a quadrature receiver in a cordless direct sequence spread spectrum telephone
US5778022A (en) * 1995-12-06 1998-07-07 Rockwell International Corporation Extended time tracking and peak energy in-window demodulation for use in a direct sequence spread spectrum system
US5799034A (en) * 1995-12-06 1998-08-25 Rockwell International Corporation Frequency acquisition method for direct sequence spread spectrum systems
US5758263A (en) * 1995-12-07 1998-05-26 Rockwell International Corporation Selection of communication channel in a digital cordless telephone
US6014570A (en) * 1995-12-18 2000-01-11 The Board Of Trustees Of The Leland Stanford Junior University Efficient radio signal diversity combining using a small set of discrete amplitude and phase weights
US5844947A (en) * 1995-12-28 1998-12-01 Lucent Technologies Inc. Viterbi decoder with reduced metric computation
US5884147A (en) * 1996-01-03 1999-03-16 Metawave Communications Corporation Method and apparatus for improved control over cellular systems
US5839052A (en) * 1996-02-08 1998-11-17 Qualcom Incorporated Method and apparatus for integration of a wireless communication system with a cable television system
US5867763A (en) * 1996-02-08 1999-02-02 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable T.V. system
SE504577C2 (sv) * 1996-02-16 1997-03-10 Ericsson Telefon Ab L M Metod och anordning för kanaltilldelning i ett radiokommunikationssystem
US6205132B1 (en) * 1996-02-22 2001-03-20 Korea Mobile Telecommunications Corp. Method for accessing a cell using two pilot channels in a CDMA communication system of an asynchronous or quasi-synchronous mode
US5819181A (en) * 1996-02-29 1998-10-06 Motorola, Inc. Apparatus and method for mitigating excess time delay in a wireless communication system
KR100216349B1 (ko) * 1996-05-09 1999-08-16 윤종용 코드분할다중접속 통신시스템의 전파중계장치
US5926470A (en) * 1996-05-22 1999-07-20 Qualcomm Incorporated Method and apparatus for providing diversity in hard handoff for a CDMA system
US6396804B2 (en) * 1996-05-28 2002-05-28 Qualcomm Incorporated High data rate CDMA wireless communication system
US6678311B2 (en) 1996-05-28 2004-01-13 Qualcomm Incorporated High data CDMA wireless communication system using variable sized channel codes
US6101176A (en) * 1996-07-24 2000-08-08 Nokia Mobile Phones Method and apparatus for operating an indoor CDMA telecommunications system
US6430216B1 (en) 1997-08-22 2002-08-06 Data Fusion Corporation Rake receiver for spread spectrum signal demodulation
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US7274332B1 (en) 1996-09-09 2007-09-25 Tracbeam Llc Multiple evaluators for evaluation of a purality of conditions
US6249252B1 (en) 1996-09-09 2001-06-19 Tracbeam Llc Wireless location using multiple location estimators
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
US7714778B2 (en) * 1997-08-20 2010-05-11 Tracbeam Llc Wireless location gateway and applications therefor
WO1998010307A1 (en) * 1996-09-09 1998-03-12 Dennis Jay Dupray Location of a mobile station
US7903029B2 (en) 1996-09-09 2011-03-08 Tracbeam Llc Wireless location routing applications and architecture therefor
US5825762A (en) * 1996-09-24 1998-10-20 Motorola, Inc. Apparatus and methods for providing wireless communication to a sectorized coverage area
US5825826A (en) * 1996-09-30 1998-10-20 Motorola, Inc. Method and apparatus for frequency domain ripple compensation for a communications transmitter
US6141373A (en) * 1996-11-15 2000-10-31 Omnipoint Corporation Preamble code structure and detection method and apparatus
WO1998027748A2 (en) * 1996-12-15 1998-06-25 Foxcom Wireless Ltd. Wireless communications station and system
IL119832A (en) * 1996-12-15 2001-01-11 Foxcom Wireless Ltd Wireless communications systems employing optical fibers
US5909462A (en) * 1996-12-31 1999-06-01 Lucent Technologies Inc. System and method for improved spread spectrum signal detection
US5953325A (en) * 1997-01-02 1999-09-14 Telefonaktiebolaget L M Ericsson (Publ) Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas
US6052599A (en) * 1997-01-30 2000-04-18 At & T Corp. Cellular communication system with multiple same frequency broadcasts in a cell
US6112086A (en) 1997-02-25 2000-08-29 Adc Telecommunications, Inc. Scanning RSSI receiver system using inverse fast fourier transforms for a cellular communications system with centralized base stations and distributed antenna units
AU6113198A (en) 1997-03-03 1998-09-22 Joseph Shapira Method and system for improving communication
US6900775B2 (en) 1997-03-03 2005-05-31 Celletra Ltd. Active antenna array configuration and control for cellular communication systems
US6085076A (en) * 1997-04-07 2000-07-04 Omnipoint Corporation Antenna diversity for wireless communication system
US5953659A (en) * 1997-05-05 1999-09-14 Motorola, Inc. Method and apparatus for producing delay of a carrier signal for implementing spatial diversity in a communications system
US6233254B1 (en) * 1997-06-06 2001-05-15 Glen A. Myers Use of feature characteristics including times of occurrence to represent independent bit streams or groups of bits in data transmission systems
SE9702271D0 (sv) * 1997-06-13 1997-06-13 Ericsson Telefon Ab L M Återanvändning av fysisk kontrollkanal i ett distribuerat cellulärt radiokommunikationssystem
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6185199B1 (en) * 1997-07-23 2001-02-06 Qualcomm Inc. Method and apparatus for data transmission using time gated frequency division duplexing
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
KR100244979B1 (ko) * 1997-08-14 2000-02-15 서정욱 부호분할다중접속 방식의 개인휴대통신용 마이크로셀룰라 이동통신 시스템
GB2343801B (en) 1997-08-21 2001-09-12 Data Fusion Corp Method and apparatus for acquiring wide-band pseudorandom noise encoded waveforms
US20020051434A1 (en) * 1997-10-23 2002-05-02 Ozluturk Fatih M. Method for using rapid acquisition spreading codes for spread-spectrum communications
US6259687B1 (en) * 1997-10-31 2001-07-10 Interdigital Technology Corporation Communication station with multiple antennas
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US9118387B2 (en) * 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US8175120B2 (en) 2000-02-07 2012-05-08 Ipr Licensing, Inc. Minimal maintenance link to support synchronization
US7394791B2 (en) * 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US7936728B2 (en) * 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6512755B1 (en) 1997-12-29 2003-01-28 Alcatel Usa Sourcing, L.P. Wireless telecommunications access system
US6570844B1 (en) 1997-12-29 2003-05-27 Alcatel Usa Sourcing, L.P. System and method for providing redundancy in a telecommunications system
US6125109A (en) * 1998-02-24 2000-09-26 Repeater Technologies Delay combiner system for CDMA repeaters and low noise amplifiers
JP3981899B2 (ja) * 1998-02-26 2007-09-26 ソニー株式会社 送信方法、送信装置及び受信装置
US6366588B1 (en) * 1998-02-27 2002-04-02 Lucent Technologies Inc. Method and apparatus for achieving data rate variability in orthogonal spread spectrum communication systems
US6178333B1 (en) * 1998-04-15 2001-01-23 Metawave Communications Corporation System and method providing delays for CDMA nulling
US6205127B1 (en) * 1998-04-21 2001-03-20 Lucent Technologies, Inc. Wireless telecommunications system that mitigates the effect of multipath fading
US6879571B1 (en) * 1998-05-13 2005-04-12 Hitachi, Ltd. Code division multiple access mobile communication system
US8134980B2 (en) * 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US6366571B1 (en) 1998-06-01 2002-04-02 Ameritech Corporation Integration of remote microcell with CDMA infrastructure
US7773566B2 (en) * 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6067324A (en) * 1998-06-30 2000-05-23 Motorola, Inc. Method and system for transmitting and demodulating a communications signal using an adaptive antenna array in a wireless communication system
US6373832B1 (en) 1998-07-02 2002-04-16 Lucent Technologies Inc. Code division multiple access communication with enhanced multipath diversity
US5978365A (en) * 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
US6661996B1 (en) 1998-07-14 2003-12-09 Globalstar L.P. Satellite communication system providing multi-gateway diversity to a mobile user terminal
US6100843A (en) 1998-09-21 2000-08-08 Tantivy Communications Inc. Adaptive antenna for use in same frequency networks
US6404386B1 (en) 1998-09-21 2002-06-11 Tantivy Communications, Inc. Adaptive antenna for use in same frequency networks
US6933887B2 (en) * 1998-09-21 2005-08-23 Ipr Licensing, Inc. Method and apparatus for adapting antenna array using received predetermined signal
US6989797B2 (en) * 1998-09-21 2006-01-24 Ipr Licensing, Inc. Adaptive antenna for use in wireless communication systems
USH2106H1 (en) * 1998-09-24 2004-07-06 Opuswave Networks, Inc. Method and apparatus for multiple access communication
US6198921B1 (en) 1998-11-16 2001-03-06 Emil Youssefzadeh Method and system for providing rural subscriber telephony service using an integrated satellite/cell system
US20030146871A1 (en) * 1998-11-24 2003-08-07 Tracbeam Llc Wireless location using signal direction and time difference of arrival
US8135413B2 (en) * 1998-11-24 2012-03-13 Tracbeam Llc Platform and applications for wireless location and other complex services
US6128330A (en) 1998-11-24 2000-10-03 Linex Technology, Inc. Efficient shadow reduction antenna system for spread spectrum
US6847658B1 (en) 1998-12-10 2005-01-25 Qualcomm, Incorporated Demultiplexer for channel interleaving
US6542486B1 (en) * 1998-12-22 2003-04-01 Nortel Networks Limited Multiple technology vocoder and an associated telecommunications network
US6606505B1 (en) 1998-12-31 2003-08-12 At&T Corp. Wireless centrex call screen
US6618600B1 (en) 1998-12-31 2003-09-09 At&T Corp. Distinctive ringing in a wireless centrex system
US6819945B1 (en) 1998-12-31 2004-11-16 At&T Corp. Wireless centrex feature activation/deactivation
US6631258B1 (en) 1998-12-31 2003-10-07 At&T Corp. Busy call forwarding in a wireless centrex services system
US6771953B1 (en) 1998-12-31 2004-08-03 At&T Corp. Wireless centrex call transfer
US6745025B1 (en) 1998-12-31 2004-06-01 At&T Corp. Time-of-day call forwarding in a wireless centrex services system
US6977910B1 (en) * 1998-12-31 2005-12-20 Texas Instruments Incorporated Power control with space time transmit diversity
US6587683B1 (en) 1998-12-31 2003-07-01 At&T Corp. Unconditional call forwarding in a wireless centrex services system
US6711401B1 (en) 1998-12-31 2004-03-23 At&T Corp. Wireless centrex call return
US6606493B1 (en) 1998-12-31 2003-08-12 At&T Corp. Wireless centrex conference call deleting a party
US6654603B1 (en) 1998-12-31 2003-11-25 At&T Corp. Call waiting in a wireless centrex system
US6374102B1 (en) 1998-12-31 2002-04-16 At+T Corp. User proactive call handling
US6535730B1 (en) 1998-12-31 2003-03-18 At&T Corp. Wireless centrex conference call adding a party
US6574470B1 (en) 1998-12-31 2003-06-03 At&T Corp. Programmable ring-call forwarding in a wireless centrex services system
US6738615B1 (en) 1998-12-31 2004-05-18 At&T Corp. Wireless centrex caller ID
US6643507B1 (en) 1998-12-31 2003-11-04 At&T Corp. Wireless centrex automatic callback
US6961559B1 (en) 1998-12-31 2005-11-01 At&T Corp. Distributed network voice messaging for wireless centrex telephony
US6654615B1 (en) 1998-12-31 2003-11-25 Albert Chow Wireless centrex services
US6591115B1 (en) 1998-12-31 2003-07-08 At&T Corp. Wireless centrex call hold
US6483823B1 (en) * 1999-02-16 2002-11-19 Sprint Communications Company L.P. Cellular/PCS CDMA system with increased sector capacity by using two radio frequencies
GB2347584B (en) * 1999-03-04 2003-06-04 Orange Personal Comm Serv Ltd Radio transceiving arrangement
US6169759B1 (en) 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6574267B1 (en) * 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6606341B1 (en) 1999-03-22 2003-08-12 Golden Bridge Technology, Inc. Common packet channel with firm handoff
US6356528B1 (en) 1999-04-15 2002-03-12 Qualcomm Incorporated Interleaver and deinterleaver for use in a diversity transmission communication system
EP1169787B1 (de) * 1999-04-22 2005-08-03 Siemens Aktiengesellschaft Verfahren zur regelung der sendeleistung in einem funksystem und entsprechendes funksystem
US6925067B2 (en) 1999-04-23 2005-08-02 Qualcomm, Incorporated Configuration of overhead channels in a mixed bandwidth system
US7035238B1 (en) * 1999-06-04 2006-04-25 Lucent Technologies Inc. Code assignment in a CDMA wireless system
US6421529B1 (en) 1999-06-15 2002-07-16 Lucent Technologies Inc. Method and apparatus for the detection of a reduction in capacity of a CDMA system
US6421327B1 (en) 1999-06-28 2002-07-16 Qualcomm Incorporated Method and apparatus for controlling transmission energy in a communication system employing orthogonal transmit diversity
US6445904B1 (en) 2000-02-17 2002-09-03 Andrew Corporation Repeater diversity system
WO2001052447A2 (en) 2000-01-14 2001-07-19 Andrew Corporation Repeaters for wireless communication systems
US6917597B1 (en) * 1999-07-30 2005-07-12 Texas Instruments Incorporated System and method of communication using transmit antenna diversity based upon uplink measurement for the TDD mode of WCDMA
EP1286735A1 (en) 1999-09-24 2003-03-05 Dennis Jay Dupray Geographically constrained network services
US6757553B1 (en) 1999-10-14 2004-06-29 Qualcomm Incorporated Base station beam sweeping method and apparatus using multiple rotating antennas
US6643318B1 (en) 1999-10-26 2003-11-04 Golden Bridge Technology Incorporated Hybrid DSMA/CDMA (digital sense multiple access/code division multiple access) method with collision resolution for packet communications
US6757319B1 (en) 1999-11-29 2004-06-29 Golden Bridge Technology Inc. Closed loop power control for common downlink transport channels
WO2001039452A1 (en) 1999-11-29 2001-05-31 Golden Bridge Technology, Inc. Closed loop power control for common downlink transport channels
GB2359221B (en) * 2000-02-12 2004-03-10 Motorola Inc Distributed cellular telephone antenna system with adaptive cell configuration
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US6430395B2 (en) * 2000-04-07 2002-08-06 Commil Ltd. Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
DE60038163T2 (de) * 2000-05-12 2009-03-26 Ipcom Gmbh & Co. Kg Empfänger für eine Kommunikationseinrichtung für einen Mehrwegfunkkanal
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US6704545B1 (en) 2000-07-19 2004-03-09 Adc Telecommunications, Inc. Point-to-multipoint digital radio frequency transport
US7016331B1 (en) 2000-09-05 2006-03-21 Cisco Technology, Inc. Method of handoff control in an enterprise code division multiple access wireless system
US6901061B1 (en) * 2000-09-05 2005-05-31 Cisco Technology, Inc. Handoff control in an enterprise division multiple access wireless system
US6973098B1 (en) * 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US7068683B1 (en) * 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6731678B1 (en) * 2000-10-30 2004-05-04 Sprint Communications Company, L.P. System and method for extending the operating range and/or increasing the bandwidth of a communication link
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US20030021271A1 (en) * 2001-04-03 2003-01-30 Leimer Donald K. Hybrid wireless communication system
US8082096B2 (en) 2001-05-22 2011-12-20 Tracbeam Llc Wireless location routing applications and architecture therefor
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
ES2626289T3 (es) 2001-06-13 2017-07-24 Intel Corporation Método y aparatos para la transmisión de señal de latido a un nivel más bajo que la solicitud de latido
US7088955B2 (en) * 2001-07-16 2006-08-08 Qualcomm Inc. Method and apparatus for acquiring and tracking pilots in a CDMA communication system
US6958984B2 (en) * 2001-08-02 2005-10-25 Motorola, Inc. Method and apparatus for aggregation of wireless resources of proximal wireless units to facilitate diversity signal combining
US20030045284A1 (en) * 2001-09-05 2003-03-06 Copley Richard T. Wireless communication system, apparatus and method for providing communication service using an additional frequency band through an in-building communication infrastructure
GB2396985B (en) 2001-09-12 2005-05-11 Data Fusion Corp Gps near-far resistant receiver
US7068704B1 (en) * 2001-09-26 2006-06-27 Itt Manufacturing Enterpprises, Inc. Embedded chirp signal for position determination in cellular communication systems
US8085889B1 (en) 2005-04-11 2011-12-27 Rambus Inc. Methods for managing alignment and latency in interference cancellation
US7158559B2 (en) * 2002-01-15 2007-01-02 Tensor Comm, Inc. Serial cancellation receiver design for a coded signal processing engine
US20040004945A1 (en) * 2001-10-22 2004-01-08 Peter Monsen Multiple access network and method for digital radio systems
US8204504B2 (en) * 2001-10-26 2012-06-19 Rockstar Bidco Llp Wireless communications system and method
US7394879B2 (en) * 2001-11-19 2008-07-01 Tensorcomm, Inc. Systems and methods for parallel signal cancellation
US20040146093A1 (en) * 2002-10-31 2004-07-29 Olson Eric S. Systems and methods for reducing interference in CDMA systems
US7236515B1 (en) * 2001-11-19 2007-06-26 Sprint Spectrum L.P. Forward link time delay for distributed antenna system
US7580448B2 (en) * 2002-10-15 2009-08-25 Tensorcomm, Inc Method and apparatus for channel amplitude estimation and interference vector construction
US7260506B2 (en) * 2001-11-19 2007-08-21 Tensorcomm, Inc. Orthogonalization and directional filtering
US20050101277A1 (en) * 2001-11-19 2005-05-12 Narayan Anand P. Gain control for interference cancellation
US7787518B2 (en) * 2002-09-23 2010-08-31 Rambus Inc. Method and apparatus for selectively applying interference cancellation in spread spectrum systems
US7155229B2 (en) * 2002-01-08 2006-12-26 Ericsson Inc. Distributed wireless architecture using microcast
RU2004124049A (ru) * 2002-01-09 2005-03-27 Мидвествако Корпорейшн (Us) Интеллектуальная станция с множеством антенн радиочастотного диапазона, система и способ инвентаризационного контроля с ее использованием
JP3407254B1 (ja) * 2002-01-31 2003-05-19 富士通株式会社 データ伝送システム及びデータ伝送制御方法
US7681214B2 (en) * 2002-02-20 2010-03-16 Broadcom Corporation Outer code covered synchronous code division multiple access for cable modem channels
US7184728B2 (en) * 2002-02-25 2007-02-27 Adc Telecommunications, Inc. Distributed automatic gain control system
US7715466B1 (en) * 2002-02-27 2010-05-11 Sprint Spectrum L.P. Interference cancellation system and method for wireless antenna configuration
WO2003073829A2 (en) * 2002-03-01 2003-09-12 Telepulse Technologies Corporation Dynamic time metered delivery
US7319688B2 (en) * 2002-05-06 2008-01-15 Extricom Ltd. LAN with message interleaving
US20030206532A1 (en) * 2002-05-06 2003-11-06 Extricom Ltd. Collaboration between wireless lan access points
US7263293B2 (en) * 2002-06-10 2007-08-28 Andrew Corporation Indoor wireless voice and data distribution system
US20040208238A1 (en) * 2002-06-25 2004-10-21 Thomas John K. Systems and methods for location estimation in spread spectrum communication systems
JP2005531955A (ja) * 2002-06-28 2005-10-20 ミクロナス ゲーエムベーハー 3次元音響システム用の無線オーディオ信号伝送方法
US20060209771A1 (en) * 2005-03-03 2006-09-21 Extricom Ltd. Wireless LAN with contention avoidance
US20050195786A1 (en) * 2002-08-07 2005-09-08 Extricom Ltd. Spatial reuse of frequency channels in a WLAN
US7697549B2 (en) * 2002-08-07 2010-04-13 Extricom Ltd. Wireless LAN control over a wired network
GB0218906D0 (en) * 2002-08-14 2002-09-25 Univ Surrey A wireless communication system and a method of operating a wireless communication system
US7876810B2 (en) * 2005-04-07 2011-01-25 Rambus Inc. Soft weighted interference cancellation for CDMA systems
US7577186B2 (en) * 2002-09-20 2009-08-18 Tensorcomm, Inc Interference matrix construction
US7808937B2 (en) 2005-04-07 2010-10-05 Rambus, Inc. Variable interference cancellation technology for CDMA systems
US7787572B2 (en) * 2005-04-07 2010-08-31 Rambus Inc. Advanced signal processors for interference cancellation in baseband receivers
US20050180364A1 (en) * 2002-09-20 2005-08-18 Vijay Nagarajan Construction of projection operators for interference cancellation
US8761321B2 (en) * 2005-04-07 2014-06-24 Iii Holdings 1, Llc Optimal feedback weighting for soft-decision cancellers
US7463609B2 (en) * 2005-07-29 2008-12-09 Tensorcomm, Inc Interference cancellation within wireless transceivers
US8005128B1 (en) 2003-09-23 2011-08-23 Rambus Inc. Methods for estimation and interference cancellation for signal processing
US8179946B2 (en) 2003-09-23 2012-05-15 Rambus Inc. Systems and methods for control of advanced receivers
US20050123080A1 (en) * 2002-11-15 2005-06-09 Narayan Anand P. Systems and methods for serial cancellation
US7653028B2 (en) * 2002-10-03 2010-01-26 Qualcomm Incorporated Scheduling techniques for a packet-access network
AU2003301493A1 (en) * 2002-10-15 2004-05-04 Tensorcomm Inc. Method and apparatus for interference suppression with efficient matrix inversion in a ds-cdma system
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US8958789B2 (en) 2002-12-03 2015-02-17 Adc Telecommunications, Inc. Distributed digital antenna system
US6909761B2 (en) * 2002-12-19 2005-06-21 Motorola, Inc. Digital communication system having improved pilot encoding
US6873614B2 (en) 2002-12-19 2005-03-29 Motorola, Inc. Digital communication system having improved color code capability
US6996763B2 (en) * 2003-01-10 2006-02-07 Qualcomm Incorporated Operation of a forward link acknowledgement channel for the reverse link data
DE10303095A1 (de) * 2003-01-27 2004-08-12 Infineon Technologies Ag Datenverarbeitungsvorrichtung
US20040162037A1 (en) * 2003-02-18 2004-08-19 Eran Shpak Multi-channel WLAN transceiver with antenna diversity
WO2004075455A2 (en) 2003-02-18 2004-09-02 Extricom Ltd. Multiplex communication between access points and hub
US20040160922A1 (en) * 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
JP3918002B2 (ja) 2003-05-02 2007-05-23 富士通株式会社 マルチアンテナシステム、およびアンテナユニット
US8477809B2 (en) 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US8599764B2 (en) 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US8509051B2 (en) 2003-09-02 2013-08-13 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
FR2862451B1 (fr) * 2003-11-17 2006-03-31 Puissance 6 I Dispositif de communication sans fil entre les antennes gsm et des baies
JP2005191653A (ja) * 2003-12-24 2005-07-14 Sumitomo Electric Ind Ltd 屋内移動体通信システム及びそれに用いるアンテナ配置
US7477710B2 (en) * 2004-01-23 2009-01-13 Tensorcomm, Inc Systems and methods for analog to digital conversion with a signal cancellation system of a receiver
US20050169354A1 (en) * 2004-01-23 2005-08-04 Olson Eric S. Systems and methods for searching interference canceled data
US20050162338A1 (en) * 2004-01-26 2005-07-28 Masayuki Ikeda Information transmitting method, electronic apparatus, and wireless communication terminal
CN1926716B (zh) * 2004-03-11 2012-07-04 艾利森电话股份有限公司 天线分集系统
US7129753B2 (en) * 2004-05-26 2006-10-31 Infineon Technologies Ag Chip to chip interface
RU2342784C2 (ru) * 2004-06-15 2008-12-27 Телефонактиеболагет Лм Эрикссон (Пабл) Устройство и способ пространственного разнесения антенн
US8891349B2 (en) 2004-07-23 2014-11-18 Qualcomm Incorporated Method of optimizing portions of a frame
JP4688812B2 (ja) 2004-09-28 2011-05-25 パナソニック株式会社 無線伝送システム並びにそれに用いられる無線局及び方法
US20060125689A1 (en) * 2004-12-10 2006-06-15 Narayan Anand P Interference cancellation in a receive diversity system
WO2006093723A2 (en) * 2005-02-25 2006-09-08 Data Fusion Corporation Mitigating interference in a signal
US7826516B2 (en) 2005-11-15 2010-11-02 Rambus Inc. Iterative interference canceller for wireless multiple-access systems with multiple receive antennas
US20060229051A1 (en) * 2005-04-07 2006-10-12 Narayan Anand P Interference selection and cancellation for CDMA communications
US20060237384A1 (en) * 2005-04-20 2006-10-26 Eric Neumann Track unit with removable partitions
US8116292B2 (en) * 2005-04-29 2012-02-14 Interdigital Technology Corporation MAC multiplexing and TFC selection procedure for enhanced uplink
TWI506997B (zh) * 2005-04-29 2015-11-01 Interdigital Tech Corp 多工增強上鏈頻道資料的無線傳輸/接收單元及方法
US7813738B2 (en) * 2005-08-11 2010-10-12 Extricom Ltd. WLAN operating on multiple adjacent bands
US8243632B1 (en) * 2005-08-25 2012-08-14 Sprint Spectrum L.P. Use of dual asymmetric wireless links to provide bi-directional high data rate wireless communication
US7893873B2 (en) * 2005-12-20 2011-02-22 Qualcomm Incorporated Methods and systems for providing enhanced position location in wireless communications
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
EP1990935A1 (en) 2006-03-29 2008-11-12 Matsushita Electric Industrial Co., Ltd. Radio transmission system, and radio station and method used for same
US7599711B2 (en) 2006-04-12 2009-10-06 Adc Telecommunications, Inc. Systems and methods for analog transport of RF voice/data communications
DE602007010631D1 (de) * 2006-07-06 2010-12-30 Interdigital Tech Corp Drahtloses kommunikationsverfahren zur auswahl einer erweiterten uplink-transportformatkombination mittels einstellung von ablaufsteuerungsnutzdaten auf die höchste übertragbare nutzdatenmenge
US7848770B2 (en) * 2006-08-29 2010-12-07 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
JP5186748B2 (ja) * 2006-09-29 2013-04-24 富士通株式会社 無線通信装置および無線通信方法
TR201820108T4 (tr) 2006-11-01 2019-01-21 Qualcomm Inc Bir dikey kablosuz iletişim sisteminde hücre araması için referans sinyali tasarımı
US20080112373A1 (en) * 2006-11-14 2008-05-15 Extricom Ltd. Dynamic BSS allocation
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8737454B2 (en) 2007-01-25 2014-05-27 Adc Telecommunications, Inc. Modular wireless communications platform
US8583100B2 (en) 2007-01-25 2013-11-12 Adc Telecommunications, Inc. Distributed remote base station system
JP4538018B2 (ja) * 2007-04-06 2010-09-08 フィパ フローウィッター インテレクチュアル プロパティ エイジー 移動通信システムのセルサーチ方法
US7885619B2 (en) * 2007-06-12 2011-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Diversity transmission using a single power amplifier
US8494588B2 (en) * 2007-07-06 2013-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for improving the performance of a mobile radio communications system by adjusting antenna patterns
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
CN101111049B (zh) * 2007-08-14 2010-07-28 华为技术有限公司 实现一个小区覆盖多区域的系统、方法和网络设备
US8942646B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for a 60 GHz communication device comprising multi-location antennas for pseudo-beamforming
US8942647B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for antenna switching for 60 GHz distributed communication
US8942645B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for communication via subbands in a 60 GHZ distributed communication system
US9008593B2 (en) 2010-09-30 2015-04-14 Broadcom Corporation Method and system for 60 GHz distributed communication
US8977219B2 (en) * 2010-09-30 2015-03-10 Broadcom Corporation Method and system for mitigating leakage of a 60 GHz transmitted signal back into an RF input of a 60 GHz device
US9002300B2 (en) * 2010-09-30 2015-04-07 Broadcom Corporation Method and system for time division duplexing (TDD) in a 60 GHZ distributed communication system
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
CN105610751B (zh) 2007-12-19 2019-07-23 福尔肯纳米有限公司 用于提高通信速度、频谱效率并实现其他益处的公共波形和边带抑制通信系统和方法
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
US8165100B2 (en) * 2007-12-21 2012-04-24 Powerwave Technologies, Inc. Time division duplexed digital distributed antenna system
US8855036B2 (en) * 2007-12-21 2014-10-07 Powerwave Technologies S.A.R.L. Digital distributed antenna system
US8243970B2 (en) * 2008-08-11 2012-08-14 Telefonaktiebolaget L M Ericsson (Publ) Virtual reality sound for advanced multi-media applications
US20100063829A1 (en) * 2008-09-08 2010-03-11 Dupray Dennis J Real estate transaction system
EP2394379B1 (en) 2009-02-03 2016-12-28 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010090999A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US8346091B2 (en) 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
US9001811B2 (en) 2009-05-19 2015-04-07 Adc Telecommunications, Inc. Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8811200B2 (en) * 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
RU2454043C2 (ru) * 2009-12-30 2012-06-20 Юрий Алексеевич Громаков Способ передачи данных в системе сотовой связи и система для его реализации
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
FR2956934B1 (fr) 2010-02-26 2012-09-28 Blink E Procede et dispositif d'emission/reception de signaux electromagnetiques recus/emis sur une ou plusieurs premieres bandes de frequences.
AU2011232897B2 (en) 2010-03-31 2015-11-05 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US8509850B2 (en) * 2010-06-14 2013-08-13 Adc Telecommunications, Inc. Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9538493B2 (en) 2010-08-23 2017-01-03 Finetrak, Llc Locating a mobile station and applications therefor
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US9160449B2 (en) 2010-10-13 2015-10-13 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US8588844B2 (en) 2010-11-04 2013-11-19 Extricom Ltd. MIMO search over multiple access points
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
EP2643947B1 (en) 2010-11-24 2018-09-19 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
WO2012115843A1 (en) 2011-02-21 2012-08-30 Corning Cable Systems Llc Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
EP2702710A4 (en) 2011-04-29 2014-10-29 Corning Cable Sys Llc DETERMINING THE TRANSMISSION DELAY OF COMMUNICATIONS IN DISTRIBUTED ANTENNA SYSTEMS AND CORRESPONDING COMPONENTS, SYSTEMS AND METHODS
US9276685B2 (en) * 2011-10-14 2016-03-01 Qualcomm Incorporated Distributed antenna systems and methods of wireless communications for facilitating simulcasting and de-simulcasting of downlink transmissions
US9312941B2 (en) 2011-10-14 2016-04-12 Qualcomm Incorporated Base stations and methods for facilitating dynamic simulcasting and de-simulcasting in a distributed antenna system
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
FR2990315B1 (fr) 2012-05-04 2014-06-13 Blink E Procede de transmission d'informations entre une unite emettrice et une unite receptrice
EP2875600A1 (en) * 2012-07-18 2015-05-27 Nokia Solutions and Networks Oy Detecting intermodulation in broadband communication affecting receiver sensitivity
US9154222B2 (en) 2012-07-31 2015-10-06 Corning Optical Communications LLC Cooling system control in distributed antenna systems
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US8908607B2 (en) 2012-10-31 2014-12-09 Andrew Llc Digital baseband transport in telecommunications distribution systems
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
WO2015029028A1 (en) 2013-08-28 2015-03-05 Corning Optical Communications Wireless Ltd. Power management for distributed communication systems, and related components, systems, and methods
US9191912B2 (en) 2013-09-26 2015-11-17 Adc Telecommunications, Inc. Systems and methods for location determination
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9750082B2 (en) 2013-10-07 2017-08-29 Commscope Technologies Llc Systems and methods for noise floor optimization in distributed antenna system with direct digital interface to base station
US9577341B2 (en) 2013-11-12 2017-02-21 Harris Corporation Microcellular communications antenna and associated methods
WO2015079435A1 (en) 2013-11-26 2015-06-04 Corning Optical Communications Wireless Ltd. Selective activation of communications services on power-up of a remote unit(s) in a distributed antenna system (das) based on power consumption
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
WO2015126828A1 (en) 2014-02-18 2015-08-27 Commscope Technologiees Llc Selectively combining uplink signals in distributed antenna systems
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
CN105406950A (zh) * 2014-08-07 2016-03-16 索尼公司 用于无线通信的装置和方法、电子设备及其方法
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
EP3235336A1 (en) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US10085283B2 (en) 2014-12-31 2018-09-25 Qualcomm Incorporated Antenna subset and directional channel access in a shared radio frequency spectrum band
CN107211429B (zh) 2015-02-05 2021-05-28 康普技术有限责任公司 用于仿真上行链路分集信号的系统和方法
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10499269B2 (en) 2015-11-12 2019-12-03 Commscope Technologies Llc Systems and methods for assigning controlled nodes to channel interfaces of a controller
JP2019024148A (ja) * 2015-12-02 2019-02-14 シャープ株式会社 通信装置および通信方法
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10945205B2 (en) * 2017-09-15 2021-03-09 Qualcomm Incorporated Techniques and apparatuses for wakeup signal transmission
US10720710B2 (en) 2017-09-20 2020-07-21 Harris Corporation Managed access system including surface wave antenna and related methods
US10581172B2 (en) 2017-09-20 2020-03-03 Harris Corporation Communications antenna and associated methods
US10966055B1 (en) 2019-01-02 2021-03-30 Locationdas Inc. Positioning using distributed antenna system with service and location information availability monitoring and dynamic recovery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383327A (en) * 1980-12-01 1983-05-10 University Of Utah Radiographic systems employing multi-linear arrays of electronic radiation detectors
US4475215A (en) * 1982-10-15 1984-10-02 The United States Of America As Represented By The Secretary Of The Army Pulse interference cancelling system for spread spectrum signals utilizing active coherent detection
US4761778A (en) * 1985-04-11 1988-08-02 Massachusetts Institute Of Technology Coder-packetizer for random accessing in digital communication with multiple accessing
US4672658A (en) * 1985-10-16 1987-06-09 At&T Company And At&T Bell Laboratories Spread spectrum wireless PBX
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
CA1290020C (en) * 1987-02-09 1991-10-01 Steven Messenger Wireless local area network
US4920348A (en) * 1987-10-08 1990-04-24 Baghdady Elie J Method and apparatus for signal modulation and detection
US4841527A (en) * 1987-11-16 1989-06-20 General Electric Company Stabilization of random access packet CDMA networks
CH676179A5 (ru) * 1988-09-29 1990-12-14 Ascom Zelcom Ag
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5109390A (en) * 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5101501A (en) * 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8745251B2 (en) 2000-12-15 2014-06-03 Qualcomm Incorporated Power reduction system for an apparatus for high data rate signal transfer using a communication protocol
US8694663B2 (en) 2001-09-06 2014-04-08 Qualcomm Incorporated System for transferring digital data at a high rate between a host and a client over a communication path for presentation to a user
US8812706B1 (en) 2001-09-06 2014-08-19 Qualcomm Incorporated Method and apparatus for compensating for mismatched delays in signals of a mobile display interface (MDDI) system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8711763B2 (en) 2002-10-25 2014-04-29 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US9048892B2 (en) 2002-10-25 2015-06-02 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8483188B2 (en) 2002-10-25 2013-07-09 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US9154274B2 (en) 2002-10-25 2015-10-06 Qualcomm Incorporated OFDM communication system with multiple OFDM symbol sizes
US8462643B2 (en) 2002-10-25 2013-06-11 Qualcomm Incorporated MIMO WLAN system
RU2474060C2 (ru) * 2002-10-25 2013-01-27 Квэлкомм Инкорпорейтед Многорежимный терминал в системе радиосвязи с многоканальным входом, многоканальным выходом и пространственным мультиплексированием
US9312935B2 (en) 2002-10-25 2016-04-12 Qualcomm Incorporated Pilots for MIMO communication systems
US8750151B2 (en) 2002-10-25 2014-06-10 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US9031097B2 (en) 2002-10-25 2015-05-12 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8873365B2 (en) 2002-10-25 2014-10-28 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US9967005B2 (en) 2002-10-25 2018-05-08 Qualcomm Incorporated Pilots for MIMO communication systems
US8934329B2 (en) 2002-10-25 2015-01-13 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8913529B2 (en) 2002-10-25 2014-12-16 Qualcomm Incorporated MIMO WLAN system
RU2507699C2 (ru) * 2003-01-07 2014-02-20 Квэлкомм Инкорпорейтед Схема передачи пилот-сигналов для систем радиосвязи с передачей на несколько несущих
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8977283B2 (en) 2003-02-18 2015-03-10 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US8699452B2 (en) 2003-02-18 2014-04-15 Qualcomm Incorporated Congestion control in a wireless data network
US8526966B2 (en) 2003-02-18 2013-09-03 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8576894B2 (en) 2003-03-06 2013-11-05 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US8548387B2 (en) 2003-03-06 2013-10-01 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8676128B2 (en) 2003-03-06 2014-03-18 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US8102832B2 (en) 2003-05-12 2012-01-24 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
US8477592B2 (en) 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
US8681817B2 (en) 2003-06-02 2014-03-25 Qualcomm Incorporated Generating and implementing a signal protocol and interface for higher data rates
US8700744B2 (en) 2003-06-02 2014-04-15 Qualcomm Incorporated Generating and implementing a signal protocol and interface for higher data rates
US8705579B2 (en) 2003-06-02 2014-04-22 Qualcomm Incorporated Generating and implementing a signal protocol and interface for higher data rates
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8201039B2 (en) 2003-08-05 2012-06-12 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8705571B2 (en) 2003-08-13 2014-04-22 Qualcomm Incorporated Signal interface for higher data rates
US8719334B2 (en) 2003-09-10 2014-05-06 Qualcomm Incorporated High data rate interface
US8635358B2 (en) 2003-09-10 2014-01-21 Qualcomm Incorporated High data rate interface
US8577379B2 (en) 2003-09-25 2013-11-05 Qualcomm Incorporated Method of handling automatic call origination and system determination on multi-network mobile devices
US8694652B2 (en) 2003-10-15 2014-04-08 Qualcomm Incorporated Method, system and computer program for adding a field to a client capability packet sent from a client to a host
US8756294B2 (en) 2003-10-29 2014-06-17 Qualcomm Incorporated High data rate interface
US8606946B2 (en) 2003-11-12 2013-12-10 Qualcomm Incorporated Method, system and computer program for driving a data signal in data interface communication data link
US8687658B2 (en) 2003-11-25 2014-04-01 Qualcomm Incorporated High data rate interface with improved link synchronization
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US9876609B2 (en) 2003-12-01 2018-01-23 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US8670457B2 (en) 2003-12-08 2014-03-11 Qualcomm Incorporated High data rate interface with improved link synchronization
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US11171693B2 (en) 2003-12-17 2021-11-09 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US10476560B2 (en) 2003-12-17 2019-11-12 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US8903016B2 (en) 2003-12-17 2014-12-02 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US8325844B2 (en) 2004-01-13 2012-12-04 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8433005B2 (en) 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8724447B2 (en) 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US8520498B2 (en) 2004-02-18 2013-08-27 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8730913B2 (en) 2004-03-10 2014-05-20 Qualcomm Incorporated High data rate interface apparatus and method
US8625625B2 (en) 2004-03-10 2014-01-07 Qualcomm Incorporated High data rate interface apparatus and method
US8018969B2 (en) 2004-03-12 2011-09-13 Samsung Electronics Co., Ltd Method and apparatus for constructing MAP IE using reduced CID in broadband OFDMA systems
US8391315B2 (en) 2004-03-12 2013-03-05 Samsung Electronics Co., Ltd Method and apparatus for constructing MAP IE using reduced CID in broadband OFDMA systems
US8705521B2 (en) 2004-03-17 2014-04-22 Qualcomm Incorporated High data rate interface apparatus and method
US8645566B2 (en) 2004-03-24 2014-02-04 Qualcomm Incorporated High data rate interface apparatus and method
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8909174B2 (en) 2004-05-07 2014-12-09 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8650304B2 (en) 2004-06-04 2014-02-11 Qualcomm Incorporated Determining a pre skew and post skew calibration data rate in a mobile display digital interface (MDDI) communication system
US8630305B2 (en) 2004-06-04 2014-01-14 Qualcomm Incorporated High data rate interface apparatus and method
US8630318B2 (en) 2004-06-04 2014-01-14 Qualcomm Incorporated High data rate interface apparatus and method
US7991065B2 (en) 2004-06-30 2011-08-02 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US8767701B2 (en) 2004-07-15 2014-07-01 Qualcomm Incorporated Unified MIMO transmission and reception
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US8539119B2 (en) 2004-11-24 2013-09-17 Qualcomm Incorporated Methods and apparatus for exchanging messages having a digital data interface device message format
US8723705B2 (en) 2004-11-24 2014-05-13 Qualcomm Incorporated Low output skew double data rate serial encoder
US8699330B2 (en) 2004-11-24 2014-04-15 Qualcomm Incorporated Systems and methods for digital data transmission rate control
US8692838B2 (en) 2004-11-24 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8667363B2 (en) 2004-11-24 2014-03-04 Qualcomm Incorporated Systems and methods for implementing cyclic redundancy checks
US8873584B2 (en) 2004-11-24 2014-10-28 Qualcomm Incorporated Digital data interface device
US7782810B2 (en) 2004-12-03 2010-08-24 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving packet data symbol in a mobile communication system
US8817897B2 (en) 2004-12-22 2014-08-26 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US8649451B2 (en) 2004-12-22 2014-02-11 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US8831115B2 (en) 2004-12-22 2014-09-09 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US8638870B2 (en) 2004-12-22 2014-01-28 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
RU2491793C2 (ru) * 2005-10-27 2013-08-27 Квэлкомм Инкорпорейтед Способ и устройство для сбережения энергии посредством назначения чередований кадров в системах связи
US8611263B2 (en) 2005-10-27 2013-12-17 Qualcomm Incorporated Methods and apparatus for saving power by designating frame interlaces in communication systems
US8730069B2 (en) 2005-11-23 2014-05-20 Qualcomm Incorporated Double data rate serial encoder
US8692839B2 (en) 2005-11-23 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8824583B2 (en) 2006-04-24 2014-09-02 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
US9735910B2 (en) 2006-06-16 2017-08-15 Sharp Kabushiki Kaisha Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
EA018838B1 (ru) * 2006-06-16 2013-11-29 Шарп Кабусики Кайся Способ идентификации сектора, мобильная станция и система мобильной связи
US9059827B2 (en) 2006-06-16 2015-06-16 Sharp Kabushiki Kaisha Data generation apparatus, data generation method, base station, mobile station, synchronization detection method, sector identification method, information detection method and mobile communication system
US9369327B2 (en) 2006-12-22 2016-06-14 Fujitsu Limited Radio communication method and a base station and user terminal thereof
US8654794B2 (en) 2006-12-22 2014-02-18 Fujitsu Limited Radio communication method and a base station and user terminal thereof
US8351469B2 (en) 2006-12-22 2013-01-08 Fujitsu Limited Radio communication method and a base station and user terminal thereof
US8670465B2 (en) 2006-12-22 2014-03-11 Fujitsu Limited Radio communication method and a base station and user terminal thereof
US9660853B2 (en) 2006-12-22 2017-05-23 Fujitsu Limited Radio communication method and a base station and user terminal thereof
RU2446577C2 (ru) * 2007-08-24 2012-03-27 Интердиджитал Пэйтент Холдингз, Инк. Способ и устройство для надежной передачи радиоблоков с совмещенными полями acк/nack
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US9374791B2 (en) 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
RU2453077C2 (ru) * 2007-09-21 2012-06-10 Квэлкомм Инкорпорейтед Регулирование помех с использованием чередований запросов harq
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US8848619B2 (en) 2007-11-27 2014-09-30 Qualcomm Incorporated Interface management in a wireless communication system using subframe time reuse
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US9072102B2 (en) 2007-11-27 2015-06-30 Qualcomm Incorporated Interference management in a wireless communication system using adaptive path loss adjustment
US8837305B2 (en) 2007-11-27 2014-09-16 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US8867456B2 (en) 2007-11-27 2014-10-21 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
RU2468540C1 (ru) * 2008-12-24 2012-11-27 Нек Корпорейшн Система связи
RU2516252C2 (ru) * 2009-08-21 2014-05-20 Фудзицу Лимитед Ретрансляционный узел, система дуплексной связи с временным разделением и способ осуществления связи
RU2574612C2 (ru) * 2009-08-21 2016-02-10 Фудзицу Лимитед Ретрансляционный узел, система дуплексной связи с временным разделением и способ осуществления связи
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
RU2607273C2 (ru) * 2012-02-20 2017-01-10 Сони Корпорейшн Устройство и способ управления передачей данных и система управления передачей данными
RU2544786C2 (ru) * 2013-06-03 2015-03-20 Государственное казенное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ формирования защищенной системы связи, интегрированной с единой сетью электросвязи в условиях внешних деструктивных воздействий
RU2528134C1 (ru) * 2013-10-11 2014-09-10 Открытое акционерное общество "Камчатский гидрофизический институт" (ОАО "КГФИ") Устройство для декодирования сигналов, прошедших многолучевой канал связи
RU2562965C1 (ru) * 2014-08-05 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева", НГТУ Способ передачи данных по оптическому каналу связи и устройство для его реализации
RU2649418C2 (ru) * 2016-05-23 2018-04-03 Алексей Романович Попов Способ передачи информации шумоподобными сигналами в мобильной системе связи тактического звена
RU2638149C1 (ru) * 2017-02-13 2017-12-12 АО "Научно-технический центр радиоэлектронной борьбы" Устройство передачи данных

Also Published As

Publication number Publication date
RO119761B1 (ro) 2005-02-28
SK280276B6 (sk) 1999-10-08
AU652602B2 (en) 1994-09-01
FI111306B (fi) 2003-06-30
WO1992010890A1 (en) 1992-06-25
US5280472A (en) 1994-01-18
NO932041D0 (no) 1993-06-04
SK57193A3 (en) 1993-10-06
BG97842A (bg) 1994-04-29
HU216923B (hu) 1999-10-28
AU9138691A (en) 1992-07-08
KR970000790B1 (ko) 1997-01-20
JPH06504660A (ja) 1994-05-26
NO932041L (no) 1993-06-04
MX9102432A (es) 1992-06-01
MX173446B (es) 1994-03-03
FI932523A0 (fi) 1993-06-02
FI932523A (fi) 1993-08-02
IL100213A (en) 1995-03-30
CZ282725B6 (cs) 1997-09-17
CA2097066C (en) 2000-08-22
IL100213A0 (en) 1992-09-06
BG61052B1 (bg) 1996-09-30
NO316199B1 (no) 2003-12-22
BR9107213A (pt) 1993-11-03
CZ109793A3 (en) 1994-04-13
JP3325890B2 (ja) 2002-09-17
CA2097066A1 (en) 1992-06-08
HU9301626D0 (en) 1993-09-28
HUT64655A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
RU2111619C1 (ru) Система связи с коллективным доступом и кодовым разделением каналов (сдма), система связи абонентов с помощью базовой станции с абонентами удаленной системы, система местной связи и способ создания многолучевого распространения передаваемых сигналов сдма в системе связи
RU2125344C1 (ru) Система для модулирования информационных сигналов в ячеистой телефонной системе с кодовым разделением множественного доступа и способ его осуществления
US6618429B2 (en) System and method for generating signal waveforms in a CDMA cellular telephone system
US5533011A (en) Dual distributed antenna system