RU2418842C2 - Способ каталитической конверсии углеводородов - Google Patents
Способ каталитической конверсии углеводородов Download PDFInfo
- Publication number
- RU2418842C2 RU2418842C2 RU2009110507/04A RU2009110507A RU2418842C2 RU 2418842 C2 RU2418842 C2 RU 2418842C2 RU 2009110507/04 A RU2009110507/04 A RU 2009110507/04A RU 2009110507 A RU2009110507 A RU 2009110507A RU 2418842 C2 RU2418842 C2 RU 2418842C2
- Authority
- RU
- Russia
- Prior art keywords
- zeolite
- catalyst
- reactor
- weight
- hydrocarbons
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/7815—Zeolite Beta
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/16—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "moving bed" method
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/60—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7049—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
- B01J29/7057—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1033—Oil well production fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/104—Light gasoline having a boiling range of about 20 - 100 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1074—Vacuum distillates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1077—Vacuum residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4093—Catalyst stripping
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/805—Water
- C10G2300/807—Steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к способу каталитической конверсии углеводородов. Изобретение касается способа, где обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, затем продукты реакции отбирают из реактора и разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов, причем катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60% вес. смеси цеолитов, 5-99% вес. термостойкого неорганического оксида и 0-70% вес. глины, и смесь цеолитов содержит (от полного веса смеси): 1-75% вес. бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99% вес. цеолита с МП-структурой и 0-74% вес. цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Al2O3·(1,3-10)P2O5·(0,7-15)MxOy·(64-97)SiO2 (в скобках указаны массовые проценты оксидов), где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, и у - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М. Технический результат - повышенная конверсия углеводородов нефти и более высокий выход легких олефинов, в особенности пропилена. 16 з.п. ф-лы, 8 табл.
Description
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу каталитической конверсии углеводородов, в частности к способу каталитической конверсии, обладающему повышенной селективностью в отношении получения легких олефинов из углеводородов.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Этилен и пропилен являются типичными легкими олефинами, которые составляют большую часть исходных материалов в химической промышленности. Легкие олефины получают в основном из природного газа или из легких углеводородов путем расщепления паром в комплексных установках получения этилена. Вторым наиболее крупным источником легких олефинов являются установки каталитического крекинга с псевдоожиженным слоем на нефтеперерабатывающих заводах. В традиционном процессе каталитического крекинга при производстве бензина и легких дизельных топлив легкие олефины получают в качестве побочных продуктов с выходом, не превышающим 15% от веса сырья. На нефтеперерабатывающих заводах для повышения выхода пропилена обычно используют специальные композиции катализаторов каталитического крекинга и/или активирующих добавок.
В патенте США №5670037 описывается способ получения легких олефинов, в котором исходными продуктами являются нефтяные фракции с различными диапазонами температуры кипения, нефтяные остатки или сырая нефть. В реакторе с псевдоожиженным или движущимся слоем используется твердый кислотный катализатор для проведения каталитической реакции конверсии при температурах от 480°С до 680°С и давлениях от 0,12 МПа до 0,40 МПа со временем реакции от 0,1 сек до 6 сек и весовым отношением катализатора к исходному углеводороду в диапазоне 4-12, причем отработавший катализатор десорбируют, прокаливают и регенерируют, после чего возвращают в реактор для последующего использования. По сравнению с традиционным каталитическим крекингом и процессом разделения паром предложенный способ может обеспечить получение больших количеств пропилена и бутилена, причем выход бутилена и пропилена может достигать 40%.
В патенте США №6538169 описывается способ повышения выхода легких олефинов, который содержит рециклирование части использованного катализатора обратно в нижнюю часть реактора, повышение отношения количества катализатора к количеству исходного углеводорода, понижение температуры, при которой взаимодействуют катализатор и углеводород, и добавление ZSM-5 в реакционную систему.
В патенте США №6791002 В1 описывается система с реактором с восходящим потоком для крекинга углеводородов, в которой осуществляют управление температурой реакции крекинга и временем нахождения в зоне реакции исходных продуктов, имеющих различные составы, для повышения выхода легких олефинов. В патенте не упоминается оптимизация конверсии компонентов путем модификации активных компонентов катализатора для повышения селективности в отношении легких олефинов.
Использование способа каталитического крекинга для получения легких олефинов из углеводородов нефти описывается во многих патентах. Используются катализаторы на основе металлов, причем в качестве носителей используются SiO2, Al2O3 или другие оксиды, а металлические компоненты большей частью выбираются из элементов Групп IIB, VB, VIIB и VIII, которые характеризуются гидрогенизационной или дегидрогенизационной активностью и проявляют дегидрогенизационную активность в условиях крекинга при высокой температуре и низком давлении, в результате чего ускоряется получение легких олефинов (US 3541179, US 3647682, DD 225135 и SU 1214726). При использовании таких катализаторов, благодаря дегидрогенизационным свойствам металлов, в процессе реакции крекинга, соответственно, ускоряется коксообразование в результате реакции полимеризации, и на катализаторе формируются отложения нагара (кокса). Поэтому могут использоваться только легкие исходные продукты с диапазоном точки кипения, не превышающим 220°С.
В некоторых других патентах описывается использование композиционных оксидных катализаторов. В примерах таких катализаторов указывается катализатор, содержащий ZrO2, HfO2 в качестве главных компонентов, Al2O3, Cr2O3, MnO, Fe2O3 и оксиды щелочных или щелочноземельных металлов в качестве активирующей добавки (US 3725495, US 3839485); и катализатор SiO2·Al2O3, содержащий небольшие количества Fe2O3, TiO2, CaO, MgO, Na2O и К2О (SU 550173, SU 559946).
Широкое применение цеолитов в нефтехимической промышленности и в переработке нефти привело к появлению третьего класса катализаторов, а именно катализаторов, содержащих цеолиты. В последнее время в катализатор добавляется добавка, селективная к форме, для повышения октанового числа бензина, получаемого при каталитической переработке. Например, в патенте США 3758403 раскрывается катализатор, содержащий цеолит ZSM-5 и крупнопористый цеолит (с отношением от 1:10 до 3:1) в качестве активных компонентов, и кроме повышения октанового числа бензина такой катализатор обеспечивает более высокий выход олефинов С3 и C4, составляющий примерно 10% вес.
Если катализатор содержит смесь цеолита со структурой MFI (высококремнистый цеолит с пятичленными кольцами), и в крекинге углеводородов нефти для получения легких олефинов используется цеолит с размером пор, превышающим 7 ангстрем, то крупнопористый цеолит (в основном, Y-цеолит) используется для крекинга исходных продуктов для получения бензина и дизельного топлива, которые затем подвергаются крекингу для получения легких олефинов с использованием цеолита со структурой MFI (US 3758403, CN 1043520A, US 500649 и CN 1026242C). Для повышения селективности катализаторов в отношении олефинов цеолиты со структурой MFI модифицируют, например, переходными металлами (US 5236880), фосфором (CN 1205307А, US 6566293), редкоземельными элементами (CN 1085825А), фосфором и редкоземельными элементами (CN 1093101 A, US 5380690, CN1114916A, CN1117518A, CN1143666A), фосфором и щелочноземельными металлами (CN 1221015A, US 6342153, CN 1222558A, US 6211104) и фосфором и переходными металлами (CN 1504540А).
Бета-цеолит имеет структуру, состоящую из 12-членных колец с пересекающимися пористыми каналами, в которой диаметр пор 12-членного кольца равен 0,75-0,57 нм для одномерного пористого канала, параллельного грани (001) кристалла, и диаметр пор 12-членного кольца равен 0,65-0,56 нм для двухмерного пористого канала, параллельного грани (100) кристалла. Бета-цеолит - это высококремнистый цеолит с большими порами, имеющий трехмерную структуру, единственную, которая найдена до настоящего времени, причем он обладает как свойствами кислотного катализатора, так и структурной селективностью благодаря особенностям своей структуры, и, кроме того, этот цеолит обладает очень высокой термостойкостью (температура разрушения кристаллической решетки превышает 1200°С) и гидротермальной стойкостью, а также устойчив к истиранию. Благодаря своей уникальной структуре бета-цеолит обладает хорошей термической и гидротермальной стойкостью, кислотостойкостью, устойчивостью к закоксовыванию и каталитической активностью в отношении ряда каталитических реакций, и поэтому в последние годы быстро развивался новый тип каталитических материалов на базе этого цеолита. Имеются публикации о многочисленных применениях бета-цеолита в крекинге углеводородов нефти для получения легких олефинов.
В документе CN1103105A описывается катализатор крекинга, обеспечивающий высокий выход изобутилена и изоамилена и представляющий собой композицию, состоящую из четырех активных компонентов и носителя, причем активные компоненты состоят из модифицированного HZSM-5 и обогащенного кремнием HZSM-5 с различными отношениями кремнезем/глинозем, USY и бета-цеолита, и носитель состоит из природной глины и неорганического оксида. Активные компоненты и катализатор имеют следующий состав: (1) модифицированный HZSM-5 с отношением кремнезем/глинозем 20:100 5-25% вес.; (2) высококремнистый HZSM-5 с отношением кремнезем/глинозем 250:450 1-5% вес.; (3) USY-цеолит 5-20% вес.; (4) бета-цеолит 1-5% вес.; (5) природная глина 30-60% вес.; (6) неорганический оксид: 15-30% вес. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1057408A описывается катализатор крекинга, содержащий высококремнистый цеолит, который состоит из 10-30% вес. модифицированного высококремнистого цеолита и 70-90% носителя, причем модифицированный высококремнистый цеолит содержит (от веса цеолита) 0,01-3,0% вес. фосфора, 0,01-1,0% железа или 0,01-10% вес. алюминия (алюминий в структуре цеолита исключен) и выбирается из морденита, бета-цеолита или ZSM-цеолита с отношением кремнезем/глинозем, превышающим 15, и носителем является неорганический оксид или смесь неорганического оксида и каолина. Катализатор используется для получения легких олефинов в процессе каталитического крекинга углеводородов одновременно с выходом бензина и дизельного топлива.
В документе CN 1099788А описывается катализатор крекинга, обеспечивающий более высокий выход олефинов С3-С5, который состоит из 10-50% вес. Y-цеолита с размером элементарной ячейки, не превышающим 2,450 нм, 2-40% вес. цеолита, выбранного из цеолита ZSM-5 или бета-цеолита, модифицированного Р, RE, Са, Mg, Н, Al и др., и их смесей, 20-80% вес. полусинтетического носителя, состоящего из каолина и глиноземного связующего. Используя такой катализатор, можно не только повысить выход олефинов С3-С5, где выход C4 =+iC5 = доходит до 10-13% вес., но также поддерживать выход бензина на уровне порядка 35 - 42% вес.
В документе CN 1145396A описывается катализатор крекинга, обеспечивающий более высокий выход изобутилена и изоамилена, который состоит из трех активных цеолитных компонентов и носителя, причем их содержание (от веса катализатора) составляет: 6-30% вес. высококремнистого цеолита с пятичленными кольцами, содержащего фосфор и редкоземельный элемент, 5-25% вес. USY-цеолита, 1-5% вес. бета-цеолита, 30-60% вес. глины и 15-30% вес. неорганического оксида. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1354224A описывается катализатор каталитического крекинга для получения легких фракций с высоким содержанием изомерного алкана, пропилена и изобутана, причем катализатор содержит (от веса катализатора): 0-70% вес. глины, 5-90% вес. неорганического оксида и 1-50% вес. цеолита. Цеолит представляет собой смесь следующих компонентов (от веса цеолита): (1) 20-75% вес. высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 5-15 и 8-20% вес. RЕ2О3; (2) 20-75% высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 16-50 и 2-7% вес. RE2O3; и (3) 1-50% вес. бета-цеолита, или морденита, или ZRP-цеолита. Катализатор может увеличивать содержание изомерного алкана в легких фракциях и одновременно повышать выход пропилена и изобутана, однако выход пропилена улучшается ненамного.
В документе CN 1504541 А описывается катализатор каталитического крекинга углеводородов для получения легких олефинов и ароматических углеводородов, причем катализатор содержит молекулярное сито с размером пор 0,45-0,7 нм, аморфный оксид и по меньшей мере два модифицирующих компонента, выбираемых из фосфора, щелочноземельных металлов, лития и редкоземельных элементов. В катализаторе используется кремнезем-глиноземное или кремнезем-фосфор-глиноземное молекулярное сито, причем в качестве кремнезем-глиноземного молекулярного сита используется цеолит ZSM-5, цеолит ZSM-11, морденит или бета-цеолит, а в качестве кремнезем-фосфор-глиноземного молекулярного сита используется SAPO-5, SAPO-11 или SAPO-34. Активные центры катализатора могут быть модифицированы в зависимости от практических требований для получения легких олефинов в качестве основных продуктов и получения ароматических углеводородов в качестве побочных продуктов.
В документе CN 1566275А описывается катализатор, содержащий молекулярное сито, для крекинга углеводородов и способ его получения, причем молекулярное сито является смесью первого и второго цеолитов, термостойкого неорганического оксида и металла, а также глины (необязательный компонент), причем первый цеолит является Y-цеолитом, молярное отношение кремнезем/глинозем во втором цеолите превышает 20, содержание первого цеолита составляет 1-50% вес., содержание второго цеолита составляет 1-60% вес., содержание термостойкого неорганического оксида составляет 2-80% вес., содержание глины составляет 0-80% вес., содержание металла составляет 0,1-30% вес., и компоненты металла присутствуют в основном в состоянии пониженной валентности. Катализатор может не только обеспечивать высокий выход олефинов С3-С5, но также имеет повышенную активность в отношении десульфуризации и повышенную активность в отношении реакций крекинга. В качестве второго цеолита используется один или несколько цеолитов, выбранных из цеолитов, имеющих MFI-структуру и содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), бета-цеолитов, содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), морденита, содержащего фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент).
В патентах США №5006497 и №5055176 описывается многокомпонентный катализатор и способ каталитического крекинга с его использованием. Катализатор содержит матрицу, молекулярное сито с крупными порами, молекулярное сито для крекинга/изомеризации парафина и молекулярное сито для получения ароматических углеводородов, причем молекулярное сито с крупными порами выбирается из группы, состоящей из цеолита Y, DeAlY, USY, UHPY, VPI-5, колонной глины, SAPO-37, бета-цеолита и их смесей; молекулярное сито для крекинга/изомеризации парафина выбирается из группы, состоящей из цеолитов водородного типа ZSM-5, ZSM-11, ZSM-22, ZSM-35 и ZSM-57; и в качестве молекулярного сита для получения ароматических углеводородов используется GaZSM-5.
В патентной заявке США №20050070422 описывается композиция катализатора, используемого для повышения выхода пропилена с использованием каталитического крекинга, который содержит первое молекулярное сито со средним размером пор, второе молекулярное сито, в котором имеются поры канала по меньшей мере одного размера, который меньше размера пор первого сита, и молекулярное сито (необязательный компонент) с третьим большим размером пор, причем первое молекулярное сито выбирается из группы, состоящей из ZSM-5, ZSM-11, ZSM-12, ZSM-57, ITQ-13 и МСМ-22; второе молекулярное сито выбирается из группы, состоящей из ECR-42, ZSM-22, ZSM-35, ZSM-23, МСМ-22, МСМ-49, SAPO-11, SAPO-34 и SAPO-41; и третье молекулярное сито выбирается из группы, состоящей из фожазита, цеолита L, VPI-5, SAPO-37, цеолита X, бета-цеолита, ZSM-3, ZSM-4, ZSM-18, ZSM-20, MCM-9, MCM-41, MCM-41S, МСМ-48, Y-цеолита, USY, REY, REUSY и т.п. Этот катализатор пригоден для использования при получении пропилена путем крекинга нафты и исходных тяжелых углеводородных продуктов.
По мере увеличения потребности в легких олефинах существует насущная необходимость в катализаторе конверсии углеводородов, который должен обладать повышенной способностью конверсии углеводородов нефти и обеспечивать повышенный выход легких олефинов, в особенности пропилена.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается способ каталитического крекинга с повышенной селективностью получения легких олефинов из углеводородов.
После интенсивных исследований автор обнаружил, что если катализатор конверсии углеводородов содержит в качестве каталитического компонента специальный модифицированный бета-цеолит, его селективность в отношении олефинов C2-C12 может быть существенно улучшена, в результате чего он становится предпочтительным для получения легких олефинов (С2-С4) путем дополнительного крекинга. Таким образом, легкие олефины могут быть получены из углеводородов нефти с более высоким выходом при использовании катализатора конверсии углеводородов, который содержит модифицированный бета-цеолит в качестве активного компонента, и в этом заключается настоящее изобретение.
Для достижения вышеуказанной цели в настоящем изобретении предлагается способ каталитической конверсии углеводородов, в котором:
обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, в котором катализатор движется, затем продукт реакции и отработавший катализатор отбирают из реактора для разделения с использованием десорбции, и выделенный отработавший катализатор возвращают в реактор для последующей конверсии после его регенерации путем обжига, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов,
причем катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60% вес. смеси цеолитов, 5-99% вес. термостойкого неорганического оксида и 0-70% вес. глины, и смесь цеолитов содержит (от полного веса смеси): 1-75% вес. бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99% вес. цеолита с МFI-структурой и 0-74% вес. цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Al2O3·(1,3-10)P2O5·(0,7-15)МхОу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, и у - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
Более конкретно, объектом настоящего изобретения является следующее.
1. Способ каталитической конверсии углеводородов, в котором:
обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, в котором катализатор движется, затем продукт реакции и отработавший катализатор отбирают из реактора для разделения с использованием десорбции, и отработавший катализатор после разделения возвращают в реактор для последующей конверсии после его регенерации путем обжига, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов,
причем катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60% вес. смеси цеолитов, 5-99% вес. термостойкого неорганического оксида и 0-70% вес. глины, и смесь цеолитов содержит (от полного веса смеси): 1-75% вес. бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99% вес. цеолита с МFI-структурой и 0-74% вес. цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Al2O3·(1,3-10)P2O5·(0,7-15)МхОу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, и у - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
2. Способ по п.1, отличающийся тем, что катализатор конверсии углеводородов содержит (от общего веса катализатора): 10-50% вес. смеси цеолитов, 10-70% вес. термостойкого неорганического оксида и 0-60% глины.
3. Способ по п.1, отличающийся тем, что безводная химическая формула бета-цеолита, модифицированного фосфором и переходным металлом М, может быть представлена в следующем виде: (0-0,2)Na2O·(1-9)Al2O3·(1,5-7)P2O5·(0,9-10)МхОу·(75-95)SiO2.
4. Способ по п.3, отличающийся тем, что безводная химическая формула бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Al2O3·(2-5)P2O5·(1-3)МхОу·(82-95)SiO2.
5. Способ по п.1, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni и Cu.
6. Способ по п.5, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe и/или Cu.
7. Способ по п.1, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP.
8. Способ по п.7, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы, цеолитов ZRP, содержащих фосфор, цеолитов ZRP, содержащих фосфор и редкоземельные элементы, цеолитов ZRP, содержащих фосфор и щелочноземельные металлы, и цеолитов ZRP, содержащих фосфор и переходные металлы.
9. Способ по п.1, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из фожазита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18.
10. Способ по п.9, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
11. Способ по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита.
12. Способ по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита.
13. Способ по п.1, отличающийся тем, что в качестве реактора используется один или несколько реакторов, выбранных из группы, состоящей из реактора с псевдоожиженным слоем, реактора с восходящим потоком, линейного реактора с нисходящим транспортирующим потоком и реактора с подвижным слоем или их сочетаний.
14. Процесс по п.13, отличающийся тем, что в качестве реактора с восходящим потоком используется один или несколько реакторов, выбранных из группы, состоящей из реактора с восходящим потоком постоянного диаметра, реактора с восходящим потоком с постоянной линейной скоростью и реактора с восходящим потоком с переменным диаметром.
15. Способ по п.13, отличающийся тем, что в качестве реактора с псевдоожиженным слоем используется один или несколько реакторов, выбранных из группы, состоящей из реактора со стационарным псевдоожиженным слоем, реактора с псевдоожиженным слоем из зернистого материала, реактора пузырькового типа, реактора с турбулентным слоем, реактора с быстрым слоем, реактора с транспортирующим слоем и реактора с псевдоожиженным слоем в плотной фазе.
16. Способ по п.1, отличающийся тем, что реакцию каталитического крекинга осуществляют в реакторе при следующих условиях: температура реакции - 480-650°С, абсолютное давление в реакционной зоне - 0,15-0,30 МПа и среднечасовая скорость подачи исходных углеводородов - 0,2-40 1/час.
17. Способ по п.1, отличающийся тем, что в качестве исходных углеводородов используется один или несколько углеводородов, выбранных из группы, состоящей из углеводородов C4, бензина, дизельного топлива, гидрогенизированных остатков, вакуумного газойля, сырой нефти, остатков перегонки или их смеси.
18. Способ по п.1, отличающийся тем, что для уменьшения парциального давления исходных углеводородов во время каталитического крекинга в реактор добавляют разбавитель, в качестве которого используется один или несколько разбавителей, выбранных из группы, состоящей из водяного пара, легких алканов, азота или их смесей.
19. Способ по п.18, отличающийся тем, что в качестве разбавителя используется водяной пар, и весовое отношение водяного пара к исходным углеводородам составляет 0,01-2:1.
В предлагаемом в настоящем изобретении способе каталитической конверсии углеводородов используют катализатор конверсии углеводородов, в состав которого в качестве основных активных компонентов входит специальный модифицированный бета-цеолит и цеолит с МFI-структурой и который обладает повышенной способностью конверсии углеводородов и обеспечивает повышенный выход легких олефинов (повышенная селективность в отношении легких олефинов), в частности пропилена. Как показано в Примере 33, при температуре реакции 600°С, отношении количества катализатора к количеству углеводорода 10:1 и среднечасовой скорости подачи исходных продуктов 4 1/час конверсия исходных продуктов составила 94,6%, выход олефинов С2-С4 составил 42,5%, причем выход пропилена составил 21,9%.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для получения легких олефинов с повышенной селективностью в настоящем изобретении предлагается способ каталитической конверсии углеводородов, в котором:
обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, в котором катализатор движется, затем продукт реакции и отработавший катализатор отбирают из реактора для разделения с использованием десорбции, и выделенный отработавший катализатор возвращают в реактор для последующей конверсии после его регенерации путем обжига, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов,
причем катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60% вес. смеси цеолитов, 5-99% вес. термостойкого неорганического оксида и 0-70% вес. глины, и смесь цеолитов содержит (от полного веса смеси): 1-75% вес. бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99% вес. цеолита с МFI-структурой и 0-74% вес. цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Al2O3·(1,3-10)P2O5·(0,7-15)МхОу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, и у - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
В контексте настоящего изобретения, если не указано иное, термин "легкие олефины" относится к олефинам C2-C4.
При осуществлении предлагаемого в настоящем изобретении способа каталитической конверсии углеводородов используемый реактор может быть выбран, например, из группы, состоящей из реактора с псевдоожиженным слоем, реактора с восходящим потоком, линейного реактора с нисходящим транспортирующим потоком, реактора с движущимся слоем, составного реактора, состоящего из реактора с восходящим потоком и реактора с псевдоожиженным слоем, составного реактора, состоящего из реактора с восходящим потоком и линейного реактора с нисходящим транспортирующим потоком, составного реактора, состоящего из двух и более реакторов с восходящим потоком, составного реактора, состоящего из двух и более реакторов с псевдоожиженным слоем, составного реактора, состоящего из двух и более линейных реакторов с нисходящим транспортирующим потоком, и составного реактора, состоящего из двух и более реакторов с движущимся слоем. Кроме того, каждый из вышеуказанных реакторов при необходимости может быть разделен на две или более реакционных зон.
В качестве реактора с восходящим потоком используется один или несколько реакторов, выбранных из группы, состоящей из реактора с восходящим потоком постоянного диаметра, реактора с восходящим потоком с постоянной линейной скоростью и реактора с восходящим потоком с переменным диаметром. В качестве реактора с псевдоожиженным слоем используется один или несколько реакторов, выбранных из группы, состоящей из реактора со стационарным псевдоожиженным слоем, реактора с псевдоожиженным слоем из зернистого материала, реактора пузырькового типа, реактора с турбулентным слоем, реактора с быстрым слоем, реактора с транспортирующим слоем и реактора с псевдоожиженным слоем в плотной фазе.
В предлагаемом в настоящем изобретении способе каталитической конверсии углеводородов в качестве исходных углеводородов используется один или несколько углеводородов, выбранных из группы, состоящей из углеводородов С4, бензина, дизельного топлива, гидрогенизированных остатков, вакуумного газойля, сырой нефти, остатков перегонки или смеси этих фракций нефти, а также может непосредственно использоваться сырая нефть и нефтяные остатки.
В одном из предпочтительных вариантов осуществления настоящего изобретения катализатор конверсии углеводородов содержит (от общего веса катализатора): 10-50% вес. смеси цеолитов, 10-70% термостойкого неорганического оксида и 0-60% глины.
Далее подробно описывается катализатор конверсии углеводородов в соответствии с настоящим изобретением и способ его получения.
Прежде всего описывается модифицированный бета-цеолит, являющийся одним из основных компонентов катализатора конверсии углеводородов, используемого в настоящем изобретении.
Если безводную химическую формулу бета-цеолита, модифицированного фосфором и переходным металлом М, представить в массовых процентах оксидов, то предпочтительным является следующий диапазон: (0-0,2)Na2O·(1-9)Al2O3·(1,5-7)P2O5·(0,9-10)МхОу·(75-95)SiO2, более предпочтительно (0-0,2)Na2O·(1-9)Al2O3·(2-5)P2O5·(1-3)МхОу·(82-95)SiO2.
В одном из предпочтительных вариантов осуществления изобретения в качестве переходного металла М используется металл или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni и Cu, более предпочтительно из Fe и/или Cu.
В используемом в настоящем изобретении катализаторе конверсии углеводородов цеолит с MFI-структурой представляет собой высококремнистый цеолит со структурой пентасила, и в качестве него используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP, в частности один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы (см. CN 1052290 A, CN 1058382 A и US 5232675), цеолитов ZRP, содержащих фосфор (см. CN 1194181 А, US 5951963), цеолитов ZRP, содержащих фосфор и редкоземельные элементы (см. CN 1147420 A), цеолитов ZRP, содержащих фосфор и щелочноземельные металлы (см. CN 1211469 A, CN 1211470 A и US 6080698) и цеолитов ZRP, содержащих фосфор и переходные металлы (см. CN 1465527 А и CN 1611299 А).
К упомянутым цеолитам с крупными порами относятся цеолиты с пористой структурой, размеры полостей колец которых составляет по меньшей мере 0,7 нм. В качестве такого цеолита может использоваться, например, один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18, в частности один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
Кроме того, в качестве цеолитов с MFI-структурой и цеолитов с крупными порами могут использоваться цеолиты, предлагаемые на рынке, или же они могут быть также получены с использованием различных известных способов, которые в настоящем описании подробно не рассматриваются.
Бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием различных способов. Например, фосфор и переходный металл М могут быть введены; (1) при синтезе бета-цеолита; или (2) путем осуществления ионообмена с аммонием, модификации фосфором, модификации переходным металлом М, прокаливания и аналогичных стадий после синтеза бета-цеолита.
Например, бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием нижеописанного способа. Натриевый бета-цеолит, полученный путем обычной кристаллизации, обрабатывают солью аммония в весовом отношении бета-цеолит:соль аммония:Н2О=1:(0,1-1):(5-10) при температуре от комнатной до 100°С в течение 0,5-2 часов и фильтруют. Такая обработка может выполняться несколько раз (от 1 до 4), так чтобы содержание Na2O в бета-цеолите стало меньше 0,2% вес. Затем в полученный таким образом бета-цеолит путем импрегнирования или ионообмена вводят фосфор или один или несколько переходных металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn, для его модификации, после чего осуществляют высушивание и прокаливание в течение 0,5-8 часов при температуре 400-800°С, причем прокаливание может осуществляться в атмосфере пара, в результате чего получают бета-цеолит, модифицированный фосфором и переходным металлом М.
При получении модифицированного бета-цеолита в соответствии с настоящим изобретением может быть осуществлен процесс модификации для введения в бета-цеолит фосфора и переходного металла М, например, с использованием импрегнирования или ионообмена, которые хорошо известны в данной области техники.
Импрегнирование может быть выполнено, например, с использованием одного из трех способов:
а. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной смеси, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученную твердую массу смешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn при температуре от комнатной до 95°С, и затем высушивают;
b. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной смеси, затем смесь высушивают, и после этого полученную твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Cu, Mn, Zn и Sn при температуре от комнатной до 95°С, и затем высушивают, причем последовательность импрегнирования двух вышеуказанных водных растворов может быть изменена на обратную; и
с. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством перемешанного водного раствора фосфорсодержащего соединения и соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Cu, Mn, Zn и Sn при температуре от комнатной до 95С до получения однородной смеси, и затем смесь высушивают.
Указанный ионообмен может быть осуществлен с использованием следующего способа.
Фильтрационный осадок после ионообмена бета-цеолита с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученную твердую массу смешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn, с отношением твердой и жидкой фаз 1:(5-20) до получения однородной массы, и перемешивают при температуре 80-95°С в течение 2-3 часов и затем фильтруют, причем ионообмен может быть выполнен несколько раз, после чего полученный образец многократно промывают водой и высушивают.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением в качестве соли аммония используется известная неорганическая соль, такая как соль, выбранная из хлорида аммония, сульфата аммония, нитрата аммония, или их смеси.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое фосфорсодержащее соединение выбирается из ортофосфорной кислоты, кислого диаммонийфосфата, дигидрофосфата аммония, фосфата аммония, или их смеси.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое соединение, содержащее один или несколько переходных металлов, выбираемых из Fe, Со, Ni, Cu, Mn, Zn и Sn, выбирается из соответствующих растворимых в воде солей, таких как их сульфаты, нитраты и хлориды.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением высушивание может выполняться с использованием обычных способов, и температура высушивания может быть в диапазоне от комнатной до 350°С, предпочтительно в диапазоне 100-200°С. Кроме того, используется обычная температура прокаливания, в общем случае 400-800°С, предпочтительно 450-700°С.
При получении модифицированного бета-цеолита тип исходного бета-цеолита не имеет особенного значения. Это может быть бета-цеолит, обычно используемый в технике или имеющийся на рынке, или же он может быть получен с использованием одного из известных способов. В предпочтительном варианте осуществления изобретения в качестве исходного бета-цеолита может использоваться натриевый бета-цеолит. Если натриевый бета-цеолит содержит органический матричный компонент, то вышеуказанная процедура должна выполняться после удаления этого компонента. Кроме того, содержание натрия в таком натриевом бета-цеолите должно удовлетворять требованию содержания натрия в безводном химическом составе бета-цеолита, содержащего фосфор и переходный металл М. Если содержание натрия не удовлетворяет указанным требованиям, то может быть использован способ ионообмена с аммонием для удаления натрия из исходного натриевого бета-цеолита. Таким образом, стадия ионообмена с аммонием не является обязательной для получения модифицированного бета-цеолита.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением используемые устройства и способы регулирования условий не имеют особенного значения, и это могут быть обычно используемые в технике устройства и способы регулирования.
Ниже описывается другой важный компонент, термостойкий неорганический оксид катализатора конверсии углеводородов, используемого в настоящем изобретении.
Такой термостойкий неорганический оксид не указывается конкретно, однако предпочтительно он выбирается из одного или нескольких термостойких неорганических оксидов, используемых в качестве матрицы и связующего компонента катализатора крекинга, например глинозема, кремнезема и аморфного алюмосиликата. Такие термостойкие неорганические оксиды и способы их получения хорошо известны специалистам в данной области техники. Кроме того, указанный термостойкий неорганический оксид может предлагаться на рынке или же он может быть получен из прекурсоров с использованием известных способов.
Кроме того, прекурсоры такого термостойкого неорганического оксида могут быть использованы непосредственно вместо него для получения используемого в настоящем изобретении катализатора углеводородов. Таким образом, термин "термостойкий неорганический оксид" охватывает и сами термостойкие неорганические оксиды, и их прекурсоры.
Под прекурсорами указанного термостойкого неорганического оксида в настоящем описании понимаются вещества, способные формировать термостойкий неорганический оксид при получении предлагаемого в настоящем изобретении катализатора углеводородов. В частности, например, прекурсоры глинозема могут быть выбраны из группы, состоящей из гидратированного оксида алюминия и/или золя оксида алюминия, причем гидратированный оксид алюминия может быть выбран, например, из группы, состоящей из бемита, псевдобемита, тригидрата алюминия и аморфной гидроокиси алюминия. Прекурсоры упомянутого кремнезема могут быть, например, одним или несколькими прекурсорами, выбранными из группы, состоящей из золя кремнистой кислоты, геля кремнистой кислоты и жидкого стекла. Далее, прекурсоры упомянутого аморфного алюмосиликата могут быть одним или несколькими прекурсорами, выбранными из группы, состоящей из золя алюмосиликата, смеси золя кремнистой кислоты и золя оксида алюминия, и геля алюмосиликата. Прекурсоры такого термостойкого неорганического оксида и способы их получения также хорошо известны специалистам в данной области техники.
Используемый в настоящем изобретении катализатор углеводородов может содержать глину (необязательный компонент). Такая глина не указывается конкретно, но предпочтительно используется одна или несколько глин, выбранных из группы, состоящей из глин, обычно используемых в качестве активных компонентов катализаторов крекинга. Например, в качестве глины может использоваться одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита, и предпочтительно одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита. Указанные глины и способы их получения хорошо известны специалистам в данной области техники или их можно закупить на рынке.
Приведенные ниже примеры получения используемого в настоящем изобретении катализатора углеводородов являются всего лишь иллюстрациями и никоим образом не ограничивают объем изобретения.
Весь или часть термостойкого неорганического оксида и/или его прекурсора смешивают с водой и перемешивают до получения суспензии. В полученную суспензию может быть добавлена глина. На этой стадии в суспензию может быть дополнительно добавлена оставшаяся часть термостойкого неорганического оксида и/или его прекурсора. Затем в суспензию добавляют вышеуказанную смесь цеолитов, перемешивают до получения однородной суспензии, высушивают и прокаливают. Перед добавлением смеси цеолитов, перед добавлением глины или после него в полученную суспензию добавляют кислоту для доведения рН суспензии до уровня 1-5. После того как уровень рН окажется в указанном диапазоне, полученную суспензию выдерживают в течение 0,1-10 часов при температуре 30-90°С. После стадии выдерживания в суспензию добавляют оставшуюся часть термостойкого неорганического оксида и/или его прекурсора.
В способе получения используемого в настоящем изобретении катализатора углеводородов глина может быть добавлена до стадии выдерживания или после этой стадии. Последовательность добавления глины не влияет на характеристики используемого в настоящем изобретении катализатора углеводородов.
В способе получения используемого в настоящем изобретении катализатора углеводородов весь термостойкий неорганический оксид и/или его прекурсор (или часть) может быть добавлен до стадии выдерживания. Для того чтобы повысить прочность катализатора к истиранию, часть термостойкого неорганического оксида и/или его прекурсора предпочтительно добавляют до стадии выдерживания, и затем остающуюся часть термостойкого неорганического оксида и/или его прекурсора добавляют после стадии выдерживания. В последнем случае весовое отношение части, добавляемой сначала, к части, добавляемой позже, составляет 1:0,1-10, более предпочтительно 1:0,1-5.
В способе получения используемого в настоящем изобретении катализатора углеводородов для регулирования уровня рН суспензии в нее добавляют кислоту. В качестве такой кислоты используется одна или несколько кислот, выбранных из группы, состоящей из растворимых в воде неорганических и органических кислот, предпочтительно одна или несколько кислот, выбранных из группы, состоящей из хлористоводородной кислоты, азотной кислоты, ортофосфорной кислоты и карбоновой кислоты с числом атомов углерода 1-10 в количестве, достаточном для обеспечения рН суспензии на уровне 1-5, предпочтительно на уровне 1,5-4.
В способе получения используемого в настоящем изобретении катализатора углеводородов указанное выдерживание осуществляют в течение 0,5-8 часов при температуре 40-80°С.
Способы сушки суспензии и условия такой сушки хорошо известны специалистам в данной области техники. Например, такая сушк может быть выбрана из группы, состоящей из сушки на воздухе, горячей сушки, сушки с принудительной подачей воздуха и сушки распылением, предпочтительной является сушка распылением. Температура сушки может находиться в диапазоне от комнатной температуры до 400°С, предпочтительно 100-350°С. Для обеспечении оптимального режима для сушки распылением содержание сухого вещества в суспензии перед сушкой предпочтительно должно составлять 10-50% вес., более предпочтительно 20-50% вес.
Условия прокаливания, выполняемого после сушки, также хорошо известны специалистам в данной области техники. Как правило, прокаливание выполняют при температуре 400-700°С, предпочтительно 450-650°С, по меньшей мере в течение 0,5 часа, предпочтительно в течение 0,5-100 часов, более предпочтительно в течение 0,5-10 часов.
После получения используемого в настоящем изобретении катализатора конверсии углеводородов он может быть использован для каталитической конверсии углеводородов в соответствии с предлагаемым способом.
В предлагаемом в настоящем изобретении способе конверсии углеводородов используются следующие параметры реакции каталитического крекинга: температура реакции - 480-650°С, предпочтительно 500-620°С, абсолютное давление в реакционной зоне - 0,15-0,30 МПа, предпочтительно 0,20-0,30 МПа. Среднечасовая скорость подачи исходных углеводородов составляет 0,2-40 1/час, предпочтительно 3-30 1/час.
В предлагаемом в настоящем изобретении способе конверсии углеводородов для уменьшения парциального давления исходных углеводородов во время каталитического крекинга в реактор может быть добавлен разбавитель, в качестве которого используется один или несколько разбавителей, выбранных из группы, состоящей из водяного пара, легких алканов и азота или других подходящих разбавителей, причем водяной пар является предпочтительным, и весовое отношение водяного пара к исходным углеводородам предпочтительно составляет 0,01-2:1.
В альтернативном варианте предлагаемого в настоящем изобретении способа конверсии углеводородов продукт реакции и отработавший катализатор отбирают из реактора для разделения, и после разделения отработавший катализатор десорбируют и регенерируют путем обжига, и затем возвращают в реактор для последующей конверсии, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов
В предлагаемом в настоящем изобретении способе конверсии углеводородов после отбора из реактора продукта реакции и отработавшего катализатора их разделяют в сепараторном устройстве (например, в центробежном сепараторе). Затем выделенный катализатор пропускают через секцию десорбции, и углеводородный продукт, поглощенный катализатором, десорбируется водяным паром или другими газами. В альтернативном варианте осуществления изобретения катализатор после десорбции направляют в регенератор с использованием технологии псевдоожижения для обеспечения контакта с кислородосодержащим газом при температуре порядка 650-720°С. Затем отложения кокса на катализаторе окисляются и выжигаются, в результате чего происходит регенерация катализатора. После этого регенерированный катализатор возвращают в реактор для последующего использования. После фракционирования выделенного продукта реакции (дополнительно содержащего углеводородный продукт, полученный в секции десорбции) с использованием известного способа получают газ (содержащий сухой газ и сжиженный газ), бензин, дизельное топливо, тяжелое дизельное топливо и другие низкомолекулярные насыщенные углеводороды. Легкие олефины, содержащие этилен, пропилен, бутилен и другие компоненты, могут быть отделены от газа с использованием известной технологии разделения.
Предлагаемый в настоящем изобретении способ каталитической конверсии углеводородов обладает следующими достоинствами: за счет использования специального модифицированного бета-цеолита и цеолита с МFI-структурой, являющихся основными активными компонентами катализатора конверсии углеводородов, способ демонстрирует повышенную способность конверсии углеводородов и обеспечивает повышенный выход легких олефинов, в частности пропилена.
Примеры
Следующие примеры предназначены для иллюстрации настоящего изобретения, без ограничения его объема.
В Примерах 1-10 описывается бета-цеолит, модифицированный фосфором и переходным металлом М, и способ его получения. Содержание Na2O, Fe2O3, Со2О3, NiO, CuO, Mn2O3, ZnO, SnO2, Al2O3 и SiO2 в каждом образце модифицированного бета-цеолита измерялось с использованием способа рентгеновской флюоресценции (см. также публикацию "Аналитические методы в нефтехимической промышленности" (RIPP Experiment Techniques), под ред. Yang Cuiding и др., издательство "Science Press", 1990).
Все указанные ниже реагенты являются химически чистыми реагентами (в противном случае даются соответствующие примечания и пояснения).
Пример 1
100 г (в пересчете на сухое вещество) бета-цеолита производства компании Qilu Catalyst Company (отношение SiO2/Al2O3=25), обрабатывали и промывали раствором NH4Cl до содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 6,8 г H3PO4 (концентрация 85%) и 3,2 г Cu(NO3)2·3H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В1, содержащий фосфор и переходный металл Cu. Он имел следующий безводный химический состав:
0,1 Na2O·8,2Al2O3·4,0P2O5·1,0CuO·86,7SiO2.
Пример 2
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 12,5 г H3PO4 (концентрация 85%) и 6,3 г CuCl2 растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В2, содержащий фосфор и переходный металл Cu. Он имел следующий безводный химический состав:
0,1Na2O·7,0Al2O3·6,9P2O5·3,5CuO·82,5SiO2.
Пример 3
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 4,2 г NH4H2PO4 растворяли в 60 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С; вышеуказанный образец обрабатывали раствором Cu(NO3)2 (концентрация 5%) при отношении твердой фазы к жидкой фазе, равном 1:5, в течение 2 часов при температуре 80-90°С, фильтровали, и обработку осуществляли несколько раз, пока не было получено заданное количество, затем прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В3, содержащий фосфор и переходный металл Cu. Он имел следующий безводный химический состав:
0,03Na2O·2,0Al2O3·2,5P2O5·2,1CuO·93,4SiO2.
(количество Na2O принято за ноль)
Пример 4
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 7,1 г H3PO4 (концентрация 85%) и 8,1 г Fe(NO3)3·9H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В4, содержащий фосфор и переходный металл Fe. Он имел следующий безводный химический состав:
0,1Na2O·6,0Al2O3·4,1P2O5·1,5Fe2O3·88,3SiO2.
Пример 5
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 10,3 г H3PO4 (концентрация 85%) и 39,6 г Co(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В5, содержащий фосфор и переходный металл Со. Он имел следующий безводный химический состав:
0,1Na2O·6,7Al2O3·5,4P2O5·9,6Co2O3·78,2SiO2.
Пример 6
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 7,5 г H3PO4 (концентрация 85%) и 6,7 г Ni(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В6, содержащий фосфор и переходный металл Ni. Он имел следующий безводный химический состав:
0,08Na2O·6,0Al2O3·4,3P2O5·1,8NiO·87,8SiO2.
Пример 7
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 6,9 г H3PO4 (концентрация 85%) и 16,1 г Mn(NO3)2 растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В7, содержащий фосфор и переходный металл Mn. Он имел следующий безводный химический состав:
0,09Na2O·1,9Al2O3·3,8P2O5·6,4Mn2O3·87,8SiO2.
Пример 8
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 2,5 г H3PO4 (концентрация 85%) и 6,1 г Zn(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В8, содержащий фосфор и переходный металл Zn. Он имел следующий безводный химический состав:
0,15Na2O·1,3Al2O3·1,5P2O5·1,6ZnO·95,8SiO2.
Пример 9
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 7,1 г H3PO4 (концентрация 85%) и 4,2 г SnCl4·5H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В9, содержащий фосфор и переходный металл Sn. Он имел следующий безводный химический состав:
0,11Na2O·6,3Al2O3·4,1P2O5·1,7SnO2·87,8SiO2.
Пример 10
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2% вес., затем фильтровали для получения фильтрационного осадка; 7,1 г H3PO4 (концентрация 85%), 3,2 г Cu(NO3)2·3H2O и 5,3 г Fe(NO3)3·9H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, и полученный образец прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В10, содержащий фосфор и переходные металлы Fe и Cu. Он имел следующий безводный химический состав:
0,11Na2O·5,9Al2O3·4,1P2O5·1,0CuO·1,0Fe2O3·87,9SiO2.
Примеры 11-20 используются для иллюстрации катализатора конверсии углеводородов, используемого в предлагаемом в настоящем изобретении способе каталитической конверсии углеводородов, и способа его получения. Для получения катализатора использовались следующие исходные материалы:
Глина:
галлуазит - промышленная продукция компании Suzhou Porcelain Clay Corporation, содержание сухого вещества - 71,6% вес.;
каолин - промышленная продукция компании Suzhou Kaolin Corporation, содержание сухого вещества - 76% вес.;
монтмориллонит - промышленная продукция компании Zhejiang Fenghong Clay Co., содержание сухого вещества - 95% вес.
Термостойкий неорганический оксид или его прекурсор:
псевдобемит - промышленная продукция компании Shandong Aluminum Factory, содержание сухого вещества - 62,0% вес.;
золь оксида алюминия - производство компании Qilu Catalyst Factory, содержание Al2O3 - 21,5% вес.; и
золь кремнистой кислоты - производство компании Beijing Chemical Factory, содержание кремнезема - 16,0% вес.
Все цеолиты с крупными порами произведены компанией Qilu Catalyst Factory под следующими товарными знаками:
DASY 2.0 имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,446 нм, содержание Na2O - 1,1% вес., содержание оксидов редкоземельных элементов RE2O3 - 2,0% вес., при этом содержание оксида лантана - 1,06% вес., содержание оксида церия - 0,26% вес. и содержание других оксидов редкоземельных элементов - 0,68% вес.
USY имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,445 нм, содержание Na2O - 0,36% вес.
DASY 0.0 имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,443 нм, содержание Na2O - 0,85% вес.
DASY 6.0 имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,451 нм, содержание Na2O - 1,6% вес., содержание оксидов редкоземельных элементов RE2O3 - 6,2% вес., при этом содержание оксида лантана - 3,29% вес., содержание оксида церия - 0,81% вес. и содержание других оксидов редкоземельных элементов - 2,10% вес.
REHY имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,465 нм, содержание Na2O - 3,2% вес., содержание оксидов редкоземельных элементов RE2O3 - 7,0% вес., при этом содержание оксида лантана - 3,71% вес., содержание оксида церия - 0,91% вес., и содержание других оксидов редкоземельных элементов - 2,38% вес.
Все цеолиты с MFI-структурой и произведены компанией Qilu Catalyst Factory под следующими товарными знаками:
ZSP-2, в котором отношение SiO2/Al2O3=70, содержание Na2O - 0,03% вес., P2O5 - 4,9% вес. и Fe2O3 - 2,1% вес.
ZRP-1, в котором отношение SiO2/Al2O3=30, содержание Na2O - 0,17% вес., содержание оксидов редкоземельных элементов RE2O3 - 1,4% вес., при этом содержание оксида лантана - 0,84% вес., содержание оксида церия - 0,18% вес. и содержание других оксидов редкоземельных элементов - 0,38% вес.
ZSP-1, в котором отношение SiO2/Al2O3=30, содержание Na2O - 0,1% вес., P2O5 - 2,0% вес., и Fe2O3 - 0,9% вес.
ZSP-5, в котором отношение SiO2/Al2O5=50, содержание Na2O - 0,05% вес. и P2O5 - 4,0% вес.
Пример 11
К 25,0 кг декатионированной воды добавляли 6,3 кг галуазита и суспендировали. Затем в полученную суспензию добавляли 4 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 2, перемешивали до получения однородной смеси и выдерживали в течение 1 часа при температуре 70°С. Затем добавляли 1,4 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед и после выдерживания, составляло 1:0,12), после перемешивания до получения однородной смеси добавляли 7,7 кг суспензии, полученной путем перемешивания с водой смеси 0,6 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В1, 0,6 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 2.0 и 1,5 кг (в пересчете на сухое вещество) цеолита ZSP-2 с МFI-структурой, и перемешивали до получения однородной смеси с содержанием сухого вещества 22,5% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С1. Состав катализатора С1 приведен в Таблице 1.
Пример 12
Катализатор С2 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали такое же количество бета-цеолита В2. Состав катализатора С2 приведен в Таблице 1.
Пример 13
Катализатор С3 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали такое же количество бета-цеолита В4. Состав катализатора С3 приведен в Таблице 1.
Пример 14
Катализатор С4 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали такое же количество бета-цеолита В10. Состав катализатора С4 приведен в Таблице 1.
Сравнительный Пример 1
В этом сравнительном примере используются сравнительные катализаторы, содержащие бета-цеолит, не модифицированный фосфором и переходным металлом, и способ их получения.
Сравнительный катализатор СВ1 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали бета-цеолит (как в Примере 1), не модифицированный фосфором и переходным металлом. Состав сравнительного катализатора СВ1 приведен в Таблице 1.
Сравнительный Пример 2
В этом сравнительном примере описываются сравнительные катализаторы, не содержащие бета-цеолит, и способ их получения.
Сравнительный катализатор СВ2 получали в соответствии со способом, описанным в Примере 11, за исключением того, что не добавляли бета-цеолит, и сверхустойчивый Y-цеолит DASY 2.0 использовали в количестве 1,2 кг (в пересчете на сухое вещество). Состав сравнительного катализатора СВ2 приведен в Таблице 1.
Таблица 1 | ||||||
Номер Примера | 11 | 12 | 13 | 14 | 1 (сравн.) | 2 (сравн.) |
Типы модифицированных бета-цеолитов | В1 | В2 | B4 | B10 | немодифиц. | - |
Модифицирующие элементы и их | P2O5, 4,0 | P2O5, 6,9 | P2O5, 4,1 | P2O5, 4,1 CuO, 1,0 Fe2O3, 1,0 |
- | - |
содержание, % вес. | CuO, 1,0 | CuO, 3,5 | Fe2O3, 1,5 | |||
Катализатор | С1 | C2 | C3 | C4 | СВ1 | СВ2 |
Состав катализатора, % вес. | ||||||
Галлуазит | 45 | 45 | 45 | 45 | 45 | 45 |
Термостойкий неорганический оксид | 28 | 28 | 28 | 28 | 28 | 28 |
DASY 2.0 | 6 | 6 | 6 | 6 | 6 | 12 |
ZSP-2 | 15 | 15 | 15 | 15 | 15 | 15 |
Модифицированный бета-цеолит | 6 | 6 | 6 | 6 | 6 | - |
Пример 15
К 12,5 кг декатионированной воды добавляли 4,0 кг псевдобемита, с помощью азотной кислоты доводили уровень рН до 2, перемешивали до получения однородной смеси и выдерживали в течение 5 часов при температуре 50°С для получения выдержанного продукта.
2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) добавляли к 2,5 кг декатионированной воды. Затем добавляли 4,0 кг каолина, суспендировали и перемешивали до получения однородной смеси. Затем вышеуказанный выдержанный продукт и 11,4 кг суспензии, полученной суспендированием в декатионированной воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В3, 2,5 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита USY и 1,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с МFI-структурой, перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 27,2% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 220°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 4 часов при температуре 520°С для получения катализатора С5. Состав катализатора С5 приведен в Таблице 2.
Пример 16
3,9 кг каолина и 1,1 кг монтмориллонита добавляли к 18,0 кг декатионированной воды и суспендировали. В суспензию добавляли 4,0 кг псевдобемита (прекурсоры термостойкого неорганического оксида добавляли перед выдерживанием), с помощью хлористоводородной кислоты доводили уровень рН суспензии до 3, перемешивали до получения однородной смеси и выдерживали в течение 2 часов при температуре 60°С. Затем добавляли 10,0 кг суспензии, полученной суспендированием в декатионированной воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В5, содержащего фосфор и переходный металл Со, 0,5 кг (в пересчете на сухое вещество) Y-цеолита REHY и 1,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с МFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 27,0% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 280°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2,5 часов при температуре 580°С для получения катализатора С6. Состав катализатора С6 приведен в Таблице 2.
Пример 17
К 17,8 кг декатионированной воды добавляли 4,2 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 3,5, перемешивали до получения однородной смеси и выдерживали в течение 0,5 часа при температуре 75°С. Затем добавляли 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 1,0 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В6, содержащего фосфор и переходный металл Ni, 1,0 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 0.0 и 2,0 кг (в пересчете на сухое вещество) цеолита ZSP-1 с МFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 25,2% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 1 часа при температуре 600°С для получения катализатора С7. Состав катализатора С7 приведен в Таблице 2.
Пример 18
К 20,0 кг декатионированной воды добавляли 4,9 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 3,5, перемешивали до получения однородной смеси и выдерживали в течение 0,5 часа при температуре 75°С. Затем добавляли 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) и перемешивали до получения однородной смеси. Затем добавляли 10,0 кг суспензии, полученной суспендированием в воде смеси 0,2 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В7, содержащего фосфор и переходный металл Mn, 0,8 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 2.0 и 2,0 кг (в пересчете на сухое вещество) цеолита ZSP-1 с МFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 24,3% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 1 часа при температуре 600°С для получения катализатора С8. Состав катализатора С8 приведен в Таблице 2.
Пример 19
К 15,6 кг декатионированной воды добавляли 3,5 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 4, перемешивали до получения однородной смеси и выдерживали в течение 1 часа при температуре 60°С. Затем добавляли 4,7 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,4) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В8, 0,5 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 6.0 и 3,0 кг (в пересчете на сухое вещество) цеолита ZRP-5 с МFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 25,5% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 220°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С9. Состав катализатора С9 приведен в Таблице 2.
Пример 20
К 12,0 кг декатионированной воды добавляли 3,2 кг галлуазита и суспендировали. С помощью хлористоводородной кислоты получали уровень рН, равный 3, перемешивали до получения однородной смеси и выдерживали в течение 6 часов при температуре 55°С. Затем добавляли 21,9 кг золя кремнистой кислоты и 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:2) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 1,0 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В9, 3,0 кг (в пересчете на сухое вещество) цеолита ZRP-5 с МFI-структурой и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 19,7% вес. Полученную суспензию высушивали распылением, и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С10. Состав катализатора С10 приведен в Таблице 2.
Таблица 2 | ||||||
Номер Примера | 15 | 16 | 17 | 18 | 19 | 20 |
Катализатор | С5 | С6 | С7 | C8 | C9 | C10 |
Глина: | ||||||
Тип | каолин | каолин + монтмор иллонит | галлуазит | галлуазит | галлуазит | - |
Содержание, % вес. | 30 | 40 | 30 | 35 | 25 | - |
Термостойкий неорганический оксид: | ||||||
Тип | оксид алюминия | оксид алюминия | оксид алюминия | оксид алюминия | оксид алюминия | оксид алюминия + оксид кремния |
Содержание, % вес. | 30 | 25 | 30 | 30 | 35 | 60 |
Цеолит с крупными порами: | ||||||
Тип | USY | REHY | DASY 0.0 | DASY 2.0 | DASY 6.0 | - |
Содержание, % вес. | 25 | 5 | 10 | 8 | 5 | - |
Цеолит с MFI-структурой: | ||||||
Тип | ZRP-1 | ZRP-1 | ZSP-1 | ZSP-1 | ZRP-5 | ZRP-5 |
Содержание, % вес. | 10 | 10 | 20 | 25 | 30 | 30 |
Бета-цеолит: | ||||||
Тип | В3 | В5 | B6 | B7 | B8 | В9 |
Содержание, % вес. | 5 | 20 | 10 | 2 | 5 | 10 |
Типы модифицирующих элементов и их содержание, % вес. | P2O5, 2,5 | P2O5, 5,4 | P2O5, 4,3 | P2O5, 3,8 | P2O5, 1,5 | P2O5, 4,1 |
CuO, 2,1 | Co2O3, 9,6 | NiO, 1,8 | Mn2O3, 6,4 | ZnO, 1,6 | SnO2, 1,7 |
Примеры 21-24
Примеры 21-24 используются для описания эффективности действия используемого в настоящем изобретении катализатора конверсии углеводородов.
Катализаторы С1-С4 выдерживали в течение 14 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Выдержанные катализаторы оценивались путем введения смеси газойля вакуумной перегонки и пара (количество пара составляло 25% от веса газойля) при следующих условиях осуществления реакции: температура - 560°С, отношение количества катализатора к количеству газойля - 10, и среднечасовая скорость подачи сырья - 4 1/час. Характеристики газойля вакуумной перегонки приведены в Таблице 3, и результаты оценки приведены в Таблице 4.
Сравнительные Примеры 3-4
Сравнительные Примеры 3-4 используются для иллюстрации эффективности действия сравнительных катализаторов.
Сравнительные катализаторы СВ1 и СВ2 оценивались с использованием такой же подачи газойля, как и в Примере 21, и полученные результаты приведены в Таблице 4.
Таблица 3
Подаваемый газойль | Газойль вакуумной перегонки | Продукт отгонки |
Плотность (20°С), г/см3 | 0,8764 | 0,8906 |
Вязкость (80°С), мм2/с | 12,06 | 24,84 |
Асфальтен, % вес. | - | 0,8 |
0,93 | 4,3 | |
Интервал отбора фракций, °С | ||
ТНК | 246 | 282 |
10% об. | 430 | 370 |
30% об. | 482 | 482 |
50% об. | 519 | 553 |
70% об. | 573 (75,2% объемн.) | - |
90% об. | - | - |
ТКК | - | - |
Таблица 4 | |||||||
Номер Примера | 21 | 22 | 23 | 24 | 3 (сравн.) | 4 (сравн.) | |
Катализатор | С1 | С2 | СЗ | С4 | СВ1 | СВ2 | |
Конверсия | 90,2 | 90,0 | 90,4 | 90,7 | 88,7 | 88,1 | |
Содержание продуктов, % вес. | |||||||
Сухой газ | 10,0 | 10,5 | 10,1 | 10,1 | 9,1 | 8,6 | |
СНГ | 45,4 | 44,6 | 45,8 | 46,1 | 44,0 | 43,6 | |
Бензин | 22,4 | 22,3 | 22,2 | 21,7 | 23,9 | 24,7 | |
Дизельное топливо | 5,5 | 5,6 | 5,4 | 5,3 | 5,9 | 6,2 | |
Тяжелое дизельное топливо | 4,3 | 4,4 | 4,2 | 4,0 | 5,4 | 5,7 | |
Кокс | 12,4 | 12,6 | 12,3 | 12,8 | 11,7 | 11,2 | |
где | Этилен | 5,2 | 5,3 | 5,5 | 5,4 | 5,1 | 4,7 |
Пропилен | 18,5 | 18,3 | 18,8 | 19,1 | 18,0 | 17,9 | |
Бутилен | 12,8 | 12,7 | 12,9 | 12,8 | 12,2 | 11,9 |
Результаты, приведенные в Таблице 4, показывают, что по сравнению со способом каталитической конверсии, в которой используется сравнительный катализатор СВ1, выдержанный при таких же условиях, и с таким же содержанием цеолитов, причем бета-цеолит не был модифицирован, предлагаемый в настоящем изобретении способ каталитической конверсии углеводородов повышает способность крекинга тяжелого дизельного топлива на 1,3-2,0%, выход СНГ на 0,6-2,1% и выход легких олефинов (С2 =+С3 =+С4 =) на 1-2%; по сравнению со сравнительным катализатором СВ2, не содержащим бета-цеолит, предлагаемый в настоящем изобретении катализатор конверсии углеводородов повышает способность крекинга тяжелого дизельного топлива на 1,9-2,6%, выход СНГ на 1,0-2,5% и выход легких олефинов (С2 =+С3 =+С4 =) на 1,8-2,8%.
Примеры 25-30
Примеры 25-30 используются для иллюстрации результатов реакции при различных условиях реакции.
Катализаторы С5-С10 выдерживали в течение 17 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Выдержанные катализаторы оценивали на вводимом продукте отгонки без крекинга. Характеристики продукта отгонки приведены в Таблице 3, а условия реакции и содержание продуктов приведены в Таблице 5.
Таблица 5 | |||||||
Номер Примера | 25 | 26 | 27 | 28 | 29 | 30 | |
Катализатор | С5 | С6 | С7 | С8 | С9 | С10 | |
Температура реакции, °С | 520 | 520 | 580 | 580 | 620 | 620 | |
Весовое отношение катализатор/нефтепродукты | 10 | 10 | 10 | 10 | 10 | 10 | |
Среднечасовая скорость подачи сырья, 1/час | 10 | 10 | 15 | 15 | 20 | 20 | |
Весовое содержание пара в продукте отгонки, % вес. | 12,5 | 12,5 | 25 | 25 | 37,5 | 37,5 | |
Конверсия | 79,5 | 78,9 | 85,6 | 83,4 | 86,5 | 86,6 | |
Содержание продуктов, % вес. | |||||||
Сухой газ | 5,6 | 5,5 | 10,3 | 9,8 | 12,7 | 12,6 | |
СНГ | 21,9 | 21,8 | 39,8 | 40,7 | 43,2 | 42,5 | |
Бензин | 43,4 | 43,1 | 23,3 | 22,4 | 18,3 | 18,1 | |
Дизельное топливо | 14,0 | 14,1 | 9,9 | 10,3 | 8,6 | 8,6 | |
Тяжелое дизельное топливо | 6,5 | 7,0 | 4,5 | 6,3 | 4,9 | 4,8 | |
Кокс | 8,6 | 8,5 | 12,2 | 10,5 | 12,3 | 13,4 | |
где | Этилен | 1,5 | 1,4 | 5,2 | 5,1 | 6,8 | 6,8 |
Пропилен | 6,5 | 6,7 | 13,5 | 16,7 | 21,6 | 21,1 | |
Бутилен | 6,2 | 7,0 | 12,8 | 12,5 | 14,3 | 14,6 |
Примеры 31-33
Примеры 31-33 используются для иллюстрации результатов крекинга углеводородов при разных температурах реакции.
Катализатор С4 выдерживали в течение 14 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Смесь газойля вакуумной перегонки и пара (количество пара составляло 25% от веса газойля) подавалась при различных температурах реакции (см. Таблицу 3), причем отношение количества катализатора к количеству газойля составляло 10, среднечасовая скорость подачи сырья составляла 4 1/час, и результаты представлены в Таблице 6.
Таблица 6 | ||||
Номер Примера | 31 | 32 | 33 | |
Катализатор | С4 | С4 | С4 | |
Температура реакции, °С | 520 | 560 | 600 | |
Конверсия | 79,3 | 90,7 | 94,6 | |
Содержание продуктов, % вес. | ||||
Сухой газ | 5,2 | 10,1 | 14,3 | |
СНГ | 21,9 | 46,1 | 49,5 | |
Бензин | 43,6 | 21,7 | 16,5 | |
Дизельное топливо | 13,6 | 5,3 | 3,4 | |
Тяжелое дизельное топливо | 7,1 | 4,0 | 2,0 | |
Кокс | 8,6 | 12,8 | 14,3 | |
где | Этилен | 1,5 | 5,4 | 7,1 |
Пропилен | 7,5 | 19,1 | 21,9 | |
Бутилен | 6,2 | 12,8 | 13,5 |
Примеры 34-36
Примеры 34-36 используются для иллюстрации результатов крекинга углеводородов при разных величинах среднечасовой скорости подачи сырья.
Катализатор С4 выдерживали в течение 14 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Смесь газойля вакуумной перегонки и пара (количество пара составляло 25% от веса газойля) подавалась при температуре реакции 560°С (см. Таблицу 3), причем отношение количества катализатора к количеству газойля составляло 10, среднечасовая скорость подачи сырья варьировалась, и результаты представлены в Таблице 7.
Таблица 7 | ||||
Номер Примера | 34 | 35 | 36 | |
Катализатор | С4 | С4 | С4 | |
Среднечасовая скорость подачи сырья, 1/час | 4 | 8 | 12 | |
Конверсия | 90,7 | 89,9 | 88,9 | |
Содержание продуктов, % вес. | ||||
Сухой газ | 10,1 | 9,5 | 8,9 | |
СНГ | 46,1 | 43,5 | 41,4 | |
Бензин | 21,7 | 24,8 | 27,1 | |
Дизельное топливо | 5,3 | 5,6 | 6,2 | |
Тяжелое дизельное топливо | 4,0 | 4,5 | 4,9 | |
Кокс | 12,8 | 12,1 | 11,5 | |
где | Этилен | 5,4 | 5,1 | 4,7 |
Пропилен | 19,1 | 18,6 | 18,1 | |
Бутилен | 12,8 | 12,4 | 11,9 |
Примеры 37-39
Примеры 37-39 используются для иллюстрации результатов крекинга углеводородов при разных величинах отношения количества катализатора к количеству газойля.
Катализатор С4 выдерживали в течение 14 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Смесь газойля вакуумной перегонки и пара (количество пара составляло 25% от веса газойля) подавалась при температуре реакции 560°С (см. Таблицу 3), причем среднечасовая скорость подачи сырья составляла 4 1/час, и отношение количества катализатора к количеству газойля варьировалось, и результаты представлены в Таблице 8.
Таблица 8 | ||||
Номер Примера | 37 | 38 | 39 | |
Катализатор | С4 | С4 | С4 | |
Весовое отношение катализатор/газойль | 10 | 15 | 20 | |
Конверсия | 90,7 | 91,4 | 92,1 | |
Содержание продуктов, % вес. | ||||
Сухой газ | 10,1 | 10,6 | 11,1 | |
СНГ | 46,1 | 46,7 | 47,2 | |
Бензин | 21,7 | 20,8 | 20,1 | |
Дизельное топливо | 5,3 | 5 | 4,6 | |
Тяжелое дизельное топливо | 4 | 3,6 | 3,3 | |
Кокс | 12,8 | 13,3 | 13,7 | |
где | Этилен | 5,4 | 5,5 | 5,7 |
Пропилен | 19,1 | 19,3 | 20,1 | |
Бутилен | 12,8 | 13,2 | 13,4 |
Claims (17)
1. Способ каталитической конверсии углеводородов, в котором
обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, в котором катализатор движется, затем продукт реакции и отработавший катализатор отбирают из реактора для разделения путем десорбции, после чего отработавший катализатор возвращают в реактор для последующей конверсии после его регенерации путем обжига, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов, отличающийся тем, что катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, и смесь цеолитов содержит (от полного веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с МП-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Al2O3·(1,5-7)P2O5·(0,9-10)MxOy·(75-95)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
обеспечивают контакт исходных углеводородов с катализатором конверсии углеводородов для осуществления реакции каталитического крекинга в реакторе, в котором катализатор движется, затем продукт реакции и отработавший катализатор отбирают из реактора для разделения путем десорбции, после чего отработавший катализатор возвращают в реактор для последующей конверсии после его регенерации путем обжига, а выделенный продукт реакции разделяют на фракции для получения легких олефинов, бензина, дизельного топлива, тяжелого дизельного топлива и других насыщенных низкомолекулярных углеводородов, отличающийся тем, что катализатор конверсии углеводородов содержит (от полного веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, и смесь цеолитов содержит (от полного веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с МП-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Al2O3·(1,5-7)P2O5·(0,9-10)MxOy·(75-95)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Cu, Mn, Zn и Sn; x - число атомов переходного металла М, y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
2. Способ по п.1, отличающийся тем, что катализатор конверсии углеводородов содержит (от общего веса катализатора): 10-50 вес.% смеси цеолитов, 10-70 вес.% термостойкого неорганического оксида и 0-60 вес.% глины.
3. Способ по п.1, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni и Cu.
4. Способ по п.3, отличающийся тем, что переходный металл М выбирается из группы, состоящей из Fe и/или Cu.
5. Способ по п.1, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и цеолитов ZRP.
6. Способ по п.5, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы, цеолитов ZRP, содержащих фосфор, цеолитов ZRP, содержащих фосфор и редкоземельные элементы, цеолитов ZRP, содержащих фосфор и щелочноземельные металлы, и цеолитов ZRP, содержащих фосфор и переходные металлы.
7. Способ по п.1, отличающийся тем, что цеолит с крупными порами является одним или несколькими цеолитами, выбранными из группы, состоящей из фожазита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18.
8. Способ по п.7, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
9. Способ по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита.
10. Способ по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита.
11. Способ по п.1, отличающийся тем, что в качестве реактора используется один или несколько реакторов, выбранных из группы, состоящей из реактора с псевдоожиженным слоем, реактора с восходящим потоком, линейного реактора с нисходящим транспортирующим потоком и реактора с движущимся слоем или любых их сочетаний.
12. Способ по п.11, отличающийся тем, что в качестве реактора с восходящим потоком используется один или несколько реакторов, выбранных из группы, состоящей из реактора с восходящим потоком постоянного диаметра, реактора с восходящим потоком с постоянной линейной скоростью и реактора с восходящим потоком с переменным диаметром.
13. Способ по п.11, отличающийся тем, что в качестве реактора с псевдоожиженным слоем используется один или несколько реакторов, выбранных из группы, состоящей из реактора со стационарным псевдоожиженным слоем, реактора с псевдоожиженным слоем из зернистого материала, реактора пузырькового типа, реактора с турбулентным слоем, реактора с быстрым слоем, реактора с транспортирующим слоем и реактора с псевдоожиженным слоем в плотной фазе.
14. Способ по п.1, отличающийся тем, что реакцию каталитического крекинга осуществляют в реакторе при следующих условиях: температура реакции 480-650°С, абсолютное давление в реакционной зоне 0,15-0,30 МПа и среднечасовая скорость подачи углеводородного сырья 0,2-40 1/ч.
15. Способ по п.1, отличающийся тем, что в качестве исходных углеводородов используется один или несколько углеводородов, выбранных из группы, состоящей из углеводородов С4, бензина, дизельного топлива, гидрогенизированных остатков, вакуумного газойля, сырой нефти, остатков перегонки или их смесей.
16. Способ по п.1, отличающийся тем, что для уменьшения парциального давления исходных углеводородов во время каталитического крекинга в реактор добавляют разбавитель, в качестве которого используется один или несколько разбавителей, выбранных из группы, состоящей из водяного пара, легких алканов и азота или их смесей.
17. Способ по п.16, отличающийся тем, что в качестве разбавителя используется водяной пар, и весовое отношение водяного пара к исходным углеводородам составляет 0,01-2:1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610112733.X | 2006-08-31 | ||
CN200610112733XA CN101134913B (zh) | 2006-08-31 | 2006-08-31 | 一种烃类催化转化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009110507A RU2009110507A (ru) | 2010-10-10 |
RU2418842C2 true RU2418842C2 (ru) | 2011-05-20 |
Family
ID=39156813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009110507/04A RU2418842C2 (ru) | 2006-08-31 | 2006-09-28 | Способ каталитической конверсии углеводородов |
Country Status (11)
Country | Link |
---|---|
US (1) | US8900445B2 (ru) |
EP (1) | EP2072604B1 (ru) |
JP (1) | JP5221540B2 (ru) |
KR (1) | KR101359593B1 (ru) |
CN (1) | CN101134913B (ru) |
BR (1) | BRPI0621983B1 (ru) |
CA (1) | CA2662082C (ru) |
RU (1) | RU2418842C2 (ru) |
SA (2) | SA07280065B1 (ru) |
TW (1) | TWI308590B (ru) |
WO (1) | WO2008028343A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561985C2 (ru) * | 2011-06-08 | 2015-09-10 | Фудэ (Пекин) Кемикал Энд Индастри Ко., Лтд | Реактор с псевдоожиженным слоем и способ для получения олефинов из оксигенатов |
US20180207627A1 (en) * | 2014-01-23 | 2018-07-26 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
RU2802511C1 (ru) * | 2019-10-24 | 2023-08-30 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения легких олефинов и топливных компонентов c низким содержанием серы |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101932672B (zh) * | 2007-08-09 | 2015-01-21 | 中国石油化工股份有限公司 | 一种催化转化方法 |
JP5622588B2 (ja) * | 2008-01-09 | 2014-11-12 | 中国石油化工股▲ふん▼有限公司 | 粗悪な酸含有原油用変換触媒、当該触媒の製造方法及び当該触媒の利用 |
JP5587297B2 (ja) * | 2008-05-20 | 2014-09-10 | 中国石油化工股▲ふん▼有限公司 | 含酸劣質原油改質触媒、その製造方法、およびその応用 |
WO2010014256A1 (en) * | 2008-07-30 | 2010-02-04 | Saudi Arabian Oil Company | Metallic clay based fcc gasoline sulfur reduction additive compositions |
BRPI0804120A2 (pt) * | 2008-09-09 | 2010-07-06 | Petroleo Brasileiro Sa | método para produção de eteno e gás de sìntese em leito fluidizado circulante |
CN101940941B (zh) * | 2009-07-09 | 2012-10-10 | 中国石油化工股份有限公司 | 一种烃类转化催化剂及其制备方法 |
US8609567B2 (en) * | 2009-12-16 | 2013-12-17 | Uop Llc | OCP catalyst with improved steam tolerance |
EP2527036A4 (en) * | 2010-01-20 | 2014-03-05 | Jx Nippon Oil & Energy Corp | CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS |
CN102286293B (zh) * | 2010-06-18 | 2014-04-30 | 中国石油化工股份有限公司 | 一种页岩油加工方法 |
CN102337148B (zh) * | 2010-07-22 | 2015-03-18 | 中国石油化工股份有限公司 | 一种烯烃原料催化转化制取丙烯的方法 |
CN102337154B (zh) * | 2010-07-22 | 2014-12-03 | 中国石油化工股份有限公司 | 一种生产丙烯和轻芳烃的催化转化方法 |
JP2012241019A (ja) * | 2011-05-13 | 2012-12-10 | Idemitsu Kosan Co Ltd | 軽質オレフィン及び/又は単環芳香族化合物の製造方法 |
CN102274747B (zh) * | 2011-06-09 | 2012-12-12 | 卓润生 | 一种劣质油制低碳烯烃的催化剂组合物及其制备方法 |
CN102847552B (zh) * | 2011-06-30 | 2014-05-28 | 中国石油化工股份有限公司 | 一种提高低碳烯烃浓度的裂化助剂 |
US10245580B2 (en) * | 2011-08-11 | 2019-04-02 | University Of South Carolina | Highly active decomposition catalyst for low carbon hydrocarbon production from sulfur containing fuel |
CN102965141B (zh) * | 2011-08-31 | 2014-12-31 | 中国石油化工股份有限公司 | 一种重油转化方法 |
CN102974376B (zh) * | 2011-09-06 | 2014-07-30 | 中国石油化工股份有限公司 | 一种催化裂化助剂及其制备方法 |
US9227181B2 (en) * | 2011-09-13 | 2016-01-05 | Basf Corporation | Catalyst to increase propylene yields from a fluid catalytic cracking unit |
AU2013207783B2 (en) | 2012-01-13 | 2017-07-13 | Lummus Technology Llc | Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds |
SG11201407659XA (en) | 2012-05-25 | 2014-12-30 | Saudi Arabian Oil Co | Catalyst for enhanced propylene in fluidized catalytic cracking |
JP6267694B2 (ja) * | 2012-06-14 | 2018-01-24 | サウジ アラビアン オイル カンパニー | 温度勾配過程による原油の直接接触分解 |
SG11201408778YA (en) * | 2012-06-27 | 2015-02-27 | China Petroleum & Chemical | Catalytic cracking catalyst containing modified y type molecular sieve and preparation method therefor |
US9670113B2 (en) | 2012-07-09 | 2017-06-06 | Siluria Technologies, Inc. | Natural gas processing and systems |
JP5925100B2 (ja) * | 2012-10-03 | 2016-05-25 | 本田技研工業株式会社 | ポリプロピレン組成物の製造方法 |
CN103785460B (zh) * | 2012-10-26 | 2016-01-20 | 中国石油化工股份有限公司 | 一种催化裂解催化剂及其制备方法 |
CN103785459B (zh) * | 2012-10-26 | 2016-01-20 | 中国石油化工股份有限公司 | 一种催化裂解催化剂及其制备方法 |
WO2014089479A1 (en) | 2012-12-07 | 2014-06-12 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
WO2014129585A1 (ja) | 2013-02-21 | 2014-08-28 | Jx日鉱日石エネルギー株式会社 | 単環芳香族炭化水素の製造方法 |
DE102013205996A1 (de) * | 2013-04-04 | 2014-10-09 | Achim Methling Josef Ranftl GbR (vertretungsberechtigte Gesellschafter: Achim Methling, A-1110 Wien, Josef Ranftl, 82256 Fürstenfeldbruck) | Verfahren zum Abbau von synthetischen Polymeren und eine Vorrichtung zu dessen Durchführung |
EP3074119B1 (en) | 2013-11-27 | 2019-01-09 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CN110655437B (zh) | 2014-01-08 | 2022-09-09 | 鲁玛斯技术有限责任公司 | 乙烯成液体的系统和方法 |
CA3225180A1 (en) | 2014-01-09 | 2015-07-16 | Lummus Technology Llc | Oxidative coupling of methane implementations for olefin production |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CN104946301B (zh) * | 2014-03-31 | 2017-03-29 | 中国石油化工股份有限公司 | 一种提高低碳烯烃浓度的催化转化方法 |
JP6371102B2 (ja) * | 2014-04-24 | 2018-08-08 | 日揮触媒化成株式会社 | 金属担持成形体、その製造方法、吸着脱硫触媒、吸着脱硫方法、水素製造方法、および、燃料電池システム |
KR101595826B1 (ko) * | 2014-05-08 | 2016-02-22 | 한국화학연구원 | 함산소화물로부터 프로필렌 제조용 제올라이트 촉매 및 이의 제조방법 |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US20160289143A1 (en) | 2015-04-01 | 2016-10-06 | Siluria Technologies, Inc. | Advanced oxidative coupling of methane |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
EP3362425B1 (en) | 2015-10-16 | 2020-10-28 | Lummus Technology LLC | Separation methods and systems for oxidative coupling of methane |
EP3442934A4 (en) | 2016-04-13 | 2019-12-11 | Siluria Technologies, Inc. | OXIDIZING COUPLING OF METHANE FOR THE PRODUCTION OF OLEFINS |
CN110072972B (zh) * | 2016-12-13 | 2022-07-12 | 沙特基础工业全球技术公司 | 在使用干气稀释剂的循环再生工艺中用于轻质烯烃制备的石脑油催化裂化 |
WO2018118105A1 (en) | 2016-12-19 | 2018-06-28 | Siluria Technologies, Inc. | Methods and systems for performing chemical separations |
US10494574B2 (en) * | 2017-02-23 | 2019-12-03 | Saudi Arabian Oil Company | Systems and methods for cracking hydrocarbon streams such as crude oils utilizing catalysts which include zeolite mixtures |
US10526546B2 (en) * | 2017-02-23 | 2020-01-07 | Saudi Arabian Oil Company | Systems and methods for cracking hydrocarbon streams utilizing cracking catalysts |
JP2020521811A (ja) | 2017-05-23 | 2020-07-27 | ラマス テクノロジー リミテッド ライアビリティ カンパニー | メタン酸化カップリングプロセスの統合 |
AU2018298234B2 (en) | 2017-07-07 | 2022-11-17 | Lummus Technology Llc | Systems and methods for the oxidative coupling of methane |
CN110724550B (zh) | 2018-07-16 | 2021-04-06 | 中国石油化工股份有限公司 | 一种采用快速流化床进行催化裂解的方法和系统 |
EP3620499A1 (en) * | 2018-09-06 | 2020-03-11 | INDIAN OIL CORPORATION Ltd. | Process for selective production of light olefins and aromatics from cracked light naphtha |
US10899971B2 (en) | 2019-02-13 | 2021-01-26 | Exxonmobil Research And Engineering Company | Stabilization of zeolite beta for FCC processes |
CN111718753B (zh) * | 2019-03-22 | 2021-10-08 | 中国石油化工股份有限公司 | 一种多产丙烯的催化转化方法和系统 |
CN112010323B (zh) * | 2019-05-31 | 2022-06-24 | 中国石油化工股份有限公司 | 一种含磷和金属的mfi结构分子筛及其制备方法 |
WO2021007156A1 (en) * | 2019-07-10 | 2021-01-14 | W.R. Grace & Co.-Conn. | Fluidized cracking process for increasing olefin yield and catalyst composition for same |
CN112570013B (zh) * | 2019-09-30 | 2023-07-11 | 中国石油化工股份有限公司 | 含mcm型分子筛的催化剂及其制备方法和应用以及汽油催化转化的方法 |
CN111266131B (zh) * | 2020-03-02 | 2023-04-07 | 正大能源材料(大连)有限公司 | 一种用于合成气制备低碳烯烃的催化剂及其制备方法和使用方法 |
CN112289477B (zh) * | 2020-09-03 | 2023-08-18 | 中国原子能科学研究院 | 一种稀释剂及其异构化制备的方法与组合物 |
US20220081624A1 (en) * | 2020-09-14 | 2022-03-17 | Saudi Arabian Oil Company | Methods for upgrading hydrocarbon feeds to produce olefins |
CN113289670B (zh) * | 2021-04-14 | 2022-11-08 | 中山大学 | 一种制备1,3-丁二烯的催化剂及其制备方法 |
CN115518678B (zh) * | 2021-06-24 | 2023-11-10 | 中国石油化工股份有限公司 | 一种轻烃催化裂解催化剂及其制备方法与应用 |
US11827521B2 (en) | 2021-12-14 | 2023-11-28 | Industrial Technology Research Institute | Method for selectively chemically reducing CO2 to form CO |
CN114632544B (zh) * | 2022-02-22 | 2024-05-24 | 中科合成油技术股份有限公司 | 一种石脑油耦合低碳醇醚制烯烃的催化剂及其制备方法和应用 |
CN115353296B (zh) * | 2022-08-30 | 2024-03-01 | 武汉思越新材料有限公司 | 一种憎水剂组合物及其制备方法 |
CN115888797B (zh) * | 2022-11-08 | 2024-08-06 | 洛阳市科创石化科技开发有限公司 | 一种碳五碳六烷烃裂解制乙烯丙烯的催化剂及其制备方法和应用 |
CN117160528A (zh) * | 2023-09-28 | 2023-12-05 | 山东钰泰化工有限公司 | 一种Mn-Zn-P复合改性分子筛的制备方法及应用 |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3308069A (en) * | 1964-05-01 | 1967-03-07 | Mobil Oil Corp | Catalytic composition of a crystalline zeolite |
JPS4945364B1 (ru) | 1966-11-10 | 1974-12-04 | ||
US3647682A (en) | 1968-10-23 | 1972-03-07 | Union Carbide Corp | Olefin production by the catalytic treatment of hydrocarbons |
US3839485A (en) | 1969-12-23 | 1974-10-01 | Haldor Topsoe As | Catalytic steam cracking of hydrocarbons and catalysts therefor |
GB1306087A (ru) * | 1969-12-23 | 1973-02-07 | ||
US3758403A (en) * | 1970-10-06 | 1973-09-11 | Mobil Oil | Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze |
US3972832A (en) * | 1974-09-23 | 1976-08-03 | Mobil Oil Corporation | Phosphorus-containing zeolite catalyst |
SU550173A1 (ru) | 1975-06-10 | 1977-03-15 | Предприятие П/Я Р-6830 | Способ приготовлени катализатора дл пиролиза углеводородного сырь |
SU559946A1 (ru) | 1975-06-10 | 1977-05-30 | Предприятие П/Я Р-6830 | Способ получени непредельных углеводородов |
DD225135A1 (de) | 1984-06-25 | 1985-07-24 | Adw Ddr | Verfahren zur thermokatalytischen spaltung von kohlenwasserstoffen |
SU1214726A1 (ru) | 1984-11-01 | 1986-02-28 | Институт неорганической и физической химии АН АзССР | Способ получени низкомолекул рных олефинов |
US5258570A (en) * | 1988-03-30 | 1993-11-02 | Uop | Activated zeolite beta and its use for hydrocarbon conversion |
GB8820358D0 (en) | 1988-08-26 | 1988-09-28 | Shell Int Research | Process for catalytic cracking of hydrocarbon feedstock |
CN1043520A (zh) | 1988-12-21 | 1990-07-04 | 中国石油化工总公司石油化工科学研究院 | 一种生产低碳烯烃的裂解催化剂 |
US5055176A (en) * | 1988-12-30 | 1991-10-08 | Mobil Oil Corporation | Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products |
US5006497A (en) * | 1988-12-30 | 1991-04-09 | Mobil Oil Corporation | Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products |
US4973399A (en) * | 1989-11-03 | 1990-11-27 | Mobil Oil Corporation | Catalytic cracking of hydrocarbons |
CN1020269C (zh) | 1989-11-30 | 1993-04-14 | 中国石油化工总公司石油化工科学研究院 | 含稀土五元环结构高硅沸石的合成 |
US5236880A (en) | 1989-12-11 | 1993-08-17 | W. R. Grace & Co.-Conn. | Catalyst for cracking of paraffinic feedstocks |
CN1037327C (zh) * | 1990-06-20 | 1998-02-11 | 中国石油化工总公司石油化工科学研究院 | 含高硅沸石的裂解催化剂 |
CN1027632C (zh) | 1990-07-23 | 1995-02-15 | 中国石油化工总公司石油化工科学研究院 | 含稀土五元环结构高硅沸石的制备方法 |
US5194412A (en) | 1991-01-22 | 1993-03-16 | W. R. Grace & Co.-Conn. | Catalytic compositions |
CN1026225C (zh) * | 1991-02-28 | 1994-10-19 | 中国石油化工总公司石油化工科学研究院 | 一种稀土y分子筛的制备方法 |
AU652222B2 (en) | 1991-03-12 | 1994-08-18 | Mobil Oil Corporation | Preparation of cracking catalysts, and cracking process using them |
AU642817B2 (en) | 1991-06-14 | 1993-10-28 | Mobil Oil Corporation | A method of synthesizing zeolite beta |
US5232579A (en) * | 1991-06-14 | 1993-08-03 | Mobil Oil Corporation | Catalytic cracking process utilizing a zeolite beta catalyst synthesized with a chelating agent |
CN1026242C (zh) | 1991-11-05 | 1994-10-19 | 中国石油化工总公司 | 制取高质量汽油和烯烃的烃转化催化剂 |
CN1030287C (zh) | 1992-10-22 | 1995-11-22 | 中国石油化工总公司 | 制取高质量汽油、丙烯、丁烯的烃转化催化剂 |
CN1034223C (zh) | 1993-03-29 | 1997-03-12 | 中国石油化工总公司 | 制取低碳烯烃的裂解催化剂 |
EP0708807B1 (en) * | 1993-07-16 | 1999-09-22 | Mobil Oil Corporation | Catalyst system and process for catalytic cracking |
CN1042201C (zh) | 1993-08-28 | 1999-02-24 | 中国石油化工总公司石油化工科学研究院 | 多产烯烃的裂化催化剂 |
CN1034586C (zh) * | 1993-11-05 | 1997-04-16 | 中国石油化工总公司 | 多产低碳烯烃的催化转化方法 |
CN1036320C (zh) * | 1993-11-23 | 1997-11-05 | 中国石油化工总公司石油化工科学研究院 | 一种制备异丁烯和异戊烯的裂化催化剂 |
US5457078A (en) * | 1993-11-29 | 1995-10-10 | Mobil Oil Corporation | Manufacture of improved zeolite Beta catalyst |
CN1048428C (zh) | 1994-07-15 | 2000-01-19 | 中国石油化工总公司 | 制取低碳烯烃的多沸石催化剂 |
CN1053918C (zh) | 1994-08-22 | 2000-06-28 | 中国石油化工总公司 | 制取低碳烯烃的双沸石催化剂 |
CN1055105C (zh) | 1995-08-28 | 2000-08-02 | 中国石油化工总公司 | 一种多产异丁烯和异戊烯的裂化催化剂 |
CN1049406C (zh) | 1995-10-06 | 2000-02-16 | 中国石油化工总公司 | 具有mfi结构含磷和稀土的分子筛 |
CN1055301C (zh) | 1996-02-08 | 2000-08-09 | 中国石油化工总公司 | 多产异构烯烃及汽油的裂化催化剂 |
CN1059133C (zh) * | 1997-03-24 | 2000-12-06 | 中国石油化工总公司 | 具有mfi结构的含磷分子筛 |
US5905051A (en) * | 1997-06-04 | 1999-05-18 | Wu; An-Hsiang | Hydrotreating catalyst composition and processes therefor and therewith |
CN1072031C (zh) | 1997-09-17 | 2001-10-03 | 中国石油化工总公司 | 一种五元环分子筛组合物的制备方法 |
NO321464B1 (no) * | 1997-09-17 | 2006-05-15 | Res Inst Petroleum Processing | Blanding inneholdende en molekylsil av pentasil-type, og fremstilling og anvendelse derav |
CN1072032C (zh) | 1997-09-17 | 2001-10-03 | 中国石油化工总公司 | 多产乙烯和丙烯的五元环分子筛组合物 |
EP0909804B1 (en) | 1997-10-15 | 2010-09-08 | China Petro-Chemical Corporation | A process for production of ethylene and propylene by catalytic pyrolysis of heavy hydrocarbons |
CN1102634C (zh) | 1997-10-15 | 2003-03-05 | 中国石油化工集团公司 | 催化热裂解制取低碳烯烃催化剂 |
DE69832938T2 (de) * | 1997-10-15 | 2006-08-10 | China Petro-Chemical Corp. | Krackkatalysator für die Produktion von leichten Olefinen und dessen Herstellung |
CN1069682C (zh) | 1997-12-23 | 2001-08-15 | 中国石油化工总公司 | 重油催化热裂解层柱粘土催化剂及其制备 |
CZ295846B6 (cs) | 1998-05-15 | 2005-11-16 | Intercat-Savannah, Inc. A Georgia Corporation | Způsob výroby kompozice zeolit-jíl-fosfát, katalyzátor vyrobený z této kompozice a jeho použití |
CN1205307A (zh) | 1998-07-13 | 1999-01-20 | 徐邦舜 | 氯化钡、碳酸镁联合生产方法 |
US6726834B2 (en) | 1999-10-22 | 2004-04-27 | Intevep, S.A. | Process for catalytic cracking of a hydrocarbon feed with a MFI aluminisilcate composition |
EP1116775A1 (en) | 2000-01-12 | 2001-07-18 | Akzo Nobel N.V. | Catalyst composition with high efficiency for the production of light olefins |
JP3489048B2 (ja) * | 2000-02-01 | 2004-01-19 | 日産自動車株式会社 | 排気ガス浄化用触媒 |
US6538169B1 (en) * | 2000-11-13 | 2003-03-25 | Uop Llc | FCC process with improved yield of light olefins |
CN1124892C (zh) * | 2000-11-17 | 2003-10-22 | 中国石油化工股份有限公司 | 生产富含异构烷烃汽油、丙烯及异丁烷的催化裂化催化剂 |
CN1176020C (zh) | 2002-06-27 | 2004-11-17 | 中国石油化工股份有限公司 | 一种含磷和过渡金属的mfi结构分子筛 |
CN1711135A (zh) * | 2002-11-18 | 2005-12-21 | 株式会社Ict | 废气净化用催化剂与废气净化方法 |
CN1205306C (zh) | 2002-11-29 | 2005-06-08 | 中国石油化工股份有限公司 | 一种石油烃裂解制取低碳烯烃的催化剂 |
CN1241684C (zh) | 2002-12-03 | 2006-02-15 | 中国科学院大连化学物理研究所 | 烃类催化裂解制烯烃并联产芳烃催化剂及制法和应用 |
US6791002B1 (en) * | 2002-12-11 | 2004-09-14 | Uop Llc | Riser reactor system for hydrocarbon cracking |
CN1261216C (zh) * | 2003-05-30 | 2006-06-28 | 中国石油化工股份有限公司 | 一种含分子筛的烃类裂化催化剂及其制备方法 |
CN1267532C (zh) | 2003-06-30 | 2006-08-02 | 中国石油化工股份有限公司 | 一种含分子筛的烃类裂化催化剂及其制备方法 |
US7326332B2 (en) * | 2003-09-25 | 2008-02-05 | Exxonmobil Chemical Patents Inc. | Multi component catalyst and its use in catalytic cracking |
US7347930B2 (en) * | 2003-10-16 | 2008-03-25 | China Petroleum & Chemical Corporation | Process for cracking hydrocarbon oils |
CN1257769C (zh) | 2003-10-31 | 2006-05-31 | 中国石油化工股份有限公司 | 一种含磷和金属组分的mfi结构分子筛及其应用 |
WO2005094992A1 (en) * | 2004-03-31 | 2005-10-13 | China Petroleum & Chemical Corporation | A catalyst containing zeolite for hydrocarbon converting and preparation thereof, and a hydrocarbon oil converting method using said catalyst |
US20050227853A1 (en) * | 2004-04-02 | 2005-10-13 | Ranjit Kumar | Catalyst compositions comprising metal phosphate bound zeolite and methods of using same to catalytically crack hydrocarbons |
CN100425534C (zh) * | 2005-05-31 | 2008-10-15 | 中国石油化工股份有限公司 | 一种改性β沸石 |
-
2006
- 2006-08-31 CN CN200610112733XA patent/CN101134913B/zh active Active
- 2006-09-19 TW TW095134634A patent/TWI308590B/zh active
- 2006-09-28 KR KR1020097006548A patent/KR101359593B1/ko active IP Right Grant
- 2006-09-28 CA CA2662082A patent/CA2662082C/en active Active
- 2006-09-28 BR BRPI0621983A patent/BRPI0621983B1/pt active IP Right Grant
- 2006-09-28 US US12/439,309 patent/US8900445B2/en active Active
- 2006-09-28 EP EP06791147.9A patent/EP2072604B1/en active Active
- 2006-09-28 RU RU2009110507/04A patent/RU2418842C2/ru active
- 2006-09-28 JP JP2009525893A patent/JP5221540B2/ja active Active
- 2006-09-28 WO PCT/CN2006/002560 patent/WO2008028343A1/zh active Application Filing
-
2007
- 2007-02-24 SA SA07280065A patent/SA07280065B1/ar unknown
- 2007-02-24 SA SA07280064A patent/SA07280064B1/ar unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561985C2 (ru) * | 2011-06-08 | 2015-09-10 | Фудэ (Пекин) Кемикал Энд Индастри Ко., Лтд | Реактор с псевдоожиженным слоем и способ для получения олефинов из оксигенатов |
US20180207627A1 (en) * | 2014-01-23 | 2018-07-26 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
RU2671498C2 (ru) * | 2014-01-23 | 2018-11-01 | Джонсон Мэтти Паблик Лимитед Компани | Каталитический экструдированный твердый ячеистый материал |
US10500572B2 (en) * | 2014-01-23 | 2019-12-10 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
RU2802511C1 (ru) * | 2019-10-24 | 2023-08-30 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения легких олефинов и топливных компонентов c низким содержанием серы |
RU2803778C1 (ru) * | 2019-10-24 | 2023-09-19 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ изготовления пропилена и низкосернистого мазутного компонента |
Also Published As
Publication number | Publication date |
---|---|
EP2072604B1 (en) | 2018-04-25 |
SA07280065B1 (ar) | 2009-09-02 |
US20090264693A1 (en) | 2009-10-22 |
US8900445B2 (en) | 2014-12-02 |
CN101134913A (zh) | 2008-03-05 |
JP2010501681A (ja) | 2010-01-21 |
WO2008028343A1 (en) | 2008-03-13 |
EP2072604A4 (en) | 2012-01-11 |
TWI308590B (en) | 2009-04-11 |
KR101359593B1 (ko) | 2014-02-07 |
CN101134913B (zh) | 2011-05-18 |
BRPI0621983A2 (pt) | 2011-12-20 |
SA07280064B1 (ar) | 2009-09-01 |
JP5221540B2 (ja) | 2013-06-26 |
EP2072604A1 (en) | 2009-06-24 |
CA2662082A1 (en) | 2008-03-13 |
CA2662082C (en) | 2014-03-25 |
KR20090058534A (ko) | 2009-06-09 |
TW200815578A (en) | 2008-04-01 |
RU2009110507A (ru) | 2010-10-10 |
BRPI0621983B1 (pt) | 2016-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2418842C2 (ru) | Способ каталитической конверсии углеводородов | |
RU2409422C2 (ru) | Катализатор конверсии углеводородов | |
CA2563262C (en) | A zeolite-containing hydrocarbon-converting catalyst, the preparation process thereof, and a process for converting hydrocarbon oils with the catalyst | |
US8658024B2 (en) | Catalyst and a method for cracking hydrocarbons | |
RU2367518C2 (ru) | Катализатор крекинга и способ его получения | |
US8809216B2 (en) | Catalyst for converting acid-containing inferior crude oil and process for making and using the same | |
EP1960102A1 (en) | Catalytic cracking | |
TW201529159A (zh) | 含磷fcc觸媒 | |
CN101147876A (zh) | 一种提高液化气丙烯浓度的催化裂化助剂 | |
CN109675616B (zh) | 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法 | |
CN100351345C (zh) | 一种石油烃催化裂化方法 | |
RU2372142C2 (ru) | Цеолитсодержащий катализатор конверсии углеводородов, способ его приготовления и способ превращения углеводородных нефтепродуктов с использованием этого катализатора | |
CN1224456C (zh) | 一种烃类裂化催化剂及其制备方法 |