RU2409422C2 - Катализатор конверсии углеводородов - Google Patents

Катализатор конверсии углеводородов Download PDF

Info

Publication number
RU2409422C2
RU2409422C2 RU2009110506/04A RU2009110506A RU2409422C2 RU 2409422 C2 RU2409422 C2 RU 2409422C2 RU 2009110506/04 A RU2009110506/04 A RU 2009110506/04A RU 2009110506 A RU2009110506 A RU 2009110506A RU 2409422 C2 RU2409422 C2 RU 2409422C2
Authority
RU
Russia
Prior art keywords
zeolite
transition metal
zeolites
hydrocarbon conversion
catalyst
Prior art date
Application number
RU2009110506/04A
Other languages
English (en)
Other versions
RU2009110506A (ru
Inventor
Юджиан ЛИУ (CN)
Юджиан ЛИУ
Хуипинг ТИАН (CN)
Хуипинг ТИАН
Ксингтиан ШУ (CN)
Ксингтиан ШУ
Джун ЛОНГ (CN)
Джун ЛОНГ
Йибин ЛУО (CN)
Йибин ЛУО
Чаоганг КСИЕ (CN)
Чаоганг КСИЕ
Женю ЧЕН (CN)
Женю ЧЕН
Лиужоу ЖАО (CN)
Лиужоу ЖАО
Юксиа ЖУ (CN)
Юксиа ЖУ
Юбао ЛУ (CN)
Юбао ЛУ
Original Assignee
Чайна Петролеум Энд Кемикал Корпорейшн
Ресерч Инститьют Оф Петролеум Процессинг, Синопек
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Петролеум Энд Кемикал Корпорейшн, Ресерч Инститьют Оф Петролеум Процессинг, Синопек filed Critical Чайна Петролеум Энд Кемикал Корпорейшн
Publication of RU2009110506A publication Critical patent/RU2009110506A/ru
Application granted granted Critical
Publication of RU2409422C2 publication Critical patent/RU2409422C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к катализаторам конверсии углеводородов, содержащим цеолит. Описан катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Nа2O·(0,5-10)Аl2O3·(1,3-10)Р2O5·(0,7-15)MxOy·(64-97)SiO2 (в скобках указаны массовые проценты оксидов), где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Сu, Mn, Zn и Sn, х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М. Технический эффект - повышенная способность к конверсии углеводородов нефти и обеспечение более высокого выхода легких олефинов, в особенности пропилена. 11 з.п. ф-лы, 5 табл.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к катализаторам конверсии углеводородов, содержащим цеолит. Более конкретно, настоящее изобретение относится к катализаторам крекинга, содержащим цеолит, которые обеспечивают каталитический крекинг углеводородов для получения олефинов С24.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Легкие олефины (олефины С24) являются важным исходным сырьем для нефтехимической промышленности. Как правило, легкие олефины получают из углеводородов нефти с использованием термического крекинга паром, при котором в качестве исходного сырья используются газообразные углеводороды, нафта, керосин, легкое дизельное топливо и остатки вакуумной перегонки. Если для получения бензина и легкого дизельного топлива используется традиционный процесс каталитического крекинга, то легкие олефины получают как побочные продукты с выходом, не превышающим 15% от веса исходного сырья.
Использование способа каталитического крекинга для получения легких олефинов из углеводородов нефти описывается во многих патентах. Используются катализаторы на основе металлов, причем в качестве носителей используются SiO2, Al2O3 или другие оксиды, а металлы большей частью выбираются из элементов Групп IIB, VB, VIIB и VIII, которые характеризуются гидрогенизационной или дегидрогенизационной активностью и проявляют дегидрогенизационную активность в условиях крекинга при высокой температуре и низком давлении, в результате чего ускоряется получение легких олефинов (US 3541179, US 3647682, DD 225135 и SU 1214726). При использовании таких катализаторов благодаря дегидрогенизационным свойствам металлов в процессе реакции крекинга, соответственно, ускоряется коксообразование в результате реакции полимеризации и на катализаторе формируются отложения кокса. Поэтому могут использоваться только легкие исходные продукты с диапазоном точки кипения, не превышающим 220°С.
В некоторых других патентах описывается использование композиционных оксидных катализаторов. В примерах таких катализаторов указывается катализатор, содержащий ZrO2, HfO2 в качестве главных компонентов, Al2O3, Сr2O3, МnО, Fе2О3 и оксиды щелочных или щелочноземельных металлов в качестве активирующей добавки (US 3725495, US 3839485); и катализатор SiO2·Аl2О3, содержащий небольшие количества Fе2О3, ТiO2, CaO, МgО, Na2O и К2O (SU 550173, SU 559946).
Широкое применение цеолитов в нефтехимической промышленности и в переработке нефти привело к появлению третьего класса катализаторов, а именно катализаторов, содержащих цеолиты. В последнее время в катализатор добавляется добавка, селективная к форме, для повышения октанового числа бензина, получаемого при каталитической переработке. Например, в патенте США 3758403 описывается катализатор, содержащий цеолит ZSM-5 и цеолит с крупными порами (с отношением от 1:10 до 3:1) в качестве активных компонентов, и кроме повышения октанового числа бензина такой катализатор обеспечивает более высокий выход олефинов С3 и С4, составляющий примерно 10 вес.%.
Если катализатор содержит смесь цеолита с MFI-структурой (высококремнистый цеолит с пятичленными кольцами) и в крекинге углеводородов нефти для получения легких олефинов используется цеолит с размером пор, превышающим 7 ангстрем, то цеолит с крупными порами (в основном Y-цеолит) используется для крекинга исходных продуктов для получения бензина и дизельного топлива, которые затем подвергаются крекингу для получения легких олефинов с использованием цеолита с MFI-структурой (US 3758403, CN 1043520A, US 500649 и CN 1026242С). Для повышения селективности катализаторов в отношении олефинов цеолиты с MFI-структурой модифицируют дополнительно, например, переходными металлами (US 5236880), фосфором (CN 1205307А, US 6566293), редкоземельными элементами (CN 1085825А), фосфором и редкоземельными элементами (CN 1093101A, US 5380690, CN 1114916A, CN 1117518A, CN 1143666A), фосфором и щелочноземельными металлами (CN 1221015А, US 6342153, CN 1222558А, US 6211104) и фосфором и переходными металлами (CN 1504540A).
Бета-цеолит имеет структуру, состоящую из 12-членных колец с пересекающимися пористыми каналами, в которой диаметр пор 12-членного кольца равен 0,75-0,57 нм для одномерного пористого канала, параллельного грани (001) кристалла, и диаметр пор 12-членного кольца равен 0,65-0,56 нм для двухмерного пористого канала, параллельного грани (100) кристалла. Бета-цеолит - это высококремнистый цеолит с большими порами, имеющий трехмерную структуру, единственную, которая найдена до настоящего времени, причем он обладает как свойствами кислотного катализатора, так и структурной селективностью благодаря особенностям своей структуры, и, кроме того этот цеолит обладает очень высокой термостойкостью (температура разрушения кристаллической решетки превышает 1200°С), гидротермальной стойкостью, а также устойчив к истиранию. Благодаря своей уникальной структуре бета-цеолит обладает хорошей термической и гидротермальной стойкостью, кислотостойкостью, устойчивостью к закоксовыванию и каталитической активностью в отношении ряда каталитических реакций, и поэтому в последние годы быстро развивался новый тип каталитических материалов на базе этого цеолита. Имеются публикации о многочисленных применениях бета-цеолита в крекинге углеводородов нефти для получения легких олефинов.
В документе CN 1103105А описывается катализатор крекинга, обеспечивающий высокий выход изобутилена и изоамилена и представляющий собой композицию, состоящую из четырех активных компонентов и носителя, причем активные компоненты состоят из модифицированного цеолита HZSM-5 и высококремнистого цеолита HZSM-5 с различными отношениями кремнезем/глинозем, цеолита USY и бета-цеолита, а носитель состоит из природной глины и неорганического оксида. Активные компоненты и катализатор имеют следующий состав: (1) модифицированный цеолит HZSM-5 с отношением кремнезем/глинозем 20:100 5-25 вес.%; (2) высококремнистый цеолит HZSM-5 с отношением кремнезем/глинозем 250:450 1-5 вес.%; (3) цеолит USY 5-20 вес.%; (4) бета-цеолит 1-5 вес.%; (5) природная глина 30-60 вес.%; (6) неорганический оксид 15-30 вес.%. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1057408А описывается катализатор крекинга, содержащий высококремнистый цеолит, который состоит из 10-30 вес.% модифицированного высококремнистого цеолита и 70-90% носителя, причем модифицированный высококремнистый цеолит содержит (от веса цеолита) 0,01-3,0 вес.% фосфора, 0,01-1,0% железа или 0,01-10 вес.% алюминия (алюминий в структуре цеолита исключен) и выбирается из морденита, бета-цеолита или ZSM-цеолита с отношением кремнезем/глинозем, превышающим 15, а носителем является неорганический оксид или смесь неорганического оксида и каолина. Катализатор используется для получения легких олефинов в процессе каталитического крекинга углеводородов одновременно с выходом бензина и дизельного топлива.
В документе CN 1099788А описывается катализатор крекинга, обеспечивающий более высокий выход олефинов С35, который состоит из 10-50 вес.% Y-цеолита с размером элементарной ячейки, не превышающим 2,450 нм, 2-40 вес.% цеолита, выбранного из цеолита ZSM-5 или бета-цеолита, модифицированного Р, RE, Са, Mg, Н, Al и др., и их смесей, 20-80 вес.% полусинтетического носителя, состоящего из каолина и глиноземного связующего. Используя такой катализатор, можно не только повысить выход олефинов С35, где выход C4=+iC5= доходит до 10-13 вес.%, но также поддерживать выход бензина на уровне порядка 35-42 вес.%.
В документе CN 1145396A описывается катализатор крекинга, обеспечивающий более высокий выход изобутилена и изоамилена, который состоит из трех активных цеолитных компонентов и носителя, причем их содержание (от веса катализатора) составляет: 6-30 вес.% высококремнистого цеолита с пятичленными кольцами, содержащего фосфор и редкоземельный элемент, 5-25 вес.% цеолита USY, 1-5 вес.% бета-цеолита, 30-60 вес.% глины и 15-30 вес.% неорганического оксида. Катализатор характеризуется повышенным выходом изобутилена и изоамилена с одновременным получением бензина с высоким октановым числом.
В документе CN 1354224А описывается катализатор каталитического крекинга для получения легких фракций с высоким содержанием изомерного алкана, пропилена и изобутана, причем катализатор содержит (от веса катализатора): 0-70 вес.% глины, 5-90 вес.% неорганического оксида и 1-50 вес.% цеолита. Цеолит представляет собой смесь следующих компонентов (от веса цеолита): (1) 20-75 вес.% высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 5-15 и 8-20 вес.% Fe2O3; (2) 20-75 вес.% высококремнистого Y-цеолита с отношением кремнезем/глинозем порядка 16-50 и 2-7 вес.% Fe2O3; и (3) 1-50 вес.% бета-цеолита, или морденита, или ZRP-цеолита. Катализатор может увеличивать содержание изомерного алкана в легких фракциях и одновременно повышать выход пропилена и изобутана, однако выход пропилена улучшается ненамного.
В документе CN 1504541А описывается катализатор каталитического крекинга углеводородов для получения легких олефинов и ароматических углеводородов, причем катализатор содержит молекулярное сито с размером пор 0,45-0,7 нм, аморфный оксид и по меньшей мере два модифицирующих компонента, выбираемых из фосфора, щелочноземельных металлов, лития и редкоземельных элементов. В катализаторе используется кремнезем-глиноземное или кремнезем-фосфор-глиноземное молекулярное сито, причем в качестве кремнезем-глиноземного молекулярного сита используется цеолит ZSM-5, цеолит ZSM-11, морденит или бета-цеолит, а в качестве кремнезем-фосфор-глиноземного молекулярного сита используется SAPO-5, SAPO-11 или SAPO-34. Активные центры катализатора могут быть модифицированы в зависимости от практических требований для получения легких олефинов в качестве основных продуктов и ароматических углеводородов в качестве побочных продуктов.
В документе CN 1566275А описывается катализатор, содержащий молекулярное сито, для крекинга углеводородов и способ его получения, причем молекулярное сито является смесью первого и второго цеолитов, термостойкого неорганического оксида и металла, а также глины (необязательный компонент), причем первый цеолит является Y-цеолитом, молярное отношение кремнезем/глинозем во втором цеолите превышает 20, содержание первого цеолита составляет 1-50 вес.%, содержание второго цеолита составляет 1-60 вес.%, содержание термостойкого неорганического оксида составляет 2-80 вес.%, содержание глины составляет 0-80 вес.%, содержание металла составляет 0,1-30 вес.%, и компоненты металла присутствуют в основном в состоянии валентности восстановления. Катализатор может не только обеспечивать высокий выход олефинов С35, но также имеет повышенную активность в отношении десульфуризации, а также повышенную активность в отношении реакций крекинга. В качестве второго цеолита используется один или несколько цеолитов, выбранных из цеолитов, имеющих MFI-структуру и содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), бета-цеолитов, содержащих фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент), морденита, содержащего фосфор, редкоземельный элемент и/или щелочноземельный металл (необязательный компонент).
В патентах США №5006497 и №5055176 описывается многокомпонентный катализатор и способ каталитического крекинга с его использованием. Катализатор содержит матрицу, молекулярное сито с крупными порами, молекулярное сито для крекинга/изомеризации парафина и молекулярное сито для получения ароматических углеводородов, причем молекулярное сито с крупными порами выбирается из группы, состоящей из цеолита Y, DeAIY, USY, UHPY, VPI-5, колонной глины, SAPO-37, бета-цеолита и их смесей; молекулярное сито для крекинга/изомеризации парафина выбирается из группы, состоящей из цеолитов водородного типа ZSM-5, ZSM-11, ZSM-22, ZSM-35 и ZSM-57; и в качестве молекулярного сита для получения ароматических углеводородов используется GaZSM-5.
В патентной заявке США №20050070422 описывается композиция катализатора, используемого для повышения выхода пропилена с использованием каталитического крекинга, который содержит первое молекулярное сито со средним размером пор, второе молекулярное сито, в котором имеются поры канала по меньшей мере одного размера, который меньше размера пор первого сита, и молекулярное сито (необязательный компонент) с третьим большим размером пор, причем первое молекулярное сито выбирается из группы, состоящей из ZSM-5, ZSM-11, ZSM-12, ZSM-57, ITQ- 13 и МСМ-22; второе молекулярное сито выбирается из группы, состоящей из ECR-42, ZSM-22, ZSM-35, ZSM-23, МСМ-22, МСМ-49, SAPO-11, SAPO-34 и SAPO-41; и третье молекулярное сито выбирается из группы, состоящей из фожазита, L-цеолита, VPI-5, SAPO-37, цеолита X, бета-цеолита, ZSM-3, ZSM-4, ZSM-18, ZSM-20, МСМ-9, МСМ-41, MCM-41S, МСМ-48, Y-цеолита, USY, REY, REUSY и т.п. Этот катализатор пригоден для использования при получении пропилена путем крекинга нафты и исходных тяжелых углеводородных продуктов.
По мере увеличения потребности в легких олефинах существует насущная необходимость в разработке катализатора конверсии углеводородов, который должен обладать повышенной способностью конверсии углеводородов нефти и обеспечивать повышенный выход легких олефинов, в особенности пропилена.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается имеющий улучшенные характеристики катализатор конверсии углеводородов для каталитической конверсии углеводородов нефти с целью получения легких олефинов.
После интенсивных исследований автор обнаружил, что если катализатор конверсии углеводородов содержит в качестве каталитического компонента специальный модифицированный бета-цеолит, его селективность в отношении олефинов С212 может быть существенно улучшена, в результате чего он становится предпочтительным для получения легких олефинов (С24) путем дополнительного крекинга. При этом может быть повышен выход легких олефинов при получении их из углеводородов нефти.
Для достижения указанной цели в настоящем изобретении предлагается катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)P2O5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn; х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
Более конкретно настоящее изобретение относится к следующему катализатору:
1. Катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)P2O5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
2. Катализатор конверсии углеводородов по п.1, отличающийся тем, что он содержит (от общего веса катализатора): 10-50 вес.% смеси цеолитов, 10-70 вес.% термостойкого неорганического оксида и 0-60 вес.% глины.
3. Катализатор конверсии углеводородов по п.1, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2O3·(1,5-7)Р2О5·(0,9-10)МхOу·(75-95)SiO2 (в скобках указаны массовые проценты оксидов).
4. Катализатор конверсии углеводородов по п.3, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2О3·(2-5)Р2O5·(1-3)МхOу·(82-95)SiO2.
5. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni и Сu.
6. Катализатор конверсии углеводородов по п.5, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe и/или Сu.
7. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP.
8. Катализатор конверсии углеводородов по п.7, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы, цеолитов ZRP, содержащих фосфор, цеолитов ZRP, содержащих фосфор и редкоземельные элементы, цеолитов ZRP, содержащих фосфор и щелочноземельные металлы, и цеолитов ZRP, содержащих фосфор и переходные металлы.
9. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из фажозита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18.
10. Катализатор конверсии углеводородов по п.9, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
11. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита.
12. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита.
В предлагаемом в настоящем изобретении катализаторе конверсии углеводородов в качестве активного компонента используется смесь бета-цеолита, модифицированного фосфором и переходным металлом М, и цеолита с MFI-структурой или смесь бета-цеолита, модифицированного фосфором и переходным металлом М, цеолита с MFI-структурой и цеолита с крупными порами. Поскольку бета-цеолит модифицируется одновременно фосфором и переходным металлом М, то в результате не только повышается гидротермальная стойкость бета-цеолита и улучшаются характеристики крекинга дизельного топлива и тяжелого топлива, но и существенно повышается селективность в отношении олефинов С212 при использовании катализатора в процессе каталитического крекинга углеводородов. Кроме того, олефины С512 являются эффективными прекурсорами для получения олефинов С24 при последующем крекинге с использованием цеолита с MFI-структурой. Таким образом, предлагаемые в настоящем изобретении катализаторы имеют повышенную способность по конверсии углеводородов нефти и обеспечивают более высокий выход легких олефинов, в особенности пропилена.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для получения легких олефинов из углеводородов с повышенной селективностью в настоящем изобретении предлагается катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O·(0,5-10)Аl2О3·(1,3-10)Р2О5·(0,7-15)МхOу·(64-97)SiO2 (в скобках указаны массовые проценты оксидов),
где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn; х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
В контексте настоящего изобретения, если не указано иное, термин "легкие олефины" относится к олефинам С24 и термин "углеводород" относится к углеводородам нефти.
Указанный углеводород - это один или несколько углеводородов, выбранных из продуктов перегонки нефти, таких как углеводороды С4, бензин, дизельное топливо, гидрогенизированные остатки и аналогичные продукты или смесь указанных продуктов перегонки нефти. Кроме того, в качестве углеводородов может использоваться непосредственно сырая нефть и нефтяные остатки или один или несколько продуктов, выбранных из группы, состоящей из газойля вакуумной перегонки, сырой нефти и нефтяных остатков.
В одном из предпочтительных вариантов осуществления изобретения катализатор конверсии углеводородов содержит (от общего веса катализатора): 10-50 вес.% упомянутой смеси цеолитов, 10-70% термостойкого неорганического оксида и 0-60% глины.
Ниже описывается сначала модифицированный бета-цеолит, являющийся одним из основных компонентов предлагаемого в настоящем изобретении катализатора конверсии углеводородов.
Если безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, представить в массовых процентах оксидов, то предпочтительные диапазоны содержания компонентов будут следующими: предпочтительно (0-0,2)Na2O·(1-9)Аl2О3·(1,5-7)Р2О5·(0,9-10)МхOу·(75-95)SiO2, более предпочтительно (0-0,2)Na2O·(1-9)Al2O3·(2-5)P2O5·(1-3)МхOу·(82-95)SiO2.
В одном из предпочтительных вариантов осуществления изобретения в качестве переходного металла М используется металл или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni и Сu, более предпочтительно из Fe и/или Сu.
В предлагаемом в настоящем изобретении катализаторе конверсии углеводородов цеолит с MFI-структурой представляет собой высококремнистый цеолит со структурой пентасила, и в качестве него используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP, в частности один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы (см. CN 1052290А, CN 1058382А и US 5232675), цеолитов ZRP, содержащих фосфор (см. CN 1194181 A, US 5951963), цеолитов ZRP, содержащих фосфор и редкоземельные элементы (см. CN 1147420A), цеолитов ZRP, содержащих фосфор и щелочноземельные металлы (см. CN 1211469A, CN 1211470A и US 6080698) и цеолитов ZRP, содержащих фосфор и переходные металлы (см. CN 1465527А и CN 1611299А).
К упомянутым цеолитам с крупными порами относятся цеолиты с пористой структурой, размеры полостей колец которых составляет по меньшей мере 0,7 нм. В качестве такого цеолита может использоваться, например, один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18, в частности одного или нескольких цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
Кроме того, в качестве цеолитов с MFI-структурой и цеолитов с крупными порами могут использоваться цеолиты, предлагаемые на рынке, или же они могут быть также получены с использованием различных известных способов, которые в настоящем описании подробно не рассматриваются.
Бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием различных способов. Например, фосфор и переходный металл М могут быть введены; (1) при синтезе бета-цеолита; или (2) путем выполнения следующих стадий: ионообмена с аммонием, модификации фосфором, модификации переходным металлом М, прокаливания и аналогичных стадий после синтеза бета-цеолита.
Например, бета-цеолит, модифицированный фосфором и переходным металлом М, может быть получен с использованием нижеописанного способа. А именно, осуществляют взаимодействие натриевого бета-цеолита, полученного путем обычной кристаллизации, с аммонием в весовом отношении бета-цеолит:соль аммония: Н2O = 1:(0,1-1):(5-10) в течение 0,5-2 часов при температуре от комнатной до 100°С с последующей фильтрацией. Такая стадия взаимодействия может выполняться несколько раз (от 1 до 4), так чтобы содержание Na2O в бета-цеолите стало меньше 0,2 вес.%. Затем в полученный таким образом бета-цеолит путем импрегнирования или ионообмена вводят фосфор и один или несколько переходных металлов, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, для его модификации, после чего осуществляют высушивание и прокаливание в течение 0,5-8 часов при температуре 400-800°С, причем прокаливание может осуществляться в атмосфере пара, в результате чего будет получен бета-цеолит, модифицированный фосфором и переходным металлом М.
При получении модифицированного бета-цеолита в соответствии с настоящим изобретением может быть осуществлен процесс модификации для введения в бета-цеолит фосфора и переходного металла М, например, с использованием процессов импрегнирования или ионообмена, которые хорошо известны в данной области техники.
Импрегнирование может быть выполнено, например, с использованием одного из трех способов:
а. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученная твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Мn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем высушивают;
b. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и после этого полученную твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем высушивают, причем последовательность импрегнирования двух вышеуказанных водных растворов может быть также изменена на обратную; и
c. Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством перемешанного водного раствора фосфорсодержащего соединения и соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, при температуре от комнатной до 95°С до получения однородной массы, и затем смесь высушивают.
Указанный ионообмен может быть осуществлен с использованием следующего способа.
Фильтрационный осадок после ионообмена с аммонием перемешивают с определенным количеством водного раствора фосфорсодержащего соединения при температуре от комнатной до 95°С до получения однородной массы, затем смесь высушивают и прокаливают при температуре 400-800°С, после этого полученная твердую массу перемешивают с определенным количеством водного раствора соединения, содержащего один или несколько переходных металлов М, выбранных из группы, состоящей из Fe, Со, Ni, Сu, Mn, Zn и Sn, с отношением твердой и жидкой фаз 1:(5-20) до получения однородной массы, при температуре 80-95°С в течение 2-3 часов и затем фильтруют, причем стадию ионообмена можно повторить несколько раз, после чего полученный образец промывают многократно водой и высушивают.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением в качестве соли аммония обычно используется известная неорганическая соль, такая как соль, выбранная из хлорида аммония, сульфата аммония, нитрата аммония или их смеси.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое фосфорсодержащее соединение выбирается из ортофосфорной кислоты, кислого диаммонийфосфата, дигидрофосфата аммония, фосфата аммония или их смесей.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением упомянутое соединение, содержащее один или несколько переходных металлов, выбираемых из Fe, Со, Ni, Сu, Mn, Zn и Sn, выбирается из соответствующих растворимых в воде солей указанных металлов, таких как их сульфаты, нитраты и хлориды.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением высушивание (сушка) может выполняться с использованием обычных способов и температура высушивания может быть в интервале от комнатной до 350°С, предпочтительно 100-200°С. Кроме того, прокаливание выполняется при обычной температуре прокаливания, в общем случае 400-800°С, предпочтительно 450-700°С.
При получении модифицированного бета-цеолита конкретный тип исходного бета-цеолита не указывается. Это может быть бета-цеолит, обычно используемый в технике или имеющийся на рынке, или же он может быть получен с использованием одного из известных способов. В предпочтительном варианте осуществления изобретения в качестве исходного бета-цеолита может использоваться натриевый бета-цеолит. Если натриевый бета-цеолит содержит органический матричный компонент, то вышеуказанная процедура должна выполняться после удаления этого компонента. Кроме того, содержание натрия в таком натриевом бета-цеолите должно удовлетворять требованиям содержания натрия в безводном химическом составе бета-цеолита, содержащего фосфор и переходный металл М. Если содержание натрия не удовлетворяет указанным требованиям, то может быть использован процесс ионообмена с аммонием для удаления натрия из исходного натриевого бета-цеолита. В этом отношении стадия ионообмена с аммонием не является обязательной для получения модифицированного бета-цеолита.
В способе получения модифицированного бета-цеолита в соответствии с настоящим изобретением используемые устройства и способы регулирования условий конкретно не указываются, и это могут быть обычно используемые в технике устройства и способы регулирования.
Ниже описывается другой важный компонент, термостойкий неорганический оксид, предлагаемого в изобретении катализатора конверсии углеводородов.
Такой термостойкий неорганический оксид не указывается конкретно, однако предпочтительно он выбирается из одного или нескольких термостойких неорганических оксидов, используемых в качестве матрицы, и связующего компонента катализатора крекинга, например глинозема, кремнезема и аморфного алюмосиликата. Такие термостойкие неорганические оксиды и способы их получения хорошо известны специалистам в данной области техники. Указанный термостойкий неорганический оксид может предлагаться на рынке или же он может быть получен из прекурсоров с использованием известных способов.
Кроме того, прекурсоры такого термостойкого неорганического оксида могут быть использованы непосредственно вместо него для получения предлагаемого в настоящем изобретении катализатора углеводородов. Таким образом, термин "термостойкий неорганический оксид" охватывает и сами термостойкие неорганические оксиды, и их прекурсоры.
Под прекурсорами указанного термостойкого неорганического оксида в настоящем описании понимаются вещества, способные формировать термостойкий неорганический оксид при получении предлагаемого в настоящем изобретении катализатора углеводородов. В частности, например, прекурсоры глинозема могут быть выбраны из группы, состоящей из гидратированного глинозема и/или золя оксида алюминия, причем гидратированный глинозем может быть выбран, например, из группы, состоящей из бемита, псевдобемита, тригидрата алюминия и аморфной гидроокиси алюминия. Прекурсоры упомянутого кремнезема могут быть, например, одним или несколькими прекурсорами, выбранными из группы, состоящей из золя кремнистой кислоты, геля кремнистой кислоты и жидкого стекла. Далее, прекурсоры упомянутого аморфного алюмосиликата могут быть одним или несколькими прекурсорами, выбранными из группы, состоящей из золя алюмосиликата, смеси золя кремнистой кислоты и золя оксида алюминия, и геля алюмосиликата. Кроме того, прекурсоры такого термостойкого неорганического оксида и способы их получения также хорошо известны специалистам в данной области техники.
Предлагаемый в настоящем изобретении катализатор углеводородов может содержать глину (необязательный компонент). Такая глина не указывается конкретно, но предпочтительно используется одна или несколько глин, выбранных из группы, состоящей из глин, обычно используемых в качестве активных компонентов катализаторов крекинга. Например, в качестве глины может использоваться одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита, и предпочтительно одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита. Указанные глины и способы их получения хорошо известны специалистам в данной области техники или имеются на рынке.
Приведенные ниже примеры получения предлагаемого в настоящем изобретении катализатора углеводородов являются иллюстрациями изобретения и никоим образом не ограничивают его объем.
Весь или часть термостойкого неорганического оксида и/или его прекурсора смешивают с водой и перемешивают до получения суспензии. В полученную суспензию может быть добавлена глина. На этой стадии в суспензию может быть дополнительно добавлена оставшаяся часть термостойкого неорганического оксида и/или его прекурсора. Затем в суспензию добавляют вышеуказанную смесь цеолитов, перемешивают до получения однородной суспензии, высушивают и прокаливают. Перед добавлением смеси цеолитов, перед добавлением глины или после этого, в полученную суспензию добавляют кислоту для доведения рН суспензии до уровня 1-5. После того как уровень рН окажется в указанном диапазоне, полученную суспензию выдерживают в течение 0,1-10 часов при температуре 30-90°С. После стадии выдерживания в суспензию добавляют оставшуюся часть термостойкого неорганического оксида и/или его прекурсора.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов глина может быть добавлена до стадии выдерживания суспензии или после этой стадии. Последовательность добавления глины не влияет на характеристики предлагаемого в настоящем изобретении катализатора углеводородов.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов весь термостойкий неорганический оксид и/или его прекурсор (или их часть) может быть добавлен до стадии выдерживания. Для того чтобы повысить прочность катализатора к истиранию, часть термостойкого неорганического оксида и/или его прекурсора предпочтительно добавляют до стадии выдерживания и затем остающуюся часть термостойкого неорганического оксида и/или его прекурсора добавляют после стадии выдерживания. В последнем случае весовое отношение части, добавляемой сначала, к части, добавляемой позже, составляет 1:0,1-10, более предпочтительно 1:0,1-5.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов для регулирования уровня рН суспензии в нее добавляют кислоту. В качестве такой кислоты используется одна или несколько кислот, выбранных из группы, состоящей из растворимых в воде неорганических и органических кислот, предпочтительно одна или несколько кислот, выбранных из группы, состоящей из хлористоводородной кислоты, азотной кислоты, ортофосфорной кислоты и карбоновой кислоты с числом атомов углерода 1-10, в количестве, достаточном для обеспечения рН суспензии на уровне 1-5, предпочтительно на уровне 1,5-4.
В способе получения предлагаемого в настоящем изобретении катализатора углеводородов указанное выдерживание осуществляют в течение 0,5-8 часов при температуре 40-80°С.
Способы сушки суспензии и условия такой сушки хорошо известны специалистам в данной области техники. Например, такая сушка может быть выбрана из группы, состоящей из сушки на воздухе, горячей сушки, сушки с принудительной подачей воздуха и сушки распылением, предпочтительно используется сушка распылением. Температура сушки может находиться в диапазоне от комнатной температуры до 400°С, предпочтительно 100-350°С. Для обеспечения оптимального режима для сушки распылением содержание сухого вещества в суспензии перед сушкой предпочтительно должно составлять 10-50 вес.%, более предпочтительно 20-50 вес.%.
Условия прокаливания, выполняемого после сушки, также хорошо известны специалистам в данной области техники. Как правило, прокаливание выполняют при температуре 400-700°С, предпочтительно 450-650°С, по меньшей мере в течение 0,5 часа, предпочтительно в течение 0,5-100 часов, более предпочтительно в течение 0,5-10 часов.
Предлагаемый в настоящем изобретении катализатор имеет повышенную способность по конверсии углеводородов нефти и обеспечивает более высокий выход легких олефинов, в особенности пропилена.
Примеры
Следующие примеры предназначены для дополнительной иллюстрации настоящего изобретения, без ограничения его объема.
В Примерах 1-10 описывается бета-цеолит, модифицированный фосфором и переходным металлом М, и способ его получения. Содержание Na2O, Fe2O3, Со2O3, NiO, CuO, Mn2O3, ZnO, SnO2, Al2O3 и SiO2 в каждом образце модифицированного бета-цеолита измерялось с использованием способа рентгеновской флюоресценции (см. также публикацию "Аналитические методы в нефтехимической промышленности" (RIPP Experiment Techniques), под ред. Yang Cuiding и др., издательство "Science Press", 1990).
Все указанные ниже реагенты являются химически чистыми реагентами (в противном случае даются соответствующие примечания и пояснения).
Пример 1
100 г (в пересчете на сухое вещество) бета-цеолита производства компании Qilu Catalyst Company, отношение SiO2/Al2O3 = 25, обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 6,8 г Н3РO4 (концентрация 85%) и 3,2 г Cu(NO3)2·3H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В1, содержащий фосфор и переходный металл Сu.
Он имел следующий безводный химический состав:
0,1 Na2O·8,2Al2O3·4,0P2O5·1,0CuO·86,7SiO2.
Пример 2
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 12,5 г Н3РО4 (концентрация 85%) и 6,3 г CuCl2 растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В2, содержащий фосфор и переходный металл Сu. Он имел следующий безводный химический состав:
0,1Na2O·7,0Al2O3·6,9P2O5·3,5CuO·82,5SiO2.
Пример 3
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка; 4,2 г NH4H2PO4 растворяли в 60 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С; вышеуказанный образец обрабатывали раствором Сu(NО3)2 (концентрация 5%) при отношении твердой фазы к жидкой фазе, равном 1:5, в течение 2 часов при температуре 80-90°С, фильтровали и обработку осуществляли несколько раз, пока не было получено заданное количество, затем прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В3, содержащий фосфор и переходный металл Сu. Он имел следующий безводный химический состав:
0,03Na2O·2,0Al2O3·2,5P2O5·2,1CuO·93,4SiO2.
Пример 4
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 7,1 г Н3РО4 (концентрация 85%) и 8,1 г Fe(NO3)3·9H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В4, содержащий фосфор и переходный металл Fe. Он имел следующий безводный химический состав:
0,1Na2О·6,0Аl2О3·4,1Р2O5·1,5Fe2O3·88,3SiO2.
Пример 5
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 10,3 г Н3РО4 (концентрация 85%) и 39,6 г Co(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В5, содержащий фосфор и переходный металл Со. Он имел следующий безводный химический состав:
0,1Na2O·6,7Al2O3·5,4P2O5·9,6Co2O3·78,2SiO2.
Пример 6
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 7,5 г Н3РO4 (концентрация 85%) и 6,7 г Ni(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В6, содержащий фосфор и переходный металл Ni. Он имел следующий безводный химический состав:
0,08Na2O·6,0Al2O3·4,3P2O5·1,8NiO·87,8SiO2.
Пример 7
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2О, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 6,9 г Н3РО4 (концентрация 85%) и 16,1 г Mn(NO3)2 растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В7, содержащий фосфор и переходный металл Мn. Он имел следующий безводный химический состав:
0,09Na2O·1,9Al2O3·3,8P2O5·6,4Mn2O3·87,8SiO2.
Пример 8
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 2,5 г Н3РО4 (концентрация 85%) и 6,1 г Zn(NO3)2·6H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В8, содержащий фосфор и переходный металл Zn. Он имел следующий безводный химический состав:
0,15Na2O·1,3Al2O3·1,5Р2O5·1,6ZnO·95,8SiO2.
Пример 9
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 7,1 г Н3РО4 (концентрация 85%) и 4,2 г SnCl4·5H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали, прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В9, содержащий фосфор и переходный металл Sn. Он имел следующий безводный химический состав:
0,11 Na2O·6,3Al2O3·4,1Р2O5·1,7SnO2·87,8SiO2.
Пример 10
100 г (в пересчете на сухое вещество) бета-цеолита обрабатывали и промывали раствором NH4Cl до получения содержания Na2O, не превышающего 0,2 вес.%, затем фильтровали для получения фильтрационного осадка, 7,1 г Н3РО4 (концентрация 85%), 3,2 г Cu(NO3)2·3H2O и 5,3 г Fe(NO3)3·9H2O растворяли в 90 г воды, после этого перемешивали с фильтрационным осадком для осуществления импрегнирования, высушивали и полученный образец прокаливали в течение 2 часов при температуре 550°С, после чего получали модифицированный бета-цеолит В10, содержащий фосфор и переходные металлы Fe и Сu. Он имел следующий безводный химический состав:
0,11 Nа2О·5,9Аl2О3·4,1Р2O5·1,0CuO·1,0Fe2O3·87,9SiO2.
Примеры 11-20 используются для иллюстрации предлагаемых в настоящем изобретении катализаторов конверсии углеводородов и способов их получения. Для получения катализатора использовались следующие исходные материалы:
Глина:
галлуазит - промышленная продукция компании Suzhou Porcelain Clay Corporation, содержание сухого вещества 71,6 вес.%;
каолин - промышленная продукция компании Suzhou Kaolin Corporation, содержание сухого вещества 76 вес.%;
монтмориллонит - промышленная продукция компании Zhejiang Fenghong Clay Co., содержание сухого вещества 95 вес.%.
Термостойкий неорганический оксид или его прекурсор:
псевдобемит - промышленная продукция компании Shandong Aluminum Factory, содержание сухого вещества 62,0 вес.%;
золь оксида алюминия - производство компании Qilu Catalyst Factory, содержание Аl2О3 21,5 вес.%; и
золь кремнистой кислоты - производство компании Beijing Chemical Factory, содержание диоксида кремния 16,0 вес.%.
Все цеолиты с крупными порами произведены компанией Qilu Catalyst Factory под следующими товарными знаками:
DASY 2.0 имеет следующие физико-химические характеристики: размер элементарной ячейки - 2,446 нм, содержание Na2O 1,1 вес.%, содержание оксидов редкоземельных элементов RE2O3 2,0 вес.%, при этом содержание оксида лантана 1,06 вес.%, содержание оксида церия 0,26 вес.%, и содержание других оксидов редкоземельных элементов 0,68 вес.%.
USY имеет следующие физико-химические характеристики: размер элементарной ячейки 2,445 нм, содержание Na2O 0,36 вес.%.
DASY 0.0 имеет следующие физико-химические характеристики: размер элементарной ячейки 2,443 нм, содержание Na2O 0,85 вес.%.
DASY 6.0 имеет следующие физико-химические характеристики: размер элементарной ячейки 2,451 нм, содержание Na2O 1,6 вес.%, содержание оксидов редкоземельных элементов RЕ2O3 6,2 вес.%, при этом содержание оксида лантана 3,29 вес.%, содержание оксида церия 0,81 вес.%, и содержание других оксидов редкоземельных элементов 2,10 вес.%.
REHY имеет следующие физико-химические характеристики: размер элементарной ячейки 2,465 нм, содержание Na2O 3,2 вес.%, содержание оксидов редкоземельных элементов RE2O 3-7,0 вес.%, при этом содержание оксида лантана 3,71 вес.%, содержание оксида церия 0,91 вес.%, и содержание других оксидов редкоземельных элементов 2,38 вес.%.
Все цеолиты с MFI-структурой произведены компанией Qilu Catalyst Factory под следующими товарными знаками:
ZSP-2, в котором отношение SiO2/Аl2О3 = 70, содержание Na2O 0,03 вес.%, Р2O5 4,9 вес.% и Fe2O3 2,1 вес.%.
ZRP-1, в котором отношение SiO2/Al2O3 = 30, содержание Na2O 0,17 вес.%, содержание оксидов редкоземельных элементов RE2O3 1,4 вес.%, при этом содержание оксида лантана 0,84 вес.%, содержание оксида церия 0,18 вес.%, и содержание других оксидов редкоземельных элементов 0,38 вес.%.
ZSP-1, в котором отношение SiO2/Al2O3 = 30, содержание Nа2О 0,1 вес.%, Р2O5 2,0 вес.%, и Fe2O3 0,9 вес.%.
ZSP-5, в котором отношение SiO2/Аl2О3 = 50, содержание Nа2О 0,05 вес.% и Р2O5 4,0 вес.%.
Пример 11
К 25,0 кг декатионированной воды добавляли 6,3 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4,0 кг псевдобемита, с помощью хлористоводородной кислоты уровень рН доводили до 2, перемешивали до получения однородной смеси и выдерживали в течение 1 часа при температуре 70°С. Затем добавляли 1,4 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,12), после перемешивания до получения однородной смеси добавляли 7,7 кг суспензии, полученной путем перемешивания с водой смеси 0,6 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В1, 0,6 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 2.0 и 1,5 кг (в пересчете на сухое вещество) цеолита ZSP-2 с MFI-структурой, и перемешивали до получения однородной смеси с содержанием сухого вещества 22,5 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С1. Состав катализатора С1 приведен в Таблице 1.
Пример 12
Катализатор С2 получали в соответствии со способом, описанным в
Примере 11, за исключением того, что вместо бета-цеолита В1 использовали
такое же количество модифицированного бета-цеолита В2. Состав катализатора С2 приведен в Таблице 1.
Пример 13
Катализатор С3 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали такое же количество модифицированного бета-цеолита В4. Состав катализатора С3 приведен в Таблице 1.
Пример 14
Катализатор С4 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали такое же количество модифицированного бета-цеолита В10. Состав катализатора С4 приведен в Таблице 1.
Сравнительный Пример 1
В этом сравнительном примере используются сравнительные катализаторы, содержащие бета-цеолит, не модифицированный фосфором и переходным металлом, и способы их получения.
Сравнительный катализатор СВ1 получали в соответствии со способом, описанным в Примере 11, за исключением того, что вместо бета-цеолита В1 использовали бета-цеолит (как в Примере 1), не модифицированный фосфором и переходным металлом. Состав сравнительного катализатора СВ1 приведен в Таблице 1.
Сравнительный Пример 2
В этом сравнительном примере используются сравнительные катализаторы, не содержащие бета-цеолит, и способы их получения.
Сравнительный катализатор СВ2 получали в соответствии со способом, описанным в Примере 11, за исключением того, что не добавляли бета-цеолит, и сверхустойчивый Y-цеолит DASY 2.0 использовали в количестве 1,2 кг (в пересчете на сухое вещество). Состав сравнительного катализатора СВ2 приведен в Таблице 1.
Figure 00000001
Пример 15
К 12,5 кг декатионированной воды добавляли 4,0 кг псевдобемита, с помощью азотной кислоты доводили уровень рН до 2, перемешивали до получения однородной смеси и выдерживали в течение 5 часов при температуре 50°С для получения выдержанного продукта.
2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) добавляли к 2,5 кг декатионированной воды. Затем добавляли 4,0 кг каолина, суспендировали и перемешивали до получения однородной смеси. Затем вышеуказанный выдержанный продукт и 11,4 кг суспензии, полученной суспендированием в декатионированной воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В3, 2,5 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита USY и 1,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с MFI-структурой, перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 27,2 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 220°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 4 часов при температуре 520°С для получения катализатора С5. Состав катализатора С5 приведен в Таблице 2.
Пример 16
3,9 кг каолина и 1,1 кг монтмориллонита добавляли к 18,0 кг декатионированой воды и суспендировали. В суспензию добавляли 4,0 кг псевдобемита (прекурсоры термостойкого неорганического оксида добавляли перед выдерживанием), с помощью хлористоводородной кислоты доводили уровень рН суспензии до 3, перемешивали до получения однородной смеси и выдерживали в течение 2 часов при температуре 60°С. Затем добавляли 10,0 кг суспензии, полученной суспендированием в воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В5, содержащего фосфор и переходный металл Со, 0,5 кг (в пересчете на сухое вещество) Y-цеолита REHY и 1,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с MFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 27,0 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 280°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2,5 часов при температуре 580°С для получения катализатора С6. Состав катализатора С6 приведен в Таблице 2.
Пример 17
К 17,8 кг декатионированной воды добавляли 4,2 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4,0 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 3,5, перемешивали до получения однородной смеси и выдерживали в течение 0,5 часа при температуре 75°С. Затем добавляли 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 1,0 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В6, содержащего фосфор и переходный металл Ni, 1,0 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 0.0 и 2,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с MFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 25,2 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 1 часа при температуре 600°С для получения катализатора С7. Состав катализатора С7 приведен в Таблице 2.
Пример 18
К 20,0 кг декатионированной воды добавляли 4,9 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4,0 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 3,5, перемешивали до получения однородной смеси и выдерживали в течение 0,5 часа при температуре 75°С. Затем добавляли 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,2) и перемешивали до получения однородной смеси. Затем добавляли 10,0 кг суспензии, полученной суспендированием в воде смеси 0,2 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В7, содержащего фосфор и переходный металл Мn, 0,8 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 2.0 и 2,0 кг (в пересчете на сухое вещество) цеолита ZRP-1 с MFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 24,3 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 1 часа при температуре 600°С для получения катализатора С8. Состав катализатора С8 приведен в Таблице 2.
Пример 19
К 15,6 кг декатионированной воды добавляли 3,5 кг галлуазита и суспендировали. Затем в полученную суспензию добавляли 4,0 кг псевдобемита, с помощью хлористоводородной кислоты доводили уровень рН до 4, перемешивали до получения однородной смеси и выдерживали в течение 1 часа при температуре 60°С. Затем добавляли 4,7 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:0,4) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 0,5 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В8, 0,5 кг (в пересчете на сухое вещество) сверхустойчивого Y-цеолита DASY 6.0 и 3,0 кг (в пересчете на сухое вещество) цеолита ZRP-5 с MFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 25,5 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 220°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С9. Состав катализатора С9 приведен в Таблице 2.
Пример 20
К 12,0 кг декатионированной воды добавляли 3,2 кг галлуазита и суспендировали. С помощью хлористоводородной кислоты получали уровень рН, равный 3, перемешивали до получения однородной смеси и выдерживали в течение 6 часов при температуре 55°С. Затем добавляли 21,9 кг золя кремнистой кислоты и 2,3 кг золя оксида алюминия (весовое отношение термостойкого неорганического оксида (или его прекурсора), добавляемого перед стадией выдерживания и после нее, составляло 1:2) и перемешивали до получения однородной смеси. Затем добавляли 11,4 кг суспензии, полученной суспендированием в воде смеси 1,0 кг (в пересчете на сухое вещество) модифицированного бета-цеолита В9, 3,0 кг (в пересчете на сухое вещество) цеолита ZRP-5 с MFI-структурой, и перемешивали до получения однородной смеси для получения суспензии с содержанием сухого вещества 19,7 вес.%. Полученную суспензию высушивали распылением и сухое вещество получали при температуре 250°С в форме частиц диаметром 20-150 мкм. Затем полученные частицы прокаливали в течение 2 часов при температуре 550°С для получения катализатора С10. Состав катализатора С10 приведен в Таблице 2.
Figure 00000002
Примеры 21-24
Примеры 21-24 используются для описания эффективности действия предлагаемого в настоящем изобретении катализатора конверсии углеводородов.
Катализаторы С1-С4 выдерживались в течение 14 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров со стационарным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Выдержанные катализаторы оценивались путем подачи смеси газойля вакуумной перегонки и пара (количество пара составляло 25% от веса газойля) при следующих условиях осуществления реакции: температура 560°С, отношение количества катализатора к количеству газойля 10, и среднечасовая скорость подачи сырья 4 1/час. Характеристики газойля вакуумной перегонки приведены в Таблице 3, и результаты оценки приведены в Таблице 4.
Сравнительные Примеры 3-4
Сравнительные Примеры 3-4 используются для иллюстрации эффективности действия сравнительных катализаторов.
Сравнительные катализаторы СВ1 и СВ2 оценивались с использованием такой же подачи газойля, как и в Примере 21, и полученные результаты приведены в Таблице 4.
Таблица 3
Подаваемый газойль Газойль вакуумной перегонки Продукт отгонки
Плотность (20°С), г/см3 0,8764 0,8906
Вязкость (80°С), мм2 12,06 24,84
Асфальтен, вес.% - 0,8
0,93 4,3
Интервал отбора фракций, °С
IBP 246 282
10 об.% 430 370
30 об.% 482 482
50 об.% 519 553
70 об.% 573 (75,2 об.%) -
90 об.% - -
FBP - -
Таблица 4
Номер Примера 21 22 23 24 3 (сравн.) 4 (сравн.)
Катализатор С1 С2 С3 С4 СВ1 СВ2
Конверсия 90,2 90,0 90,4 90,7 88,7 88,1
Содержание продуктов, вес.%
Сухой газ 10,0 10,5 10,1 10,1 9,1 8,6
СНГ 45,4 44,6 45,8 46,1 44,0 43,6
Бензин 22,4 22,3 22,2 21,7 23,9 24,7
Дизельное топливо 5,5 5,6 5,4 5,3 5,9 6,2
Тяжелое дизельное топливо 4,3 4,4 4,2 4,0 5,4 5,7
Кокс 12,4 12,6 12,3 12,8 11,7 11,2
где Этилен 5,2 5,3 5,5 5,4 5,1 4,7
Пропилен 18,5 18,3 18,8 19,1 18,0 17,9
Бутилен 12,8 12,7 12,9 12,8 12,2 11,9
Результаты, приведенные в Таблице 4, показывают, что по сравнению со сравнительным катализатором СВ1, выдержанным при таких же условиях и с таким же содержанием цеолитов, причем бета-цеолит не был модифицирован, предлагаемый в настоящем изобретении катализатор конверсии углеводородов повышает способность крекинга тяжелого дизельного топлива на 1,3-2,0%, выход СНГ на 0,6-2,1% и выход легких олефинов (С2=3=4=) на 1-2%; по сравнению со сравнительным катализатором СВ2, не содержащим бета-цеолит, предлагаемый в настоящем изобретении катализатор конверсии углеводородов повышает способность крекинга тяжелого дизельного топлива на 1,9-2,6%, выход СНГ на 1,0-2,5% и выход легких олефинов (С2=3=4=) на 1,8-2,8%.
Примеры 25-30
Примеры 25-30 используются для описания эффективности действия предлагаемого в настоящем изобретении катализатора конверсии углеводородов при различных условиях реакции.
Катализаторы С5-С10 выдерживали в течение 17 часов в атмосфере 100% пара при температуре 800°С. Использовался реактор небольших размеров с неподвижным псевдоожиженным слоем, и в реактор подавалось 180 г катализатора. Выдержанные катализаторы оценивали на вводимом продукте отгонки без крекинга. Характеристики продукта отгонки приведены в Таблице 3, а условия реакции и содержание продуктов приведены в Таблице 5.
Таблица 5
Номер Примера 25 26 27 28 29 30
Катализатор С5 С6 С7 С8 С9 С10
Температура реакции, °С 520 520 580 580 620 620
Весовое отношение катализатор/нефтепродукты 10 10 10 10 10 10
Среднечасовая скорость подачи сырья, 1/час 10 10 15 15 20 20
Весовое содержание пара в продукте отгонки, вес.% 12,5 12,5 25 25 37,5 37,5
Конверсия 79,5 78,9 85,6 83,4 86,5 86,6
Содержание продуктов, вес.%
Сухой газ 5,6 5,5 10,3 9,8 12,7 12,6
СНГ 21,9 21,8 39,8 40,7 43,2 42,5
Бензин 43,4 43,1 23,3 22,4 18,3 18,1
Дизельное топливо 14,0 14,1 9,9 10,3 8,6 8,6
Тяжелое дизельное топливо 6,5 7,0 4,5 6,3 4,9 4,8
Кокс 8,6 8,5 12,2 10,5 12,3 13,4
где Этилен 1.5 1,4 5,2 5,1 6,8 6,8
Пропилен 6,5 6,7 13,5 16,7 21,6 21,1
Бутилен 6,2 7,0 12,8 12,5 14,3 14,6

Claims (12)

1. Катализатор конверсии углеводородов, который содержит (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами,
причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Nа2O·(0,5-10)Аl2O3·(1,3-10)Р2O5·(0,7-15)MxOy·(64-97)SiO2 (в скобках указаны массовые проценты оксидов), где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni, Сu, Mn, Zn и Sn; х - число атомов переходного металла М, и у - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.
2. Катализатор конверсии углеводородов по п.1, отличающийся тем, что он содержит (от общего веса катализатора): 10-50 вес.% смеси цеолитов, 10-70 вес.% термостойкого неорганического оксида и 0-60 вес.% глины.
3. Катализатор конверсии углеводородов по п.1, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2O3·(1,5-7)Р2O5·(0,9-10)МxОy·(75-95)SiO2.
4. Катализатор конверсии углеводородов по п.3, отличающийся тем, что безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,2)Na2O·(1-9)Аl2O3·(2-5)Р2O5·(1-3)МхОу·(82-95)SiO2.
5. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве переходного металла М используется один или несколько металлов, выбранных из группы, состоящей из Fe, Co, Ni и Сu.
6. Катализатор конверсии углеводородов по п.5, отличающийся тем, что переходный металл М выбирается из группы, состоящей из Fe и/или Сu.
7. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZSM-5 и ZRP.
8. Катализатор конверсии углеводородов по п.7, отличающийся тем, что в качестве цеолита, имеющего MFI-структуру, используется один или несколько цеолитов, выбранных из группы, состоящей из цеолитов ZRP, содержащих редкоземельные элементы, цеолитов ZRP, содержащих фосфор, цеолитов ZRP, содержащих фосфор и редкоземельные элементы, цеолитов ZRP, содержащих фосфор и щелочноземельные металлы, и цеолитов ZRP, содержащих фосфор и переходные металлы.
9. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из фажозита, L-цеолита, бета-цеолита, омега-цеолита, морденита и цеолита ZSM-18.
10. Катализатор конверсии углеводородов по п.9, отличающийся тем, что в качестве цеолита с крупными порами используется один или несколько цеолитов, выбранных из группы, состоящей из Y-цеолита, Y-цеолита, содержащего фосфор и/или редкоземельный элемент, сверхустойчивого Y-цеолита и сверхустойчивого Y-цеолита, содержащего фосфор и/или редкоземельный элемент.
11. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита, монтмориллонита, диатомита, энделлита, сапонита, ректорита, сепиолита, аттапульгита, гидроталькита и бентонита.
12. Катализатор конверсии углеводородов по п.1, отличающийся тем, что в качестве глины используется одна или несколько глин, выбранных из группы, состоящей из каолина, галлуазита и монтмориллонита.
RU2009110506/04A 2006-08-31 2006-09-28 Катализатор конверсии углеводородов RU2409422C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610112734.4 2006-08-31
CN2006101127344A CN101134172B (zh) 2006-08-31 2006-08-31 一种烃类转化催化剂

Publications (2)

Publication Number Publication Date
RU2009110506A RU2009110506A (ru) 2010-10-10
RU2409422C2 true RU2409422C2 (ru) 2011-01-20

Family

ID=39158620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009110506/04A RU2409422C2 (ru) 2006-08-31 2006-09-28 Катализатор конверсии углеводородов

Country Status (10)

Country Link
US (1) US8716163B2 (ru)
EP (1) EP2075068B1 (ru)
JP (1) JP5139433B2 (ru)
KR (1) KR101359594B1 (ru)
CN (1) CN101134172B (ru)
BR (1) BRPI0621984B1 (ru)
CA (1) CA2662077C (ru)
RU (1) RU2409422C2 (ru)
TW (1) TWI308589B (ru)
WO (1) WO2008034299A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586280C1 (ru) * 2015-04-23 2016-06-10 Федеральное государственное бюджетное научное учреждение "Научный центр проблем здоровья семьи и репродукции человека" Способ комплексной терапии функциональных нарушений пищеварения у детей дошкольного возраста
RU2632913C2 (ru) * 2011-11-04 2017-10-11 Басф Корпорейшн Модифицированные фосфором катализаторы крекинга с повышенной активностью и гидротермической стабильностью
RU2684613C1 (ru) * 2013-12-19 2019-04-10 Басф Корпорейшн Каталитические композиции фкк, содержащие оксид бора и фосфор
RU2777330C2 (ru) * 2017-03-31 2022-08-02 Джонсон Мэтти Каталистс (Джермани) Гмбх Катализатор селективного каталитического восстановления

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622588B2 (ja) * 2008-01-09 2014-11-12 中国石油化工股▲ふん▼有限公司 粗悪な酸含有原油用変換触媒、当該触媒の製造方法及び当該触媒の利用
EP2082801A1 (en) * 2008-01-25 2009-07-29 Total Petrochemicals Research Feluy Process for obtaining modified molecular sieves
US9079162B2 (en) 2008-04-28 2015-07-14 BASF SE Ludwigshafen Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams
CN101767029B (zh) * 2008-12-31 2012-06-27 中国石油化工股份有限公司 一种重油裂化催化剂及其应用
CN101773845B (zh) * 2009-01-08 2012-08-01 中国石油化工股份有限公司 一种重油裂化催化剂及其制备和应用方法
JP2010167349A (ja) * 2009-01-21 2010-08-05 Uop Llc 軽質オレフィン製造のためのfcc触媒
SG10201402294PA (en) * 2009-05-19 2014-09-26 Shell Int Research Process for the manufacture of a formulated oxygenate conversion catalyst, formulated oxygenate conversion catalyst and process for the preparation of an olefinic product
CN101927198B (zh) * 2009-06-25 2013-06-05 中国石油化工股份有限公司 一种改善催化裂化催化剂选择性的处理方法
RU2548362C2 (ru) 2009-06-25 2015-04-20 Чайна Петролеум & Кемикал Корпорейшн Катализатор каталитического крекинга и способ повышения селективности катализатора(варианты)
JP5152925B2 (ja) * 2009-09-24 2013-02-27 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒、炭化水素油の接触分解触媒の製造方法および炭化水素油の接触分解方法
EP2555867A4 (en) * 2010-04-08 2014-12-10 Basf Se FE-BEA / FE-MFI MIXED ZEOLITE CATALYST AND METHOD FOR TREATING NOX IN GASEOUS CURRENTS USING THE CATALYST
CN102019200B (zh) * 2010-04-13 2013-01-16 卓润生 一种高活性的催化热裂解催化剂及其制备方法
JP5797749B2 (ja) * 2010-05-21 2015-10-21 ピーキュー コーポレイション NOx還元のための新規の金属含有ゼオライトベータ
CN102452669B (zh) * 2010-10-22 2013-04-24 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛及其制备方法
US9227181B2 (en) * 2011-09-13 2016-01-05 Basf Corporation Catalyst to increase propylene yields from a fluid catalytic cracking unit
WO2014042641A1 (en) * 2012-09-13 2014-03-20 Basf Corporation Novel catalyst to increase propylene yields from a fluid catalytic cracking unit
CN103007992B (zh) * 2011-09-22 2015-04-29 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
BR112014007168B1 (pt) * 2011-10-12 2024-02-15 Indian Oil Corporation Ltd Processo para melhorar a tolerância ao níquel de catalisadores de craqueamento de hidrocarbonetos pesados
JP2015501209A (ja) 2011-10-17 2015-01-15 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company リン変性ゼオライト触媒の製造方法
CN104245122A (zh) * 2012-03-16 2014-12-24 克里斯蒂安·特里施勒 催化剂、制备该催化剂的方法及该催化剂在制备烯烃的方法与设备中的用途
JP5925100B2 (ja) * 2012-10-03 2016-05-25 本田技研工業株式会社 ポリプロピレン組成物の製造方法
CN103785460B (zh) * 2012-10-26 2016-01-20 中国石油化工股份有限公司 一种催化裂解催化剂及其制备方法
CN103785459B (zh) * 2012-10-26 2016-01-20 中国石油化工股份有限公司 一种催化裂解催化剂及其制备方法
KR20140080661A (ko) * 2012-12-13 2014-07-01 재단법인 포항산업과학연구원 고발열량의 합성천연가스 제조장치 및 그 제조방법
WO2014096267A1 (en) * 2012-12-21 2014-06-26 Albemarle Europe Sprl Modified y-zeolite/zsm-5 catalyst for increased propylene production
JP5911446B2 (ja) * 2013-03-22 2016-04-27 コスモ石油株式会社 炭化水素油の接触分解触媒の製造方法
GB2521515B (en) * 2013-10-22 2021-04-28 China Petroleum & Chem Corp A metal modified Y zeolite, its preparation and use
KR102284984B1 (ko) * 2013-10-22 2021-08-02 차이나 페트로리움 앤드 케미컬 코포레이션 금속 개질된 y형 제올라이트, 그것의 제조 방법 및 용도
CN104588054B (zh) * 2013-10-31 2017-06-30 中国石油化工股份有限公司 一种含磷和稀土的介孔催化材料
CN103537289B (zh) * 2013-11-07 2015-09-23 盐城工学院 一种低温scr脱硝催化剂制备方法
KR101595826B1 (ko) * 2014-05-08 2016-02-22 한국화학연구원 함산소화물로부터 프로필렌 제조용 제올라이트 촉매 및 이의 제조방법
US9233360B1 (en) * 2014-09-10 2016-01-12 Chevron U.S.A. Inc. Stable support for Fischer-Tropsch catalyst
CN106140277B (zh) * 2015-04-16 2018-09-28 中国石油化工股份有限公司 一种改性β沸石及其制备方法
EP3135373A1 (en) * 2015-08-24 2017-03-01 INDIAN OIL CORPORATION Ltd. Preparation and composition of a fluid catalytic cracking catalyst additive with lower phosphate content for enhanced lpg yield
CN106607075B (zh) * 2015-10-21 2019-06-11 中国石油化工股份有限公司 制备烯烃与芳烃的流化床催化剂及应用
CN107974282B (zh) * 2016-10-21 2020-09-22 中国石油化工股份有限公司 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN107974285B (zh) * 2016-10-21 2020-09-22 中国石油化工股份有限公司 一种生产低碳烯烃和轻芳烃的催化裂解方法
US10526546B2 (en) 2017-02-23 2020-01-07 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams utilizing cracking catalysts
US10494574B2 (en) * 2017-02-23 2019-12-03 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams such as crude oils utilizing catalysts which include zeolite mixtures
CN109701519B (zh) * 2017-10-26 2022-02-08 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法和重质原料油加氢裂化的方法
CN109701460B (zh) * 2017-10-26 2021-11-16 中国石油化工股份有限公司 加氢裂化催化剂在线循环再生的方法和系统
CN109701624B (zh) * 2017-10-26 2022-02-08 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法和重质原料油加氢裂化的方法
CN108479846B (zh) * 2018-02-08 2019-12-31 中国石油大学(北京) 一种芳构化催化剂及其制备方法和再生方法及芳构化方法
CN108906117A (zh) * 2018-07-06 2018-11-30 郑州三希新材料科技有限公司 一种新型可视变色的空气净化材料及其制备方法
CN111097507B (zh) * 2018-10-26 2023-01-13 中国石油化工股份有限公司 催化剂及其制备方法和应用及含硫轻质原料油吸附脱硫和烃类转化的方法
US10899971B2 (en) * 2019-02-13 2021-01-26 Exxonmobil Research And Engineering Company Stabilization of zeolite beta for FCC processes
CN110075911A (zh) * 2019-05-20 2019-08-02 南京工业大学 一种用于c10+重质芳烃加氢脱烷基的催化剂及其制备方法
CN110479361A (zh) * 2019-09-03 2019-11-22 四川润和催化新材料股份有限公司 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
JP2022552428A (ja) * 2019-12-09 2022-12-15 クールブルック オーワイ 炭化水素処理設備における熱統合
US11225612B2 (en) 2020-03-27 2022-01-18 Saudi Arabian Oil Company Catalyst and process for catalytic steam cracking of heavy distillate
RU2740476C1 (ru) * 2020-04-30 2021-01-14 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ получения титано-алюмо-силикатного цеолита типа zsm-12
CN114425376B (zh) * 2020-09-27 2024-03-12 中国石油化工股份有限公司 一种含mfi沸石的烃类转化催化剂及其制备方法
CN113070095B (zh) * 2021-04-09 2023-03-28 陕西延长石油(集团)有限责任公司 一种轻烃催化裂解制低碳烯烃催化剂及其制备方法
US11827521B2 (en) 2021-12-14 2023-11-28 Industrial Technology Research Institute Method for selectively chemically reducing CO2 to form CO

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514179A (en) * 1966-09-12 1970-05-26 Bell & Howell Co Stabilized optical system and method of stabilizing images
JPS4945364B1 (ru) 1966-11-10 1974-12-04
US3647682A (en) 1968-10-23 1972-03-07 Union Carbide Corp Olefin production by the catalytic treatment of hydrocarbons
GB1306087A (ru) 1969-12-23 1973-02-07
US3839485A (en) 1969-12-23 1974-10-01 Haldor Topsoe As Catalytic steam cracking of hydrocarbons and catalysts therefor
US3758403A (en) 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
DE2251635A1 (de) 1972-10-20 1974-05-02 Saunders Roller Box Tool Co Lt Werkzeugtraeger mit rollenabstuetzung
SU550173A1 (ru) 1975-06-10 1977-03-15 Предприятие П/Я Р-6830 Способ приготовлени катализатора дл пиролиза углеводородного сырь
SU559946A1 (ru) 1975-06-10 1977-05-30 Предприятие П/Я Р-6830 Способ получени непредельных углеводородов
DD225135A1 (de) 1984-06-25 1985-07-24 Adw Ddr Verfahren zur thermokatalytischen spaltung von kohlenwasserstoffen
SU1214726A1 (ru) 1984-11-01 1986-02-28 Институт неорганической и физической химии АН АзССР Способ получени низкомолекул рных олефинов
GB8820358D0 (en) 1988-08-26 1988-09-28 Shell Int Research Process for catalytic cracking of hydrocarbon feedstock
CN1043520A (zh) 1988-12-21 1990-07-04 中国石油化工总公司石油化工科学研究院 一种生产低碳烯烃的裂解催化剂
US5055176A (en) 1988-12-30 1991-10-08 Mobil Oil Corporation Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products
US5006497A (en) 1988-12-30 1991-04-09 Mobil Oil Corporation Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products
CN1020269C (zh) 1989-11-30 1993-04-14 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的合成
US5236880A (en) 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
CN1037327C (zh) 1990-06-20 1998-02-11 中国石油化工总公司石油化工科学研究院 含高硅沸石的裂解催化剂
CN1027632C (zh) 1990-07-23 1995-02-15 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的制备方法
US5194412A (en) 1991-01-22 1993-03-16 W. R. Grace & Co.-Conn. Catalytic compositions
CN1026225C (zh) 1991-02-28 1994-10-19 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
AU652222B2 (en) 1991-03-12 1994-08-18 Mobil Oil Corporation Preparation of cracking catalysts, and cracking process using them
US5126298A (en) * 1991-03-12 1992-06-30 Mobil Oil Corp. Cracking catalysts comprising clays with different particle sizes, and method of preparing and using the same
US5232579A (en) * 1991-06-14 1993-08-03 Mobil Oil Corporation Catalytic cracking process utilizing a zeolite beta catalyst synthesized with a chelating agent
AU642817B2 (en) 1991-06-14 1993-10-28 Mobil Oil Corporation A method of synthesizing zeolite beta
CN1026242C (zh) 1991-11-05 1994-10-19 中国石油化工总公司 制取高质量汽油和烯烃的烃转化催化剂
US5380590A (en) * 1992-09-16 1995-01-10 Teijin Limited Water-dispersible aromatic polyester, aqueous dispersion thereof and polyester film coated therewith which permits fast adhesion
CN1030287C (zh) 1992-10-22 1995-11-22 中国石油化工总公司 制取高质量汽油、丙烯、丁烯的烃转化催化剂
CN1034223C (zh) 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
WO1995002653A1 (en) * 1993-07-16 1995-01-26 Mobil Oil Corporation Catalyst system and process for catalytic cracking
CN1042201C (zh) 1993-08-28 1999-02-24 中国石油化工总公司石油化工科学研究院 多产烯烃的裂化催化剂
CN1034586C (zh) 1993-11-05 1997-04-16 中国石油化工总公司 多产低碳烯烃的催化转化方法
CN1036320C (zh) 1993-11-23 1997-11-05 中国石油化工总公司石油化工科学研究院 一种制备异丁烯和异戊烯的裂化催化剂
US5387723A (en) * 1994-01-12 1995-02-07 Texaco Chemical Inc. One-step synthesis of methyl t-butyl ether from t-butanol using β-zeolite catalysts modified with lithium plus rare earths
CN1048428C (zh) 1994-07-15 2000-01-19 中国石油化工总公司 制取低碳烯烃的多沸石催化剂
CN1053918C (zh) 1994-08-22 2000-06-28 中国石油化工总公司 制取低碳烯烃的双沸石催化剂
CN1055105C (zh) 1995-08-28 2000-08-02 中国石油化工总公司 一种多产异丁烯和异戊烯的裂化催化剂
CN1049406C (zh) 1995-10-06 2000-02-16 中国石油化工总公司 具有mfi结构含磷和稀土的分子筛
CN1055301C (zh) 1996-02-08 2000-08-09 中国石油化工总公司 多产异构烯烃及汽油的裂化催化剂
CN1059133C (zh) 1997-03-24 2000-12-06 中国石油化工总公司 具有mfi结构的含磷分子筛
US5905051A (en) 1997-06-04 1999-05-18 Wu; An-Hsiang Hydrotreating catalyst composition and processes therefor and therewith
CN1072031C (zh) 1997-09-17 2001-10-03 中国石油化工总公司 一种五元环分子筛组合物的制备方法
EP0903178B2 (en) 1997-09-17 2012-05-30 China Petro-Chemical Corporation A pentasil-type molecular sieve containing composition, its preparation method and use
CN1072032C (zh) 1997-09-17 2001-10-03 中国石油化工总公司 多产乙烯和丙烯的五元环分子筛组合物
NO319519B1 (no) 1997-10-15 2005-08-22 Res Inst Petroleum Processing Fremgangsmate for fremstilling av etylen og propylen ved katalytisk pyrolyse av tunge hydrokarboner
DE69832938T2 (de) * 1997-10-15 2006-08-10 China Petro-Chemical Corp. Krackkatalysator für die Produktion von leichten Olefinen und dessen Herstellung
CN1102634C (zh) 1997-10-15 2003-03-05 中国石油化工集团公司 催化热裂解制取低碳烯烃催化剂
CN1069682C (zh) 1997-12-23 2001-08-15 中国石油化工总公司 重油催化热裂解层柱粘土催化剂及其制备
EP0955093B1 (fr) * 1998-05-06 2003-09-03 Institut Francais Du Petrole Catalyseur à base de zéolithe bêta et d'element promoteur et procédé d'hydrocraquage
CA2332299C (en) 1998-05-15 2008-01-29 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
CN1205307A (zh) 1998-07-13 1999-01-20 徐邦舜 氯化钡、碳酸镁联合生产方法
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
US6726834B2 (en) 1999-10-22 2004-04-27 Intevep, S.A. Process for catalytic cracking of a hydrocarbon feed with a MFI aluminisilcate composition
EP1116775A1 (en) 2000-01-12 2001-07-18 Akzo Nobel N.V. Catalyst composition with high efficiency for the production of light olefins
JP3489048B2 (ja) 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
CN1108356C (zh) * 2000-10-26 2003-05-14 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
US6538169B1 (en) 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
CN1124892C (zh) 2000-11-17 2003-10-22 中国石油化工股份有限公司 生产富含异构烷烃汽油、丙烯及异丁烷的催化裂化催化剂
US20030204121A1 (en) * 2002-04-30 2003-10-30 Miller Stephen J. Process for aromatics alkylation employing zeolite beta prepared by the in-extrudate method
CN1176020C (zh) 2002-06-27 2004-11-17 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
WO2004045766A1 (ja) * 2002-11-18 2004-06-03 Ict Co., Ltd. 排ガス浄化用触媒および排ガスの浄化方法
CN1205306C (zh) 2002-11-29 2005-06-08 中国石油化工股份有限公司 一种石油烃裂解制取低碳烯烃的催化剂
CN1241684C (zh) 2002-12-03 2006-02-15 中国科学院大连化学物理研究所 烃类催化裂解制烯烃并联产芳烃催化剂及制法和应用
US6791002B1 (en) 2002-12-11 2004-09-14 Uop Llc Riser reactor system for hydrocarbon cracking
CN1261216C (zh) 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
US7641788B2 (en) * 2003-06-26 2010-01-05 Haldor Topsoe A/S Hydrocarbon conversion process and catalyst
CN1267532C (zh) 2003-06-30 2006-08-02 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
US7326332B2 (en) 2003-09-25 2008-02-05 Exxonmobil Chemical Patents Inc. Multi component catalyst and its use in catalytic cracking
CN1333044C (zh) * 2003-09-28 2007-08-22 中国石油化工股份有限公司 一种烃油裂化方法
CN1257769C (zh) 2003-10-31 2006-05-31 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
EP1762299B1 (en) 2004-03-31 2018-05-30 China Petroleum & Chemical Corporation A catalyst containing zeolite for hydrocarbon converting and preparation thereof, and a hydrocarbon oil converting method using said catalyst
TWI277648B (en) * 2004-07-29 2007-04-01 China Petrochemical Technology A cracking catalyst for hydrocarbons and its preparation
US20060040823A1 (en) * 2004-08-18 2006-02-23 Stockwell David M Catalyst for NOx and/or SOx control
US20060174231A1 (en) * 2005-01-31 2006-08-03 Dong Wei Method and an apparatus for using code written in a language that is not native to the computer system to invoke a procedure written in a programming language that is native to the computer system
CN100425534C (zh) 2005-05-31 2008-10-15 中国石油化工股份有限公司 一种改性β沸石

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632913C2 (ru) * 2011-11-04 2017-10-11 Басф Корпорейшн Модифицированные фосфором катализаторы крекинга с повышенной активностью и гидротермической стабильностью
RU2684613C1 (ru) * 2013-12-19 2019-04-10 Басф Корпорейшн Каталитические композиции фкк, содержащие оксид бора и фосфор
RU2586280C1 (ru) * 2015-04-23 2016-06-10 Федеральное государственное бюджетное научное учреждение "Научный центр проблем здоровья семьи и репродукции человека" Способ комплексной терапии функциональных нарушений пищеварения у детей дошкольного возраста
RU2777330C2 (ru) * 2017-03-31 2022-08-02 Джонсон Мэтти Каталистс (Джермани) Гмбх Катализатор селективного каталитического восстановления

Also Published As

Publication number Publication date
EP2075068A1 (en) 2009-07-01
EP2075068A4 (en) 2012-01-11
CN101134172B (zh) 2010-10-27
KR101359594B1 (ko) 2014-02-07
US20090325786A1 (en) 2009-12-31
US8716163B2 (en) 2014-05-06
CN101134172A (zh) 2008-03-05
JP5139433B2 (ja) 2013-02-06
BRPI0621984A2 (pt) 2011-12-20
CA2662077A1 (en) 2008-03-27
BRPI0621984B1 (pt) 2015-12-22
TW200815577A (en) 2008-04-01
TWI308589B (en) 2009-04-11
KR20090049616A (ko) 2009-05-18
RU2009110506A (ru) 2010-10-10
JP2010501341A (ja) 2010-01-21
EP2075068B1 (en) 2018-02-28
WO2008034299A1 (fr) 2008-03-27
CA2662077C (en) 2014-06-03

Similar Documents

Publication Publication Date Title
RU2409422C2 (ru) Катализатор конверсии углеводородов
RU2418842C2 (ru) Способ каталитической конверсии углеводородов
CA2563262C (en) A zeolite-containing hydrocarbon-converting catalyst, the preparation process thereof, and a process for converting hydrocarbon oils with the catalyst
JP5065257B2 (ja) 改質ゼオライトβ
US20080308455A1 (en) Catalyst and a Method for Cracking Hydrocarbons
TWI649263B (zh) 包含氧化硼之fcc催化劑組合物
TWI647011B (zh) 含磷fcc觸媒
WO2018026313A1 (ru) Способ приготовления катализатора крекинга с щелочноземельными элементами
TWI668303B (zh) 在fcc方法中之氧化硼
RU2372142C2 (ru) Цеолитсодержащий катализатор конверсии углеводородов, способ его приготовления и способ превращения углеводородных нефтепродуктов с использованием этого катализатора
CA3189308A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylenes yields with metal passivation functionality