US20160289143A1 - Advanced oxidative coupling of methane - Google Patents

Advanced oxidative coupling of methane Download PDF

Info

Publication number
US20160289143A1
US20160289143A1 US14/868,911 US201514868911A US2016289143A1 US 20160289143 A1 US20160289143 A1 US 20160289143A1 US 201514868911 A US201514868911 A US 201514868911A US 2016289143 A1 US2016289143 A1 US 2016289143A1
Authority
US
United States
Prior art keywords
product stream
ocm
methane
compounds
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/868,911
Inventor
Suchia Duggal
Guido Radaelli
Jarod McCormick
Andrew Aronson
Joel Cizeron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siluria Technologies Inc
Original Assignee
Siluria Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siluria Technologies Inc filed Critical Siluria Technologies Inc
Priority to US14/868,911 priority Critical patent/US20160289143A1/en
Assigned to SILURIA TECHNOLOGIES, INC. reassignment SILURIA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARONSON, Andrew, RADAELLI, GUIDO, CIZERON, JOEL, DUGGAL, Suchia, MCCORMICK, JAROD
Priority to PCT/US2016/024195 priority patent/WO2016160563A1/en
Priority to CA2975743A priority patent/CA2975743C/en
Publication of US20160289143A1 publication Critical patent/US20160289143A1/en
Priority to US16/445,562 priority patent/US11186529B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/152Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by forming adducts or complexes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • H01L35/30
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • aspects of the present disclosure provide processes for recovering olefins from a stream containing mix of hydrocarbons by utilizing techniques based the use of adsorbents.
  • systems and methods enable the separation, pre-separation, purification and/or recovery of hydrocarbons, including, but not limited to, olefins, ethylene, propylene, methane, and ethane, and CO 2 , from a multicomponent hydrocarbon stream such as an effluent stream from an oxidative coupling of methane (OCM) reactor or an ethylene-to-liquids (ETL) reactor.
  • OCM oxidative coupling of methane
  • ETL ethylene-to-liquids
  • the hydrocarbon stream can also be the feed to the OCM or ETL reactor in certain cases.
  • the feed to the ETL reactor is the effluent from OCM reactor.
  • a separation process utilizing adsorbents can be used to purify and pre-treat existing hydrocarbon streams (such as refinery off-gases, cracker off-gas, streams from NGL plants, and others), followed by use of the resulting olefin rich stream (e.g., PSA tail gas) as the ETL feed.
  • the present disclosure provides various improvements in OCM and ETL processes, such as, without limitation, a separation and pre-separation process to recover desired or predetermined components from an OCM reactor effluent, CO 2 recovery and capture techniques, enhanced heat recovery methods to utilize the OCM reaction heat more efficiently, and techniques and technologies to further reduce the carbon footprint of the OCM process.
  • An aspect of the present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C 2+ ), comprising introducing methane and an oxidant (e.g., O 2 ) into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor.
  • OCM oxidative coupling of methane
  • ETL ethylene-to-liquids
  • the first product stream can then be directed to a pressure swing adsorption (PSA) unit that recovers at least a portion of the C 2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C 2+ compounds.
  • PSA pressure swing adsorption
  • the second product stream can then be directed to the ETL reactor.
  • the higher hydrocarbon(s) can then be generated from the at least the portion of the C 2+ compounds in the ETL reactor.
  • the first product stream is directed to other intermediate units before the PSA, such as a post-bed cracking (PBC) unit that generates alkenes from alkanes.
  • PBC post-bed cracking
  • the alkenes can be included in the first product stream, which can then be directed to the PSA.
  • the present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C 2+ ), comprising: (a) introducing methane and an oxidant into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor, where the OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C 2+ compounds; (b) directing the first product stream to a pressure swing adsorption (PSA) unit that recovers at least a portion of the C 2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C 2+ compounds; (c) directing the second product stream to the ETL reactor; and (d) generating the higher hydrocarbon(s) from the at least the portion of the C 2+ compounds in the ETL reactor.
  • OCM oxidative coupling of methane
  • ETL ethylene
  • the method further comprises: (e) recovering a light stream comprising (i) hydrogen and (ii) carbon monoxide (CO) and/or carbon dioxide (CO 2 ) from the PSA unit and recycling the light stream to the OCM reactor; (f) directing at least a portion of the light stream into a methanation unit that reacts the hydrogen and the CO and/or CO 2 to produce a methanation product stream comprising methane; and (g) directing the methanation product stream into the OCM reactor.
  • the method further comprises recovering C 2 and/or C 3 compounds from the second product stream and directing the C 2 and/or C 3 compounds to the OCM reactor.
  • the OCM reactor further comprises a post-bed cracking (PBC) unit.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds including ethylene (C 2 H 4 ) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO 2 ); and (b) directing the product stream from the OCM reactor into a separations system that employs a refrigeration unit having a refrigerant that includes methane from the product stream, to enrich the C 2+ compounds in the product stream.
  • OCM methane
  • the product stream is directed into the separations system through one or more additional units.
  • the method further comprises separating methane from the product stream for use in the refrigeration unit. In some embodiments, the method further comprises directing CO and/or CO 2 from the product stream to a methanation reactor that reacts the CO and/or CO 2 to yield a methanation product stream comprising methane. In some embodiments, the method further comprises directing at least a portion of the methane in the methanation product stream to the OCM reactor. In some embodiments, the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C 3+ product stream comprising compounds with three or more carbon atoms (C 3+ compounds). In some embodiments, the method further comprises directing ethane from the product stream to the OCM reactor. In some embodiments, the method further comprises prior to directing the product stream into the separations system, compressing the product stream.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds including ethylene (C 2 H 4 ) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO 2 ); and (b) directing the product stream from the OCM reactor into a separations system that employs a complexation unit having a complexation catalyst that forms pi complexes with the ethylene in the product stream, to enrich the C 2+ compounds in the product stream.
  • OCM methane
  • the product stream is directed into the separations system through one or more additional units.
  • the method further comprises using the complexation unit to remove one or more impurities from the product stream, where the impurities are selected from the group consisting of CO 2 , sulfur compounds, acetylenes, and hydrogen.
  • the complexation catalyst includes one or more metals selected from the group consisting of silver and copper.
  • the method further comprises directing CO and/or CO 2 from the product stream to a methanation reactor that reacts the CO and/or CO 2 to yield a methanation product stream comprising methane.
  • the method further comprises directing the methane in the methanation product stream to the OCM reactor.
  • the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C 3+ product stream comprising compounds with three or more carbon atoms (C 3+ compounds).
  • the method further comprises directing ethane from the product stream to the OCM reactor.
  • the method further comprises prior to directing the product stream into the separations system, compressing the product stream.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds including ethylene (C 2 H 4 ) and (ii) carbon dioxide (CO 2 ); and (b) directing the product stream from the OCM reactor into a separations system that employs a CO 2 separation unit to separate the CO 2 from the product stream, to enrich the C 2+ compounds in the product stream, which CO 2 separation unit employs (i) sorbent or solvent separation of CO 2 , (ii) membrane separation of CO 2 , or (iii) cryogenic or low temperature separation of CO 2 having an operating temperature greater than a boiling point of methane and less than a boiling point of CO 2 .
  • the product stream is directed into the separations system through one or more additional units.
  • the sorbent or solvent separation of CO 2 employs an amine based absoprtion system.
  • the sorbent or solvent separation of CO 2 employs a Benfield process.
  • the sorbent or solvent separation of CO 2 employs diethanolamine.
  • the sorbent or solvent separation of CO 2 employs glycol dimethylether.
  • the sorbent or solvent separation of CO 2 employs propylene carbonate.
  • the sorbent or solvent separation of CO 2 employs Sulfinol.
  • the sorbent or solvent separation of CO 2 employs a zeolite. In some embodiments, the sorbent or solvent separation of CO 2 employs active carbon. In some embodiments, the CO 2 separation system comprises a membrane CO 2 separation system. In some embodiments, the membrane separation of CO 2 employs a polymeric membrane. In some embodiments, the membrane separation of CO 2 employs a metallic membrane. In some embodiments, the membrane separation of CO 2 employs a ceramic membrane. In some embodiments, the membrane separation of CO 2 employs a hybrid membrane comprising a membrane supporting a solvent or sorbent. In some embodiments, the membrane separation of CO 2 employs a poly ionic liquid membrane. In some embodiments, the membrane separation of CO 2 employs a supported ionic liquid membrane. In some embodiments, the membrane separation of CO 2 employs a polyetherimide membrane.
  • the method further comprises directing the CO 2 from the product stream to a methanation reactor that reacts the CO 2 to yield a methanation product stream comprising methane. In some embodiments, the method further comprises directing the methane in the methanation product stream to the OCM reactor. In some embodiments, the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C 3+ product stream comprising compounds with three or more carbon atoms (C 3+ compounds). In some embodiments, the method further comprises directing ethane from the product stream to the OCM reactor. In some embodiments, the method further comprises prior to directing the product stream into the separations unit, compressing the product stream.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing water into an electrolysis unit that electrolyzes the water to yield oxygen (O 2 ) and hydrogen (H 2 ); (b) directing the O 2 from the electrolysis unit and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds, including ethylene (C 2 H 4 ) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO 2 ); (c) directing at least a portion of the CO and/or CO 2 from the product stream and the H 2 from the electrolysis unit into a methanation reactor that reacts the H 2 and the CO and/or CO 2 to yield CH 4 ; and (d) directing at least a portion of the CH 4 from the methanation reactor to the OCM reactor.
  • OCM methane
  • the electrolysis unit comprises an alkaline water electrolysis system. In some embodiments, the electrolysis unit comprises a proton exchange membrane electrolysis system. In some embodiments, the electrolysis unit comprises a steam electrolysis system.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds including ethylene (C 2 H 4 ) and (ii) carbon dioxide (CO 2 ); (b) directing the product stream from the OCM reactor into a separations system that employs a CO 2 separation unit that separates the CO 2 from the product stream to enrich the C 2+ compounds in the product stream; and (c) directing at least a portion of the CO 2 separated in (b) to the OCM reactor.
  • OCM methane
  • the product stream is directed into the separations system through one or more additional units.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising C 2+ compounds including ethylene (C 2 H 4 ) and heat; (b) using an evaporator to transfer at least a portion of the heat from the product stream to an organic working fluid in a closed fluid flow cycle as part of an organic Rankine cycle (ORC) system, to evaporate the organic working fluid, which closed fluid flow cycle includes the evaporator, a turbine, a condenser, and a pump; (c) directing the organic working fluid evaporated in (b) to the turbine to generate power; (d) directing the organic working fluid from the turbine to the condenser that condenses the organic working fluid; and (e) directing the organic working fluid condensed in
  • the organic working fluid is selected from the group consisting of hydrocarbons, silicon oils, and perfluorocarbons. In some embodiments, a boiling point of the organic working fluid is less than a boiling point of water.
  • the present disclosure provides a method for generating compounds with two or more carbon atoms (C 2+ compounds), comprising: (a) directing oxygen (O 2 ) and methane (CH 4 ) into an oxidative coupling of methane (OCM) reactor that reacts the O 2 and CH 4 in an OCM process to yield a product stream comprising (i) C 2+ compounds including ethylene (C 2 H 4 ) and heat; (b) transferring at least a portion of the heat from the product stream to a thermoelectric power generator; and (c) with the aid of the heat, using the thermoelectric power generator to generate power.
  • OCM methane
  • thermoelectric generator comprises a thin film thermoelectric module. In some embodiments, the thermoelectric generator comprises a micro thermoelectric module.
  • FIG. 1 shows a typical oxidative coupling of methane (OCM) system with advanced separation
  • FIG. 2 shows an OCM system with auto refrigeration (e.g., methane refrigeration);
  • FIG. 3 shows an exemplary OCM system with a silver complexation ethylene recovery subsystem
  • FIG. 4 shows an exemplary pressure swing adsoprtion (PSA) system
  • FIG. 5A shows a schematic of CO 2 separation methods
  • FIG. 5B shows a schematic of CO 2 separation methods
  • FIG. 5C shows a schematic of CO 2 separation methods
  • FIG. 6 shows typical CO 2 distillation system
  • FIG. 7 shows a water electrolysis sub system
  • FIG. 8 shows an OCM system with CO 2 as a quench medium
  • FIG. 9 shows an organic Rankine cycle (ORC) subsystem
  • FIG. 10 shows an exemplary typical OCM system
  • FIG. 11 shows an exemplary OCM system with a single stage PSA unit
  • FIG. 12 shows an exemplary OCM system with a multi stage PSA unit
  • FIG. 13 shows an exemplary retrofit of OCM to a cracker, with a single stage PSA unit
  • FIG. 14 shows an exemplary retrofit of OCM to a cracker, with a multi stage PSA unit
  • FIG. 15 shows exemplary configurations of ethylene to liquids (ETL) systems without PSA
  • FIG. 16 shows exemplary configurations of ETL systems with PSA
  • FIG. 17 shows an exemplary PSA unit integrated with an OCM-ETL system for a midstream application
  • FIG. 18 shows an exemplary PSA unit integrated with an OCM-ETL system in a natural gas liquids (NGL) application;
  • FIG. 19 shows an exemplary PSA unit integrated with an OCM-ETL system for a refining application
  • FIG. 20 shows an exemplary alternate scheme for a PSA unit integrated with an OCM-ETL system for a refining application.
  • high hydrocarbon generally refers to a higher molecular weight and/or higher chain hydrocarbon.
  • a higher hydrocarbon can have a higher molecular weight and/or carbon content that is higher or larger relative to starting material in a given process (e.g., OCM or ETL).
  • a higher hydrocarbon can be a higher molecular weight and/or chain hydrocarbon product that is generated in an OCM or ETL process.
  • ethylene is a higher hydrocarbon product relative to methane in an OCM process.
  • a C 3+ hydrocarbon is a higher hydrocarbon relative to ethylene in an ETL process.
  • a C 5+ hydrocarbon is a higher hydrocarbon relative to ethylene in an ETL process.
  • a higher hydrocarbon is a higher molecular weight hydrocarbon.
  • OCM process generally refers to a process that employs or substantially employs an oxidative coupling of methane (OCM) reaction.
  • An OCM reaction can include the oxidation of methane to a higher hydrocarbon and water, and involves an exothermic reaction.
  • methane can be partially oxidized and coupled to form one or more C 2+ compounds, such as ethylene.
  • an OCM reaction is 2CH 4 +O 2 ⁇ C 2 H 4 +2H 2 O.
  • An OCM reaction can yield C 2+ compounds.
  • An OCM reaction can be facilitated by a catalyst, such as a heterogeneous catalyst. Additional by-products of OCM reactions can include CO, CO 2 , H 2 , as well as hydrocarbons, such as, for example, ethane, propane, propene, butane, butene, and the like.
  • non-OCM process generally refers to a process that does not employ or substantially employ an oxidative coupling of methane reaction.
  • processes that may be non-OCM processes include non-OCM hydrocarbon processes, such as, for example, non-OCM processes employed in hydrocarbon processing in oil refineries, a natural gas liquids separations processes, steam cracking of ethane, steam cracking or naphtha, Fischer-Tropsch processes, and the like.
  • C 2+ and C 2+ compound generally refer to a compound comprising two or more carbon atoms.
  • C 2+ compounds include, without limitation, alkanes, alkenes, alkynes and aromatics containing two or more carbon atoms.
  • C 2+ compounds can include aldehydes, ketones, esters and carboxylic acids.
  • Examples of C 2+ compounds include ethane, ethene, acetylene, propane, propene, butane, and butene.
  • non-C 2+ impurities generally refers to material that does not include C 2+ compounds.
  • non-C 2+ impurities which may be found in certain OCM reaction product streams, include nitrogen (N 2 ), oxygen (O 2 ), water (H 2 O), argon (Ar), hydrogen (H 2 ) carbon monoxide (CO), carbon dioxide (CO 2 ) and methane (CH 4 ).
  • small scale generally refers to a system that generates less than or equal to about 250 kilotons per annum (KTA) of a given product, such as an olefin (e.g., ethylene).
  • KTA kilotons per annum
  • the term “world scale,” as used herein, generally refers to a system that generates greater than about 250 KTA of a given product, such as an olefin (e.g., ethylene). In some examples, a world scale olefin system generates at least about 1000, 1100, 1200, 1300, 1400, 1500, or 1600 KTA of an olefin.
  • a given product such as an olefin (e.g., ethylene).
  • a world scale olefin system generates at least about 1000, 1100, 1200, 1300, 1400, 1500, or 1600 KTA of an olefin.
  • item of value generally refers to money, credit, a good or commodity (e.g., hydrocarbon). An item of value can be traded for another item of value.
  • carbon efficiency generally refers to the ratio of the number of moles of carbon present in all process input streams (in some cases including all hydrocarbon feedstocks, such as, e.g., natural gas and ethane and fuel streams) to the number of moles of carbon present in all commercially (or industrially) usable or marketable products of the process.
  • Such products can include hydrocarbons that can be employed for various downstream uses, such as petrochemical or for use as commodity chemicals.
  • Such products can exclude CO and CO 2 .
  • the products of the process can be marketable products, such as C 2+ hydrocarbon products containing at least about 99% C 2+ hydrocarbons and all sales gas or pipeline gas products containing at least about 90% methane.
  • Process input streams can include input streams providing power for the operation of the process.
  • power for the operation of the process can be provided by heat liberated by an OCM reaction.
  • the systems or methods of the present disclosure have a carbon efficiency of at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, or at least about 90%.
  • the systems or methods of the present disclosure have a carbon efficiency of between about 50% and about 85%, between about 55% and about 80%, between about 60% and about 80%, between about 65% and about 85%, between about 65% and about 80%, or between about 70% and about 80%.
  • C 2+ selectivity generally refers to the percentage of the moles of methane that are converted into C 2+ compounds.
  • specific oxygen consumption generally refers to the mass (or weight) of oxygen consumed by a process divided by the mass of C 2+ compounds produced by the process.
  • specific CO 2 emission generally refers to the mass of CO 2 emitted from the process divided by the mass of C 2+ compounds produced by the process.
  • PSA technology can be used in a large variety of applications: Hydrogen purification, air separation, CO 2 removal, noble gases purification, methane upgrading, n-iso paraffin separation and so forth. While new applications for gas separations by adsorption are continually being developed, the most important applications have been air separation (for production of O 2 and N 2 ) and hydrogen separation (from fuel gas). Approximately 20% of O 2 and N 2 are currently produced by PSA. The increasing industrial applications for adsorption have stimulated a growing interest in research and new applications.
  • Processes of the present disclosure can employ a variety of different separations techniques, alone or in combination.
  • OCM processes can employ amine and caustic systems for CO 2 removal, molecular sieve guard beds for water removal, and cryogenic distillation or other separation techniques for recovery and purification of hydrocarbon components.
  • Cryogenic separation can refer to separations using temperature levels below 120 K or about ⁇ 153° C.
  • Other techniques include SelexolTM and RectisolTM processes for CO 2 removal.
  • OCM product effluent can comprise a mixture of hydrocarbons including but not limited to methane, ethane, ethylene, propane, propylene, butanes, butenes, and higher hydrocarbons.
  • OCM product effluent can also comprise varying amounts of other components such as H 2 , N 2 , CO, CO 2 and H 2 O.
  • the product of an OCM reaction can include ethylene.
  • the ethylene product can be polymer grade, refinery grade or chemical grade. Depending on the purity level required, different separation and/or purification techniques can be employed with the OCM process. To recover high purity ethylene, separation methods such as those discussed herein can be used to remove a wide range of components.
  • Advantages of the advanced OCM processes described herein can include reducing the cost, reducing the number of unit operations (“units”) used, and hence improving the overall process for producing high purity polymer grade ethylene. Overall conversion and carbon efficiency can also be improved. The separation methods disclosed herein can also improve the overall conversion and carbon efficiency.
  • the different separation and purification techniques discussed herein can be used to separate the OCM product effluent (e.g., process gas) into a plurality of streams, including but not limited to a first stream comprising methane, hydrogen, carbon monoxide and other lighter inerts and a second stream comprising ethane, ethylene, propylene, and higher hydrocarbons.
  • Separation systems or subsystems employed can include those discussed herein, such as a cryogenic demethanizer, a membrane separation system, or a PSA based system.
  • the separation techniques discussed herein can be employed to remove CO 2 , such as from an OCM product effluent stream.
  • One or more separations techniques can be used to remove CO 2 including but not limited to absorption, adsorption, CO 2 distillation, and membrane separation.
  • the separation technique can be non-cryogenic.
  • FIG. 1 shows a block flow diagram for an exemplary OCM process.
  • Oxygen 110 and methane 121 can be fed into an OCM reactor 101 for conversion into higher hydrocarbon compounds including ethylene.
  • the OCM product stream 111 can be directed to a compressor 102 , and the compressed product stream 112 can be fed into a separations system 103 .
  • the separations system can include pretreatment units 104 , such as impurity and CO 2 removal units, as well as separations units 105 , such as cryogenic, non-cryogenic, complexation, membrane, and other separations units.
  • the separations system can be a combination of more than one separation techniques, such as those discussed in this application.
  • the separation system can replace CO 2 removal, moisture removal, and cryogenic separation systems of existing OCM process systems.
  • the compressor system may not be required for some types of separation processes.
  • CO 2 can be vented 113
  • ethane 114 can be recovered, for example for recycling to the OCM reactor
  • ethylene product 115 can be recovered
  • C 3+ products 116 can be recovered.
  • CO 2 117 and methane 118 can be directed from the separations system into a methanation unit 106 .
  • the methanation unit can produce methane from the CO 2 , for recycling 119 back to the OCM reactor.
  • Additional methane 120 can be added to the OCM reactor supply stream 121 .
  • OCM process systems can use refrigeration subsystems to condense overhead vapors, for example from a demethanizer, a deethanizer, and/or a C 2 splitter.
  • the temperatures employed can be in the range from about 12° C. to about ⁇ 100° C. These low temperatures can be achieved through the use of multiple refrigeration systems, such as ethylene refrigeration and propylene refrigeration systems, to provide different levels of refrigeration. These can be similar to those employed in existing steam crackers.
  • an open loop methane refrigeration system can be employed to provide refrigeration for a demethanizer OCM product effluent can comprise methane as the major component, for example at a concentration of at least about 50 mol %, 60 mol %, 70 mol %, 80 mol %, or 90 mol %.
  • the demethanizer can have the lowest temperature requirements in the entire separations unit.
  • Use of methane refrigeration e.g., auto-refrigeration
  • can provide benefits such as elimination of the need for an additional refrigeration system (e.g., new) for any added capacity. For grassroots or greenfield OCM applications, this can considerably reduce refrigeration compressor sizes needed. In some cases, an entire refrigeration system can be eliminated.
  • FIG. 2 shows a block flow diagram for an exemplary open loop methane refrigeration system, such as can be used in gas processing plants and steam crackers to produce chilling for condensing overhead vapors from a demethanizer
  • the separations unit 205 can include an open loop methane refrigeration system to provide cooling for the separations.
  • the system can be combined with a single or multiple stage (e.g., two-stage) expansion system (e.g., Joule Thompson) to chill the incoming feed.
  • a single or multiple stage e.g., two-stage expansion system (e.g., Joule Thompson) to chill the incoming feed.
  • multiple separate lighter products are recovered, such as a light H 2 -rich stream, a low pressure methane rich stream, and a high pressure methane rich stream.
  • the mixed refrigerant can be, for example, a mix of methane, ethylene and propylene.
  • the mixed refrigerant can be a mix of ethane and propane.
  • a wide range of possible mixed refrigerants can be employed, and can be selected based on, for example, the availability of certain components and the degree of refrigeration required.
  • a mixed refrigerant system can provide advantages for use with an OCM reactor system, including the use of only one refrigeration sub system. Rather than two refrigeration systems each comprising multiple stages of refrigerant compressor, associated vessels, exchangers, and other components, the process can use a single refrigeration system. This can substantially reduce capital cost. This can also reduce equipment count, which can be a benefit especially for OCM retrofits at places where plot space may be a concern.
  • Pi complexation techniques can be used to separate alkenes from alkanes. Some metal ions complex selectively with unsaturated organic compounds. Some of these complexes are reversible while others are irreversible. For example, aqueous silver salt in solution forms reversible complexes with olefins, and forms irreversible complexes with acetylenes. This property can be employed in an OCM process to recover ethylene and propylene from OCM reactor effluent.
  • separation of ethylene and/or propylene by metal complexation can be divided into three major sections: absorption, purification or venting of impurities, and desorption.
  • An exemplary process is provided for separation of ethylene and/or propylene from a purified multi-component gas stream from the OCM reactor.
  • FIG. 3 shows a process for purifying a stream containing ethylene using an aqueous silver nitrate solution.
  • Metal complexation e.g., silver or cuprous ion complexation
  • OCM comprising C 2 compounds, C 3 compounds, and lighter components such as hydrogen and nitrogen.
  • the multi-component gas stream 310 can be introduced into an absorber 301 with aqueous silver salt solution, such that the ethylene and/or propylene undergo absorption or complexing with the silver metal ions, and such that trace acetylenes react with the silver metal ions.
  • Vent gas 311 can be removed from the absorber.
  • the silver salt solution stream 312 can be vented 313 in a vent column 302 at reduced pressure to remove any dissolved low molecular weight components.
  • the resulting silver salt solution stream can be treated in a stripper 303 to separate the absorbed or complexed ethylene and/or propylene from the silver salt solution, and further treated in a treatment unit 304 to release the trace acetylenes.
  • Purified ethylene 316 can be recovered, and some product can be recycled 317 .
  • the aqueous silver salt stream 318 can then be recycled to the first step, in some cases after regeneration in a regeneration unit 305 with AgMnO 4 320 .
  • MnO 2 321 can be removed from the regeneration unit.
  • H 2 O 2 319 can be added to the solvent stream being returned to the absorber.
  • Useful adsorbents include but are not limited to metal compounds, such as silver or copper, supported on high surface area carriers with a plurality of pores. These adsorbents can be used in pressure swing adsorption or temperature swing adsorption processes. When operating pressure and/or temperature is changed, the silver or copper compound can release the alkene-rich component from the adsorbent. These adsorbents can be very effective for selective adsorption of alkenes such as ethylene, propylene, and mixtures of these from gaseous mixtures.
  • the loading of the gas can be affected by its partial pressure and the temperature and the concentration of the complexing ions in the solution. Therefore, by changing the physical conditions separately or collectively, the active gaseous component can either be formed into or out of the solution. Adjusting or swinging one or more physical parameters can be used to carry out an ethylene or propylene separation using an aqueous silver nitrate solution. Purification or venting of impurities can result in a product stream that is free or substantially free of impurities including but not limited to CO 2 , sulfur compounds, acetylenes, and hydrogen. Acetylene and hydrogen can cause operational problems and so the process gas can be treated to bring the concentration of such impurities to within an acceptable limit.
  • Metal complexation can be used in combination with other processes, such as membrane based processes.
  • Membranes can be used to perform a variety of separations, such as separations of olefins and paraffins, or separations of CO 2 .
  • a membrane can be essentially a barrier that separates two phases and restricts transport of various chemicals in a selective manner.
  • Polymer membranes can be used to separate mixtures such as propylene/propane mixtures and ethylene/butene mixtures. Separations in polymeric membranes are dependent on the solubility and diffusion of the species through the membrane. While zeolite-based separations are predominantly depended on molecular size differences, the differing permeation of olefins through a polymeric membrane can be largely attributed to differences in solubility, which can depend on the critical temperature and the kinetic diameter. Membrane separations can be employed even when there are small molecular size differences.
  • the OCM process can utilize a membrane based separation process to further enhance the efficiency and energy consumption of the process.
  • Cryogenic distillation can be used for the separation of alkenes, but is highly energy intensive.
  • Membrane based separations can be used for a variety of purposes in the context of an OCM process, such as to separate and purify ethylene product from OCM reactor effluent, to separate a stream rich in CO 2 , to separate a stream containing lighter hydrocarbons and inerts, or to separate C 2 compounds from C 1 and lighter compounds.
  • Membranes can include but are not limited to isotropic membranes, anisotropic membranes, and electrically charged membranes.
  • a membrane can be a ceramic membrane, a metal membrane, or a liquid membrane.
  • An isotropic membrane can be a microporous membrane or a non-porous dense membrane.
  • Membranes can be used for separations including but not limited to CO 2 separation, paraffin-olefin separation, or selective recovery of pure ethylene from the OCM reactor effluent.
  • Polymer derived carbon molecular sieve membranes can be used to separate paraffins from olefins. These membranes can be used, for example, to separate ethylene from a mix of methane and ethane.
  • Membrane separations can be used in combination with other types of separation and purification subsystems to remove other impurities such as acid gases, hydrogen, and nitrogen.
  • a driving force can be a pressure differential or a concentration (activity) gradient across the membrane.
  • Membrane based separation techniques can be used in an OCM process by applying either of the above mentioned driving forces.
  • a membrane based separation can also be a component of a hybrid separation set-up, such as a membrane and an absorption system (e.g., a membrane contactor) or a membrane in a pressure swing adsorption (PSA) or a temperature swing adsorption (TSA) system.
  • a membrane and an absorption system e.g., a membrane contactor
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • An OCM reactor can employ membranes as a part of the reactor system to effectively separate the ethylene product within the reactor system itself.
  • a section of the reactor can include membranes that aid in recovering the ethylene product, with a methane rich stream being recycled to a methanation system and eventually to the OCM reactor.
  • Such a system can also use advanced heat recovery or quench methods so as to facilitate the use of membranes.
  • PSA Pressure Swing Adsorption
  • Cryogenic separation can be used for the recovery of ethylene, propylene, and other components from olefin plants, refinery gas streams, and other sources. These separations can be difficult to accomplish because of the close relative volatilities, and can have significant temperature and pressure requirements for operation.
  • the ethane/ethylene distillation can be performed at about ⁇ 25° C. and 320 pounds per square inch gauge (psig) in a column containing over 100 trays.
  • Distillation of propane and propylene can be performed at about ⁇ 30° C. and 30 psig. These can be some of the most energy intensive distillations in the chemical and petrochemical industry. In general, the use of distillation towers to separate recover and purify components is an energy intensive process.
  • the present disclosure provides the use of adsorbents that can achieve separation and purification of olefin rich streams.
  • the present disclosure applies the use of PSA-based adsorbent systems to separate, purify, and recover olefins like ethylene and propylene from streams containing one or more impurities such as methane, hydrogen, carbon monoxide, carbon dioxide, ethane, or others.
  • the streams, or parts of the streams can be generated via an OCM process, an ETL process, or combinations thereof.
  • the streams can be final product streams where PSA is used to recover and purify the final product.
  • the streams can be intermediate streams which are purified prior to use as a feed in a subsequent process, such as an ETL process, an ethylene cracker (steam cracker), a refining unit, a fuel gas system, a natural gas recovery plant or any other product fractionation or product treatment unit.
  • a subsequent process such as an ETL process, an ethylene cracker (steam cracker), a refining unit, a fuel gas system, a natural gas recovery plant or any other product fractionation or product treatment unit.
  • PSA Pressure Swing Adsorption
  • a pressure swing adsorption (PSA) process cycle is one in which desorption takes place at a different (e.g., lower) pressure than the adsorption pressure. Reduction of pressure can be used to shift the adsorption equilibrium and affect regeneration of the adsorbent. Low pressure may not be as effective as temperature elevation in totally reversing adsorption, unless very high feed to purge pressure ratios are applied. Therefore, most PSA cycles are characterized by high residual loadings and thus low operating loadings. These low capacities at high concentration require that cycle times be short for reasonably sized beds (e.g., seconds to minutes). These short cycle times are attainable because particles of adsorbent respond quickly to changes in pressure.
  • Major uses for PSA processes include purification as well as applications where contaminants are present at high concentrations.
  • the PSA system can comprise two fixed bed adsorbers 401 and 402 undergoing a cyclic operation of four steps—adsorption, blowdown, purge, and pressurization.
  • the PSA system can receive a feed 410 and produce a product stream 411 , with a PSA off gas stream 412 .
  • additional operation steps can be employed such as pressure equalization, product pressurization, and co-current depressurization.
  • the number of beds can be modified to achieve the optimal operation and multi-bed processes can be used in commercial applications like hydrogen recovery.
  • a TSA system can be used where a swing in temperature causes the sorption and desorption.
  • PSA cycles are used primarily for purification of wet gases and of hydrogen.
  • High pressure hydrogen employed in processes such as hydrogenation, hydrocracking, and ammonia and methanol production can be produced by PSA beds compounded of activated carbon, zeolites and carbon molecular sieves.
  • Other exemplary applications include: air separation, methane enrichment, iso/normal separations, and recovery of CO and CO 2 .
  • Adsorbents can be natural or synthetic materials, such as those having amorphous or microcrystalline structure.
  • exemplary adsorbents useful for large scale operation include but are not limited to activated carbon, molecular sieves, silica gels, and activated alumina.
  • Other useful adsorbents include pi complexation sorbents, silver and copper complexation adsorbents, zeolites, synthetic zeolites, mesoporous materials, activated carbons, high surface area coordination polymers, molecular sieves, carbon molecular sieves (CMS), silica gels, MCM, activated alumina, carbon nanotubes, pillared clays, and polymeric resins.
  • adsorbents For systems where the incoming stream is a multi-component mixture of gases and the number of compounds to be separated cannot be removed by a single adsorbent, different layers of adsorbents can be used.
  • hydrogen purification from a methane stream in a reforming operation where H 2 is contaminated with H 2 O, CO 2 , CO, and unconverted CH 4 , can employ activated carbon to remove H 2 O and CO 2 in combination with additional layers of different adsorbents used to increase the loading of CO.
  • Zeolites, molecular sieves, and carbon molecular sieves can be used for most industrial separations employing PSA.
  • Inorganic materials, like special kinds of titanosilicates, can be used for kinetic separations.
  • exemplary types of adsorbents include zeolites/molecular sieves and pi complexation sorbents.
  • Zeolites/molecular sieves can be used for kinetic separation, such as separation based on higher diffusivity of olefins over that of paraffins.
  • 4 A zeolite is one such example.
  • Pi complexation sorbents such as AgNO 3 /SiO 2 , can give excellent results as compared to 4 A zeolite.
  • PSA units as discussed herein can employ a range of different sorbents, including but not limited to a zeolite/molecular sieve sorbent, a pi complexation based sorbent, a carbon molecular sieve sorbent or any other form of activated carbon, carbon nanotubes, polymeric resin based sorbents, or other sorbents.
  • sorbents including but not limited to a zeolite/molecular sieve sorbent, a pi complexation based sorbent, a carbon molecular sieve sorbent or any other form of activated carbon, carbon nanotubes, polymeric resin based sorbents, or other sorbents.
  • Adsorbents can be selected based on a number of different criteria.
  • Adsorbent selection criteria can include capacity for the target components (e.g., affinity for the desired components to be separated from the multi-component feed stream), selectivity between components competing for same adsorption sites, regenerability of the adsorbent, (e.g., the ability of the adsorbent to release the adsorbed target components at a reasonable pressure rate of gas diffusion into the adsorbent—this can also affect the size of the bead that is chosen and consequently the pressure drop across the bed; an insufficient diffusion rate can require smaller diameter beads that can result in higher pressure drop and hence increased operating costs), and chemical compatibility (e.g., selecting an adsorbent resistant to chemical attack that may poison or destroy the adsorbent, such as liquid hydrocarbons causing physical breakdown of the adsorbent resulting in loss of efficiency and back pressure).
  • FIG. 5A , FIG. 5B , and FIG. 5C show exemplary schematics of different separation methods available to separate CO 2 from a process gas or a flue gas.
  • OCM processes can utilize an amine based absorption system for CO 2 removal, which can be followed by use of a caustic scrubber to obtain high degree of separation.
  • the amine system is prone to corrosion, solvent degradation, and above all, has high energy requirements.
  • Separations with sorbents and/or solvents can involve placing the CO 2 containing gas in intimate contact with a liquid absorbent or a solid sorbent that is capable of capturing the CO 2 .
  • a stream with CO 2 510 can be directed into a capture vessel 501 , where it contacts sorbent which captures CO 2 from the stream.
  • the stream, with reduced or removed CO 2 can then exit 511 the vessel.
  • Sorbent 512 loaded with captured CO 2 can be transferred to a sorbent regeneration vessel 502 where it releases the CO 2 after being heated (e.g., with the use of energy 513 ), after a pressure decrease, or after any other change in the conditions around the sorbent, thereby regenerating the sorbent.
  • Spent sorbent 515 and CO 2 516 can be removed from the vessel, and make up sorbent 513 can be added.
  • the sorbent can be sent back to capture more CO 2 in a cyclic process.
  • the sorbent can be a solid.
  • Solid sorbent can remain in a single vessel rather than being cycled between vessels; sorption and regeneration can be achieved by cyclic changes (e.g., in pressure or temperature) in the vessel where the sorbent is contained. A make-up flow of fresh sorbent can be used to compensate for natural loss of activity and/or sorbent losses.
  • Amine scrubbing technology can be used to remove acid gases from process gases.
  • Primary amines e.g., MEA, DGA
  • secondary amines e.g., DEA, DIPA
  • tertiary e.g., MDEA, TEA
  • sterically hindered amines chilled ammonia, potassium carbonate, and other compounds
  • Traditional amine based systems can be characterized by high energy requirements and solvent degradation.
  • Improved solvents which can require less energy for regeneration of the solution, include the Benfield process and two stage diethanolamine.
  • Combination with an OCM process can reduce the energy consumption of amine scrubbing processes.
  • Improved solvents can reduce the energy requirements by as much as 40% compared to the traditional MEA solvents. This has the potential of reducing the energy, and hence steam, consumption of the OCM process, thereby increasing the amount of steam available for export from the OCM, or making alternative waste heat recovery methods feasible.
  • Physical absorption solvents used can include but are not limited to glycol dimethylethers (e.g., Selexol) and propylene carbonate (e.g., IPTS/EC). Regeneration of the solution can be performed by vacuum flashing and air stripping; this approach can consume significantly less energy than in chemical absorption. In using physical solvents CO 2 can be released mainly by depressurization, thereby avoiding the high heat of consumption of amine scrubbing processes.
  • glycol dimethylethers e.g., Selexol
  • IPTS/EC propylene carbonate
  • Mixed or hybrid solvents can include but are not limited to SulfinolTM (sulfolane, water, and amine), such as Sulfinol-M and Sulfinol-X.
  • SulfinolTM sulfolane, water, and amine
  • Solid adsorbents such as zeolites and activated carbon, can be used to separate CO 2 from gas mixtures.
  • PSA pressure swing adsorption
  • a gas mixture can flow through a packed bed of adsorbent at elevated pressure until the concentration of the desired gas approaches equilibrium. The bed can be regenerated by reducing the pressure.
  • TSA temperature swing adsorption
  • the adsorbent can be regenerated by raising its temperature.
  • adsorption is not yet considered attractive for large scale separation of CO 2 because the capacity and CO 2 selectivity of available adsorbents are low.
  • an adsorbent based separation method can be used to separate bulk CO 2 followed by consuming the remaining CO 2 in a methanation reactor system, or by using a caustic scrubber to treat the remaining CO 2 .
  • FIG. 5B shows an exemplary schematic of separation of CO 2 from a gas stream 530 in a separation vessel 520 using a membrane 521 .
  • CO 2 can be removed from the stream via the membrane, and CO 2 and other gases can exit the vessel in separate streams 531 and 532 .
  • the main limitation of currently existing membranes is the occurrence of severe plasticization of the membrane in the presence of high pressure CO 2 . Due to excessive swelling of the polymer membrane upon exposure to CO 2 , the performance (e.g., selectivity) can decrease significantly, thus reducing the purity of the CO 2 and consequently reducing the possibilities for reuse of the gas.
  • membrane technology can use 70-75 kWh per ton of recovered CO 2 compared to significantly higher values for pressure swing adsorption (e.g., 160-180 kWh), cryogenic distillation (e.g., 600-800 kWh), or amine absorption (e.g., 330-340 kWh), making membrane technology an attractive option for integration with OCM for CO 2 separation.
  • pressure swing adsorption e.g. 160-180 kWh
  • cryogenic distillation e.g., 600-800 kWh
  • amine absorption e.g., 330-340 kWh
  • Micro-porous hollow fiber membranes can be used for CO 2 separation using amine-based chemical absorption processes.
  • Micro-porous membranes can be used in a gas-liquid unit where the amine solution is contacted with CO 2 containing gas. Using the membrane can lead to a reduction in the physical size and weight of the gas-liquid contacting unit. The separation is based on reversible chemical reaction, and mass transfer occurs by diffusion of the gas through the gas/liquid interface as in traditional contacting columns.
  • Such a hybrid membrane contactor can provide a high contact area between gas and liquid, reduce or essentially eliminate foaming and flooding problems, and give better operational flexibility while reducing solvent degradation problems.
  • a membrane contactor can combine the advantages of membrane technology and solvent absorption for CO 2 separation.
  • a membrane contactor is a combination of advanced membrane techniques with an effective absorption process.
  • a membrane contactor is a hybrid mass exchanger where a porous membrane separates two phases. The selective sorbent performs the separation while the membrane facilitates the mass exchange process by expanding the phase contact surface area. The modified surface properties can improve the selectivity of the process by selectively inhibiting the transport of one of the mixture constituents.
  • membranes can allow for up to five times increase in yield per unit volume. Since the sorptive liquid flows within capillaries and both phases are not directly contacting each other, membrane absorbers can operate in any spatial configuration (horizontal or vertical) and at any flux rations between both phases.
  • Membranes used can be micromembranes or ultrafiltration membranes made a variety of different polymer and ceramic materials.
  • Polypropylene fiber membranes can be used to separate CO 2 from CH 4 , for example by using amines like MEA as absorption liquid.
  • Hollow fiber membranes, such as porous polypropylene, perfluoroalkoxy (PFS), and asymmetric poly(phenylene oxide) hollow fiber membranes with a dense ultrathin skin at the outside of the membrane can also be used.
  • absorption liquids such as aqueous sarcosine salt solutions, for example in a gas-liquid membrane contactor system.
  • a membrane contactor can be used to separate the CO 2 from the OCM effluent in which CH 4 is the major component.
  • Membrane contactors can also be used for separation of olefins and paraffins, and the separation of CO 2 from light gases.
  • An activator such as piperazine, diethanolamine, and arsenic trioxide, can be used to further enhance the effectiveness of CO 2 capture.
  • DGA and tertiary amines may provide more improvement than primary or secondary amines.
  • Gas selective poly ionic liquid membranes which are polymerized room temperature ionic liquids (RTIL), can be used to be highly selectively separate CO 2 .
  • RTILs can be synthesized as a monomer and subsequently polymerized to obtain gas selective membranes.
  • the ionic nature of the polymers can result in tight arrangements between the oppositely charged ionic domains in the poly RTIL, which can eventually prevent the membrane from excessive swelling and deterioration of its performance at increased pressure and/or temperature.
  • This intrinsic property of poly RTIL can be used to increase the resistance against plasticization and to restrict strong swelling of the polymer membrane to maintain its permeation properties in the presence of a strong plasticizing agent such as CO 2 at higher pressures.
  • an imidazolium-based poly RTIL can be used as base material and the length of the alkyl chain can serves to strengthen or weaken the ionic interactions within the poly RTIL.
  • Ionic liquids are molten salts with a very low melting point (many are liquids at room temperature). Many ionic liquids show a high solubility for carbon dioxide and hence can be highly suitable for use with an OCM process.
  • ionic liquids can include but are not limited to imidazolium, pyrollidinium, pyridinium, cuanidinium, phosphonium, morpholinium, piperidinium, sulfonium, ammonium, hexafluorophosphate, tetraflouroborate, alkylsulphate, triflate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and combinations thereof.
  • Specific advantages of ionic liquids include very low to negligible vapor pressure, good dissolution characteristics for many substances, and lack of flammability or toxicity. Ionic liquids can have good thermal, mechanical and chemical stability as well as favorable densities and viscosities.
  • Ionic liquids can be used as chemical solvents, catalysts, electrolytes in fuel cells as well as for gas-separation and storage by absorption.
  • Ionic liquid membrane systems can comprise an adequate porous support material, e.g. a polymer film, coated by ionic liquids. The system separated CO 2 and sulfur compounds from different gas mixtures. Competitive selectivity and permeability are obtained for the separations.
  • Novel membrane materials such as polyetherimides, can be used as membrane material with improved plasticization resistance for CO 2 removal, for example with an OCM process.
  • Other membrane materials that can be used include polymeric membranes based on polyamides, polysemicarbazides, polycarbonates, polyarylates, polyaniline, poly(phenylen oxide), polysulfones, and polypyrrolones.
  • the polymeric membrane is solvent resistant and can reduce the plasticization effects of hydrocarbons in the feed stream, e.g., polyketone, polyether ketone, polyarylene ether ketone, polyimide, polyetherimide, and polyphenylene sulphide, which have intrinsic solvent inertness and can therefore withstand organic rich operation conditions.
  • An adequate porous support material e.g. a polymer film, coated by ionic liquids can be used in continuous separation of CO 2 and sulfur compounds from different gas mixtures, including a methane rich stream. This separation can improve the efficiency of OCM processes.
  • the OCM reactor effluent can enter the supported ionic liquid separation subsystem, and CO 2 and other contaminants can be removed from the process gas.
  • Other contaminants can include but are not limited to traces of sulfur compounds, inerts, CO, SO 2 , H 2 S, and tetrahydrothiophene (THT).
  • CO 2 can be separated from other gases by cooling and condensation, for example as shown in FIG. 5C .
  • a stream containing CO 2 550 can be compressed in a compressor 540 , and the compressed stream 551 can be directed to a distillation column 541 .
  • Some components can be recovered from the overhead stream 552 , with heat recovered in a heat exchanger 542 .
  • Other components can be recovered from the bottoms 555 .
  • Cryogenic separation is widely used commercially for streams that already have a high concentration of CO 2 (typically greater than 90%).
  • Cryogenic separation of CO 2 has the advantage that it enables direct production of high purity liquid CO 2 that can be used as a feedstock to convert the carbon to higher value hydrocarbons, or otherwise be captured. The amount of energy required can be high, and water may need to be removed before the feed gas is cooled.
  • Low temperature distillation can give better results when there is a high concentration of CO 2 in the feed gas.
  • the CO 2 concentration can be increased by, for example, having a recycle stream, or by using a modified OCM reactor where excess CO 2 is used as a quench medium for the reaction heat.
  • Low temperature separation can refer to separations using temperature levels above ⁇ 90° C.
  • FIG. 6 shows a schematic of CO 2 separation using distillation.
  • OCM reactor effluent 606 can be fed to a treatment unit 601 , such as a molecular sieve dryer, a sulfur removal bed, or an acetylene removal bed.
  • the treated gas is fed to the first distillation column 602 that separates the bulk of the methane from the CO 2 and other heavier hydrocarbons.
  • the bottom stream 608 may contain 50%, 60%, 70%, 80%, 90% (or anywhere in between) of the incoming CO 2 .
  • the overhead from 607 contains majority of the methane and other light gases and is fed to the column 603 .
  • Column 603 further recovers methane rich gas 611 , which can be the feed to a methanation system.
  • the bottoms product 616 may be recycled or sent as a purge to the fuel gas system.
  • the CO 2 rich gas 608 is distilled in the CO 2 column 604 to recover pure CO 2 609 in the overhead.
  • the bottoms product 610 can contain some methane along with ethane, ethylene, and other heavier hydrocarbons, and can be sent to recover the ethylene product in a separator 605 .
  • the CO 2 product can be sent to methanation unit, and a part of the CO 2 can be recycled to achieve the desired concentration of CO 2 in the feed stream 606 .
  • Such a CO 2 distillation sub system can offer many benefits, including but not limited to reducing the loop size of the OCM process considerably, as the function of the existing cryogenic demethanizer can be reduced by a large extent. Additionally, amine and caustic systems can be replaced by cryogenic or low temperature distillation systems.
  • Alkaline salt-based processes can be used for carbon dioxide removal. These processes can utilize the alkali salts of various weak acids, such as sodium carbonate and potassium carbonate. These processes can provide advantages such as low cost and minimal solvent degradation. Processes that can be used for H 2 S and CO 2 absorption include those using aqueous solutions of sodium or potassium compounds. For example, potassium carbonate can absorb CO 2 at high temperatures, an advantage over amine-based solvents.
  • Hot potassium carbonate (K 2 CO 3 ) solutions can be used for the removal of CO 2 from high-pressure gas streams, among other applications.
  • Potassium carbonate has a low rate of reaction.
  • mass transfer promoters such as piperazine, diethanolamine, and arsenic trioxide can be used.
  • Less toxic promoters such as borate can also be used, for example with flue gas streams (see, e.g., Ghosh et al., “Absorption of carbon dioxide into aqueous potassium carbonate promoted by boric acid”, Energy Procedia, pages 1075-1081, February 2009, which is hereby incorporated by reference in its entirety).
  • inhibitors can be added. These systems can be known as activated hot potassium carbonate systems.
  • Licensed hot activated potassium carbonate systems include the BenfieldTM and the CatacarbTM process. The processes can be used for bulk CO 2 removal from high-pressure streams, but can also produce high-purity CO 2 .
  • Flue gas impurities such as SOx and NOx can reduce the operational efficiency of the potassium carbonate as a solvent. SO 2 and NO 2 may not able to be released from the solvent under industrial conditions. Selective precipitation of the impurity salts formed by SOx and NOx can be used to remove such compounds (see, e.g., Smith et al., “Recent developments in solvent absorption technologies at the CO2CRC in Australia” Energy Procedia, pages 1549-1555, February 2009, which is hereby incorporated by reference in its entirety).
  • CO 2 sorbents through chemical reactions and physical absorptions, including but not limited to soda-lime, active carbon, zeolites, molecular sieves, alkali metal oxides, silver oxide, lithium oxide, lithium silicate, carbonates, silica gel, alumina, amine solid sorbents, metal organic frameworks and others.
  • CO 2 -reactive polymers such as tetraethylene pentamine or polyethyleneimine
  • a porous support such as alumina, pumice, clay or activated carbon
  • Amine based sorbents can be easily regenerated.
  • a mixture of an amine compound with a polyol compound can be impregnated in a porous support.
  • the polyol compound can be used to increase the CO 2 desorption rate of the amine.
  • the supported amine-polyol sorbent can comprise from about 1 wt % to about 25 wt % amine and from about 1 wt % to about 25 wt % polyol, with the balance being the support.
  • Solid sorbent can adsorb and desorb CO 2 a relatively high rates at ambient temperatures Enhanced CO 2 cyclic removal capacities in either dry or humid air flows can further be achieved by using a solid sorbent at an increased amine concentration of amines from about 35 wt % to about 75 wt %.
  • Solid sorbents that can selectively remove multiple gases can be used to remove CO 2 , H 2 O, nitrogen oxides, and hydrocarbons. This can be achieved by using composite adsorbents, for example by using a mixed adsorbent of alumina and zeolite to remove CO 2 and H 2 O simultaneously.
  • CO 2 can be separated from flue gas using an ion pump method instead of relying on large temperature and pressure changes to remove CO 2 from a solvent.
  • Ion pump methods can dramatically increase the overlying vapor pressure of CO 2 .
  • the CO 2 can be removed from the downstream side of the ion pump as a pure gas.
  • the ion pumping can be obtained from techniques including but not limited to reverse osmosis, electro dialysis, thermal desalination methods, or an ion pump system having an oscillation flow in synchronization with an induced electric field.
  • Synthetic analogues of enzymes as a polymer thin film supported on micro-porous substrates can be used to separate CO 2 from gas mixtures.
  • a polymer thin film containing carbonic anhydrase mimicking sites can supported on a porous substrate and can separate CO 2 from a stream containing O 2 and N 2 .
  • the system can be, for example, about 30% lower in cost compared to amine-based systems.
  • Electrolysis can be used to produce industrial hydrogen.
  • OCM processes can have a lot of synergistic benefit from deploying a water electrolysis subsystem with the OCM process.
  • the water electrolysis unit can replace an air separation unit (ASU) to supply the oxygen required for the OCM process.
  • ASU air separation unit
  • the products from the electrolytic unit can be consumed within the OCM process: oxygen can be consumed within the OCM reactor and hydrogen can be used in a methanation reactor.
  • Availability of more hydrogen in the methanation unit has the potential to increase the carbon efficiency to about 100%, by converting the CO 2 produced in the OCM reaction to methane, which can be recycled back to the OCM reactor.
  • the OCM unit can be a net exporter of high purity excess hydrogen, after consuming the entirety of the CO 2 produced in the OCM Process.
  • the water electrolysis subsystem can be an electrolytic cell employing alkaline water electrolysis, a proton exchange membrane electrolysis system, or a steam electrolysis system.
  • the electricity source to the electrolytic sub system can be renewable, such as photo voltaic/solar power, which can make the entire system 100% carbon efficient with a zero carbon footprint.
  • a storage system for oxygen, or a backup power supply, may be used to ensure the continuous supply of oxygen and hydrogen.
  • FIG. 7 depicts an exemplary electrolysis subsystem combined with an OCM system.
  • the electrolysis subsystem 701 can take water 710 and electric power 711 as inputs and generate pure oxygen 712 and hydrogen 713 as products.
  • the oxygen can be fed into an OCM reactor 702 with a methane feed 714 , for conversion to higher hydrocarbon products including ethylene.
  • the OCM product stream can be compressed in a compressor 704 and separated in a separations unit 705 .
  • Higher hydrocarbon products 716 can be recovered from the separations unit, and other compounds such as methane and CO 2 can be recycled 717 and/or purged 718 .
  • the recycle stream can be directed to a methanation unit 703 , which can generate methane 715 using the hydrogen from the electrolysis subsystem.
  • the extra hydrogen that is now available to the methanation unit can enable the conversion of most or all of the CO 2 produced in the OCM process to methane, which can drive the process to a higher efficiency.
  • the process can also be almost 100% emission free.
  • the CO 2 produced in the process that may be discarded as waste may be converted to methane and hence to ethylene in the OCM reactor.
  • FIG. 8 shows an exemplary system where CO 2 814 is removed from an OCM product stream 812 (generated in an OCM unit 801 from an oxygen stream 810 and a methane stream 811 ) in a CO 2 separation unit 802 and recycled from back to the OCM reactor 801 .
  • a waste gas or purge stream 815 can also be removed from the CO 2 separation unit.
  • the OCM product stream 813 can then be separated in a separations unit 803 into a product stream 816 comprising ethylene and a purge and/or recycle stream 817 . Separation methods can include low temperature separation, membrane separation, or other separation methods discussed herein.
  • the OCM loop can be decreased to just a CO 2 recycle stream.
  • the system can also comprise a methanation unit (not shown).
  • Waste heat from the OCM process can be used to generate superheated high pressure steam that can be used in the process, exported to other users on site, or can be used to generate power. Excess process heat can also be used to preheat the feed streams. Other uses for excess heat can be less capital intensive, and offer a greater operational flexibility and low maintenance. Thermoelectric energy conversion can be used to convert waste heat to power.
  • Example uses for waste heat include single fluid rankine cycles (e.g., steam cycle, hydrocarbons, and ammonia), binary/mixed fluid cycles (e.g., ammonia/water or mixed hydrocarbon cycle).
  • the organic Rankine cycle can be used to generate power from heat.
  • ORC organic Rankine cycle
  • an organic component is used instead of water.
  • the organic compound can be a refrigerant, a hydrocarbon (e.g., butane, pentane, hexane), silicon oil, or a perfluorocarbon.
  • the boiling point of the organic fluid can be lower than that of water, which can allow recovering heat at a lower temperature than in the traditional steam Rankine cycle.
  • the ORC system can be deployed as a waste heat recovery method for use with OCM. Waste heat at relatively low temperature can be recovered by an intermediate heat transfer loop and used to evaporate the working fluid of the ORC.
  • FIG. 9 shows an exemplary OCM system with an ORC subsystem.
  • the working fluid can be chosen which can be condensed with cooling water or air at normal atmospheric pressure.
  • FIG. 9 shows the heat source as the OCM reaction heat from an OCM unit 901 .
  • Heat can be recovered from the OCM product stream 910 in an evaporator 902 , and the product stream 911 can then be directed for downstream processing from the OCM unit.
  • the heat recovered in the evaporator can be used to evaporate a working fluid stream 912 , which can then be directed to a turbine 903 to generate power in a generator 904 .
  • the working fluid 913 can be directed to a condenser 905 and cooled using a cooling medium 914 .
  • the cooled working fluid 915 can then be pumped by a pump 906 in a stream 916 back to the evaporator.
  • the OCM process can make use of a heat exchanger with thermoelectric (TE) generators for heat recovery.
  • TE thermoelectric
  • a Thermoelectric Power Generator (TPG) can have four basic components: Heat source, P and N type semiconductor stack (or a TE module), heat sink (cold side), and an electrical load (output voltage).
  • the TE module can include two or more of P-type and N-type semiconductor pellets connected in series or parallel depending on the served load.
  • the TE devices can be solid state engines that do not require any working fluid.
  • Thermoelectric materials can provide efficiencies of up to 15% or greater.
  • Thermoelectric generators coupled with heat exchangers can produce electricity even at temperatures as low as 350 K with low maintenance.
  • TE modules can be used with OCM including large bulk TE modules and thin film or micro TE modules.
  • micro TE modules can be used for high temperatures. Micro TE modules can also have low equipment weights. TE devices can be very reliable, scalable, and modular. Some TE modules can give best results at small scales.
  • the OCM process can generate medium level waste heat that is highly suitable for a TE device to generate power.
  • PSA technology can be applied to processes including those involving a hydrocarbon stream containing a mix of the following hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, propane, propylene, butanes, butenes and/or other higher hydrocarbons needing to be purified or separated into desirable products (e.g., ethylene, methane, hydrogen, or propylene).
  • Hydrocarbon streams can be produced via traditional refining and petrochemical processes. Hydrocarbon streams can be produced from OCM or ETL reactor systems.
  • the present disclosure provides the use of PSA in processes and systems for oxidative coupling of methane (OCM) and ethylene-to-liquids (ETL) operations, and the application of adsorbent based processes used in conjunction with OCM and ETL processes to generate significant process improvements and enhance the economic value of the processes.
  • OCM systems are described in, for example, U.S. patent application Ser. No. 14/592,668, which is entirely incorporated herein by reference.
  • ETL systems are described in, for example, U.S. patent application Ser. No. 14/591,850, which is entirely incorporated herein by reference.
  • An OCM system can include an OCM or OCM-post-bed-cracking (PBC) reactor 1002 , a process gas compression system 1003 , a process gas treatment system 1004 , a cryogenic separations system, and a methanation system 1001 .
  • the feed to the OCM system can be an oxygen feed 1012 and a methane source feed 1011 (such as a natural gas feed stream or other methane source).
  • a methane source feed 1011 such as a natural gas feed stream or other methane source.
  • additional ethane feed can be supplied to the PBC section of the OCM reactor, where paraffins such as ethane in the OCM product stream and/or additional ethane can be cracked to olefins such as ethylene.
  • the separations sub-system can comprise a series of fractionation towers, like a demethanizer 1005 , deethanizer 1006 , C 2 splitter 1007 , depropanizer 1008 , debutanizer, and others.
  • Overhead 1013 from the demethanizer can be directed into the methanation system along with hydrogen or natural gas 1010 to produce additional methane.
  • the bottoms stream 1014 from the demethanizer can be directed to the deethanizer.
  • the overhead stream 1015 from the deethanizer can be directed to the C 2 splitter, and there split into ethylene 1016 and ethane 1017 streams.
  • the bottoms stream 1018 from the deethanizer can be directed to the depropanizer, and there split into a C 3 product stream 1019 and a C 4+ product stream 1020 .
  • the cryogenic separations system can comprise additional ethylene and propylene refrigeration sub-systems to provide for the chilling requirements of the system.
  • the separations section of the OCM system can be eliminated, or partially eliminated, by utilizing an advanced separations method as discussed in this application.
  • the advanced separation method can be a PSA unit or a membrane based method, or a cryogenic system.
  • FIG. 11 shows an exemplary schematic of OCM with a PSA unit.
  • the PSA unit can separate methane, CO 2 , CO, and/or H 2 from ethane, ethylene, propane, propylene, and/or higher hydrocarbons.
  • Methane 1111 and oxygen 1112 can be directed into an OCM reactor 1102 and reacted to produce higher hydrocarbon products including ethylene.
  • the OCM product can be compressed in a process gas compression system 1103 , treated in a process gas treatment system 1104 , and separated in the PSA 1105 into a product stream 1113 and a recycle stream 1114 .
  • the recycle stream can be directed to a methanation unit 1101 , which can also receive a natural gas stream 1110 and produce methane for the OCM reactor.
  • the extent of separation and degree of recovery can depend on the type of adsorbent(s), pressure differential, and number of PSA stages employed.
  • the feed to the PSA unit can have one or more of the following components: H 2 , N 2 , O 2 , CO, CO 2 , CH 4 , ethane, ethylene, acetylene, propane, propylene, butanes, butenes, butadiene, water, and higher paraffinic and olefinic components.
  • the PSA product gas can comprise components including but not limited to: H 2 , N 2 , CO, CO 2 , CH 4 , O 2 , ethane, ethylene and acetylene.
  • PSA product gas can comprise components from 0% to 99.99% recovery.
  • the PSA tail gas can comprise 99.99%, 90%, 80%, 70%, 60%, 50% ethylene.
  • the PSA tail gas can comprise at least 99.99%, 90%, 80%, 70%, 60%, 50% ethylene.
  • the PSA tail gas can comprise about 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 0% ethane.
  • the PSA tail gas can comprise at least about 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 0% ethane.
  • the PSA tail gas can comprise about 60%, 50%, 40%, 30%, 20%, 10%, 0% methane, hydrogen, acetylene, N 2 , O 2 , H 2 O or CO 2 .
  • the PSA tail gas can comprise at least about 60%, 50%, 40%, 30%, 20%, 10%, 0% methane, hydrogen, acetylene, N 2 , O 2 , H 2 O or CO 2 . Based on the process configuration, including the type of adsorbents employed, pressure differential and the operation, various different recoveries are possible.
  • the PSA unit can comprise one or more adsorbent materials that can be suitable to achieve the component recoveries.
  • the sorbent can be a zeolite/molecular sieve based material, a carbon based sorbent, or a ⁇ -complexation sorbent.
  • the sorbent material can be a polymeric resin, carbon nanotubes, and carbon fibers.
  • the PSA unit can be configured to have layers of different sorbents so as to result in high recoveries from the multi-component feed streams to the desired products.
  • the PSA can be a multi stage unit (see, e.g., FIG. 12 ).
  • an OCM reactor 1202 can receive a methane stream 1211 and an oxygen stream 1212 , and react the methane and oxygen to produce higher hydrocarbon products including ethylene in an OCM product stream.
  • the OCM product stream can be compressed in a first compressor 1203 and directed to a first PSA separation 1204 .
  • the tail gas 1214 from the first PSA can be compressed in a second compressor 1205 and fed to a second PSA separation 1206 , the tail gas 1216 from which can be compressed in a third compressor 1207 and separated in a third PSA separation 1208 .
  • the tail gas from the third PSA can be the final purified stream 1217 containing ethylene up to 99.9% purity.
  • PSA product streams 1213 , 1215 , and 1218 can be directed to recycle, such as via a methanation unit 1201 along with a natural gas stream 1210 .
  • Each PSA stage can be a dual-bed PSA or a multi-bed PSA system.
  • the process requirements can dictate that only a limited amount of recovery is required in the PSA unit and subsequent recovery and purification is performed in a fractionation column or the gas is a feed for a downstream process unit.
  • the downstream process unit can be an ETL system, an ethylene steam cracker system, a gas processing plant, NGL extraction plant, a refinery off-gas separations system, or other process unit.
  • OCM can be employed to convert a feedstock comprising methane to ethylene and other olefins.
  • ethylene has been produced via steam cracking of gaseous or liquid hydrocarbon feedstocks like ethane, propane, LPG, or naphtha.
  • a steam cracking operation can involve a cryogenic fractionation or a separations section that consists of a series of fractionation columns to successively recover various components at high product purity.
  • the present disclosure includes the application of PSA processes to an OCM retrofit of an existing ethylene cracker (e.g., steam cracker).
  • an existing ethylene cracker e.g., steam cracker
  • An example application for OCM combined with a PSA unit involves an existing petrochemical plant such as a steam cracker is considering low cost ways to add ethylene capacity.
  • a typical revamp to add capacity could include addition of, or debottlenecking of, the existing fractionation towers for the entire flow addition for the revamp.
  • FIG. 13 the use of a PSA unit as disclosed herein can provide a low cost alternative to traditional revamps.
  • An OCM unit with a PSA unit retrofitted to an existing steam cracker can be an effective way of adding ethylene capacity at a low marginal cost.
  • the advantages of adding a PSA unit include that no additional cryogenic separation is required for the added capacity.
  • one of the key areas during debottlenecking may be the refrigeration systems and/or the fractionation columns, but utilizing the PSA to separate or pre-separate the additional product stream can result in a simpler and easier debottlenecking.
  • the tail gas from the PSA can be sent to the cracker system where the ethylene is recovered.
  • FIG. 13 shows an example of an OCM process integrated with an existing ethylene cracker using a PSA system for separations.
  • the OCM reactor 1301 takes in methane 1310 and oxygen 1311 and produces an OCM effluent 1312 having CO 2 , CH 4 and C 2 H 4 , in some cases amongst other components, such as H 2 and CO.
  • the OCM reaction can be exothermic and can produce steam 1313 .
  • the OCM effluent can be compressed in a compressor 1302 and optionally treated in an acid gas removal system 1303 , and fed into a pressure swing adsorption (PSA) unit 1304 .
  • PSA pressure swing adsorption
  • the acid gas removal system may have an additional knock out drum to condense and separate any condensates and water.
  • the PSA unit can produce a product stream that can include H 2 , CH 4 , ethane, CO 2 and CO.
  • the overhead stream 1315 can be fed into a methanation subsystem 1305 (e.g., methanation reactor) to provide methane for the OCM reactor, and some of the overhead stream can be purged 1316 to a fuel gas system, for example. Additional methane can be provided by way of a natural gas stream or other methane stream.
  • the PSA tail gas 1317 can comprise most of the ethylene, the content of which may range from 50% to 99.9% depending on the process configuration and operation of the PSA system.
  • the PSA tail gas can also comprise H 2 , CO, CO 2 , CH 4 , ethane, propane, propylene, butanes, butenes, and other components.
  • the process of FIG. 13 can further include an existing ethylene cracker 1306 .
  • the PSA tail gas can be fractionated using existing separations capacity in the ethylene cracker.
  • the heavy components can be processed in the fractionation towers of the ethylene cracker, optionally first being compressed in the existing process gas compressor of the ethylene cracker. In some cases, the heavy components stream can be routed to the CO 2 removal unit of the existing ethylene cracker subsystem to meet the CO 2 specification.
  • the OCM reactor can receive a C 2 recycle stream 1319 from the cracker complex.
  • the combination of a new OCM unit and an existing ethylene cracker can provide synergistic benefits. It can provide for a low cost alternative to add ethylene capacity to the existing cracker.
  • the entire overhead from the existing demethanizer is used as fuel gas, and can now be available as one of the feeds to the methanation unit.
  • the demethanizer overhead off-gas comprises up to 95% methane, which can be converted to ethylene in the OCM reactor, hence increasing the total ethylene capacity.
  • the hydrogen content in the existing demethanizer overhead is substantial, and may be enough to meet the hydrogen requirement of the methanation unit.
  • retrofitting an ethylene cracker with OCM reduces (or allows for reduction of) the severity of cracking in the existing cracker, enabling value addition by increasing the production of pyrolysis gasoline components in the cracker effluent, as the OCM reactor produces the ethylene that may be needed to achieve the total system capacity.
  • the cracker can then be operated on high propylene mode to produce more propylene and at the same time meeting the ethylene production rate by the new OCM unit.
  • This retrofit can result in greater flexibility for the ethylene producer with respect to the existing cracker operation.
  • the overall carbon efficiency can be increased as the methane and hydrogen from the existing demethanizer off-gases can be utilized to convert the carbon dioxide and carbon monoxide to methane, which is fed to the OCM reactor.
  • ethane and/or propane recycle streams from the existing cracker can be routed to the OCM unit (e.g., instead of the cracking furnaces). These recycle streams are typically routed to the cracking furnaces where they are cracked to extinction. This can provide an advantage over routing the recycle streams to OCM over the cracking furnace, such as higher selectivity to ethylene in the OCM process.
  • An OCM reactor 1402 can receive a methane stream 1410 and an oxygen stream 1411 , and react the methane and oxygen to produce higher hydrocarbon products including ethylene in an OCM product stream.
  • the OCM product stream can be compressed in a first compressor 1403 and directed to a first PSA separation 1404 .
  • the tail gas 1412 from the first PSA can be compressed in a second compressor 1405 and fed to a second PSA separation 1406 , the tail gas 1414 from which can be compressed in a third compressor 1407 and separated in a third PSA separation 1408 .
  • the tail gas from the third PSA can be the final purified stream 1417 can be directed to a cracker unit, such as an existing cracker unit, where it can be processed and separated into an ethylene product stream 1418 , a propylene product stream 1419 , and an additional product stream 1420 .
  • PSA product streams 1413 , 1415 , and 1416 can be directed to recycle, such as via a methanation unit 1401 , along with a demethanizer off gas stream 1421 from the cracker unit.
  • Each PSA stage can be a dual-bed PSA or a multi-bed PSA system.
  • FIG. 15 shows various exemplary configurations for an OCM-ETL process.
  • FIG. 15 shows a stand alone skimmer configuration, where a methane stream 1505 can be directed into an OCM reactor 1501 with an oxygen feed 1506 and optionally an ethane feed 1507 .
  • the OCM reactor product stream can be directed into a compressor 1502 and then into an ETL reactor 1503 .
  • the ETL product stream can be directed into a gas separations unit 1504 , where it can be separated into a C 2+ product stream 1508 , a C 5+ product stream 1509 , and an overhead stream 1510 comprising methane which can be returned to a pipeline, sold to a consumer, or otherwise used.
  • FIG. 15 shows a stand alone skimmer configuration, where a methane stream 1505 can be directed into an OCM reactor 1501 with an oxygen feed 1506 and optionally an ethane feed 1507 .
  • the OCM reactor product stream can be directed into a compressor 1502 and then into an
  • a methane feed stream 1518 (e.g., from a natural gas pipeline) is directed into a treatment unit 1511 and then into a separations system (e.g., cryogenic) 1512 .
  • a methane feed stream 1519 can be directed to an OCM reactor 1513 , while another methane stream 1520 can be purged or used for power generation.
  • a C 2+ stream 1521 can also be recovered from the separations system.
  • An oxygen feed stream 1522 and optionally an ethane stream 1523 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream.
  • the OCM product stream can be directed into a compressor 1514 and then into an ETL reactor 1515 .
  • the ETL product stream can be processed in a knockout drum 1516 or other separator to remove a C 5+ product stream 1524 .
  • the remaining ETL product stream can be directed to a compressor 1517 and recycled to the treatment unit.
  • FIG. 15 shows a hosted skimmer configuration, where a methane stream 1532 can be directed from a separations system 1526 (e.g., cryogenic) into an OCM reactor 1527 with an oxygen feed 1533 and optionally an ethane feed 1534 .
  • the OCM reactor product stream can be directed into a compressor 1528 and then into an ETL reactor 1529 .
  • the ETL product stream can be directed into a gas separations unit 1530 , where it can be separated into a C 2+ product stream 1535 , a C 5+ product stream 1536 , and an overhead stream 1537 comprising methane which can be returned to a recompressor 1531 .
  • FIG. 15 shows a hosted recycle configuration, where a methane stream is directed into a treatment unit 1538 and then into a separations system (e.g., cryogenic) 1539 .
  • a methane feed stream 1546 can be directed to an OCM reactor 1541 , while another methane stream can be directed to a recompressor 1540 .
  • a C 2+ stream 1551 can also be recovered from the separations system.
  • An oxygen feed stream 1547 and optionally an ethane stream 1548 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream.
  • the OCM product stream can be directed into a compressor 1542 and then into an ETL reactor 1543 .
  • the ETL product stream can be processed in a knockout drum 1544 or other separator to remove a C 5+ product stream 1549 .
  • the remaining ETL product stream can be directed to a compressor 1545 and recycled 1550 to the treatment unit.
  • FIG. 16 shows similar configurations as FIG. 15 , with an added pressure swing adsoprtion (PSA) unit to pre-separate the OCM effluent to remove most of the methane, hydrogen, CO and CO 2 from the olefinic stream, which is then fed to the ETL reactor.
  • PSA pressure swing adsoprtion
  • a methane stream 1606 can be directed into an OCM reactor 1601 with an oxygen feed 1607 and optionally an ethane feed 1608 .
  • the OCM reactor product stream can be directed into a compressor 1602 and then into a PSA unit 1603 .
  • a light stream 1609 comprising methane, hydrogen, CO and CO 2 can be directed from the PSA back to a pipeline, sold to a consumer, or otherwise used.
  • An olefinic stream can be directed from the PSA to an ETL reactor 1604 .
  • the ETL product stream can be directed into a gas separations unit 1605 , where it can be separated into a C 2+ product stream 1610 , a C 5+ product stream 1611 , and an overhead stream 1612 comprising methane which can be returned to a pipeline, sold to a consumer, or otherwise used.
  • FIG. 16 shows a stand alone recycle configuration, where a methane feed stream 1628 (e.g., from a natural gas pipeline) is directed into a treatment unit 1620 and then into a separations system (e.g., cryogenic) 1621 .
  • a methane feed stream 1629 can be directed to an OCM reactor 1622 , while another methane stream 1630 can be purged or used for power generation.
  • a C 2+ stream 1631 can also be recovered from the separations system.
  • An oxygen feed stream 1632 and optionally an ethane stream 1633 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream.
  • the OCM product stream can be directed into a compressor 1623 , and at least a portion 1634 of the OCM product stream can be directed from the compressor into a PSA unit 1624 .
  • a light stream 1635 comprising methane, hydrogen, CO and CO 2 can be directed from the PSA back to the treatment unit.
  • An olefinic stream 1636 can be directed from the PSA to an ETL reactor 1625 .
  • the ETL product stream can be processed in a knockout drum 1626 or other separator to remove a C 5+ product stream 1637 .
  • FIG. 16 shows a hosted skimmer configuration, where a methane stream 1647 can be directed from a separations system 1640 (e.g., cryogenic) into an OCM reactor 1641 with an oxygen feed 1648 and optionally an ethane feed 1649 .
  • the OCM reactor product stream can be directed into a compressor 1642 and then into and then into a PSA unit 1643 .
  • a light stream 1650 comprising methane, hydrogen, CO and CO 2 can be directed from the PSA to a recompressor 1646 .
  • An olefinic stream can be directed from the PSA to an ETL reactor 1644 .
  • the ETL product stream can be directed into a gas separations unit 1645 , where it can be separated into a C 2+ product stream 1651 , a C 5+ product stream 1652 , and an overhead stream 1653 comprising methane which can be returned to the recompressor.
  • FIG. 16 shows a hosted recycle configuration, where a methane stream is directed into a treatment unit 1660 and then into a separations system (e.g., cryogenic) 1661 .
  • a methane feed stream 1669 can be directed to an OCM reactor 1663 , while another methane stream can be directed to a recompressor 1662 .
  • a C 2+ stream 1677 can also be recovered from the separations system.
  • An oxygen feed stream 1670 and optionally an ethane stream 1671 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream.
  • the OCM product stream can be directed into a compressor 1664 and at least a portion 1672 of the OCM product stream can be directed from the compressor into a PSA unit 1665 .
  • a light stream 1673 comprising methane, hydrogen, CO and CO 2 can be directed from the PSA back to the treatment unit.
  • An olefinic stream 1674 can be directed from the PSA to an ETL reactor 1666 .
  • the ETL product stream can be processed in a knockout drum 1667 or other separator to remove a C 5+ product stream 1675 .
  • the remaining ETL product stream can be directed to a compressor 1668 and recycled 1676 to the treatment unit.
  • the ETL reactor can be a tubular, packed bed, moving bed, fluidized bed, or other reactor type.
  • An ETL reactor can be an isothermal or adiabatic reactor.
  • the ETL system can benefit from a feed concentrated in olefins.
  • the ETL reactor system can use a recycle stream to control and moderate the temperature increase in the reactor bed due to the highly exothermic nature of the ETL reactions.
  • ETL systems are described in, for example, U.S. patent application Ser. No. 14/591,850, which is entirely incorporated herein by reference.
  • one or more of the fractionation towers can be deemed redundant if using the PSA, as an example, a demethanizer may not be required and the sales gas or purge gas to fuel can be sent from the PSA itself.
  • Systems such as those of FIG. 17 , can be integrated with an existing gas processing plant where one or more of the existing subsystems can be utilized.
  • the utilization may arise from the fact that the existing subsystems are no longer used, or have an additional capacity available to allow for the integration.
  • FIG. 17 shows an exemplary application of an OCM-ETL system using a PSA system for pre-separations to an existing gas processing plant, where one or more existing sub systems may be utilized.
  • the existing separations sub-system can be integrated with the OCM-ETL system to add value by converting natural gas to higher value liquid hydrocarbons.
  • the PSA unit can be used to pre-separate the lighter components like methane, hydrogen, carbon monoxide, carbon dioxide, ethane, and other components, and the olefin rich stream can be sent to the ETL reactor that converts the olefins to higher molecular weight liquid hydrocarbons.
  • a natural gas stream 1720 can be directed to a treatment unit 1701 and then into a separations system (e.g., cryogenic) 1702 . At least portion of a methane stream 1724 from the separations unit can be directed to an OCM reactor 1705 , while a portion of the methane stream can be directed to a compressor 1703 and used as sales gas 1721 or other purposes.
  • a separations system e.g., cryogenic
  • a higher hydrocarbon stream can be directed from the separations system to a C 2 removal unit 1704 , which can produce a natural gas liquids stream 1722 and a C 2 stream 1723 .
  • the C 2 stream can be fed into the OCM reactor with the methane stream and an oxygen stream 1725 , and reacted to form higher hydrocarbon products including ethylene.
  • the OCM product stream can be directed into a heat recovery system 1706 , which can generate a high pressure superheated (HPSH) steam stream 1726 .
  • HPSH high pressure superheated
  • the OCM product stream can then be directed to a knockout drum to recover a condensate stream 1727 .
  • the OCM product stream can then be directed to a compressor 1708 , which can operate using the HPSH steam stream.
  • the OCM product stream can be directed to a PSA unit 1709 .
  • PSA unit From the PSA unit, light stream comprising methane, hydrogen, CO and CO 2 can be directed to a methanation unit 1710 , and an olefinic stream can be directed to an ETL reactor 1711 and reacted to form higher hydrocarbon products.
  • the ETL product stream can be directed to a heat recovery unit 1712 , where boiler feed water (BFW) 1728 can be heated, at least a portion of which can be fed 1729 to the heat recovery unit 1706 .
  • BFW boiler feed water
  • the ETL product stream can then be directed to another knockout drum 1713 .
  • the overhead stream from the knockout drum can be directed to a low temperature separations unit 1714 , while the bottoms stream from the knockout drum can be directed to a C 4 removal unit 1715 , which can produce a C 4 stream 1730 and a C 5+ stream 1731 .
  • Overhead from the low temperature separations unit, as well as product from the methanation reactor, can be directed back to the compressor 1703 .
  • OCM-ETL systems of the present disclosure can be integrated into and combined into conventional NGL extraction and NGL fractionation sections of a midstream gas plant. Where NGLs in the gas stream are declining (or gas is dry), the deployment of OCM-ETL can utilize an existing facility to produce additional liquid streams.
  • the implementation of OCM-ETL can allow for the generation of on specification “pipeline gas.”
  • the products from the facility can be suitable for use (or on specification or “spec”) as pipeline gas, gasoline product, hydrocarbon (HC) streams with high aromatic content, and mixed C 4 products.
  • the PSA systems discussed above can be employed to separate, pre-separate or purify the hydrocarbon feed streams in the integrated NGL OCM-ETL system.
  • FIG. 18 shows an exemplary NGL extraction facility integrated with an OCM-ETL system.
  • the feed to the PSA 1802 can be the net incoming gas from the treatment system 1801 , which can treat a methane stream (e.g., natural gas) 1810 .
  • the PSA system can separate the feed to the OCM reactor 1803 , which is mostly methane and lighter components with some ethane to utilize a PBC section of the OCM reactor, and the feed to the ETL reactor 1805 , which can first be processed in a natural gas liquids extraction system 1804 .
  • the feed to the ETL system can be the PSA tail gas and OCM effluent comprising ethylene, propylene, ethane, propane, hydrogen, methane, and other components.
  • the OCM effluent can be directly fed to the ETL reactor. In some cases the OCM effluent is hydrogenated and fed to the ETL system. In some cases, as shown for example in FIG. 18 , the OCM effluent is fed back to the PSA unit for separation; additional natural gas 1811 can be added, and a stream can be recovered 1812 (e.g., for use as pipeline gas).
  • the system may have a methanation unit that takes in the effluent from ETL reactor or OCM reactor and converts the CO, CO 2 and H 2 to methane, thereby further increasing the carbon efficiency of the process.
  • the existing NGL extraction and product fractionation 1806 sub-systems can then be used to fractionate the final products, including into a mixed C 4 stream 1814 and a C 5+ product stream 1815 .
  • Refinery gas typically contains valuable components like hydrogen, methane, ethane, ethylene, propane, propylene, and butane.
  • refinery off-gases ROG
  • the OCM-ETL process can be used to improve the value of products as the OCM converts the methane to ethylene and the ETL converts olefins (e.g., those existing in the ROG and those generated by OCM) to higher value liquids as C 4 components, gasoline blends, or aromatic components.
  • FIG. 19 shows an exemplary PSA unit integrated to a refinery process scheme.
  • a refinery gas plant 1901 can receive gas 1910 from cracking or other units.
  • the PSA unit 1903 (after, for example, treatment of the gas in a treatment unit 1902 ) can separate components in refinery gas plant off gas to methane and a C 2+ cut which contains most or all of the olefinic materials.
  • the methane can be used as refinery fuel 1911 and/or directed to an OCM unit 1904 with post-bed cracking
  • the OCM feed can be supplemented with additional natural gas 1912 .
  • the olefinic materials can be directed to an ETL reactor 1905 .
  • the OCM effluent can also be routed to the PSA where the olefins produced in the OCM are also sent to the ETL reactor.
  • the OCM effluent can be routed to the ETL reactor.
  • the OCM effluent may be hydrogenated before being sent to the PSA unit or ETL reactor.
  • the product stream can contain methane, ethane, CO, CO 2 , and other components, with of each component from 1 to 99%.
  • a C 3+ stream 1913 from the refinery gas plant can be directed to a product fractionation system 1906 , which can provide a C 2 /C 3 stream 1914 (which can be directed to the OCM reactor), an iC 4 stream 1915 , a gasoline blend stream 1916 , and/or a kerosene/jet stream 1917 .
  • the system can have a methanation unit to further improve the carbon efficiency of the process.
  • a refinery gas plant 2001 can receive gas 2010 from cracking or other units.
  • the PSA unit 2003 (after, for example, treatment of the gas in a treatment unit 2002 ) can separate components in refinery gas plant off gas to methane and a C 2+ cut which contains most or all of the olefinic materials.
  • the methane can be used as refinery fuel 2011 and/or directed to a methanation unit 2004 , and then to an OCM reactor 2005 with post-bed cracking
  • the methanation feed can be supplemented with additional natural gas 2012 .
  • the olefinic materials can be directed to an ETL reactor 2006 .
  • the OCM effluent can be routed to the ETL reactor.
  • the OCM effluent can also be routed to the PSA where the olefins produced in the OCM are also sent to the ETL reactor.
  • the OCM effluent may be hydrogenated before being sent to the PSA unit or ETL reactor.
  • the product stream can contain methane, ethane, CO, CO 2 , and other components, with of each component from 1 to 99%.
  • a C 3+ stream 2013 from the refinery gas plant can be directed to a product fractionation system 2007 , which can provide a C 2 /C 3 stream 2014 (which can be directed to the OCM reactor), an iC 4 stream 2015 , a gasoline blend stream 2016 , and/or a kerosene/jet stream 2017 .

Abstract

The present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising introducing methane and an oxidant (e.g., O2) into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor. The OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C2+ compounds. The first product stream can then be directed to a pressure swing adsorption (PSA) unit that recovers at least a portion of the C2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C2+ compounds. The second product stream can then be directed to the ETL reactor. The higher hydrocarbon(s) can then be generated from the at least the portion of the C2+ compounds in the ETL reactor.

Description

    CROSS-REFERENCE
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 62/141,789, filed Apr. 1, 2015, which is entirely incorporated herein by reference.
  • BACKGROUND
  • The modern refining and petrochemical industry makes extensive use of fractionation technology to produce and separate various desirable compounds from crude oil. The conventional fractionation technology is energy intensive and costly to install and operate. Cryogenic distillation has been in use for over a hundred years to separate and recover hydrocarbon products in various refining and petrochemical industries. However, there is a need for non-cryogenic separation methods and systems, particularly for oxidative coupling of methane (OCM) processes.
  • SUMMARY
  • Aspects of the present disclosure provide processes for recovering olefins from a stream containing mix of hydrocarbons by utilizing techniques based the use of adsorbents. In some embodiments, systems and methods enable the separation, pre-separation, purification and/or recovery of hydrocarbons, including, but not limited to, olefins, ethylene, propylene, methane, and ethane, and CO2, from a multicomponent hydrocarbon stream such as an effluent stream from an oxidative coupling of methane (OCM) reactor or an ethylene-to-liquids (ETL) reactor. The hydrocarbon stream can also be the feed to the OCM or ETL reactor in certain cases. In certain cases, the feed to the ETL reactor is the effluent from OCM reactor. In some cases, a separation process utilizing adsorbents can be used to purify and pre-treat existing hydrocarbon streams (such as refinery off-gases, cracker off-gas, streams from NGL plants, and others), followed by use of the resulting olefin rich stream (e.g., PSA tail gas) as the ETL feed.
  • The present disclosure provides various improvements in OCM and ETL processes, such as, without limitation, a separation and pre-separation process to recover desired or predetermined components from an OCM reactor effluent, CO2 recovery and capture techniques, enhanced heat recovery methods to utilize the OCM reaction heat more efficiently, and techniques and technologies to further reduce the carbon footprint of the OCM process.
  • An aspect of the present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising introducing methane and an oxidant (e.g., O2) into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor. The OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C2+ compounds. The first product stream can then be directed to a pressure swing adsorption (PSA) unit that recovers at least a portion of the C2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C2+ compounds. The second product stream can then be directed to the ETL reactor. The higher hydrocarbon(s) can then be generated from the at least the portion of the C2+ compounds in the ETL reactor.
  • In some cases, the first product stream is directed to other intermediate units before the PSA, such as a post-bed cracking (PBC) unit that generates alkenes from alkanes. The alkenes can be included in the first product stream, which can then be directed to the PSA.
  • In an aspect, the present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising: (a) introducing methane and an oxidant into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor, where the OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C2+ compounds; (b) directing the first product stream to a pressure swing adsorption (PSA) unit that recovers at least a portion of the C2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C2+ compounds; (c) directing the second product stream to the ETL reactor; and (d) generating the higher hydrocarbon(s) from the at least the portion of the C2+ compounds in the ETL reactor.
  • In some embodiments, the method further comprises: (e) recovering a light stream comprising (i) hydrogen and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2) from the PSA unit and recycling the light stream to the OCM reactor; (f) directing at least a portion of the light stream into a methanation unit that reacts the hydrogen and the CO and/or CO2 to produce a methanation product stream comprising methane; and (g) directing the methanation product stream into the OCM reactor.
  • In some embodiments, the method further comprises recovering C2 and/or C3 compounds from the second product stream and directing the C2 and/or C3 compounds to the OCM reactor. In some embodiments, the OCM reactor further comprises a post-bed cracking (PBC) unit.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2); and (b) directing the product stream from the OCM reactor into a separations system that employs a refrigeration unit having a refrigerant that includes methane from the product stream, to enrich the C2+ compounds in the product stream.
  • In some embodiments, the product stream is directed into the separations system through one or more additional units.
  • In some embodiments, the method further comprises separating methane from the product stream for use in the refrigeration unit. In some embodiments, the method further comprises directing CO and/or CO2 from the product stream to a methanation reactor that reacts the CO and/or CO2 to yield a methanation product stream comprising methane. In some embodiments, the method further comprises directing at least a portion of the methane in the methanation product stream to the OCM reactor. In some embodiments, the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds). In some embodiments, the method further comprises directing ethane from the product stream to the OCM reactor. In some embodiments, the method further comprises prior to directing the product stream into the separations system, compressing the product stream.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2); and (b) directing the product stream from the OCM reactor into a separations system that employs a complexation unit having a complexation catalyst that forms pi complexes with the ethylene in the product stream, to enrich the C2+ compounds in the product stream.
  • In some embodiments, the product stream is directed into the separations system through one or more additional units. In some embodiments, the method further comprises using the complexation unit to remove one or more impurities from the product stream, where the impurities are selected from the group consisting of CO2, sulfur compounds, acetylenes, and hydrogen. In some embodiments, the complexation catalyst includes one or more metals selected from the group consisting of silver and copper. In some embodiments, the method further comprises directing CO and/or CO2 from the product stream to a methanation reactor that reacts the CO and/or CO2 to yield a methanation product stream comprising methane. In some embodiments, the method further comprises directing the methane in the methanation product stream to the OCM reactor. In some embodiments, the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds). In some embodiments, the method further comprises directing ethane from the product stream to the OCM reactor. In some embodiments, the method further comprises prior to directing the product stream into the separations system, compressing the product stream.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon dioxide (CO2); and (b) directing the product stream from the OCM reactor into a separations system that employs a CO2 separation unit to separate the CO2 from the product stream, to enrich the C2+ compounds in the product stream, which CO2 separation unit employs (i) sorbent or solvent separation of CO2, (ii) membrane separation of CO2, or (iii) cryogenic or low temperature separation of CO2 having an operating temperature greater than a boiling point of methane and less than a boiling point of CO2.
  • In some embodiments, the product stream is directed into the separations system through one or more additional units. In some embodiments, the sorbent or solvent separation of CO2 employs an amine based absoprtion system. In some embodiments, the sorbent or solvent separation of CO2 employs a Benfield process. In some embodiments, the sorbent or solvent separation of CO2 employs diethanolamine. In some embodiments, the sorbent or solvent separation of CO2 employs glycol dimethylether. In some embodiments, the sorbent or solvent separation of CO2 employs propylene carbonate. In some embodiments, the sorbent or solvent separation of CO2 employs Sulfinol.
  • In some embodiments, the sorbent or solvent separation of CO2 employs a zeolite. In some embodiments, the sorbent or solvent separation of CO2 employs active carbon. In some embodiments, the CO2 separation system comprises a membrane CO2 separation system. In some embodiments, the membrane separation of CO2 employs a polymeric membrane. In some embodiments, the membrane separation of CO2 employs a metallic membrane. In some embodiments, the membrane separation of CO2 employs a ceramic membrane. In some embodiments, the membrane separation of CO2 employs a hybrid membrane comprising a membrane supporting a solvent or sorbent. In some embodiments, the membrane separation of CO2 employs a poly ionic liquid membrane. In some embodiments, the membrane separation of CO2 employs a supported ionic liquid membrane. In some embodiments, the membrane separation of CO2 employs a polyetherimide membrane.
  • In some embodiments, the method further comprises directing the CO2 from the product stream to a methanation reactor that reacts the CO2 to yield a methanation product stream comprising methane. In some embodiments, the method further comprises directing the methane in the methanation product stream to the OCM reactor. In some embodiments, the method further comprises separating the product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds). In some embodiments, the method further comprises directing ethane from the product stream to the OCM reactor. In some embodiments, the method further comprises prior to directing the product stream into the separations unit, compressing the product stream.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing water into an electrolysis unit that electrolyzes the water to yield oxygen (O2) and hydrogen (H2); (b) directing the O2 from the electrolysis unit and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds, including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2); (c) directing at least a portion of the CO and/or CO2 from the product stream and the H2 from the electrolysis unit into a methanation reactor that reacts the H2 and the CO and/or CO2 to yield CH4; and (d) directing at least a portion of the CH4 from the methanation reactor to the OCM reactor.
  • In some embodiments, the electrolysis unit comprises an alkaline water electrolysis system. In some embodiments, the electrolysis unit comprises a proton exchange membrane electrolysis system. In some embodiments, the electrolysis unit comprises a steam electrolysis system.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon dioxide (CO2); (b) directing the product stream from the OCM reactor into a separations system that employs a CO2 separation unit that separates the CO2 from the product stream to enrich the C2+ compounds in the product stream; and (c) directing at least a portion of the CO2 separated in (b) to the OCM reactor.
  • In some embodiments, the product stream is directed into the separations system through one or more additional units.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising C2+ compounds including ethylene (C2H4) and heat; (b) using an evaporator to transfer at least a portion of the heat from the product stream to an organic working fluid in a closed fluid flow cycle as part of an organic Rankine cycle (ORC) system, to evaporate the organic working fluid, which closed fluid flow cycle includes the evaporator, a turbine, a condenser, and a pump; (c) directing the organic working fluid evaporated in (b) to the turbine to generate power; (d) directing the organic working fluid from the turbine to the condenser that condenses the organic working fluid; and (e) directing the organic working fluid condensed in (d) to the pump.
  • In some embodiments, the organic working fluid is selected from the group consisting of hydrocarbons, silicon oils, and perfluorocarbons. In some embodiments, a boiling point of the organic working fluid is less than a boiling point of water.
  • In another aspect, the present disclosure provides a method for generating compounds with two or more carbon atoms (C2+ compounds), comprising: (a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts the O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and heat; (b) transferring at least a portion of the heat from the product stream to a thermoelectric power generator; and (c) with the aid of the heat, using the thermoelectric power generator to generate power.
  • In some embodiments, the thermoelectric generator comprises a thin film thermoelectric module. In some embodiments, the thermoelectric generator comprises a micro thermoelectric module.
  • Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings or figures (also “FIG.” and “FIGs.” herein), of which:
  • FIG. 1 shows a typical oxidative coupling of methane (OCM) system with advanced separation;
  • FIG. 2 shows an OCM system with auto refrigeration (e.g., methane refrigeration);
  • FIG. 3 shows an exemplary OCM system with a silver complexation ethylene recovery subsystem;
  • FIG. 4 shows an exemplary pressure swing adsoprtion (PSA) system;
  • FIG. 5A shows a schematic of CO2 separation methods;
  • FIG. 5B shows a schematic of CO2 separation methods;
  • FIG. 5C shows a schematic of CO2 separation methods;
  • FIG. 6 shows typical CO2 distillation system;
  • FIG. 7 shows a water electrolysis sub system;
  • FIG. 8 shows an OCM system with CO2 as a quench medium;
  • FIG. 9 shows an organic Rankine cycle (ORC) subsystem;
  • FIG. 10 shows an exemplary typical OCM system;
  • FIG. 11 shows an exemplary OCM system with a single stage PSA unit;
  • FIG. 12 shows an exemplary OCM system with a multi stage PSA unit;
  • FIG. 13 shows an exemplary retrofit of OCM to a cracker, with a single stage PSA unit;
  • FIG. 14 shows an exemplary retrofit of OCM to a cracker, with a multi stage PSA unit;
  • FIG. 15 shows exemplary configurations of ethylene to liquids (ETL) systems without PSA;
  • FIG. 16 shows exemplary configurations of ETL systems with PSA;
  • FIG. 17 shows an exemplary PSA unit integrated with an OCM-ETL system for a midstream application;
  • FIG. 18 shows an exemplary PSA unit integrated with an OCM-ETL system in a natural gas liquids (NGL) application;
  • FIG. 19 shows an exemplary PSA unit integrated with an OCM-ETL system for a refining application; and
  • FIG. 20 shows an exemplary alternate scheme for a PSA unit integrated with an OCM-ETL system for a refining application.
  • DETAILED DESCRIPTION
  • While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
  • The term “higher hydrocarbon,” as used herein, generally refers to a higher molecular weight and/or higher chain hydrocarbon. A higher hydrocarbon can have a higher molecular weight and/or carbon content that is higher or larger relative to starting material in a given process (e.g., OCM or ETL). A higher hydrocarbon can be a higher molecular weight and/or chain hydrocarbon product that is generated in an OCM or ETL process. For example, ethylene is a higher hydrocarbon product relative to methane in an OCM process. As another example, a C3+ hydrocarbon is a higher hydrocarbon relative to ethylene in an ETL process. As another example, a C5+ hydrocarbon is a higher hydrocarbon relative to ethylene in an ETL process. In some cases, a higher hydrocarbon is a higher molecular weight hydrocarbon.
  • The term “OCM process,” as used herein, generally refers to a process that employs or substantially employs an oxidative coupling of methane (OCM) reaction. An OCM reaction can include the oxidation of methane to a higher hydrocarbon and water, and involves an exothermic reaction. In an OCM reaction, methane can be partially oxidized and coupled to form one or more C2+ compounds, such as ethylene. In an example, an OCM reaction is 2CH4+O2→C2H4+2H2O. An OCM reaction can yield C2+ compounds. An OCM reaction can be facilitated by a catalyst, such as a heterogeneous catalyst. Additional by-products of OCM reactions can include CO, CO2, H2, as well as hydrocarbons, such as, for example, ethane, propane, propene, butane, butene, and the like.
  • The term “non-OCM process,” as used herein, generally refers to a process that does not employ or substantially employ an oxidative coupling of methane reaction. Examples of processes that may be non-OCM processes include non-OCM hydrocarbon processes, such as, for example, non-OCM processes employed in hydrocarbon processing in oil refineries, a natural gas liquids separations processes, steam cracking of ethane, steam cracking or naphtha, Fischer-Tropsch processes, and the like.
  • The terms “C2+” and “C2+ compound,” as used herein, generally refer to a compound comprising two or more carbon atoms. For example, C2+ compounds include, without limitation, alkanes, alkenes, alkynes and aromatics containing two or more carbon atoms. C2+ compounds can include aldehydes, ketones, esters and carboxylic acids. Examples of C2+ compounds include ethane, ethene, acetylene, propane, propene, butane, and butene.
  • The term “non-C2+ impurities,” as used herein, generally refers to material that does not include C2+ compounds. Examples of non-C2+ impurities, which may be found in certain OCM reaction product streams, include nitrogen (N2), oxygen (O2), water (H2O), argon (Ar), hydrogen (H2) carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4).
  • The term “small scale,” as used herein, generally refers to a system that generates less than or equal to about 250 kilotons per annum (KTA) of a given product, such as an olefin (e.g., ethylene).
  • The term “world scale,” as used herein, generally refers to a system that generates greater than about 250 KTA of a given product, such as an olefin (e.g., ethylene). In some examples, a world scale olefin system generates at least about 1000, 1100, 1200, 1300, 1400, 1500, or 1600 KTA of an olefin.
  • The term “item of value,” as used herein, generally refers to money, credit, a good or commodity (e.g., hydrocarbon). An item of value can be traded for another item of value.
  • The term “carbon efficiency,” as used herein, generally refers to the ratio of the number of moles of carbon present in all process input streams (in some cases including all hydrocarbon feedstocks, such as, e.g., natural gas and ethane and fuel streams) to the number of moles of carbon present in all commercially (or industrially) usable or marketable products of the process. Such products can include hydrocarbons that can be employed for various downstream uses, such as petrochemical or for use as commodity chemicals. Such products can exclude CO and CO2. The products of the process can be marketable products, such as C2+ hydrocarbon products containing at least about 99% C2+ hydrocarbons and all sales gas or pipeline gas products containing at least about 90% methane. Process input streams can include input streams providing power for the operation of the process. In some cases, power for the operation of the process can be provided by heat liberated by an OCM reaction. In some cases, the systems or methods of the present disclosure have a carbon efficiency of at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, or at least about 90%. In some cases, the systems or methods of the present disclosure have a carbon efficiency of between about 50% and about 85%, between about 55% and about 80%, between about 60% and about 80%, between about 65% and about 85%, between about 65% and about 80%, or between about 70% and about 80%.
  • The term “C2+ selectivity,” as used herein, generally refers to the percentage of the moles of methane that are converted into C2+ compounds.
  • The term “specific oxygen consumption,” as used herein, generally refers to the mass (or weight) of oxygen consumed by a process divided by the mass of C2+ compounds produced by the process.
  • The term “specific CO2 emission,” as used herein, generally refers to the mass of CO2 emitted from the process divided by the mass of C2+ compounds produced by the process.
  • Separations
  • Various non-cryogenic separation techniques have been increasingly employed for gas separations, purifications and recovery of hydrocarbons. Membrane based processes and adsorbents have been intensively studied for large scale applications for olefins recovery. Since the development of synthetic adsorbents and pressure swing adsorption (PSA) cycles, adsorption has been playing an increasingly important role in gas separation and purification.
  • PSA technology can be used in a large variety of applications: Hydrogen purification, air separation, CO2 removal, noble gases purification, methane upgrading, n-iso paraffin separation and so forth. While new applications for gas separations by adsorption are continually being developed, the most important applications have been air separation (for production of O2 and N2) and hydrogen separation (from fuel gas). Approximately 20% of O2 and N2 are currently produced by PSA. The increasing industrial applications for adsorption have stimulated a growing interest in research and new applications.
  • Processes of the present disclosure can employ a variety of different separations techniques, alone or in combination. For example, OCM processes can employ amine and caustic systems for CO2 removal, molecular sieve guard beds for water removal, and cryogenic distillation or other separation techniques for recovery and purification of hydrocarbon components. Cryogenic separation can refer to separations using temperature levels below 120 K or about −153° C. Other techniques include Selexol™ and Rectisol™ processes for CO2 removal.
  • OCM product effluent can comprise a mixture of hydrocarbons including but not limited to methane, ethane, ethylene, propane, propylene, butanes, butenes, and higher hydrocarbons. OCM product effluent can also comprise varying amounts of other components such as H2, N2, CO, CO2 and H2O. The product of an OCM reaction can include ethylene. The ethylene product can be polymer grade, refinery grade or chemical grade. Depending on the purity level required, different separation and/or purification techniques can be employed with the OCM process. To recover high purity ethylene, separation methods such as those discussed herein can be used to remove a wide range of components.
  • Advantages of the advanced OCM processes described herein can include reducing the cost, reducing the number of unit operations (“units”) used, and hence improving the overall process for producing high purity polymer grade ethylene. Overall conversion and carbon efficiency can also be improved. The separation methods disclosed herein can also improve the overall conversion and carbon efficiency.
  • The different separation and purification techniques discussed herein can be used to separate the OCM product effluent (e.g., process gas) into a plurality of streams, including but not limited to a first stream comprising methane, hydrogen, carbon monoxide and other lighter inerts and a second stream comprising ethane, ethylene, propylene, and higher hydrocarbons. Separation systems or subsystems employed can include those discussed herein, such as a cryogenic demethanizer, a membrane separation system, or a PSA based system.
  • The separation techniques discussed herein can be employed to remove CO2, such as from an OCM product effluent stream. One or more separations techniques can be used to remove CO2 including but not limited to absorption, adsorption, CO2 distillation, and membrane separation. The separation technique can be non-cryogenic.
  • FIG. 1 shows a block flow diagram for an exemplary OCM process. Oxygen 110 and methane 121 can be fed into an OCM reactor 101 for conversion into higher hydrocarbon compounds including ethylene. The OCM product stream 111 can be directed to a compressor 102, and the compressed product stream 112 can be fed into a separations system 103. The separations system can include pretreatment units 104, such as impurity and CO2 removal units, as well as separations units 105, such as cryogenic, non-cryogenic, complexation, membrane, and other separations units. The separations system can be a combination of more than one separation techniques, such as those discussed in this application. The separation system can replace CO2 removal, moisture removal, and cryogenic separation systems of existing OCM process systems. The compressor system may not be required for some types of separation processes. From the separations system, CO2 can be vented 113, ethane 114 can be recovered, for example for recycling to the OCM reactor, ethylene product 115 can be recovered, and C3+ products 116 can be recovered. Additionally, CO 2 117 and methane 118 can be directed from the separations system into a methanation unit 106. The methanation unit can produce methane from the CO2, for recycling 119 back to the OCM reactor. Additional methane 120 can be added to the OCM reactor supply stream 121.
  • Auto Refrigeration
  • OCM process systems can use refrigeration subsystems to condense overhead vapors, for example from a demethanizer, a deethanizer, and/or a C2 splitter. The temperatures employed can be in the range from about 12° C. to about −100° C. These low temperatures can be achieved through the use of multiple refrigeration systems, such as ethylene refrigeration and propylene refrigeration systems, to provide different levels of refrigeration. These can be similar to those employed in existing steam crackers.
  • Alternatively, an open loop methane refrigeration system can be employed to provide refrigeration for a demethanizer OCM product effluent can comprise methane as the major component, for example at a concentration of at least about 50 mol %, 60 mol %, 70 mol %, 80 mol %, or 90 mol %. The demethanizer can have the lowest temperature requirements in the entire separations unit. Use of methane refrigeration (e.g., auto-refrigeration) can provide benefits such as elimination of the need for an additional refrigeration system (e.g., new) for any added capacity. For grassroots or greenfield OCM applications, this can considerably reduce refrigeration compressor sizes needed. In some cases, an entire refrigeration system can be eliminated. FIG. 2 shows a block flow diagram for an exemplary open loop methane refrigeration system, such as can be used in gas processing plants and steam crackers to produce chilling for condensing overhead vapors from a demethanizer Most elements of FIG. 2 correspond to the description in FIG. 1; the separations unit 205 can include an open loop methane refrigeration system to provide cooling for the separations. The system can be combined with a single or multiple stage (e.g., two-stage) expansion system (e.g., Joule Thompson) to chill the incoming feed. In certain cases, multiple separate lighter products are recovered, such as a light H2-rich stream, a low pressure methane rich stream, and a high pressure methane rich stream.
  • Mixed Refrigeration
  • Another alternative to ethylene and propylene refrigeration subsystems is the use of a mixed refrigeration system. The mixed refrigerant can be, for example, a mix of methane, ethylene and propylene. The mixed refrigerant can be a mix of ethane and propane. A wide range of possible mixed refrigerants can be employed, and can be selected based on, for example, the availability of certain components and the degree of refrigeration required. A mixed refrigerant system can provide advantages for use with an OCM reactor system, including the use of only one refrigeration sub system. Rather than two refrigeration systems each comprising multiple stages of refrigerant compressor, associated vessels, exchangers, and other components, the process can use a single refrigeration system. This can substantially reduce capital cost. This can also reduce equipment count, which can be a benefit especially for OCM retrofits at places where plot space may be a concern.
  • Pi Complexation
  • Pi complexation techniques can be used to separate alkenes from alkanes. Some metal ions complex selectively with unsaturated organic compounds. Some of these complexes are reversible while others are irreversible. For example, aqueous silver salt in solution forms reversible complexes with olefins, and forms irreversible complexes with acetylenes. This property can be employed in an OCM process to recover ethylene and propylene from OCM reactor effluent.
  • As shown in FIG. 3, separation of ethylene and/or propylene by metal complexation can be divided into three major sections: absorption, purification or venting of impurities, and desorption. An exemplary process is provided for separation of ethylene and/or propylene from a purified multi-component gas stream from the OCM reactor. FIG. 3 shows a process for purifying a stream containing ethylene using an aqueous silver nitrate solution. Metal complexation (e.g., silver or cuprous ion complexation) can be used to separate ethylene and/or propylene from a purified multi-component gas stream produced via OCM comprising C2 compounds, C3 compounds, and lighter components such as hydrogen and nitrogen. First, the multi-component gas stream 310 can be introduced into an absorber 301 with aqueous silver salt solution, such that the ethylene and/or propylene undergo absorption or complexing with the silver metal ions, and such that trace acetylenes react with the silver metal ions. Vent gas 311 can be removed from the absorber. Then, the silver salt solution stream 312 can be vented 313 in a vent column 302 at reduced pressure to remove any dissolved low molecular weight components. Then, the resulting silver salt solution stream can be treated in a stripper 303 to separate the absorbed or complexed ethylene and/or propylene from the silver salt solution, and further treated in a treatment unit 304 to release the trace acetylenes. Purified ethylene 316 can be recovered, and some product can be recycled 317. The aqueous silver salt stream 318 can then be recycled to the first step, in some cases after regeneration in a regeneration unit 305 with AgMnO 4 320. MnO 2 321 can be removed from the regeneration unit. H2O2 319 can be added to the solvent stream being returned to the absorber.
  • Useful adsorbents include but are not limited to metal compounds, such as silver or copper, supported on high surface area carriers with a plurality of pores. These adsorbents can be used in pressure swing adsorption or temperature swing adsorption processes. When operating pressure and/or temperature is changed, the silver or copper compound can release the alkene-rich component from the adsorbent. These adsorbents can be very effective for selective adsorption of alkenes such as ethylene, propylene, and mixtures of these from gaseous mixtures.
  • When a gaseous component solubilizes in a liquid and complexes with its ions, the loading of the gas can be affected by its partial pressure and the temperature and the concentration of the complexing ions in the solution. Therefore, by changing the physical conditions separately or collectively, the active gaseous component can either be formed into or out of the solution. Adjusting or swinging one or more physical parameters can be used to carry out an ethylene or propylene separation using an aqueous silver nitrate solution. Purification or venting of impurities can result in a product stream that is free or substantially free of impurities including but not limited to CO2, sulfur compounds, acetylenes, and hydrogen. Acetylene and hydrogen can cause operational problems and so the process gas can be treated to bring the concentration of such impurities to within an acceptable limit.
  • Metal complexation can be used in combination with other processes, such as membrane based processes.
  • Membranes
  • Membranes can be used to perform a variety of separations, such as separations of olefins and paraffins, or separations of CO2. A membrane can be essentially a barrier that separates two phases and restricts transport of various chemicals in a selective manner. Polymer membranes can be used to separate mixtures such as propylene/propane mixtures and ethylene/butene mixtures. Separations in polymeric membranes are dependent on the solubility and diffusion of the species through the membrane. While zeolite-based separations are predominantly depended on molecular size differences, the differing permeation of olefins through a polymeric membrane can be largely attributed to differences in solubility, which can depend on the critical temperature and the kinetic diameter. Membrane separations can be employed even when there are small molecular size differences.
  • The OCM process can utilize a membrane based separation process to further enhance the efficiency and energy consumption of the process. Cryogenic distillation can be used for the separation of alkenes, but is highly energy intensive. Membrane based separations can be used for a variety of purposes in the context of an OCM process, such as to separate and purify ethylene product from OCM reactor effluent, to separate a stream rich in CO2, to separate a stream containing lighter hydrocarbons and inerts, or to separate C2 compounds from C1 and lighter compounds.
  • Membranes can include but are not limited to isotropic membranes, anisotropic membranes, and electrically charged membranes. A membrane can be a ceramic membrane, a metal membrane, or a liquid membrane. An isotropic membrane can be a microporous membrane or a non-porous dense membrane. Membranes can be used for separations including but not limited to CO2 separation, paraffin-olefin separation, or selective recovery of pure ethylene from the OCM reactor effluent. Polymer derived carbon molecular sieve membranes can be used to separate paraffins from olefins. These membranes can be used, for example, to separate ethylene from a mix of methane and ethane.
  • Membrane separations can be used in combination with other types of separation and purification subsystems to remove other impurities such as acid gases, hydrogen, and nitrogen.
  • Transport through a membrane can take place when a driving force is applied to the components in the feed. A driving force can be a pressure differential or a concentration (activity) gradient across the membrane. Membrane based separation techniques can be used in an OCM process by applying either of the above mentioned driving forces. A membrane based separation can also be a component of a hybrid separation set-up, such as a membrane and an absorption system (e.g., a membrane contactor) or a membrane in a pressure swing adsorption (PSA) or a temperature swing adsorption (TSA) system.
  • An OCM reactor can employ membranes as a part of the reactor system to effectively separate the ethylene product within the reactor system itself. A section of the reactor can include membranes that aid in recovering the ethylene product, with a methane rich stream being recycled to a methanation system and eventually to the OCM reactor. Such a system can also use advanced heat recovery or quench methods so as to facilitate the use of membranes.
  • Pressure Swing Adsorption (PSA) and Adsorption Technology
  • Cryogenic separation (e.g., distillation) can be used for the recovery of ethylene, propylene, and other components from olefin plants, refinery gas streams, and other sources. These separations can be difficult to accomplish because of the close relative volatilities, and can have significant temperature and pressure requirements for operation. The ethane/ethylene distillation can be performed at about −25° C. and 320 pounds per square inch gauge (psig) in a column containing over 100 trays. Distillation of propane and propylene can be performed at about −30° C. and 30 psig. These can be some of the most energy intensive distillations in the chemical and petrochemical industry. In general, the use of distillation towers to separate recover and purify components is an energy intensive process.
  • The present disclosure provides the use of adsorbents that can achieve separation and purification of olefin rich streams. In particular, the present disclosure applies the use of PSA-based adsorbent systems to separate, purify, and recover olefins like ethylene and propylene from streams containing one or more impurities such as methane, hydrogen, carbon monoxide, carbon dioxide, ethane, or others. The streams, or parts of the streams, can be generated via an OCM process, an ETL process, or combinations thereof. The streams can be final product streams where PSA is used to recover and purify the final product. The streams can be intermediate streams which are purified prior to use as a feed in a subsequent process, such as an ETL process, an ethylene cracker (steam cracker), a refining unit, a fuel gas system, a natural gas recovery plant or any other product fractionation or product treatment unit.
  • Pressure Swing Adsorption (PSA)
  • A pressure swing adsorption (PSA) process cycle is one in which desorption takes place at a different (e.g., lower) pressure than the adsorption pressure. Reduction of pressure can be used to shift the adsorption equilibrium and affect regeneration of the adsorbent. Low pressure may not be as effective as temperature elevation in totally reversing adsorption, unless very high feed to purge pressure ratios are applied. Therefore, most PSA cycles are characterized by high residual loadings and thus low operating loadings. These low capacities at high concentration require that cycle times be short for reasonably sized beds (e.g., seconds to minutes). These short cycle times are attainable because particles of adsorbent respond quickly to changes in pressure. Major uses for PSA processes include purification as well as applications where contaminants are present at high concentrations.
  • As shown in FIG. 4, the PSA system can comprise two fixed bed adsorbers 401 and 402 undergoing a cyclic operation of four steps—adsorption, blowdown, purge, and pressurization. The PSA system can receive a feed 410 and produce a product stream 411, with a PSA off gas stream 412. For improving the performance of the basic Skarstrom™ cycle (FIG. 4), additional operation steps can be employed such as pressure equalization, product pressurization, and co-current depressurization. Besides these steps, the number of beds can be modified to achieve the optimal operation and multi-bed processes can be used in commercial applications like hydrogen recovery. Similarly, a TSA system can be used where a swing in temperature causes the sorption and desorption.
  • PSA cycles are used primarily for purification of wet gases and of hydrogen. High pressure hydrogen employed in processes such as hydrogenation, hydrocracking, and ammonia and methanol production can be produced by PSA beds compounded of activated carbon, zeolites and carbon molecular sieves. Other exemplary applications include: air separation, methane enrichment, iso/normal separations, and recovery of CO and CO2.
  • Adsorbents
  • Adsorbents can be natural or synthetic materials, such as those having amorphous or microcrystalline structure. Exemplary adsorbents useful for large scale operation include but are not limited to activated carbon, molecular sieves, silica gels, and activated alumina. Other useful adsorbents include pi complexation sorbents, silver and copper complexation adsorbents, zeolites, synthetic zeolites, mesoporous materials, activated carbons, high surface area coordination polymers, molecular sieves, carbon molecular sieves (CMS), silica gels, MCM, activated alumina, carbon nanotubes, pillared clays, and polymeric resins.
  • For systems where the incoming stream is a multi-component mixture of gases and the number of compounds to be separated cannot be removed by a single adsorbent, different layers of adsorbents can be used. For example, hydrogen purification from a methane stream in a reforming operation, where H2 is contaminated with H2O, CO2, CO, and unconverted CH4, can employ activated carbon to remove H2O and CO2 in combination with additional layers of different adsorbents used to increase the loading of CO.
  • Zeolites, molecular sieves, and carbon molecular sieves (CMS) can be used for most industrial separations employing PSA. Inorganic materials, like special kinds of titanosilicates, can be used for kinetic separations.
  • For systems specifically configured to separate ethane/ethylene and propane/propylene, exemplary types of adsorbents include zeolites/molecular sieves and pi complexation sorbents. Zeolites/molecular sieves can be used for kinetic separation, such as separation based on higher diffusivity of olefins over that of paraffins. The use of 4 A zeolite is one such example. Pi complexation sorbents, such as AgNO3/SiO2, can give excellent results as compared to 4 A zeolite. PSA units as discussed herein can employ a range of different sorbents, including but not limited to a zeolite/molecular sieve sorbent, a pi complexation based sorbent, a carbon molecular sieve sorbent or any other form of activated carbon, carbon nanotubes, polymeric resin based sorbents, or other sorbents.
  • Adsorbents can be selected based on a number of different criteria. Adsorbent selection criteria can include capacity for the target components (e.g., affinity for the desired components to be separated from the multi-component feed stream), selectivity between components competing for same adsorption sites, regenerability of the adsorbent, (e.g., the ability of the adsorbent to release the adsorbed target components at a reasonable pressure rate of gas diffusion into the adsorbent—this can also affect the size of the bead that is chosen and consequently the pressure drop across the bed; an insufficient diffusion rate can require smaller diameter beads that can result in higher pressure drop and hence increased operating costs), and chemical compatibility (e.g., selecting an adsorbent resistant to chemical attack that may poison or destroy the adsorbent, such as liquid hydrocarbons causing physical breakdown of the adsorbent resulting in loss of efficiency and back pressure).
  • CO2 Separation
  • There are many technologies available for CO2 capture, such as from flue gases, natural gas, or from any process gas rich in CO2. Various processes for post-combustion or pre-combustion capture can be used reduce CO2 emissions. FIG. 5A, FIG. 5B, and FIG. 5C show exemplary schematics of different separation methods available to separate CO2 from a process gas or a flue gas.
  • OCM processes can utilize an amine based absorption system for CO2 removal, which can be followed by use of a caustic scrubber to obtain high degree of separation. The amine system is prone to corrosion, solvent degradation, and above all, has high energy requirements. Separations with sorbents and/or solvents can involve placing the CO2 containing gas in intimate contact with a liquid absorbent or a solid sorbent that is capable of capturing the CO2. As shown in FIG. 5A, a stream with CO 2 510 can be directed into a capture vessel 501, where it contacts sorbent which captures CO2 from the stream. The stream, with reduced or removed CO2, can then exit 511 the vessel. Sorbent 512 loaded with captured CO2 can be transferred to a sorbent regeneration vessel 502 where it releases the CO2 after being heated (e.g., with the use of energy 513), after a pressure decrease, or after any other change in the conditions around the sorbent, thereby regenerating the sorbent. Spent sorbent 515 and CO 2 516 can be removed from the vessel, and make up sorbent 513 can be added. After the regeneration step the sorbent can be sent back to capture more CO2 in a cyclic process. The sorbent can be a solid. Solid sorbent can remain in a single vessel rather than being cycled between vessels; sorption and regeneration can be achieved by cyclic changes (e.g., in pressure or temperature) in the vessel where the sorbent is contained. A make-up flow of fresh sorbent can be used to compensate for natural loss of activity and/or sorbent losses.
  • Amine scrubbing technology can be used to remove acid gases from process gases. Primary amines (e.g., MEA, DGA), secondary amines (e.g., DEA, DIPA), tertiary (e.g., MDEA, TEA), sterically hindered amines, chilled ammonia, potassium carbonate, and other compounds can be used to remove CO2 from process gases. Traditional amine based systems can be characterized by high energy requirements and solvent degradation. Improved solvents, which can require less energy for regeneration of the solution, include the Benfield process and two stage diethanolamine. Combination with an OCM process can reduce the energy consumption of amine scrubbing processes. Improved solvents can reduce the energy requirements by as much as 40% compared to the traditional MEA solvents. This has the potential of reducing the energy, and hence steam, consumption of the OCM process, thereby increasing the amount of steam available for export from the OCM, or making alternative waste heat recovery methods feasible.
  • Physical absorption solvents used can include but are not limited to glycol dimethylethers (e.g., Selexol) and propylene carbonate (e.g., IPTS/EC). Regeneration of the solution can be performed by vacuum flashing and air stripping; this approach can consume significantly less energy than in chemical absorption. In using physical solvents CO2 can be released mainly by depressurization, thereby avoiding the high heat of consumption of amine scrubbing processes.
  • Mixed or hybrid solvents can include but are not limited to Sulfinol™ (sulfolane, water, and amine), such as Sulfinol-M and Sulfinol-X.
  • Solid adsorbents, such as zeolites and activated carbon, can be used to separate CO2 from gas mixtures. In pressure swing adsorption (PSA), a gas mixture can flow through a packed bed of adsorbent at elevated pressure until the concentration of the desired gas approaches equilibrium. The bed can be regenerated by reducing the pressure. In temperature swing adsorption (TSA), the adsorbent can be regenerated by raising its temperature. In general usage, adsorption is not yet considered attractive for large scale separation of CO2 because the capacity and CO2 selectivity of available adsorbents are low. However, when the OCM process is a recycle process, an adsorbent based separation method can be used to separate bulk CO2 followed by consuming the remaining CO2 in a methanation reactor system, or by using a caustic scrubber to treat the remaining CO2.
  • Many different types of membrane materials (e.g., polymeric, metallic, ceramic) can be used for CO2 capture to preferentially separate CO2 from a range of process streams. FIG. 5B shows an exemplary schematic of separation of CO2 from a gas stream 530 in a separation vessel 520 using a membrane 521. CO2 can be removed from the stream via the membrane, and CO2 and other gases can exit the vessel in separate streams 531 and 532. The main limitation of currently existing membranes is the occurrence of severe plasticization of the membrane in the presence of high pressure CO2. Due to excessive swelling of the polymer membrane upon exposure to CO2, the performance (e.g., selectivity) can decrease significantly, thus reducing the purity of the CO2 and consequently reducing the possibilities for reuse of the gas. Energy requirements can be significantly lower for membrane based technologies; for example, membrane technology can use 70-75 kWh per ton of recovered CO2 compared to significantly higher values for pressure swing adsorption (e.g., 160-180 kWh), cryogenic distillation (e.g., 600-800 kWh), or amine absorption (e.g., 330-340 kWh), making membrane technology an attractive option for integration with OCM for CO2 separation.
  • Membrane and amine technologies can be combined to form a hybrid process to capture CO2. Micro-porous hollow fiber membranes can be used for CO2 separation using amine-based chemical absorption processes. Micro-porous membranes can be used in a gas-liquid unit where the amine solution is contacted with CO2 containing gas. Using the membrane can lead to a reduction in the physical size and weight of the gas-liquid contacting unit. The separation is based on reversible chemical reaction, and mass transfer occurs by diffusion of the gas through the gas/liquid interface as in traditional contacting columns. Such a hybrid membrane contactor can provide a high contact area between gas and liquid, reduce or essentially eliminate foaming and flooding problems, and give better operational flexibility while reducing solvent degradation problems.
  • A membrane contactor can combine the advantages of membrane technology and solvent absorption for CO2 separation. A membrane contactor is a combination of advanced membrane techniques with an effective absorption process. A membrane contactor is a hybrid mass exchanger where a porous membrane separates two phases. The selective sorbent performs the separation while the membrane facilitates the mass exchange process by expanding the phase contact surface area. The modified surface properties can improve the selectivity of the process by selectively inhibiting the transport of one of the mixture constituents. Compared to a conventional column device, membranes can allow for up to five times increase in yield per unit volume. Since the sorptive liquid flows within capillaries and both phases are not directly contacting each other, membrane absorbers can operate in any spatial configuration (horizontal or vertical) and at any flux rations between both phases. Also, there is no flooding or uneven packing moisturization. Since the system operates with unchanging yields, independent of the diameter and height; scaling up is fairly simple. Membranes used can be micromembranes or ultrafiltration membranes made a variety of different polymer and ceramic materials. Polypropylene fiber membranes can be used to separate CO2 from CH4, for example by using amines like MEA as absorption liquid. Hollow fiber membranes, such as porous polypropylene, perfluoroalkoxy (PFS), and asymmetric poly(phenylene oxide) hollow fiber membranes with a dense ultrathin skin at the outside of the membrane can also be used. Besides amines as absorption liquid, other absorption liquids may be used, such as aqueous sarcosine salt solutions, for example in a gas-liquid membrane contactor system. A membrane contactor can be used to separate the CO2 from the OCM effluent in which CH4 is the major component. Membrane contactors can also be used for separation of olefins and paraffins, and the separation of CO2 from light gases.
  • An activator, such as piperazine, diethanolamine, and arsenic trioxide, can be used to further enhance the effectiveness of CO2 capture. DGA and tertiary amines may provide more improvement than primary or secondary amines.
  • Gas selective poly ionic liquid membranes, which are polymerized room temperature ionic liquids (RTIL), can be used to be highly selectively separate CO2. RTILs can be synthesized as a monomer and subsequently polymerized to obtain gas selective membranes. The ionic nature of the polymers can result in tight arrangements between the oppositely charged ionic domains in the poly RTIL, which can eventually prevent the membrane from excessive swelling and deterioration of its performance at increased pressure and/or temperature. This intrinsic property of poly RTIL can be used to increase the resistance against plasticization and to restrict strong swelling of the polymer membrane to maintain its permeation properties in the presence of a strong plasticizing agent such as CO2 at higher pressures. For example, an imidazolium-based poly RTIL can be used as base material and the length of the alkyl chain can serves to strengthen or weaken the ionic interactions within the poly RTIL. High pressure mixed CO2/CH4 gas separation measurements at different temperatures.
  • Gas components like CO2, from N2 or CH4 can be separated with supported ionic liquid membranes. Ionic liquids are molten salts with a very low melting point (many are liquids at room temperature). Many ionic liquids show a high solubility for carbon dioxide and hence can be highly suitable for use with an OCM process. For example, ionic liquids can include but are not limited to imidazolium, pyrollidinium, pyridinium, cuanidinium, phosphonium, morpholinium, piperidinium, sulfonium, ammonium, hexafluorophosphate, tetraflouroborate, alkylsulphate, triflate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and combinations thereof. Specific advantages of ionic liquids include very low to negligible vapor pressure, good dissolution characteristics for many substances, and lack of flammability or toxicity. Ionic liquids can have good thermal, mechanical and chemical stability as well as favorable densities and viscosities. The required specifications can be adjusted easily by the large number of possible combinations of anions and cations when formulating an ionic liquid. Ionic liquids can be used as chemical solvents, catalysts, electrolytes in fuel cells as well as for gas-separation and storage by absorption. Ionic liquid membrane systems can comprise an adequate porous support material, e.g. a polymer film, coated by ionic liquids. The system separated CO2 and sulfur compounds from different gas mixtures. Competitive selectivity and permeability are obtained for the separations.
  • Novel membrane materials, such as polyetherimides, can be used as membrane material with improved plasticization resistance for CO2 removal, for example with an OCM process. Other membrane materials that can be used include polymeric membranes based on polyamides, polysemicarbazides, polycarbonates, polyarylates, polyaniline, poly(phenylen oxide), polysulfones, and polypyrrolones. In some cases, the polymeric membrane is solvent resistant and can reduce the plasticization effects of hydrocarbons in the feed stream, e.g., polyketone, polyether ketone, polyarylene ether ketone, polyimide, polyetherimide, and polyphenylene sulphide, which have intrinsic solvent inertness and can therefore withstand organic rich operation conditions.
  • An adequate porous support material, e.g. a polymer film, coated by ionic liquids can be used in continuous separation of CO2 and sulfur compounds from different gas mixtures, including a methane rich stream. This separation can improve the efficiency of OCM processes. The OCM reactor effluent can enter the supported ionic liquid separation subsystem, and CO2 and other contaminants can be removed from the process gas. Other contaminants can include but are not limited to traces of sulfur compounds, inerts, CO, SO2, H2S, and tetrahydrothiophene (THT).
  • CO2 can be separated from other gases by cooling and condensation, for example as shown in FIG. 5C. A stream containing CO 2 550 can be compressed in a compressor 540, and the compressed stream 551 can be directed to a distillation column 541. Some components can be recovered from the overhead stream 552, with heat recovered in a heat exchanger 542. Other components can be recovered from the bottoms 555. Cryogenic separation is widely used commercially for streams that already have a high concentration of CO2 (typically greater than 90%). Cryogenic separation of CO2 has the advantage that it enables direct production of high purity liquid CO2 that can be used as a feedstock to convert the carbon to higher value hydrocarbons, or otherwise be captured. The amount of energy required can be high, and water may need to be removed before the feed gas is cooled.
  • Low temperature distillation can give better results when there is a high concentration of CO2 in the feed gas. For the OCM process gas, the CO2 concentration can be increased by, for example, having a recycle stream, or by using a modified OCM reactor where excess CO2 is used as a quench medium for the reaction heat. Low temperature separation can refer to separations using temperature levels above −90° C.
  • FIG. 6 shows a schematic of CO2 separation using distillation. OCM reactor effluent 606 can be fed to a treatment unit 601, such as a molecular sieve dryer, a sulfur removal bed, or an acetylene removal bed. The treated gas is fed to the first distillation column 602 that separates the bulk of the methane from the CO2 and other heavier hydrocarbons. Depending on the CO2 concentration in the stream 606, the bottom stream 608 may contain 50%, 60%, 70%, 80%, 90% (or anywhere in between) of the incoming CO2. The overhead from 607 contains majority of the methane and other light gases and is fed to the column 603. Column 603 further recovers methane rich gas 611, which can be the feed to a methanation system. The bottoms product 616 may be recycled or sent as a purge to the fuel gas system. The CO2 rich gas 608 is distilled in the CO2 column 604 to recover pure CO 2 609 in the overhead. The bottoms product 610 can contain some methane along with ethane, ethylene, and other heavier hydrocarbons, and can be sent to recover the ethylene product in a separator 605. The CO2 product can be sent to methanation unit, and a part of the CO2 can be recycled to achieve the desired concentration of CO2 in the feed stream 606. Such a CO2 distillation sub system can offer many benefits, including but not limited to reducing the loop size of the OCM process considerably, as the function of the existing cryogenic demethanizer can be reduced by a large extent. Additionally, amine and caustic systems can be replaced by cryogenic or low temperature distillation systems.
  • Alkaline salt-based processes can be used for carbon dioxide removal. These processes can utilize the alkali salts of various weak acids, such as sodium carbonate and potassium carbonate. These processes can provide advantages such as low cost and minimal solvent degradation. Processes that can be used for H2S and CO2 absorption include those using aqueous solutions of sodium or potassium compounds. For example, potassium carbonate can absorb CO2 at high temperatures, an advantage over amine-based solvents.
  • Hot potassium carbonate (K2CO3) solutions can be used for the removal of CO2 from high-pressure gas streams, among other applications. Potassium carbonate has a low rate of reaction. To improve CO2 absorption, mass transfer promoters such as piperazine, diethanolamine, and arsenic trioxide can be used. Less toxic promoters such as borate can also be used, for example with flue gas streams (see, e.g., Ghosh et al., “Absorption of carbon dioxide into aqueous potassium carbonate promoted by boric acid”, Energy Procedia, pages 1075-1081, February 2009, which is hereby incorporated by reference in its entirety). To limit corrosion, inhibitors can be added. These systems can be known as activated hot potassium carbonate systems. Licensed hot activated potassium carbonate systems include the Benfield™ and the Catacarb™ process. The processes can be used for bulk CO2 removal from high-pressure streams, but can also produce high-purity CO2.
  • Flue gas impurities such as SOx and NOx can reduce the operational efficiency of the potassium carbonate as a solvent. SO2 and NO2 may not able to be released from the solvent under industrial conditions. Selective precipitation of the impurity salts formed by SOx and NOx can be used to remove such compounds (see, e.g., Smith et al., “Recent developments in solvent absorption technologies at the CO2CRC in Australia” Energy Procedia, pages 1549-1555, February 2009, which is hereby incorporated by reference in its entirety).
  • A variety of materials can be used as CO2 sorbents through chemical reactions and physical absorptions, including but not limited to soda-lime, active carbon, zeolites, molecular sieves, alkali metal oxides, silver oxide, lithium oxide, lithium silicate, carbonates, silica gel, alumina, amine solid sorbents, metal organic frameworks and others.
  • Physical impregnation of CO2-reactive polymers, such as tetraethylene pentamine or polyethyleneimine, inside a porous support, such as alumina, pumice, clay or activated carbon, can be used for CO2 removal. Amine based sorbents can be easily regenerated. Alternatively, a mixture of an amine compound with a polyol compound can be impregnated in a porous support. The polyol compound can be used to increase the CO2 desorption rate of the amine. The supported amine-polyol sorbent can comprise from about 1 wt % to about 25 wt % amine and from about 1 wt % to about 25 wt % polyol, with the balance being the support. Solid sorbent can adsorb and desorb CO2 a relatively high rates at ambient temperatures Enhanced CO2 cyclic removal capacities in either dry or humid air flows can further be achieved by using a solid sorbent at an increased amine concentration of amines from about 35 wt % to about 75 wt %.
  • Solid sorbents that can selectively remove multiple gases can be used to remove CO2, H2O, nitrogen oxides, and hydrocarbons. This can be achieved by using composite adsorbents, for example by using a mixed adsorbent of alumina and zeolite to remove CO2 and H2O simultaneously.
  • CO2 can be separated from flue gas using an ion pump method instead of relying on large temperature and pressure changes to remove CO2 from a solvent. Ion pump methods can dramatically increase the overlying vapor pressure of CO2. As a result, the CO2 can be removed from the downstream side of the ion pump as a pure gas. The ion pumping can be obtained from techniques including but not limited to reverse osmosis, electro dialysis, thermal desalination methods, or an ion pump system having an oscillation flow in synchronization with an induced electric field.
  • By making use of energy such as renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in a non-biological process. Various pathways can enable such a conversion, for example by H2O and CO2 dissociation followed by fuel synthesis. The methods of dissociation can include heat, electricity, and solar driven methods such as thermolysis, thermochemical loops, electrolysis, and photoelectrolysis. High temperature electrolysis can make efficient use of electricity and heat, provide high reaction rates, and integrate well with fuel synthesis.
  • Synthetic analogues of enzymes as a polymer thin film supported on micro-porous substrates can be used to separate CO2 from gas mixtures. For example, a polymer thin film containing carbonic anhydrase mimicking sites can supported on a porous substrate and can separate CO2 from a stream containing O2 and N2. The system can be, for example, about 30% lower in cost compared to amine-based systems.
  • Process Configurations Electrolysis to Generate Oxygen and Hydrogen for OCM Process
  • Electrolysis can be used to produce industrial hydrogen. OCM processes can have a lot of synergistic benefit from deploying a water electrolysis subsystem with the OCM process. The water electrolysis unit can replace an air separation unit (ASU) to supply the oxygen required for the OCM process. The products from the electrolytic unit can be consumed within the OCM process: oxygen can be consumed within the OCM reactor and hydrogen can be used in a methanation reactor. Availability of more hydrogen in the methanation unit has the potential to increase the carbon efficiency to about 100%, by converting the CO2 produced in the OCM reaction to methane, which can be recycled back to the OCM reactor. The OCM unit can be a net exporter of high purity excess hydrogen, after consuming the entirety of the CO2 produced in the OCM Process.
  • The water electrolysis subsystem can be an electrolytic cell employing alkaline water electrolysis, a proton exchange membrane electrolysis system, or a steam electrolysis system. The electricity source to the electrolytic sub system can be renewable, such as photo voltaic/solar power, which can make the entire system 100% carbon efficient with a zero carbon footprint. A storage system for oxygen, or a backup power supply, may be used to ensure the continuous supply of oxygen and hydrogen.
  • With steam electrolysis, a substantial part of the energy needed for the electrolysis process can be added as heat, which can be much cheaper than electric energy, and which the OCM reactor can produce in abundance. Therefore, integration of steam electrolysis can take advantage of the extra heat from the OCM reactor to provide energy for the steam electrolysis. This can be of particular benefit to OCM deployments where no additional steam or power is required.
  • FIG. 7 depicts an exemplary electrolysis subsystem combined with an OCM system. The electrolysis subsystem 701 can take water 710 and electric power 711 as inputs and generate pure oxygen 712 and hydrogen 713 as products. The oxygen can be fed into an OCM reactor 702 with a methane feed 714, for conversion to higher hydrocarbon products including ethylene. The OCM product stream can be compressed in a compressor 704 and separated in a separations unit 705. Higher hydrocarbon products 716 can be recovered from the separations unit, and other compounds such as methane and CO2 can be recycled 717 and/or purged 718. The recycle stream can be directed to a methanation unit 703, which can generate methane 715 using the hydrogen from the electrolysis subsystem. The extra hydrogen that is now available to the methanation unit can enable the conversion of most or all of the CO2 produced in the OCM process to methane, which can drive the process to a higher efficiency. The process can also be almost 100% emission free. The CO2 produced in the process that may be discarded as waste may be converted to methane and hence to ethylene in the OCM reactor.
  • Different Quench Media for the OCM Reaction
  • The OCM reaction is highly exothermic. Various quenching media can be used to extract the OCM reaction heat. For example, CO2 can be injected to extract the heat, which results in the OCM effluent containing excess CO2; such effluent can be suitable for the advanced CO2 recovery methods described herein. FIG. 8 shows an exemplary system where CO 2 814 is removed from an OCM product stream 812 (generated in an OCM unit 801 from an oxygen stream 810 and a methane stream 811) in a CO2 separation unit 802 and recycled from back to the OCM reactor 801. A waste gas or purge stream 815 can also be removed from the CO2 separation unit. The OCM product stream 813 can then be separated in a separations unit 803 into a product stream 816 comprising ethylene and a purge and/or recycle stream 817. Separation methods can include low temperature separation, membrane separation, or other separation methods discussed herein. The OCM loop can be decreased to just a CO2 recycle stream. The system can also comprise a methanation unit (not shown).
  • Such an approach can provide advantages including a smaller recycle loop and more efficient CO2 removal methods, resulting in lower capital expenditure (CAPEX). This can also result in the feasibility of small distributed scale OCM units, since after the removal of excess CO2, the relatively richer ethylene stream needs fewer treatment and recovery steps.
  • Heat Recovery
  • Waste heat from the OCM process can be used to generate superheated high pressure steam that can be used in the process, exported to other users on site, or can be used to generate power. Excess process heat can also be used to preheat the feed streams. Other uses for excess heat can be less capital intensive, and offer a greater operational flexibility and low maintenance. Thermoelectric energy conversion can be used to convert waste heat to power. Example uses for waste heat include single fluid rankine cycles (e.g., steam cycle, hydrocarbons, and ammonia), binary/mixed fluid cycles (e.g., ammonia/water or mixed hydrocarbon cycle).
  • Organic Rankine Cycle
  • The organic Rankine cycle (ORC) can be used to generate power from heat. In ORC, an organic component is used instead of water. The organic compound can be a refrigerant, a hydrocarbon (e.g., butane, pentane, hexane), silicon oil, or a perfluorocarbon. The boiling point of the organic fluid can be lower than that of water, which can allow recovering heat at a lower temperature than in the traditional steam Rankine cycle.
  • Owing to the exothermicity of the OCM reaction, the ORC system can be deployed as a waste heat recovery method for use with OCM. Waste heat at relatively low temperature can be recovered by an intermediate heat transfer loop and used to evaporate the working fluid of the ORC.
  • FIG. 9 shows an exemplary OCM system with an ORC subsystem. The working fluid can be chosen which can be condensed with cooling water or air at normal atmospheric pressure. FIG. 9 shows the heat source as the OCM reaction heat from an OCM unit 901. Heat can be recovered from the OCM product stream 910 in an evaporator 902, and the product stream 911 can then be directed for downstream processing from the OCM unit. The heat recovered in the evaporator can be used to evaporate a working fluid stream 912, which can then be directed to a turbine 903 to generate power in a generator 904. From the turbine, the working fluid 913 can be directed to a condenser 905 and cooled using a cooling medium 914. The cooled working fluid 915 can then be pumped by a pump 906 in a stream 916 back to the evaporator.
  • Thermoelectric Power Generation
  • The OCM process can make use of a heat exchanger with thermoelectric (TE) generators for heat recovery. A Thermoelectric Power Generator (TPG) can have four basic components: Heat source, P and N type semiconductor stack (or a TE module), heat sink (cold side), and an electrical load (output voltage). The TE module can include two or more of P-type and N-type semiconductor pellets connected in series or parallel depending on the served load.
  • The TE devices can be solid state engines that do not require any working fluid. Thermoelectric materials can provide efficiencies of up to 15% or greater. Thermoelectric generators coupled with heat exchangers can produce electricity even at temperatures as low as 350 K with low maintenance. TE modules can be used with OCM including large bulk TE modules and thin film or micro TE modules.
  • For high temperatures, micro TE modules can be used. Micro TE modules can also have low equipment weights. TE devices can be very reliable, scalable, and modular. Some TE modules can give best results at small scales. The OCM process can generate medium level waste heat that is highly suitable for a TE device to generate power.
  • OCM and ETL Systems with Advanced Separations Sub-Systems
  • PSA technology can be applied to processes including those involving a hydrocarbon stream containing a mix of the following hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, propane, propylene, butanes, butenes and/or other higher hydrocarbons needing to be purified or separated into desirable products (e.g., ethylene, methane, hydrogen, or propylene).
  • Hydrocarbon streams can be produced via traditional refining and petrochemical processes. Hydrocarbon streams can be produced from OCM or ETL reactor systems.
  • The present disclosure provides the use of PSA in processes and systems for oxidative coupling of methane (OCM) and ethylene-to-liquids (ETL) operations, and the application of adsorbent based processes used in conjunction with OCM and ETL processes to generate significant process improvements and enhance the economic value of the processes. OCM systems are described in, for example, U.S. patent application Ser. No. 14/592,668, which is entirely incorporated herein by reference. ETL systems are described in, for example, U.S. patent application Ser. No. 14/591,850, which is entirely incorporated herein by reference.
  • An OCM system, such as that shown in FIG. 10, can include an OCM or OCM-post-bed-cracking (PBC) reactor 1002, a process gas compression system 1003, a process gas treatment system 1004, a cryogenic separations system, and a methanation system 1001. The feed to the OCM system can be an oxygen feed 1012 and a methane source feed 1011 (such as a natural gas feed stream or other methane source). In some cases, additional ethane feed can be supplied to the PBC section of the OCM reactor, where paraffins such as ethane in the OCM product stream and/or additional ethane can be cracked to olefins such as ethylene. The separations sub-system can comprise a series of fractionation towers, like a demethanizer 1005, deethanizer 1006, C2 splitter 1007, depropanizer 1008, debutanizer, and others. Overhead 1013 from the demethanizer can be directed into the methanation system along with hydrogen or natural gas 1010 to produce additional methane. The bottoms stream 1014 from the demethanizer can be directed to the deethanizer. The overhead stream 1015 from the deethanizer can be directed to the C2 splitter, and there split into ethylene 1016 and ethane 1017 streams. The bottoms stream 1018 from the deethanizer can be directed to the depropanizer, and there split into a C3 product stream 1019 and a C4+ product stream 1020. The cryogenic separations system can comprise additional ethylene and propylene refrigeration sub-systems to provide for the chilling requirements of the system.
  • OCM process standalone with advanced separations systems
  • In certain cases, the separations section of the OCM system can be eliminated, or partially eliminated, by utilizing an advanced separations method as discussed in this application. The advanced separation method can be a PSA unit or a membrane based method, or a cryogenic system. FIG. 11 shows an exemplary schematic of OCM with a PSA unit. The PSA unit can separate methane, CO2, CO, and/or H2 from ethane, ethylene, propane, propylene, and/or higher hydrocarbons. Methane 1111 and oxygen 1112 can be directed into an OCM reactor 1102 and reacted to produce higher hydrocarbon products including ethylene. The OCM product can be compressed in a process gas compression system 1103, treated in a process gas treatment system 1104, and separated in the PSA 1105 into a product stream 1113 and a recycle stream 1114. The recycle stream can be directed to a methanation unit 1101, which can also receive a natural gas stream 1110 and produce methane for the OCM reactor. The extent of separation and degree of recovery can depend on the type of adsorbent(s), pressure differential, and number of PSA stages employed. The feed to the PSA unit can have one or more of the following components: H2, N2, O2, CO, CO2, CH4, ethane, ethylene, acetylene, propane, propylene, butanes, butenes, butadiene, water, and higher paraffinic and olefinic components. The PSA product gas can comprise components including but not limited to: H2, N2, CO, CO2, CH4, O2, ethane, ethylene and acetylene. PSA product gas can comprise components from 0% to 99.99% recovery. The PSA tail gas can comprise 99.99%, 90%, 80%, 70%, 60%, 50% ethylene. The PSA tail gas can comprise at least 99.99%, 90%, 80%, 70%, 60%, 50% ethylene. The PSA tail gas can comprise about 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 0% ethane. The PSA tail gas can comprise at least about 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 0% ethane. The PSA tail gas can comprise about 60%, 50%, 40%, 30%, 20%, 10%, 0% methane, hydrogen, acetylene, N2, O2, H2O or CO2. The PSA tail gas can comprise at least about 60%, 50%, 40%, 30%, 20%, 10%, 0% methane, hydrogen, acetylene, N2, O2, H2O or CO2. Based on the process configuration, including the type of adsorbents employed, pressure differential and the operation, various different recoveries are possible.
  • As discussed above, the PSA unit can comprise one or more adsorbent materials that can be suitable to achieve the component recoveries. The sorbent can be a zeolite/molecular sieve based material, a carbon based sorbent, or a π-complexation sorbent. In some cases the sorbent material can be a polymeric resin, carbon nanotubes, and carbon fibers. The PSA unit can be configured to have layers of different sorbents so as to result in high recoveries from the multi-component feed streams to the desired products.
  • In certain cases the PSA can be a multi stage unit (see, e.g., FIG. 12). In such a unit, an OCM reactor 1202 can receive a methane stream 1211 and an oxygen stream 1212, and react the methane and oxygen to produce higher hydrocarbon products including ethylene in an OCM product stream. The OCM product stream can be compressed in a first compressor 1203 and directed to a first PSA separation 1204. The tail gas 1214 from the first PSA can be compressed in a second compressor 1205 and fed to a second PSA separation 1206, the tail gas 1216 from which can be compressed in a third compressor 1207 and separated in a third PSA separation 1208. The tail gas from the third PSA can be the final purified stream 1217 containing ethylene up to 99.9% purity. PSA product streams 1213, 1215, and 1218 can be directed to recycle, such as via a methanation unit 1201 along with a natural gas stream 1210. Each PSA stage can be a dual-bed PSA or a multi-bed PSA system.
  • In certain cases, the process requirements can dictate that only a limited amount of recovery is required in the PSA unit and subsequent recovery and purification is performed in a fractionation column or the gas is a feed for a downstream process unit. The downstream process unit can be an ETL system, an ethylene steam cracker system, a gas processing plant, NGL extraction plant, a refinery off-gas separations system, or other process unit.
  • Retrofits for OCM
  • OCM can be employed to convert a feedstock comprising methane to ethylene and other olefins. Historically, ethylene has been produced via steam cracking of gaseous or liquid hydrocarbon feedstocks like ethane, propane, LPG, or naphtha. As in most of the refining and petrochemical operations, a steam cracking operation can involve a cryogenic fractionation or a separations section that consists of a series of fractionation columns to successively recover various components at high product purity.
  • The present disclosure includes the application of PSA processes to an OCM retrofit of an existing ethylene cracker (e.g., steam cracker).
  • An example application for OCM combined with a PSA unit involves an existing petrochemical plant such as a steam cracker is considering low cost ways to add ethylene capacity. A typical revamp to add capacity could include addition of, or debottlenecking of, the existing fractionation towers for the entire flow addition for the revamp. However, as shown in FIG. 13, the use of a PSA unit as disclosed herein can provide a low cost alternative to traditional revamps. An OCM unit with a PSA unit retrofitted to an existing steam cracker can be an effective way of adding ethylene capacity at a low marginal cost. The advantages of adding a PSA unit include that no additional cryogenic separation is required for the added capacity. For ethylene revamps, one of the key areas during debottlenecking may be the refrigeration systems and/or the fractionation columns, but utilizing the PSA to separate or pre-separate the additional product stream can result in a simpler and easier debottlenecking. As in shown in FIG. 13, for example, the tail gas from the PSA can be sent to the cracker system where the ethylene is recovered.
  • FIG. 13 shows an example of an OCM process integrated with an existing ethylene cracker using a PSA system for separations. The OCM reactor 1301 takes in methane 1310 and oxygen 1311 and produces an OCM effluent 1312 having CO2, CH4 and C2H4, in some cases amongst other components, such as H2 and CO. The OCM reaction can be exothermic and can produce steam 1313. The OCM effluent can be compressed in a compressor 1302 and optionally treated in an acid gas removal system 1303, and fed into a pressure swing adsorption (PSA) unit 1304. In some cases the acid gas removal system may have an additional knock out drum to condense and separate any condensates and water. It also can include a drier to remove water. The PSA unit can produce a product stream that can include H2, CH4, ethane, CO2 and CO. The overhead stream 1315 can be fed into a methanation subsystem 1305 (e.g., methanation reactor) to provide methane for the OCM reactor, and some of the overhead stream can be purged 1316 to a fuel gas system, for example. Additional methane can be provided by way of a natural gas stream or other methane stream. The PSA tail gas 1317 can comprise most of the ethylene, the content of which may range from 50% to 99.9% depending on the process configuration and operation of the PSA system. The PSA tail gas can also comprise H2, CO, CO2, CH4, ethane, propane, propylene, butanes, butenes, and other components. The process of FIG. 13 can further include an existing ethylene cracker 1306. The PSA tail gas can be fractionated using existing separations capacity in the ethylene cracker. The heavy components can be processed in the fractionation towers of the ethylene cracker, optionally first being compressed in the existing process gas compressor of the ethylene cracker. In some cases, the heavy components stream can be routed to the CO2 removal unit of the existing ethylene cracker subsystem to meet the CO2 specification. The OCM reactor can receive a C2 recycle stream 1319 from the cracker complex.
  • The combination of a new OCM unit and an existing ethylene cracker can provide synergistic benefits. It can provide for a low cost alternative to add ethylene capacity to the existing cracker. In some cases, prior to retrofit of an ethylene cracker with OCM, the entire overhead from the existing demethanizer is used as fuel gas, and can now be available as one of the feeds to the methanation unit. In some cases, the demethanizer overhead off-gas comprises up to 95% methane, which can be converted to ethylene in the OCM reactor, hence increasing the total ethylene capacity. In some cases, the hydrogen content in the existing demethanizer overhead is substantial, and may be enough to meet the hydrogen requirement of the methanation unit.
  • In some cases, retrofitting an ethylene cracker with OCM reduces (or allows for reduction of) the severity of cracking in the existing cracker, enabling value addition by increasing the production of pyrolysis gasoline components in the cracker effluent, as the OCM reactor produces the ethylene that may be needed to achieve the total system capacity. The cracker can then be operated on high propylene mode to produce more propylene and at the same time meeting the ethylene production rate by the new OCM unit. This retrofit can result in greater flexibility for the ethylene producer with respect to the existing cracker operation.
  • In some instances, the overall carbon efficiency can be increased as the methane and hydrogen from the existing demethanizer off-gases can be utilized to convert the carbon dioxide and carbon monoxide to methane, which is fed to the OCM reactor.
  • In some instances, ethane and/or propane recycle streams from the existing cracker can be routed to the OCM unit (e.g., instead of the cracking furnaces). These recycle streams are typically routed to the cracking furnaces where they are cracked to extinction. This can provide an advantage over routing the recycle streams to OCM over the cracking furnace, such as higher selectivity to ethylene in the OCM process.
  • In certain cases, more than one stages or PSA columns may be employed to achieve higher recovery and higher product purity. As in shown FIG. 14, for example, up to 99.9% recovery is possible using the multi stage PSA units. An OCM reactor 1402 can receive a methane stream 1410 and an oxygen stream 1411, and react the methane and oxygen to produce higher hydrocarbon products including ethylene in an OCM product stream. The OCM product stream can be compressed in a first compressor 1403 and directed to a first PSA separation 1404. The tail gas 1412 from the first PSA can be compressed in a second compressor 1405 and fed to a second PSA separation 1406, the tail gas 1414 from which can be compressed in a third compressor 1407 and separated in a third PSA separation 1408. The tail gas from the third PSA can be the final purified stream 1417 can be directed to a cracker unit, such as an existing cracker unit, where it can be processed and separated into an ethylene product stream 1418, a propylene product stream 1419, and an additional product stream 1420. PSA product streams 1413, 1415, and 1416 can be directed to recycle, such as via a methanation unit 1401, along with a demethanizer off gas stream 1421 from the cracker unit. Each PSA stage can be a dual-bed PSA or a multi-bed PSA system.
  • The application of a PSA unit to OCM systems, standalone or retrofits to existing facilities exhibits immense potential in terms of cost savings and ease of integration and retrofit to existing facilities.
  • ETL Systems
  • FIG. 15 shows various exemplary configurations for an OCM-ETL process. In the upper left, FIG. 15 shows a stand alone skimmer configuration, where a methane stream 1505 can be directed into an OCM reactor 1501 with an oxygen feed 1506 and optionally an ethane feed 1507. The OCM reactor product stream can be directed into a compressor 1502 and then into an ETL reactor 1503. The ETL product stream can be directed into a gas separations unit 1504, where it can be separated into a C2+ product stream 1508, a C5+ product stream 1509, and an overhead stream 1510 comprising methane which can be returned to a pipeline, sold to a consumer, or otherwise used. In the upper right, FIG. 15 shows a stand alone recycle configuration, where a methane feed stream 1518 (e.g., from a natural gas pipeline) is directed into a treatment unit 1511 and then into a separations system (e.g., cryogenic) 1512. A methane feed stream 1519 can be directed to an OCM reactor 1513, while another methane stream 1520 can be purged or used for power generation. A C2+ stream 1521 can also be recovered from the separations system. An oxygen feed stream 1522 and optionally an ethane stream 1523 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream. The OCM product stream can be directed into a compressor 1514 and then into an ETL reactor 1515. The ETL product stream can be processed in a knockout drum 1516 or other separator to remove a C5+ product stream 1524. The remaining ETL product stream can be directed to a compressor 1517 and recycled to the treatment unit. In the lower left, FIG. 15 shows a hosted skimmer configuration, where a methane stream 1532 can be directed from a separations system 1526 (e.g., cryogenic) into an OCM reactor 1527 with an oxygen feed 1533 and optionally an ethane feed 1534. The OCM reactor product stream can be directed into a compressor 1528 and then into an ETL reactor 1529. The ETL product stream can be directed into a gas separations unit 1530, where it can be separated into a C2+ product stream 1535, a C5+ product stream 1536, and an overhead stream 1537 comprising methane which can be returned to a recompressor 1531. In the lower right, FIG. 15 shows a hosted recycle configuration, where a methane stream is directed into a treatment unit 1538 and then into a separations system (e.g., cryogenic) 1539. A methane feed stream 1546 can be directed to an OCM reactor 1541, while another methane stream can be directed to a recompressor 1540. A C2+ stream 1551 can also be recovered from the separations system. An oxygen feed stream 1547 and optionally an ethane stream 1548 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream. The OCM product stream can be directed into a compressor 1542 and then into an ETL reactor 1543. The ETL product stream can be processed in a knockout drum 1544 or other separator to remove a C5+ product stream 1549. The remaining ETL product stream can be directed to a compressor 1545 and recycled 1550 to the treatment unit.
  • FIG. 16 shows similar configurations as FIG. 15, with an added pressure swing adsoprtion (PSA) unit to pre-separate the OCM effluent to remove most of the methane, hydrogen, CO and CO2 from the olefinic stream, which is then fed to the ETL reactor. This can result in a feed to the ETL reactor that is concentrated in olefins. Though the process remains similar, the entire ETL and separations train becomes considerably smaller; that is, larger capacities can be achieved in the same set-up or same footprint. In some cases this can improve the ETL reaction operation. In the upper left, FIG. 16 shows a stand alone skimmer configuration, where a methane stream 1606 can be directed into an OCM reactor 1601 with an oxygen feed 1607 and optionally an ethane feed 1608. The OCM reactor product stream can be directed into a compressor 1602 and then into a PSA unit 1603. A light stream 1609 comprising methane, hydrogen, CO and CO2 can be directed from the PSA back to a pipeline, sold to a consumer, or otherwise used. An olefinic stream can be directed from the PSA to an ETL reactor 1604. The ETL product stream can be directed into a gas separations unit 1605, where it can be separated into a C2+ product stream 1610, a C5+ product stream 1611, and an overhead stream 1612 comprising methane which can be returned to a pipeline, sold to a consumer, or otherwise used. In the upper right, FIG. 16 shows a stand alone recycle configuration, where a methane feed stream 1628 (e.g., from a natural gas pipeline) is directed into a treatment unit 1620 and then into a separations system (e.g., cryogenic) 1621. A methane feed stream 1629 can be directed to an OCM reactor 1622, while another methane stream 1630 can be purged or used for power generation. A C2+ stream 1631 can also be recovered from the separations system. An oxygen feed stream 1632 and optionally an ethane stream 1633 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream. The OCM product stream can be directed into a compressor 1623, and at least a portion 1634 of the OCM product stream can be directed from the compressor into a PSA unit 1624. A light stream 1635 comprising methane, hydrogen, CO and CO2 can be directed from the PSA back to the treatment unit. An olefinic stream 1636 can be directed from the PSA to an ETL reactor 1625. The ETL product stream can be processed in a knockout drum 1626 or other separator to remove a C5+ product stream 1637. The remaining ETL product stream can be directed to a compressor 1627 and recycled to the treatment unit. In the lower left, FIG. 16 shows a hosted skimmer configuration, where a methane stream 1647 can be directed from a separations system 1640 (e.g., cryogenic) into an OCM reactor 1641 with an oxygen feed 1648 and optionally an ethane feed 1649. The OCM reactor product stream can be directed into a compressor 1642 and then into and then into a PSA unit 1643. A light stream 1650 comprising methane, hydrogen, CO and CO2 can be directed from the PSA to a recompressor 1646. An olefinic stream can be directed from the PSA to an ETL reactor 1644. The ETL product stream can be directed into a gas separations unit 1645, where it can be separated into a C2+ product stream 1651, a C5+ product stream 1652, and an overhead stream 1653 comprising methane which can be returned to the recompressor. In the lower right, FIG. 16 shows a hosted recycle configuration, where a methane stream is directed into a treatment unit 1660 and then into a separations system (e.g., cryogenic) 1661. A methane feed stream 1669 can be directed to an OCM reactor 1663, while another methane stream can be directed to a recompressor 1662. A C2+ stream 1677 can also be recovered from the separations system. An oxygen feed stream 1670 and optionally an ethane stream 1671 can also be directed into the OCM reactor, and the reactor can produce an OCM product stream. The OCM product stream can be directed into a compressor 1664 and at least a portion 1672 of the OCM product stream can be directed from the compressor into a PSA unit 1665. A light stream 1673 comprising methane, hydrogen, CO and CO2 can be directed from the PSA back to the treatment unit. An olefinic stream 1674 can be directed from the PSA to an ETL reactor 1666. The ETL product stream can be processed in a knockout drum 1667 or other separator to remove a C5+ product stream 1675. The remaining ETL product stream can be directed to a compressor 1668 and recycled 1676 to the treatment unit.
  • The ETL reactor can be a tubular, packed bed, moving bed, fluidized bed, or other reactor type. An ETL reactor can be an isothermal or adiabatic reactor. The ETL system can benefit from a feed concentrated in olefins. The ETL reactor system can use a recycle stream to control and moderate the temperature increase in the reactor bed due to the highly exothermic nature of the ETL reactions. ETL systems are described in, for example, U.S. patent application Ser. No. 14/591,850, which is entirely incorporated herein by reference.
  • In certain embodiments, one or more of the fractionation towers can be deemed redundant if using the PSA, as an example, a demethanizer may not be required and the sales gas or purge gas to fuel can be sent from the PSA itself.
  • Retrofit Applications for Midstream and Refining
  • Systems, such as those of FIG. 17, can be integrated with an existing gas processing plant where one or more of the existing subsystems can be utilized. The utilization may arise from the fact that the existing subsystems are no longer used, or have an additional capacity available to allow for the integration.
  • FIG. 17 shows an exemplary application of an OCM-ETL system using a PSA system for pre-separations to an existing gas processing plant, where one or more existing sub systems may be utilized. As shown in FIG. 17, the existing separations sub-system can be integrated with the OCM-ETL system to add value by converting natural gas to higher value liquid hydrocarbons. The PSA unit can be used to pre-separate the lighter components like methane, hydrogen, carbon monoxide, carbon dioxide, ethane, and other components, and the olefin rich stream can be sent to the ETL reactor that converts the olefins to higher molecular weight liquid hydrocarbons. One advantage of using a PSA system is the reduction in net additional feed to the existing separation system, which can be de-bottlenecked easily. If the separation system is no longer in use, addition of a PSA can bring about larger total capacities that can be achieved by adding larger OCM-ETL systems. A natural gas stream 1720 can be directed to a treatment unit 1701 and then into a separations system (e.g., cryogenic) 1702. At least portion of a methane stream 1724 from the separations unit can be directed to an OCM reactor 1705, while a portion of the methane stream can be directed to a compressor 1703 and used as sales gas 1721 or other purposes. A higher hydrocarbon stream can be directed from the separations system to a C2 removal unit 1704, which can produce a natural gas liquids stream 1722 and a C2 stream 1723. The C2 stream can be fed into the OCM reactor with the methane stream and an oxygen stream 1725, and reacted to form higher hydrocarbon products including ethylene. The OCM product stream can be directed into a heat recovery system 1706, which can generate a high pressure superheated (HPSH) steam stream 1726. The OCM product stream can then be directed to a knockout drum to recover a condensate stream 1727. The OCM product stream can then be directed to a compressor 1708, which can operate using the HPSH steam stream. From the compressor, the OCM product stream can be directed to a PSA unit 1709. From the PSA unit, light stream comprising methane, hydrogen, CO and CO2 can be directed to a methanation unit 1710, and an olefinic stream can be directed to an ETL reactor 1711 and reacted to form higher hydrocarbon products. The ETL product stream can be directed to a heat recovery unit 1712, where boiler feed water (BFW) 1728 can be heated, at least a portion of which can be fed 1729 to the heat recovery unit 1706. The ETL product stream can then be directed to another knockout drum 1713. The overhead stream from the knockout drum can be directed to a low temperature separations unit 1714, while the bottoms stream from the knockout drum can be directed to a C4 removal unit 1715, which can produce a C4 stream 1730 and a C5+ stream 1731. Overhead from the low temperature separations unit, as well as product from the methanation reactor, can be directed back to the compressor 1703.
  • OCM-ETL systems of the present disclosure can be integrated into and combined into conventional NGL extraction and NGL fractionation sections of a midstream gas plant. Where NGLs in the gas stream are declining (or gas is dry), the deployment of OCM-ETL can utilize an existing facility to produce additional liquid streams. The implementation of OCM-ETL can allow for the generation of on specification “pipeline gas.” The products from the facility can be suitable for use (or on specification or “spec”) as pipeline gas, gasoline product, hydrocarbon (HC) streams with high aromatic content, and mixed C4 products. The PSA systems discussed above can be employed to separate, pre-separate or purify the hydrocarbon feed streams in the integrated NGL OCM-ETL system. FIG. 18 shows an exemplary NGL extraction facility integrated with an OCM-ETL system. As shown in FIG. 18, for example, the feed to the PSA 1802 can be the net incoming gas from the treatment system 1801, which can treat a methane stream (e.g., natural gas) 1810. The PSA system can separate the feed to the OCM reactor 1803, which is mostly methane and lighter components with some ethane to utilize a PBC section of the OCM reactor, and the feed to the ETL reactor 1805, which can first be processed in a natural gas liquids extraction system 1804. The feed to the ETL system can be the PSA tail gas and OCM effluent comprising ethylene, propylene, ethane, propane, hydrogen, methane, and other components. In some cases, the OCM effluent can be directly fed to the ETL reactor. In some cases the OCM effluent is hydrogenated and fed to the ETL system. In some cases, as shown for example in FIG. 18, the OCM effluent is fed back to the PSA unit for separation; additional natural gas 1811 can be added, and a stream can be recovered 1812 (e.g., for use as pipeline gas). In some examples, the system may have a methanation unit that takes in the effluent from ETL reactor or OCM reactor and converts the CO, CO2 and H2 to methane, thereby further increasing the carbon efficiency of the process. The existing NGL extraction and product fractionation 1806 sub-systems can then be used to fractionate the final products, including into a mixed C4 stream 1814 and a C5+ product stream 1815.
  • Refining
  • Refinery gas typically contains valuable components like hydrogen, methane, ethane, ethylene, propane, propylene, and butane. Most commonly, refinery off-gases (ROG) are exported to the fuel gas system, thereby losing the value of the components contained therein. The OCM-ETL process can be used to improve the value of products as the OCM converts the methane to ethylene and the ETL converts olefins (e.g., those existing in the ROG and those generated by OCM) to higher value liquids as C4 components, gasoline blends, or aromatic components.
  • FIG. 19 shows an exemplary PSA unit integrated to a refinery process scheme. A refinery gas plant 1901 can receive gas 1910 from cracking or other units. The PSA unit 1903 (after, for example, treatment of the gas in a treatment unit 1902) can separate components in refinery gas plant off gas to methane and a C2+ cut which contains most or all of the olefinic materials. The methane can be used as refinery fuel 1911 and/or directed to an OCM unit 1904 with post-bed cracking The OCM feed can be supplemented with additional natural gas 1912. The olefinic materials can be directed to an ETL reactor 1905. The OCM effluent can also be routed to the PSA where the olefins produced in the OCM are also sent to the ETL reactor. In some cases, the OCM effluent can be routed to the ETL reactor. In some cases, the OCM effluent may be hydrogenated before being sent to the PSA unit or ETL reactor. Some techniques may dictate the use of a cryogenic demethanizer in place of the PSA, but the application of PSA to pre-separate the refinery off-gas into a product stream and a tail gas stream containing the heavier hydrocarbons which is the feed to ETL reactor can result in significant cost savings. The product stream can contain methane, ethane, CO, CO2, and other components, with of each component from 1 to 99%. A C3+ stream 1913 from the refinery gas plant can be directed to a product fractionation system 1906, which can provide a C2/C3 stream 1914 (which can be directed to the OCM reactor), an iC4 stream 1915, a gasoline blend stream 1916, and/or a kerosene/jet stream 1917.
  • As shown in FIG. 20, in some cases the system can have a methanation unit to further improve the carbon efficiency of the process. A refinery gas plant 2001 can receive gas 2010 from cracking or other units. The PSA unit 2003 (after, for example, treatment of the gas in a treatment unit 2002) can separate components in refinery gas plant off gas to methane and a C2+ cut which contains most or all of the olefinic materials. The methane can be used as refinery fuel 2011 and/or directed to a methanation unit 2004, and then to an OCM reactor 2005 with post-bed cracking The methanation feed can be supplemented with additional natural gas 2012. The olefinic materials can be directed to an ETL reactor 2006. The OCM effluent can be routed to the ETL reactor. In some cases, the OCM effluent can also be routed to the PSA where the olefins produced in the OCM are also sent to the ETL reactor. In some cases, the OCM effluent may be hydrogenated before being sent to the PSA unit or ETL reactor. Some techniques may dictate the use of a cryogenic demethanizer in place of the PSA, but the application of PSA to pre-separate the refinery off-gas into a product stream and a tail gas stream containing the heavier hydrocarbons which is the feed to ETL reactor can result in significant cost savings. The product stream can contain methane, ethane, CO, CO2, and other components, with of each component from 1 to 99%. A C3+ stream 2013 from the refinery gas plant can be directed to a product fractionation system 2007, which can provide a C2/C3 stream 2014 (which can be directed to the OCM reactor), an iC4 stream 2015, a gasoline blend stream 2016, and/or a kerosene/jet stream 2017.
  • Methods and systems of the present disclosure can be combined with or modified by other methods and systems, such as those described in U.S. patent application Ser. No. 14/591,850, filed Jan. 7, 2015, now published as U.S. Patent Pub. No 2015/0232395; U.S. patent application Ser. No. 13/936,783, filed Jul. 8, 2013, now published as U.S. Patent Pub. No. 2014/0012053; U.S. patent application Ser. No. 13/936,870, filed Jul. 8, 2013, now published as U.S. Patent Pub. No. 2014/0018589; U.S. patent application Ser. No. 13/900,898, filed May 23, 2013, now published as U.S. Patent Pub. No 2014/0107385; U.S. patent application Ser. No. 14/553,795, filed Nov. 25, 2014, now published as U.S. Patent Pub. No. 2015/0152025; U.S. patent application Ser. No. 14/592,668, filed Jan. 8, 2015, now published as U.S. Patent Pub. No. 2015/0210610; and U.S. patent application Ser. No. 14/789,953, filed Jul. 1, 2015, each of which is entirely incorporated herein by reference.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (43)

1. A method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising:
(a) introducing methane and an oxidant into an oxidative coupling of methane (OCM) reactor that has been retrofitted into a system comprising an ethylene-to-liquids (ETL) reactor, wherein said OCM reactor reacts said methane with said oxidant to generate a first product stream comprising said C2+ compounds;
(b) directing said first product stream to a pressure swing adsorption (PSA) unit that recovers at least a portion of said C2+ compounds from said first product stream to yield a second product stream comprising said at least said portion of said C2+ compounds;
(c) directing said second product stream to said ETL reactor; and
(d) generating said higher hydrocarbon(s) from said at least said portion of said C2+ compounds in said ETL reactor.
2. The method of claim 1, further comprising:
recovering a light stream comprising (i) hydrogen and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2) from said PSA unit and recycling said light stream to said OCM reactor;
directing at least a portion of said light stream into a methanation unit that reacts said hydrogen and said CO and/or CO2 to produce a methanation product stream comprising methane; and
directing said methanation product stream into said OCM reactor.
3. The method of claim 1, further comprising recovering C2 and/or C3 compounds from said second product stream and directing said C2 and/or C3 compounds to said OCM reactor.
4. The method of claim 1, wherein said OCM reactor further comprises a post-bed cracking (PBC) unit.
5. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2); and
(b) directing said product stream from said OCM reactor into a separations system that employs a refrigeration unit having a refrigerant that includes methane from said product stream, to enrich said C2+ compounds in said product stream.
6. The method of claim 5, wherein said product stream is directed into said separations system through one or more additional units.
7. The method of claim 5, further comprising separating methane from said product stream for use in said refrigeration unit.
8. The method of claim 5, further comprising directing CO and/or CO2 from said product stream to a methanation reactor that reacts said CO and/or CO2 to yield a methanation product stream comprising methane.
9. The method of claim 8, further comprising directing at least a portion of said methane in said methanation product stream to said OCM reactor.
10. The method of claim 5, further comprising separating said product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds).
11. The method of claim 5, further comprising directing ethane from said product stream to said OCM reactor.
12. The method of claim 5, further comprising, prior to directing said product stream into said separations system, compressing said product stream.
13. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2); and
(b) directing said product stream from said OCM reactor into a separations system that employs a complexation unit having a complexation catalyst that forms pi complexes with said ethylene in said product stream, to enrich said C2+ compounds in said product stream.
14. The method of claim 13, wherein said product stream is directed into said separations system through one or more additional units.
15. The method of claim 13, further comprising using said complexation unit to remove one or more impurities from said product stream, wherein said impurities are selected from the group consisting of CO2, sulfur compounds, acetylenes, and hydrogen.
16. The method of claim 13, wherein said complexation catalyst includes one or more metals selected from the group consisting of silver and copper.
17. The method of claim 13, further comprising directing CO and/or CO2 from said product stream to a methanation reactor that reacts said CO and/or CO2 to yield a methanation product stream comprising methane.
18. The method of claim 17, further comprising directing said methane in said methanation product stream to said OCM reactor.
19. The method of claim 13, further comprising separating said product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds).
20. The method of claim 13, further comprising directing ethane from said product stream to said OCM reactor.
21. The method of claim 13, further comprising, prior to directing said product stream into said separations system, compressing said product stream.
22. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon dioxide (CO2); and
(b) directing said product stream from said OCM reactor into a separations system that employs a CO2 separation unit to separate said CO2 from said product stream, to enrich said C2+ compounds in said product stream, which CO2 separation unit employs (i) sorbent or solvent separation of CO2, (ii) membrane separation of CO2, or (iii) cryogenic or low temperature separation of CO2 having an operating temperature greater than a boiling point of methane and less than a boiling point of CO2.
23. The method of claim 22, wherein said product stream is directed into said separations system through one or more additional units.
24. The method of claim 22, wherein said sorbent or solvent separation of CO2 employs an amine based absorption system, a Benfield process, diethanolamine, glycol dimethylether, propylene carbonate, Sulfinol, a zeolite, or active carbon.
25.-31. (canceled)
32. The method of claim 22, wherein said CO2 separation system comprises a membrane CO2 separation system.
33. The method of claim 22, wherein said membrane separation of CO2 employs a polymeric membrane, metallic membrane, ceramic membrane, poly ionic liquid membrane, supported ionic liquid membrane, polyetherimide membrane, or hybrid membrane comprising a membrane supporting a solvent or sorbent.
34.-39. (canceled)
40. The method of claim 22, further comprising directing said CO2 from said product stream to a methanation reactor that reacts said CO2 to yield a methanation product stream comprising methane.
41. The method of claim 40, further comprising directing said methane in said methanation product stream to said OCM reactor.
42. The method of claim 22, further comprising separating said product stream into (i) an ethylene product stream comprising ethylene and (ii) a C3+ product stream comprising compounds with three or more carbon atoms (C3+ compounds).
43. The method of claim 22, further comprising directing ethane from said product stream to said OCM reactor.
44. The method of claim 22, further comprising, prior to directing said product stream into said separations unit, compressing said product stream.
45. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing water into an electrolysis unit that electrolyzes said water to yield oxygen (O2) and hydrogen (H2);
(b) directing said O2 from said electrolysis unit and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds, including ethylene (C2H4) and (ii) carbon monoxide (CO) and/or carbon dioxide (CO2);
(c) directing at least a portion of said CO and/or CO2 from said product stream and said H2 from said electrolysis unit into a methanation reactor that reacts said H2 and said CO and/or CO2 to yield CH4; and
(d) directing at least a portion of said CH4 from said methanation reactor to said OCM reactor.
46.-48. (canceled)
49. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and (ii) carbon dioxide (CO2);
(b) directing said product stream from said OCM reactor into a separations system that employs a CO2 separation unit that separates said CO2 from said product stream to enrich said C2+ compounds in said product stream; and
(c) directing at least a portion of said CO2 separated in (b) to said OCM reactor.
50. (canceled)
51. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising C2+ compounds including ethylene (C2H4) and heat;
(b) using an evaporator to transfer at least a portion of said heat from said product stream to an organic working fluid in a closed fluid flow cycle as part of an organic Rankine cycle (ORC) system, to evaporate said organic working fluid, which closed fluid flow cycle includes said evaporator, a turbine, a condenser, and a pump;
(c) directing said organic working fluid evaporated in (b) to said turbine to generate power;
(d) directing said organic working fluid from said turbine to said condenser that condenses said organic working fluid; and
(e) directing said organic working fluid condensed in (d) to said pump.
52. (canceled)
53. (canceled)
54. A method for generating compounds with two or more carbon atoms (C2+ compounds), comprising:
(a) directing oxygen (O2) and methane (CH4) into an oxidative coupling of methane (OCM) reactor that reacts said O2 and CH4 in an OCM process to yield a product stream comprising (i) C2+ compounds including ethylene (C2H4) and heat;
(b) transferring at least a portion of said heat from said product stream to a thermoelectric power generator; and
(c) with the aid of said heat, using said thermoelectric power generator to generate power.
55. (canceled)
56. (canceled)
US14/868,911 2015-04-01 2015-09-29 Advanced oxidative coupling of methane Abandoned US20160289143A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/868,911 US20160289143A1 (en) 2015-04-01 2015-09-29 Advanced oxidative coupling of methane
PCT/US2016/024195 WO2016160563A1 (en) 2015-04-01 2016-03-25 Advanced oxidative coupling of methane
CA2975743A CA2975743C (en) 2015-04-01 2016-03-25 Advanced oxidative coupling of methane
US16/445,562 US11186529B2 (en) 2015-04-01 2019-06-19 Advanced oxidative coupling of methane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562141789P 2015-04-01 2015-04-01
US14/868,911 US20160289143A1 (en) 2015-04-01 2015-09-29 Advanced oxidative coupling of methane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/445,562 Continuation US11186529B2 (en) 2015-04-01 2019-06-19 Advanced oxidative coupling of methane

Publications (1)

Publication Number Publication Date
US20160289143A1 true US20160289143A1 (en) 2016-10-06

Family

ID=57004566

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/868,911 Abandoned US20160289143A1 (en) 2015-04-01 2015-09-29 Advanced oxidative coupling of methane
US16/445,562 Active 2035-10-21 US11186529B2 (en) 2015-04-01 2019-06-19 Advanced oxidative coupling of methane

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/445,562 Active 2035-10-21 US11186529B2 (en) 2015-04-01 2019-06-19 Advanced oxidative coupling of methane

Country Status (3)

Country Link
US (2) US20160289143A1 (en)
CA (1) CA2975743C (en)
WO (1) WO2016160563A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527784B2 (en) 2012-01-13 2016-12-27 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US20160376148A1 (en) * 2015-06-23 2016-12-29 Sabic Global Technologies, B.V. Method for Producing Hydrocarbons by Oxidative Coupling of Methane without Catalyst
US9556086B2 (en) 2012-05-24 2017-01-31 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9567269B2 (en) 2015-03-17 2017-02-14 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20170058711A1 (en) * 2015-08-24 2017-03-02 Saudi Arabian Oil Company Organic Rankine Cycle Based Conversion of Gas Processing Plant Waste Heat into Power and Cooling
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9701597B2 (en) 2014-01-09 2017-07-11 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
WO2018128983A1 (en) * 2017-01-06 2018-07-12 Sabic Global Technologies, B.V. An integrated process utilizing methane oxidative conversion heat for ethylene and methanol production
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10301977B2 (en) 2015-08-24 2019-05-28 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US10329215B2 (en) 2017-10-24 2019-06-25 Sabic Global Technologies, B.V. Process for converting a natural gas feedstock with inert content to chemical intermediates
US20190193027A1 (en) * 2017-10-26 2019-06-27 Marc Privitera Mobile Extraction Array with brine constituent separation, purification and concentration
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US20210172076A1 (en) * 2017-02-27 2021-06-10 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
CN112973584A (en) * 2021-02-07 2021-06-18 中国科学院过程工程研究所 Fluidized bed reaction device and application thereof
US11085124B2 (en) * 2018-03-20 2021-08-10 Kabushiki Kaisha Toshiba Electrochemical reaction device
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107100808B (en) * 2017-05-27 2019-06-14 集美大学 Solar energy supercritical carbon dioxide circulating generation couples water vapour electrolytic hydrogen production system
CA3123243A1 (en) 2018-12-14 2020-06-18 Enhanced Energy Group LLC Improved semi-closed cycle with turbo membrane o2 source
WO2021250002A2 (en) 2020-06-10 2021-12-16 Total Se Thermal oxidative coupling of methane process using renewable energy with possible co-production of hydrogen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015799A (en) * 1989-07-06 1991-05-14 Amoco Corporation Oxidative coupling process for converting methane and/or natural gas to more transportable products
US6096934A (en) * 1998-12-09 2000-08-01 Uop Llc Oxidative coupling of methane with carbon conservation
US7687048B1 (en) * 2006-09-28 2010-03-30 Uop Llc Amine treatment in light olefin processing

Family Cites Families (531)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR649429A (en) 1927-01-28 1928-12-21 Ig Farbenindustrie Ag Process for the continuous separation of liquid mixtures
US2324172A (en) 1940-10-31 1943-07-13 Standard Oil Co Processing well fluids
US2486980A (en) 1946-02-01 1949-11-01 Phillips Petroleum Co Catalytic vapor phase hydration of ethylene
US2577701A (en) 1946-05-20 1951-12-04 Shell Dev Fractionation process
US2643216A (en) 1950-08-10 1953-06-23 Phillips Petroleum Co Device and process for converting hydrocarbons
US2579601A (en) 1950-08-16 1951-12-25 Shell Dev Olefin hydration process
US2621216A (en) 1950-08-17 1952-12-09 Shell Dev Production of ethylene
GB733336A (en) 1951-06-20 1955-07-13 Ici Ltd Improvements in and relating to the production of lower alkenes
US2673221A (en) 1952-01-18 1954-03-23 Eastman Kodak Co Process of producing ethyl alcohol by hydration of ethylene
US2943125A (en) 1954-08-07 1960-06-28 Ziegler Production of dimers and low molecular polymerization products from ethylene
US2880592A (en) 1955-11-10 1959-04-07 Phillips Petroleum Co Demethanization of cracked gases
US2906795A (en) 1957-07-31 1959-09-29 Texaco Inc Recovery and utilization of normally gaseous olefins
US2926751A (en) 1958-09-22 1960-03-01 Fluor Corp Organic carbonate process for carbon dioxide
US3094569A (en) 1958-10-20 1963-06-18 Union Carbide Corp Adsorptive separation process
US3128317A (en) 1961-01-13 1964-04-07 Texaco Inc Selective hydrogenation of acetylene in ethylene with a zeolitic catalyst
GB1016049A (en) 1964-04-10 1966-01-05 Lummus Co A process for the liquefaction of a gas
US3325556A (en) 1964-05-18 1967-06-13 Universal Oil Prod Co Selective hydrogenation of acetylene in a mixture of acetylene and other unsaturated hydrocarbons
US3459678A (en) 1966-01-03 1969-08-05 Eastman Kodak Co Olefin hydration catalyst
US3516262A (en) 1967-05-01 1970-06-23 Mc Donnell Douglas Corp Separation of gas mixtures such as methane and nitrogen mixtures
DE1551612B1 (en) 1967-12-27 1970-06-18 Messer Griesheim Gmbh Liquefaction process for gas mixtures by means of fractional condensation
US3584071A (en) 1968-03-01 1971-06-08 Gulf Research Development Co Telomerization of ethylene
US3686334A (en) 1969-01-13 1972-08-22 Exxon Research Engineering Co Direct hydration of ethylene to ethanol
DE1905517B2 (en) 1969-02-05 1977-01-27 Hoechst Ag, 6000 Frankfurt DEVICE FOR THE PRODUCTION OF 1,2-DICHLORAETHANE
GB1312974A (en) 1969-05-29 1973-04-11 Toyo Soda Mfg Co Ltd Process and catalyst for dimerization of alpha-olefins
JPS4823056B1 (en) 1969-08-20 1973-07-11
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3709669A (en) 1970-12-28 1973-01-09 Texaco Development Corp Methane production
US3761540A (en) 1971-04-30 1973-09-25 Phillips Petroleum Co Alkylation of isoparaffin with ethylene and a higher olefin
US3754052A (en) 1972-01-14 1973-08-21 Sun Research Development Ethylene alkylation resulting in alkylate with high proportion of 2,3-dimethylbutane
US3862257A (en) 1972-04-17 1975-01-21 Exxon Research Engineering Co Modified ziegler catalyst for alpha olefin wax synthesis
US3900526A (en) 1972-05-02 1975-08-19 Phillips Petroleum Co Selective removal of 1,2 polyenes and acetylenic compounds from conjugated-diene feed using a nickel, iron or cobalt arsenide catalyst
US3751878A (en) 1972-10-20 1973-08-14 Union Carbide Corp Bulk separation of carbon dioxide from natural gas
US3966644A (en) 1973-08-03 1976-06-29 American Cyanamid Company Shaped catalyst particles
US4012452A (en) 1973-12-17 1977-03-15 National Distillers And Chemical Corporation Olefin hydration process
DE2429770C3 (en) 1974-06-21 1981-04-16 Deutsche Texaco Ag, 2000 Hamburg Process for the production of lower alcohols by direct catalytic hydration of lower olefins
US4090949A (en) 1974-07-31 1978-05-23 Mobil Oil Corportion Upgrading of olefinic gasoline with hydrogen contributors
US3931349A (en) 1974-09-23 1976-01-06 Mobil Oil Corporation Conversion of methanol to gasoline components
DE2540257B2 (en) 1975-09-10 1977-06-02 Hoechst Ag, 6000 Frankfurt PROCESS FOR THE PRODUCTION OF 1,2-DICHLORAETHANE
US4115086A (en) 1975-12-22 1978-09-19 Fluor Corporation Recovery of light hydrocarbons from refinery gas
SU681032A1 (en) 1976-02-23 1979-08-25 Грозненский филиал Охтинского научно-производственного объединения "Пластполимер" Process for the preparation of dimers and codimers of alpha-olefins
GB1572168A (en) 1976-04-06 1980-07-23 Ici Ltd Hydrogenation catalyst and process
US4132745A (en) 1976-06-25 1979-01-02 Institut Francais Du Petrole Process for isomerizing 1-butene to 2-butene
US4140504A (en) 1976-08-09 1979-02-20 The Ortloff Corporation Hydrocarbon gas processing
US4107224A (en) 1977-02-11 1978-08-15 Mobil Oil Corporation Manufacture of ethyl benzene
US4367353A (en) 1977-12-21 1983-01-04 Imperial Chemical Industries Limited Catalytic hydrogenation and purification
US4232177A (en) 1979-02-21 1980-11-04 Chemical Research & Licensing Company Catalytic distillation process
JPS5918374B2 (en) 1978-11-14 1984-04-26 三井東圧化学株式会社 Selective method for producing ortho-alkylated phenols using anisole as a starting material
USRE31010E (en) 1979-04-09 1982-08-10 Chem Systems Inc. Preparation of carboxylic acid esters with BF3 complex catalyst
US4211885A (en) 1979-05-15 1980-07-08 Phillips Petroleum Company High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, cleavage and alkylation
FR2458524A1 (en) 1979-06-08 1981-01-02 Inst Francais Du Petrole METHOD FOR SELECTIVE HYDROGENATION OF A FRACTION OF HYDROCARBONS CONTAINING 2 OR 3 CARBON ATOMS BY MOLECULE
EP0029321B1 (en) 1979-11-20 1983-09-21 Imperial Chemical Industries Plc Hydrogenation catalyst material, a precursor thereto, method of making the latter and use of the catalyst for selective hydrogenation
US4311851A (en) 1979-12-19 1982-01-19 Chem Systems Inc. Preparation of carboxylic acid esters with BF3 -alcohol complex catalyst
US4314090A (en) 1980-08-18 1982-02-02 The Dow Chemical Company Linear alpha olefin production
US4418045A (en) 1980-09-19 1983-11-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for disposal of waste gas and apparatus therefor
US4328130A (en) 1980-10-22 1982-05-04 Chevron Research Company Shaped channeled catalyst
US4394303A (en) 1981-05-12 1983-07-19 Chevron Research Company Large pore shaped hydroprocessing catalysts
US4370156A (en) 1981-05-29 1983-01-25 Standard Oil Company (Indiana) Process for separating relatively pure fractions of methane and carbon dioxide from gas mixtures
US4469905A (en) 1981-11-04 1984-09-04 Union Oil Company Of California Process for producing and extracting C2 to C6 alcohols
US4439213A (en) 1981-12-30 1984-03-27 The C. M. Kemp Manufacturing Co. Nitrogen generation system
US4523049A (en) 1984-04-16 1985-06-11 Atlantic Richfield Company Methane conversion process
US4629718A (en) 1982-08-30 1986-12-16 Atlantic Richfield Company Alkali promoted manganese oxide compositions containing silica and/or alkaline earth oxides
US4567307A (en) 1982-08-30 1986-01-28 Atlantic Richfield Company Two-step methane conversion process
US4554395A (en) 1982-08-30 1985-11-19 Atlantic Richfield Company Methane conversion
DK147705C (en) 1982-09-07 1985-05-13 Haldor Topsoe As METHOD FOR MANUFACTURING CARBON HYDRADES FROM SYNTHESE GAS
US4552644A (en) 1982-09-30 1985-11-12 Stone & Webster Engineering Corporation Duocracking process for the production of olefins from both heavy and light hydrocarbons
DE3406751A1 (en) 1982-10-07 1985-08-29 Baerns, Manfred, Prof. Dr., 4630 Bochum Process for the oxidative coupling of methane to C2-hydrocarbons, process for the preparation of the catalysts and arrangements for carrying out the oxidative coupling
US4765883A (en) 1982-10-20 1988-08-23 Stone & Webster Engineering Corporation Process for the production of aromatics benzene, toluene, xylene (BTX) from heavy hydrocarbons
US4440956A (en) 1982-10-25 1984-04-03 The Dow Chemical Company Selective hydrogenation of acetylenes in the presence of butadiene and catalyst used in the hydrogenation
US5003124A (en) 1982-11-17 1991-03-26 Chemical Research & Licensing Company Oligomerization process
US4433185A (en) 1983-04-04 1984-02-21 Mobil Oil Corporation Two stage system for catalytic conversion of olefins with distillate and gasoline modes
US4465887A (en) 1983-06-27 1984-08-14 Standard Oil Company (Indiana) Process for producing butylene polymers having molecular weights in the range of from about 400 to 5000 molecular weight
US4777313A (en) 1983-08-12 1988-10-11 Atlantic Richfield Company Boron-promoted reducible metal oxides and methods of their use
US4519824A (en) 1983-11-07 1985-05-28 The Randall Corporation Hydrocarbon gas separation
US4511747A (en) 1984-02-01 1985-04-16 Mobil Oil Corporation Light olefin conversion to heavier hydrocarbons with sorption recovery of unreacted olefin vapor
US4551438A (en) 1984-04-11 1985-11-05 Chevron Research Company Oligomerization of liquid olefin over a nickel-containing silicaceous crystalline molecular sieve and hydrocarbyl aluminum halide
US4489215A (en) 1984-04-16 1984-12-18 Atlantic Richfield Company Methane conversion
DE3587895T2 (en) 1984-05-03 1994-12-01 Mobil Oil Corp Catalytic dewaxing of light and heavy oils in two parallel reactors.
DE3575550D1 (en) 1984-10-02 1990-03-01 Standard Oil Co Ohio PROCESS FOR IMPLEMENTING LOW MOLECULAR WEIGHT ALKANS.
US5055627A (en) 1985-01-07 1991-10-08 Chemical Research & Licensing Company Process for the preparation of cumene
US4751336A (en) 1985-02-28 1988-06-14 Amoco Corporation Conversion of a lower alkane
US4754093A (en) 1985-02-28 1988-06-28 Amoco Corporation Conversion of a lower alkane
US4754091A (en) 1985-02-28 1988-06-28 Amoco Corporation Conversion of a lower alkane
US4814539A (en) 1985-02-28 1989-03-21 Amoco Corporation Conversion of a lower alkane
US4895823A (en) 1985-03-19 1990-01-23 Phillips Petroleum Company Composition of matter for oxidative conversion of organic compounds
US5959170A (en) 1985-05-24 1999-09-28 Atlantic Richfield Company Methane conversion process
NZ216388A (en) 1985-06-14 1990-01-29 Grace W R & Co Catalytic conversion of methane into hydrogen and higher hydrocarbons
US4717782A (en) 1985-09-13 1988-01-05 Mobil Oil Corporation Catalytic process for oligomerizing ethene
US4891457A (en) 1985-09-13 1990-01-02 Hartley Owen Multistage process for converting olefins to heavier hydrocarbons
US5080872A (en) 1985-09-26 1992-01-14 Amoco Corporation Temperature regulating reactor apparatus and method
DE3534530A1 (en) 1985-09-27 1987-04-09 Manfred Prof Dr Baerns Continuous process for the oxidative coupling of methane to C2+ hydrocarbons in the presence of catalysts
US4673664A (en) 1985-10-07 1987-06-16 American Cyanamid Company Shape for extruded catalyst support particles and catalysts
GB8600260D0 (en) 1986-01-07 1986-02-12 British Petroleum Co Plc Chemical process
DE3770647D1 (en) 1986-01-09 1991-07-18 Light Oil Utilization Res Ass PRODUCTION OF A MIXED STOCK FOR HIGH OCTANE GASOLINE.
GB2191212B (en) 1986-06-05 1990-02-07 British Petroleum Co Plc Integrated process for the production of liquid hydrocarbons from methane
US5473027A (en) 1986-06-20 1995-12-05 Chevron Chemical Company Production of blow molding polyethylene resin
FR2600556A1 (en) 1986-06-27 1987-12-31 Rhone Poulenc Chim Base New catalyst based on nickel and/or cobalt, its preparation and its use for the production of methane
US4822944A (en) 1986-07-11 1989-04-18 The Standard Oil Company Energy efficient process for upgrading light hydrocarbons and novel oxidative coupling catalysts
US5012028A (en) 1986-07-11 1991-04-30 The Standard Oil Company Process for upgrading light hydrocarbons using oxidative coupling and pyrolysis
US4801762A (en) 1987-02-13 1989-01-31 Atlantic Richfield Company Methane conversion process
SE460642B (en) 1987-03-06 1989-11-06 Flaekt Ab PROCEDURES FOR ABSORPING GAS GAS COMPONENTS FROM FORECURATED SMOKE GASES
US5591315A (en) 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
US4822477A (en) 1987-06-11 1989-04-18 Mobil Oil Corporation Integrated process for gasoline production
US4769047A (en) 1987-06-29 1988-09-06 Shell Oil Company Process for the production of ethylene oxide
FR2618786B1 (en) 1987-07-31 1989-12-01 Bp Chimie Sa PROCESS FOR THE POLYMERIZATION OF GASEOUS OLEFINS IN A FLUIDIZED BED REACTOR
EP0303438A3 (en) 1987-08-14 1989-12-27 DAVY McKEE CORPORATION Production of synthesis gas from hydrocarbonaceous feedstock
US4865820A (en) 1987-08-14 1989-09-12 Davy Mckee Corporation Gas mixer and distributor for reactor
US4855524A (en) 1987-11-10 1989-08-08 Mobil Oil Corporation Process for combining the operation of oligomerization reactors containing a zeolite oligomerization catalyst
US4831203A (en) 1987-12-16 1989-05-16 Mobil Oil Corporation Integrated production of gasoline from light olefins in a fluid cracking process plant
US4855528A (en) 1988-02-05 1989-08-08 Exxon Chemical Patents Inc. Catalysts and process for oligomerization of olefins with nickel-containing zeolite catalysts
US4950311A (en) 1988-03-07 1990-08-21 White Jr Donald H Heaterless adsorption system for combined purification and fractionation of air
FR2629451B1 (en) 1988-04-05 1991-07-12 Inst Francais Du Petrole PROCESS FOR PRODUCING OLEFINS FROM NATURAL GAS
US4966874A (en) 1988-05-18 1990-10-30 Exxon Chemical Patents Inc. Process for preparing linear alpha-olefins using zirconium adducts as catalysts
US4849571A (en) 1988-05-20 1989-07-18 Atlantic Richfield Company Hydrocarbon production
US4835331A (en) 1988-05-23 1989-05-30 Uop Process for the oligomerization of olefinic hydrocarbons
US4962261A (en) 1988-06-20 1990-10-09 Uop Process for upgrading methane to higher carbon number hydrocarbons
US5024984A (en) 1988-08-17 1991-06-18 Amoco Corporation Catalysts for the oxidative conversion of methane to higher hydrocarbons
US4939311A (en) 1988-08-17 1990-07-03 Amoco Corporation Catalysts for the oxidative conversion of methane to higher hydrocarbons
US5034565A (en) 1988-09-26 1991-07-23 Mobil Oil Corporation Production of gasoline from light olefins in a fluidized catalyst reactor system
US4889545A (en) 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
US4935568A (en) 1988-12-05 1990-06-19 Mobil Oil Corporation Multistage process for oxygenate conversion to hydrocarbons
FR2641531B1 (en) 1989-01-06 1991-05-03 Inst Francais Du Petrole PROCESS FOR PRODUCING OLEFINS FROM NATURAL GAS
US4900347A (en) 1989-04-05 1990-02-13 Mobil Corporation Cryogenic separation of gaseous mixtures
US5118898A (en) 1989-06-30 1992-06-02 The Broken Hill Proprietary Company Limited Process for the production of olefins by combined methane oxidative coupling/hydrocarbon pyrolysis
NZ234289A (en) 1989-06-30 1992-03-26 Broken Hill Pty Co Ltd Catalyst for oxidative coupling of methane, containing clay and an oxide or carbonate of an alkaline earth metal
US5004852A (en) 1989-08-24 1991-04-02 Mobil Oil Corp. Two-stage process for conversion of olefins to high octane gasoline
DE3930533C1 (en) 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
CA2041874C (en) 1990-01-09 1999-04-06 Richard T. Maurer Separation of ethane from methane by pressure swing adsorption
US5041405A (en) 1990-02-22 1991-08-20 The Texas A & M University System Lithium/magnesium oxide catalyst and method of making
DE4039960A1 (en) 1990-03-23 1991-09-26 Hoechst Ag 1,2-di:chloroethane prodn. - by reaction of chlorine and ethylene in di:chloro-ethane circulating in specified reactor-condenser system
US5057468A (en) 1990-05-21 1991-10-15 Chemical Research & Licensing Company Catalytic distillation structure
US5057638A (en) 1990-06-22 1991-10-15 Chevron Research And Technology Company Process for making 1-hexene from 1-butene
US5263998A (en) 1990-08-22 1993-11-23 Imperial Chemical Industries Plc Catalysts
GB9018409D0 (en) 1990-08-22 1990-10-03 Ici Plc Catalysts
US5168090A (en) 1990-10-04 1992-12-01 Monsanto Company Shaped oxidation catalyst structures for the production of maleic anhydride
US5132472A (en) 1990-10-17 1992-07-21 Sun Refining And Marketing Company Catalytic oxidation of alkanes
US5414157A (en) 1990-10-17 1995-05-09 Sun Company, Inc. (R&M) Catalytic oxidation of alkanes
FR2669921B1 (en) 1990-12-04 1995-07-21 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF ETHYLENE INTO LIGHT ALPHA OLEFINS.
GB9028034D0 (en) 1990-12-24 1991-02-13 Isis Innovation Improved processes for the conversion of methane to synthesis gas
US5240474A (en) 1991-01-23 1993-08-31 Air Products And Chemicals, Inc. Air separation by pressure swing adsorption with a high capacity carbon molecular sieve
US5449850A (en) 1991-03-12 1995-09-12 Exxon Chemical Patents Inc. Process for oligomerizing C3 and higher olefins using zirconium adducts as catalysts (CS-467)
JPH07502049A (en) 1991-05-02 1995-03-02 エクソン リサーチ アンド エンジニアリング カンパニー Catalytic cracking method and equipment
US5179056A (en) 1991-05-06 1993-01-12 Union Carbide Chemicals & Plastics Technology Corporation Production of alkenyl alkanoate catalysts
FR2676748B1 (en) 1991-05-21 1993-08-13 Inst Francais Du Petrole PROCESS FOR PRODUCING LIQUID HYDROCARBONS FROM NATURAL GAS, IN THE PRESENCE OF A ZEOLITE AND GALLIUM-BASED CATALYST.
ES2125902T3 (en) 1991-07-08 1999-03-16 Huntsman Spec Chem Corp HIGH PRODUCTIVITY PROCEDURE FOR THE PRODUCTION OF MALEIC ANHYDRIDE.
US5196634A (en) 1991-10-11 1993-03-23 Amoco Corporation Hydrocarbon conversion
US5198596A (en) 1991-10-11 1993-03-30 Amoco Corporation Hydrocarbon conversion
US5245109A (en) 1991-10-11 1993-09-14 Amoco Corporation Hydrocarbon conversion
US5811618A (en) 1991-10-16 1998-09-22 Amoco Corporation Ethylene trimerization
US5254781A (en) 1991-12-31 1993-10-19 Amoco Corporation Olefins process which combines hydrocarbon cracking with coupling methane
US5599510A (en) 1991-12-31 1997-02-04 Amoco Corporation Catalytic wall reactors and use of catalytic wall reactors for methane coupling and hydrocarbon cracking reactions
US5395981A (en) 1992-06-22 1995-03-07 Uop Hydrocarbon conversion by catalytic distillation
US5849973A (en) 1992-07-08 1998-12-15 Gas Research Institute Oxidative coupling catalyst
FR2693455B1 (en) 1992-07-09 1994-09-30 Inst Francais Du Petrole Process for the production of light alpha olefins by oligomerization of ethylene.
US5336825A (en) 1992-07-10 1994-08-09 Council Of Scientific & Industrial Research Integrated two step process for conversion of methane to liquid hydrocarbons of gasoline range
US5306854A (en) 1992-07-10 1994-04-26 Council Of Scientific & Industrial Research Two step process for production of liquid hydrocarbons from natural gas
IT1255710B (en) 1992-10-01 1995-11-10 Snam Progetti INTEGRATED PROCEDURE TO PRODUCE OLEFINS FROM GASEOUS MIXTURES CONTAINING METHANE
IT1256156B (en) 1992-10-06 1995-11-29 Montecatini Tecnologie Srl GRANULES CATALYST PARTICULARLY FOR THE OXIDATIVE DEHYDROGENATION OF METHANOL TO FORMALDEHYDE
US5861353A (en) 1992-10-06 1999-01-19 Montecatini Tecnologie S.R.L. Catalyst in granular form for 1,2-dichloroethane synthesis
IT1255945B (en) 1992-10-30 1995-11-17 Eniricerche Spa PROCEDURE AND CATALYST FOR THE TRANSFORMATION OF METHANE INTO HIGHER HYDROCARBON PRODUCTS.
US5817904A (en) 1992-12-11 1998-10-06 Repsol Petroleo S.A. Method for the conversion of methane into longer chain hydrocarbons
US5763722A (en) 1992-12-11 1998-06-09 Repsol Petroleo S.A. Method for the methane chemical conversion into C2 hydrocarbons
KR960003790B1 (en) 1992-12-31 1996-03-22 한국과학기술원 Modified magnesium oxide catalyst and the process for manufacture thereof
US5414170A (en) 1993-05-12 1995-05-09 Stone & Webster Engineering Corporation Mixed phase front end C2 acetylene hydrogenation
EP0634211A1 (en) 1993-07-16 1995-01-18 Texaco Development Corporation Oxidative coupling of methane on manganese oxide octahedral molecular sieve catalyst
FR2711136B1 (en) 1993-10-15 1996-02-02 Inst Francais Du Petrole Process for producing at least one alkyl tert-butyl ether from natural gas.
US5659090A (en) 1993-10-15 1997-08-19 Institut Francais Du Petrole Steps in a process for the production of at least one alkyl tertiobutyl ether from natural gas
DE4338414C1 (en) 1993-11-10 1995-03-16 Linde Ag Process for the preparation of linear olefins
DE4338416C1 (en) 1993-11-10 1995-04-27 Linde Ag Soluble catalyst for the preparation of linear alpha -olefins by oligomerisation of ethylene
US6355093B1 (en) 1993-12-08 2002-03-12 Eltron Research, Inc Two component-three dimensional catalysis
US5510306A (en) 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
FR2715154B1 (en) 1994-01-14 1996-04-05 Inst Francais Du Petrole Process for the production of light alpha olefins of improved purity by oligomerization of ethylene.
US5462583A (en) 1994-03-04 1995-10-31 Advanced Extraction Technologies, Inc. Absorption process without external solvent
US5714657A (en) 1994-03-11 1998-02-03 Devries; Louis Natural gas conversion to higher hydrocarbons
US5712217A (en) 1995-06-05 1998-01-27 Council Of Scientific & Industrial Research Supported catalyst with mixed lanthanum and other rare earth oxides
FR2721837B1 (en) 1994-07-01 1996-08-30 Inst Francais Du Petrole HIGH TEMPERATURE RESISTANT OXIDATION CATALYST, PREPARATION METHOD THEREOF, AND COMBUSTION METHOD USING SUCH CATALYST
EP0722822B1 (en) 1994-07-15 2002-04-10 Idemitsu Petrochemical Co., Ltd. Highly rigid polypropylene resin and blow molding product made therefrom
WO1996010548A1 (en) 1994-10-03 1996-04-11 Sanyo Petrochemical Co., Ltd. Process for producing aromatic hydrocarbon
US5568737A (en) 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
JP2925963B2 (en) 1994-12-05 1999-07-28 石油公団 Method and apparatus for oxidative coupling of methane
GB9424547D0 (en) 1994-12-06 1995-01-25 Bp Chem Int Ltd Ethylene conversion process
GB9502342D0 (en) 1995-02-07 1995-03-29 Exxon Chemical Patents Inc Hydrocarbon treatment and catalyst therefor
US7576296B2 (en) 1995-03-14 2009-08-18 Battelle Energy Alliance, Llc Thermal synthesis apparatus
US6821500B2 (en) 1995-03-14 2004-11-23 Bechtel Bwxt Idaho, Llc Thermal synthesis apparatus and process
US5749937A (en) 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US6303092B1 (en) 1995-04-10 2001-10-16 Air Products And Chemicals, Inc. Process for operating equilibrium controlled reactions
JP2906086B2 (en) 1995-04-27 1999-06-14 エービービー ルーマス グローバル インコーポレイテッド Conversion of olefinic hydrocarbons using spent FCC catalysts
US5679241A (en) 1995-05-17 1997-10-21 Abb Lummus Global Inc. Olefin plant recovery system employing catalytic distillation
US5819555A (en) 1995-09-08 1998-10-13 Engdahl; Gerald Removal of carbon dioxide from a feed stream by carbon dioxide solids separation
DE19533484A1 (en) 1995-09-12 1997-03-13 Basf Ag Monomodal and polymodal catalyst supports and catalysts with narrow pore size distributions and their manufacturing processes
DE19533486A1 (en) 1995-09-12 1997-03-13 Basf Ag Monomodal and polymodal catalyst supports and catalysts with narrow pore size distributions and their manufacturing processes
US5656064A (en) 1995-10-04 1997-08-12 Air Products And Chemicals, Inc. Base treated alumina in pressure swing adsorption
DE19601750A1 (en) 1996-01-19 1997-07-24 Basf Ag Process for the oxidation and oxydehydrogenation of hydrocarbons in the fluidized bed
US5897945A (en) 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
FR2748020B1 (en) 1996-04-26 1998-06-26 Inst Francais Du Petrole IMPROVED PROCESS FOR CONVERTING ETHYLENE INTO BUTENE-1 WITH THE USE OF ADDITIVES BASED ON POLYETHYLENEGLYCOLS AND THEIR DERIVATIVES
FR2748018B1 (en) 1996-04-26 1998-06-26 Inst Francais Du Petrole IMPROVED PROCESS FOR THE CONVERSION OF ETHYLENE TO LIGHT ALPHA OLEFINS WITH THE USE OF ADDITIVES BASED ON QUATERNARY AMMONIUM SALTS
US5780003A (en) 1996-08-23 1998-07-14 Uop Llc Crystalline manganese phosphate compositions
US5877363A (en) 1996-09-23 1999-03-02 Catalytic Distillation Technologies Process for concurrent selective hydrogenation of acetylenes and 1,2 butadine in hydrocarbon streams
US6486373B1 (en) 1996-11-05 2002-11-26 Mobil Oil Corporation Shape selective zeolite catalyst and its use in aromatic compound conversion
GB9626324D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
FR2759922B1 (en) 1997-02-25 1999-05-07 Inst Francais Du Petrole IMPROVED CATALYTIC COMPOSITION FOR THE CONVERSION OF ETHYLENE TO LIGHT ALPHA OLEFINS
US5936135A (en) 1997-05-02 1999-08-10 Council Of Scientific & Industrial Research Process for the preparation of hydrocarbons
US5856257A (en) 1997-05-16 1999-01-05 Phillips Petroleum Company Olefin production
GB9712165D0 (en) 1997-06-11 1997-08-13 Air Prod & Chem Processes and apparatus for producing a gaseous product
FR2764524B1 (en) 1997-06-17 1999-07-16 Inst Francais Du Petrole CATALYTIC COMPOSITION AND PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE, IN PARTICULAR BUTENE-1 AND / OR HEXENE-1
US6153149A (en) 1997-08-06 2000-11-28 The Trustees Of Princeton University Adaptive feedback control flow reactor
AU734708B2 (en) 1997-10-08 2001-06-21 Shell Internationale Research Maatschappij B.V. Flameless combustor process heater
US20020182124A1 (en) 1997-10-14 2002-12-05 William M. Woodard Olefin production process
US6048472A (en) 1997-12-23 2000-04-11 Air Products And Chemicals, Inc. Production of synthesis gas by mixed conducting membranes
DE19809532C1 (en) 1998-03-05 1999-04-15 Karlsruhe Forschzent Selective electrochemical carboxylation of terminal alkyne to 2-alkynoic acid
US6114400A (en) 1998-09-21 2000-09-05 Air Products And Chemicals, Inc. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
US6379586B1 (en) 1998-10-20 2002-04-30 The Boc Group, Inc. Hydrocarbon partial oxidation process
US6602920B2 (en) 1998-11-25 2003-08-05 The Texas A&M University System Method for converting natural gas to liquid hydrocarbons
DE19910964A1 (en) 1999-03-12 2000-09-21 Krupp Uhde Gmbh Process for the production of ethylene dichloride (EDC)
EP1063013B1 (en) 1999-06-24 2005-10-12 ENI S.p.A. Catalytic composition for the aromatization of hydrocarbons
CN1100028C (en) 1999-07-22 2003-01-29 中国石油化工集团公司 Isoalkane and alkylation method of olefine
US6146549A (en) 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
US7663011B2 (en) 1999-09-07 2010-02-16 Lummus Technology Inc. Mesoporous material with active metals
US6303841B1 (en) 1999-10-04 2001-10-16 Uop Llc Process for producing ethylene
DE19959873A1 (en) 1999-12-10 2001-06-13 Basf Ag Oxidation reactions using mixed conducting oxygen selective membranes
FR2802833B1 (en) 1999-12-24 2002-05-10 Inst Francais Du Petrole CATALYTIC COMPOSITION AND PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE, PARTICULARLY HEXENE-1
US6380451B1 (en) 1999-12-29 2002-04-30 Phillips Petroleum Company Methods for restoring the heat transfer coefficient of an oligomerization reactor
US6726850B1 (en) 2000-01-14 2004-04-27 Sebastian C. Reyes Catalytic partial oxidation using staged oxygen addition
IT1317757B1 (en) 2000-02-03 2003-07-15 Enitecnologie Spa METHOD FOR THE PREPARATION OF HYDROGENATED HYDROCARBONS.
US6455015B1 (en) 2000-02-16 2002-09-24 Uop Llc Fluid-solid contacting chambers having multi-conduit, multi-nozzle fluid distribution
DE10009017A1 (en) 2000-02-25 2001-09-06 Basf Ag Molded catalysts
AU2001244333A1 (en) 2000-04-06 2001-10-23 Bp Chemicals Limited Process for the gas phase polymerisation of olefins
US6596912B1 (en) 2000-05-24 2003-07-22 The Texas A&M University System Conversion of methane to C4+ aliphatic products in high yields using an integrated recycle reactor system
GB0016895D0 (en) 2000-07-11 2000-08-30 Bp Chem Int Ltd Olefin oligomerisation
US6660812B2 (en) 2000-07-13 2003-12-09 Exxonmobil Chemical Patents Inc. Production of olefin derivatives
US6447745B1 (en) 2000-08-01 2002-09-10 Exxonmobil Research And Engineering Company Catalytic oxidation process
WO2002014854A1 (en) 2000-08-14 2002-02-21 Chevron U.S.A. Inc. Use of microchannel reactors in combinatorial chemistry
US6726832B1 (en) 2000-08-15 2004-04-27 Abb Lummus Global Inc. Multiple stage catalyst bed hydrocracking with interstage feeds
US6468501B1 (en) 2000-09-14 2002-10-22 Chevrontexaco Corporation Method for heteroatom lattice substitution in large and extra-large pore borosilicate zeolites
US6518476B1 (en) 2000-09-18 2003-02-11 Union Carbide Chemicals & Plastics Technology Corporation Methods for manufacturing olefins from lower alkans by oxidative dehydrogenation
US6403523B1 (en) 2000-09-18 2002-06-11 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the oxidative dehydrogenation of hydrocarbons
CA2422567A1 (en) 2000-09-20 2003-03-18 Hideki Kurimura Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
US6538169B1 (en) 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US6660894B1 (en) 2000-11-21 2003-12-09 Phillips Petroleum Company Process for upgrading an oligomerization product
DE10101695A1 (en) 2001-01-15 2002-07-18 Basf Ag Heterogeneous catalyzed gas phase production of (meth)acrolein and/or meth(acrylic acid) using mixed oxide catalyst formed into geometrically shaped article of specific geometric characteristics
US6669916B2 (en) 2001-02-12 2003-12-30 Praxair Technology, Inc. Method and apparatus for purifying carbon dioxide feed streams
US6509292B1 (en) 2001-03-30 2003-01-21 Sud-Chemie Inc. Process for selective hydrogenation of acetylene in an ethylene purification process
ITMI20010782A1 (en) 2001-04-12 2002-10-12 Enitecnologie Spa PROCEDURE FOR OBTAINING A DIESEL CUTTING FUEL BY THE OLIGOMERIZATION OF OLEFINS OR THEIR MIXTURES
US6683019B2 (en) 2001-06-13 2004-01-27 Abb Lummus Global Inc. Catalyst for the metathesis of olefin(s)
US6635103B2 (en) 2001-07-20 2003-10-21 New Jersey Institute Of Technology Membrane separation of carbon dioxide
US7316804B2 (en) 2001-08-02 2008-01-08 Ineos Usa Llc Flow reactors for chemical conversions with heterogeneous catalysts
US6703429B2 (en) 2001-08-23 2004-03-09 Chevron U.S.A. Inc. Process for converting synthesis gas into hydrocarbonaceous products
FR2829707B1 (en) 2001-09-19 2003-12-12 Air Liquide METHOD AND DEVICE FOR MIXING TWO REACTIVE GASES
US6921516B2 (en) 2001-10-15 2005-07-26 General Motors Corporation Reactor system including auto ignition and carbon suppression foam
US6783659B2 (en) 2001-11-16 2004-08-31 Chevron Phillips Chemical Company, L.P. Process to produce a dilute ethylene stream and a dilute propylene stream
US6764602B2 (en) 2001-11-29 2004-07-20 Exxonmobil Chemical Patents Inc. Process of removing oxygenated contaminants from an olefin composition
US6747066B2 (en) 2002-01-31 2004-06-08 Conocophillips Company Selective removal of oxygen from syngas
US6768035B2 (en) 2002-01-31 2004-07-27 Chevron U.S.A. Inc. Manufacture of high octane alkylate
JP4245298B2 (en) 2002-02-27 2009-03-25 ダイセル化学工業株式会社 Gas reaction component supply control method and control apparatus
US6610124B1 (en) 2002-03-12 2003-08-26 Engelhard Corporation Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
AU2003214197A1 (en) 2002-03-19 2003-10-08 Energy Technologies Group, Inc. Gas to liquid conversion process
US6713657B2 (en) 2002-04-04 2004-03-30 Chevron U.S.A. Inc. Condensation of olefins in fischer tropsch tail gas
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US7093445B2 (en) 2002-05-31 2006-08-22 Catalytica Energy Systems, Inc. Fuel-air premixing system for a catalytic combustor
FR2840607A1 (en) 2002-06-10 2003-12-12 Bp Lavera Production of ethane for olefins such as ethylene, involves contacting methane with metal catalyst chosen from metal hydride and/or metal organic compound
US6759562B2 (en) 2002-07-24 2004-07-06 Abb Lummus Global Inc. Olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps
US6964934B2 (en) 2002-08-28 2005-11-15 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolite using doped seeds
JP2006520317A (en) 2002-09-18 2006-09-07 ボード オブ リージェンツ ユニバーシティ オブ テキサス システム Peptide-mediated synthesis of metal and magnetic materials
CN1182038C (en) 2002-10-11 2004-12-29 清华大学 Synthesis process of nanostring and nanopowder of RE hydroxide or oxide
JP2006516265A (en) 2002-12-20 2006-06-29 サソル テクノロジー (ピーティーワイ) リミテッド Olefin trimerization
US7484385B2 (en) 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
US20040158113A1 (en) 2003-02-06 2004-08-12 Girish Srinivas Catalysts and process for converting fuel gases to gasoline
US8277525B2 (en) 2003-02-07 2012-10-02 Dalton Robert C High energy transport gas and method to transport same
US20130025201A1 (en) 2003-02-07 2013-01-31 Dalton Robert C High energy transport gas and method to transport same
US7196238B2 (en) 2003-03-10 2007-03-27 Fortum Oyj Process for dimerizing light olefins
US7932296B2 (en) 2003-03-16 2011-04-26 Kellogg Brown & Root Llc Catalytic partial oxidation reforming for syngas processing and products made therefrom
CA2427722C (en) 2003-04-29 2007-11-13 Ebrahim Bagherzadeh Preparation of catalyst and use for high yield conversion of methane to ethylene
GB0311774D0 (en) 2003-05-22 2003-06-25 Bp Chem Int Ltd Production of olefins
KR101110800B1 (en) 2003-05-28 2012-07-06 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Process for producing hydroxyl group-containing compound
CN1261216C (en) 2003-05-30 2006-06-28 中国石油化工股份有限公司 Hydrocarbon cracking catalyst with molecular sieve and preparing method thereof
US7214841B2 (en) 2003-07-15 2007-05-08 Abb Lummus Global Inc. Processing C4 olefin streams for the maximum production of propylene
JP3785543B2 (en) 2003-08-26 2006-06-14 松下電器産業株式会社 Manufacturing method of manganese oxide nanostructure and oxygen reduction electrode using the manganese oxide nanostructure
US7208647B2 (en) * 2003-09-23 2007-04-24 Synfuels International, Inc. Process for the conversion of natural gas to reactive gaseous products comprising ethylene
US7183451B2 (en) 2003-09-23 2007-02-27 Synfuels International, Inc. Process for the conversion of natural gas to hydrocarbon liquids
US7223895B2 (en) 2003-11-18 2007-05-29 Abb Lummus Global Inc. Production of propylene from steam cracking of hydrocarbons, particularly ethane
US7199273B2 (en) 2003-11-24 2007-04-03 Exxonmobil Chemical Patents, Inc. Selective hydrogenation of alkynes and/or diolefins
JP2005161225A (en) 2003-12-03 2005-06-23 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
US7923109B2 (en) 2004-01-05 2011-04-12 Board Of Regents, The University Of Texas System Inorganic nanowires
US7589041B2 (en) 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
US20130292300A1 (en) 2004-04-23 2013-11-07 Massachusetts Institute Of Technology Mesostructured zeolitic materials suitable for use in hydrocracking catalyst compositions and methods of making and using the same
US7375048B2 (en) 2004-04-29 2008-05-20 Basf Catalysts Llc ZSM-5 additive
US7550644B2 (en) 2004-05-10 2009-06-23 Precision Combustion, Inc. Isobutane alkylation
DE102004029147B4 (en) 2004-06-17 2008-01-03 Uhde Gmbh Process and apparatus for the preparation of 1,2-dichloroethane by direct chlorination
FR2873116B1 (en) 2004-07-15 2012-11-30 Inst Francais Du Petrole OLEFIN OLIGOMERIZATION METHOD USING SILICA-ALUMINATED CATALYST
US7207192B2 (en) 2004-07-28 2007-04-24 Kellogg Brown & Root Llc Secondary deethanizer to debottleneck an ethylene plant
US7141705B2 (en) 2004-08-05 2006-11-28 Catalytic Distillation Technologies Etherification process
US20060283780A1 (en) 2004-09-01 2006-12-21 Sud-Chemie Inc., Desulfurization system and method for desulfurizing a fuel stream
EP1632467A1 (en) 2004-09-06 2006-03-08 Research Institute of Petroleum Industry Improved catalyst for direct conversion of methane to ethane and ethylene
US20060084830A1 (en) 2004-10-20 2006-04-20 Catalytic Distillation Technologies Selective hydrogenation process and catalyst
US7361622B2 (en) 2005-11-08 2008-04-22 Rohm And Haas Company Multi-staged catalyst systems and process for converting alkanes to alkenes and to their corresponding oxygenated products
DE102004061772A1 (en) 2004-12-22 2006-07-06 Basf Ag Process for the preparation of propene from propane
US7683227B2 (en) 2004-12-22 2010-03-23 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
DE102004063090A1 (en) 2004-12-22 2006-07-06 Uhde Gmbh Process for the preparation of 1,2-dichloroethane by direct chlorination
FR2880018B1 (en) 2004-12-27 2007-02-23 Inst Francais Du Petrole PROPYLENE PRODUCTION USING DIMERIZATION OF ETHYLENE TO BUTENE-1, HYDRO-ISOMERISATION TO BUTENE-2 AND ETHYLENE METATHESIS
US20060173224A1 (en) 2005-02-01 2006-08-03 Catalytic Distillation Technologies Process and catalyst for selective hydrogenation of dienes and acetylenes
US7525002B2 (en) 2005-02-28 2009-04-28 Exxonmobil Research And Engineering Company Gasoline production by olefin polymerization with aromatics alkylation
US7566428B2 (en) 2005-03-11 2009-07-28 Saint-Gobain Ceramics & Plastics, Inc. Bed support media
US7888541B2 (en) 2005-04-15 2011-02-15 Catalytic Distillation Technologies Double bond hydroisomerization of butenes
DE102005019596A1 (en) 2005-04-27 2006-11-02 Süd-Chemie AG Cylindrical catalyst body, used for steam reforming hydrocarbons, comprises extent surface, which is parallel to longitudinal axis of catalyst body running grooves and between grooves exhibiting running webs
GB0512377D0 (en) 2005-06-17 2005-07-27 Exxonmobil Chem Patents Inc Oligomerisation of olefins with zeolite catalyst
ES2335035T3 (en) 2005-07-27 2010-03-18 Chevron Phillips Chemical Company Lp METHOD FOR MANUFACTURING AND USING A SELECTIVE HYDROGENATION CATALYST.
EP1748039B1 (en) 2005-07-29 2013-01-23 Linde AG Method for deactivation of an organometallic catalyst
EP1749806B1 (en) 2005-07-29 2008-10-15 Linde AG Method for preparing linear alpha-olefins with improved heat removal
EP1749807A1 (en) 2005-08-02 2007-02-07 Linde AG Method for producing linear alpha-olefins with improved product distribution
DK200600854A (en) 2005-09-02 2007-03-03 Topsoe Haldor As Process and catalyst for hydrogenation of carbon oxides
US20070083073A1 (en) 2005-09-02 2007-04-12 Ebrahim Bagherzadeh Catalyst and method for converting low molecular weight paraffinic hydrocarbons into alkenes and organic compounds with carbon numbers of 2 or more
EP1945350A1 (en) 2005-10-07 2008-07-23 Midwest Research Institute, Inc. Attrition resistant fluidizable reforming catalyst
DE102005050388A1 (en) 2005-10-20 2007-04-26 Linde Ag Recovery system for the further processing of a cracked gas stream of an ethylene plant
CN101316807B (en) 2005-10-28 2012-11-28 巴斯夫欧洲公司 Method for the synthesis of aromatic hydrocarbons from C1-C4 alkanes, and utilization of a C1-C4 alkane-containing product flow
US7550638B2 (en) 2005-11-16 2009-06-23 Equistar Chemicals, Lp Integrated cracking and metathesis process
DE102005061897A1 (en) 2005-12-23 2007-06-28 Degussa Gmbh Process for the preparation of powdered solids
US7521394B2 (en) 2005-12-29 2009-04-21 The Board Of Trustees Of The University Of Illinois Nanoparticles containing titanium oxide
JP5330635B2 (en) 2006-01-20 2013-10-30 豊田通商株式会社 Propylene production method, catalyst regeneration method, solid acid catalyst
US7993599B2 (en) 2006-03-03 2011-08-09 Zeropoint Clean Tech, Inc. Method for enhancing catalyst selectivity
CN101460432B (en) 2006-04-21 2013-04-03 埃克森美孚化学专利公司 Production of aromatics from methane
US7659437B2 (en) 2006-04-21 2010-02-09 Exxonmobil Chemical Patents Inc. Process for methane conversion
US7781636B2 (en) 2006-04-21 2010-08-24 Exxonmobil Chemical Patents Inc. Process for methane conversion
US7977519B2 (en) 2006-04-21 2011-07-12 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
US7795490B2 (en) 2006-04-21 2010-09-14 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
GB0608277D0 (en) 2006-04-27 2006-06-07 Accentus Plc Process for preparing liquid hydrocarbons
EP2016127B1 (en) 2006-05-02 2010-03-17 Dow Global Technologies Inc. High-density polyethylene compositions, method of making the same, articles made therefrom, and method of making such articles
WO2007141288A1 (en) 2006-06-07 2007-12-13 Basf Se Process for codimerizing olefins
DE102006027334A1 (en) 2006-06-13 2008-01-10 Evonik Degussa Gmbh Process for the preparation of metal oxide powders
DE102006027335A1 (en) 2006-06-13 2008-01-10 Evonik Degussa Gmbh Process for the preparation of mixed metal oxide powders
DE102006027302A1 (en) 2006-06-13 2008-01-10 Evonik Degussa Gmbh Process for the preparation of mixed oxide powders
TWI397446B (en) 2006-06-21 2013-06-01 Cambrios Technologies Corp Methods of controlling nanostructure formations and shapes
EP1886985B1 (en) 2006-07-31 2009-09-02 Saudi Basic Industries Corporation Process for oligomerization of ethylene and/or alpha-olefins
WO2008022147A1 (en) 2006-08-14 2008-02-21 Mayo Foundation For Medical Education And Research Rare earth nanoparticles
CN101134913B (en) 2006-08-31 2011-05-18 中国石油化工股份有限公司 Hydrocarbons catalytic conversion method
US7824574B2 (en) 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
DE102006055973A1 (en) 2006-11-24 2008-05-29 Borsig Gmbh Heat exchanger for cooling cracked gas
ES2319007B1 (en) 2006-12-07 2010-02-16 Rive Technology, Inc. METHODS FOR MANUFACTURING MESOSTRUCTURED ZEOLITICAL MATERIALS.
US9103586B2 (en) 2006-12-16 2015-08-11 Kellogg Brown & Root Llc Advanced C2-splitter feed rectifier
CA2672449A1 (en) 2006-12-19 2008-06-26 Jean-Marie Basset Process for converting methane into a higher alkane mixture
US7586018B2 (en) 2006-12-21 2009-09-08 Uop Llc Oxygenate conversion to olefins with dimerization and metathesis
EA016012B1 (en) 2007-02-16 2012-01-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and apparatus for reducing additives in a hydrocarbon stream
US7589246B2 (en) 2007-04-04 2009-09-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
EP2152408A2 (en) 2007-04-25 2010-02-17 HRD Corp Catalyst and method for converting natural gas to higher carbon compounds
US20090043141A1 (en) 2007-05-30 2009-02-12 Terry Mazanec Oxidative coupling of methane
EP2014635A1 (en) 2007-06-12 2009-01-14 Bp Oil International Limited Process for converting ethane into liquid alkane mixtures
US7799209B2 (en) 2007-06-29 2010-09-21 Uop Llc Process for recovering power from FCC product
US7879119B2 (en) 2007-07-20 2011-02-01 Kellogg Brown & Root Llc Heat integration and condensate treatment in a shift feed gas saturator
US20100185034A1 (en) 2007-08-03 2010-07-22 Mitsui Chemicals , Inc Process for producing aromatic hydrocarbon
US9617196B2 (en) 2007-08-03 2017-04-11 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
FI120627B (en) 2007-08-24 2009-12-31 Neste Oil Oyj Process for oligomerization of olefins
TW200918486A (en) 2007-09-18 2009-05-01 Asahi Kasei Chemicals Corp Process for production of propylene
EP2045013A1 (en) 2007-10-03 2009-04-08 Bp Oil International Limited Solid metal compound, preparations and uses thereof
US8206498B2 (en) 2007-10-25 2012-06-26 Rive Technology, Inc. Methods of recovery of pore-forming agents for mesostructured materials
WO2009071463A2 (en) 2007-12-03 2009-06-11 Basf Se Oxidative methane coupling via membrane reactor
EP2225033B1 (en) 2007-12-12 2017-10-04 Saudi Basic Industries Corporation Catalyst composition for oligomerization of ethylene oligomerization process and method for its preparation
US8404189B2 (en) 2007-12-14 2013-03-26 Dow Technology Investments Llc Oxygen/hydrocarbon rapid (high shear) gas mixer, particularly for the production of ethylene oxide
CN100563829C (en) 2008-02-03 2009-12-02 山东省科学院能源研究所 Integral supported carbon molecular sieve catalyst and preparation method thereof is used
US7847140B2 (en) 2008-02-13 2010-12-07 Karl Chuang Process for making higher olefins
CN101945841B (en) 2008-02-18 2014-07-16 国际壳牌研究有限公司 Process for the conversion of ethane to aromatic hydrocarbons
US8071063B2 (en) 2008-02-21 2011-12-06 Exxonmobile Research And Engineering Company Separation of hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials
US7687041B2 (en) 2008-02-27 2010-03-30 Kellogg Brown & Root Llc Apparatus and methods for urea production
US8071836B2 (en) 2008-03-13 2011-12-06 Fina Technology, Inc. Process for toluene and methane coupling in a microreactor
EP2103586A1 (en) 2008-03-20 2009-09-23 Bp Oil International Limited Process for converting methane into ethane in a membrane reactor
US8742189B2 (en) 2008-04-08 2014-06-03 Basf Se Catalyst for the dehydroaromatisation of methane and mixtures containing methane
US9908093B2 (en) 2008-04-09 2018-03-06 Velocys, Inc. Process for converting a carbonaceous material to methane, methanol and/or dimethyl ether using microchannel process technology
JP5290403B2 (en) 2008-04-29 2013-09-18 レイセオン カンパニー Small aperture interrogator antenna system using sum-difference orientation discrimination technique
US7968020B2 (en) 2008-04-30 2011-06-28 Kellogg Brown & Root Llc Hot asphalt cooling and pelletization process
US20090277837A1 (en) 2008-05-06 2009-11-12 Chunqing Liu Fluoropolymer Coated Membranes
US20110160508A1 (en) 2008-05-21 2011-06-30 Ding Ma Production of aromatics from methane
US8293805B2 (en) 2008-05-29 2012-10-23 Schlumberger Technology Corporation Tracking feedstock production with micro scale gas-to-liquid units
BRPI0803895B1 (en) 2008-07-03 2018-08-14 Oxiteno S.A. Indústria E Comércio PROCEDURE FOR THE PRODUCTION OF LIGHT HYDROCARBONS FROM METHANIC RICH GASES, STATES THE SOLID OXIDE FUEL USED FOR THE PRODUCTION OF LIGHT HYDROCARBONS, AND, CATALYST FOR LEVES GARDEN RIOBON GARS In Methane
US20100000153A1 (en) 2008-07-07 2010-01-07 Kyrogen Usa, Llc Remote micro-scale gtl products for uses in oil- and gas-field and pipeline applications
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US8163070B2 (en) 2008-08-01 2012-04-24 Wolfgang Georg Hees Method and system for extracting carbon dioxide by anti-sublimation at raised pressure
KR101273124B1 (en) 2008-08-12 2013-06-13 루머스 테크놀로지 인코포레이티드 Integrated propylene production
GB0816703D0 (en) 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneous catalysts
US8119848B2 (en) 2008-10-01 2012-02-21 Catalytic Distillation Technologies Preparation of alkylation feed
TWI468223B (en) 2008-10-20 2015-01-11 Huntsman Petrochemical Llc Modified trilobe shape for maleic anhydride catalyst and process for preparing maleic anhydride
CN101387019B (en) 2008-10-24 2012-05-09 上海应用技术学院 Method for preparing mesoporous silica molecular sieve fiber
DE102008064275A1 (en) 2008-12-20 2010-07-01 Bayer Technology Services Gmbh Process for the oxidative coupling of methane and production of synthesis gas
US7790012B2 (en) 2008-12-23 2010-09-07 Calera Corporation Low energy electrochemical hydroxide system and method
US20110036728A1 (en) 2008-12-23 2011-02-17 Calera Corporation Low-energy electrochemical proton transfer system and method
US8912109B2 (en) 2008-12-29 2014-12-16 Fina Technology, Inc. Catalyst with an ion-modified binder
US8524625B2 (en) 2009-01-19 2013-09-03 Rive Technology, Inc. Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange
US8815080B2 (en) 2009-01-26 2014-08-26 Lummus Technology Inc. Adiabatic reactor to produce olefins
US8178053B2 (en) 2009-02-20 2012-05-15 H R D Corporation System and method for gas reaction
US20100229725A1 (en) 2009-03-10 2010-09-16 Kasra Farsad Systems and Methods for Processing CO2
US8399527B1 (en) 2009-03-17 2013-03-19 Louisiana Tech University Research Foundation; A Division Of Louisiana Tech University Foundation, Inc. Bound cobalt nanowires for Fischer-Tropsch synthesis
US8748681B2 (en) 2009-03-31 2014-06-10 Uop Llc Process for oligomerizing dilute ethylene
US8710286B2 (en) * 2009-03-31 2014-04-29 Fina Technology, Inc. Oxidative coupling of hydrocarbons as heat source
US8575410B2 (en) 2009-03-31 2013-11-05 Uop Llc Process for oligomerizing dilute ethylene
US8021620B2 (en) 2009-03-31 2011-09-20 Uop Llc Apparatus for oligomerizing dilute ethylene
WO2010128644A1 (en) 2009-05-08 2010-11-11 三菱化学株式会社 Method for producing propylene
CN102438999A (en) 2009-05-20 2012-05-02 巴斯夫欧洲公司 System and method for producing superior hydrocarbons from methane
US8715392B2 (en) 2009-05-21 2014-05-06 Battelle Memorial Institute Catalyzed CO2-transport membrane on high surface area inorganic support
US9089832B2 (en) 2009-06-29 2015-07-28 Fina Technology, Inc. Catalysts for oxidative coupling of hydrocarbons
US8450546B2 (en) 2009-06-29 2013-05-28 Fina Technology, Inc. Process for the oxidative coupling of hydrocarbons
US8912381B2 (en) 2009-06-29 2014-12-16 Fina Technology, Inc. Process for the oxidative coupling of methane
DE102009031305A1 (en) 2009-06-30 2011-01-05 Uhde Gmbh Catalyst-coated support, process for its preparation, a reactor equipped therewith and its use
ES2439261T3 (en) 2009-07-24 2014-01-22 Linde Ag Preparation procedure for linear alpha-olefins
US8592732B2 (en) 2009-08-27 2013-11-26 Korea University Research And Business Foundation Resistive heating device for fabrication of nanostructures
DE102009039149A1 (en) 2009-08-31 2011-03-03 Uhde Gmbh Catalytic membrane material coating
WO2011029071A1 (en) 2009-09-03 2011-03-10 Christopher Brown Improved adsorption process for the dehydration of alcohol
EP2295474A1 (en) 2009-09-11 2011-03-16 Total Petrochemicals Research Feluy Process for recycling product streams separated from a hydrocarbon-containing feed stream.
CN102548657B (en) 2009-09-30 2015-01-21 埃克森美孚化学专利公司 Production of aromatics from methane
WO2011050359A1 (en) 2009-10-23 2011-04-28 Massachusetts Institute Of Technology Biotemplated inorganic materials
CN102093157A (en) 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 Joint process for preparing ethylene and synthesis gas by direct conversion of methane
GB0921875D0 (en) 2009-12-15 2010-01-27 Lucite Int Uk Ltd A continuous process for the carbonylation of ethylene
CN101747927B (en) 2009-12-31 2012-08-08 金浦新材料股份有限公司 Coke inhibitor for ethylene cracking
US20110171121A1 (en) 2010-01-08 2011-07-14 Rive Technology, Inc. Compositions and methods for making stabilized mesoporous materials
US8658750B2 (en) 2010-03-09 2014-02-25 Exxonmobil Chemical Patents Inc. System and method for selective trimerization
US20110257454A1 (en) 2010-04-20 2011-10-20 Fina Technology, Inc. Use of an Additive in the Coupling of Toluene with a Carbon Source
US8399726B2 (en) 2010-04-20 2013-03-19 Fina Technology Inc Reactors and processes for the oxidative coupling of hydrocarbons
US8722950B2 (en) 2010-04-26 2014-05-13 Saudi Basic Industries Corporation Process for producing propylene and aromatics from butenes by metathesis and aromatization
DK2569492T3 (en) 2010-05-10 2015-10-05 Autoprod Oy Method and device for producing a timber structure, which is made of rod-like elements
FR2960234B1 (en) 2010-05-18 2013-11-01 Inst Francais Du Petrole A METHOD FOR DIMERIZING ETHYLENE TO BUTENE-1 USING A COMPOSITION COMPRISING A TITANIUM-BASED COMPLEX AND A HETEROATOMY-FUNCTIONALIZED ALCOXY LIGAND
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
KR20130038901A (en) 2010-06-24 2013-04-18 럿거스, 더 스테이트 유니버시티 오브 뉴저지 Spinel catalysts for water and hydrocarbon oxidation
US8282709B2 (en) 2010-06-29 2012-10-09 The Governors Of The University Of Alberta Removal of ethane from natural gas at high pressure
US8585802B2 (en) 2010-07-09 2013-11-19 Arnold Keller Carbon dioxide capture and liquefaction
CA2804409A1 (en) 2010-07-09 2012-01-12 John Bøgild Hansen Process for converting biogas to a gas rich in methane
US20120197053A1 (en) 2010-09-21 2012-08-02 Synfuels International., Inc. System and method for the production of liquid fuels
FR2964982B1 (en) 2010-09-22 2013-03-08 Commissariat Energie Atomique PROCESS FOR REMOVING METAL CATALYST RESIDUES ON SURFACE OF CATALYTICALLY GROWN-WIRE PRODUCTS
DK2625251T3 (en) 2010-10-06 2021-02-15 Exelus Inc Preparation of a high octane alkylate of ethylene and isobutane
US8395005B2 (en) 2010-10-13 2013-03-12 Equistar Chemicals, Lp Production of 1-butene and propylene from ethylene
RU2447048C1 (en) 2010-10-14 2012-04-10 Закрытое акционерное общество "ШАГ" Combined method of producing ethylene and derivatives thereof and electrical energy from natural gas
US20130270180A1 (en) 2010-10-28 2013-10-17 Novarials Corporation Ceramic nanowire membranes and methods of making the same
BR112013011951A2 (en) 2010-11-16 2016-08-30 Rhodia Operations alumina catalyst support
CN102125825B (en) 2010-12-02 2012-05-23 河北工业大学 Preparation method of ZrO2 nanotube supported B2O3 catalyst
MX337727B (en) 2010-12-17 2016-03-16 Univation Tech Llc Systems and methods for recovering hydrocarbons from a polyolefin purge gas product.
EP2655559A4 (en) 2010-12-24 2014-07-23 Sapphire Energy Inc Production of aromatics from renewable resources
US8871670B2 (en) 2011-01-05 2014-10-28 The Board Of Trustees Of The University Of Illinois Defect engineering in metal oxides via surfaces
US20120215045A1 (en) 2011-02-22 2012-08-23 Fina Technology, Inc. Staged Injection of Oxygen for Oxidative Coupling or Dehydrogenation Reactions
WO2012118888A2 (en) 2011-03-02 2012-09-07 Aither Chemicals, Llc Methods for integrated natural gas purification and products produced therefrom
WO2012122233A2 (en) 2011-03-07 2012-09-13 The Regents Of The University Of California Metal-organic framework adsorbants for composite gas separation
WO2012138910A2 (en) 2011-04-08 2012-10-11 Rive Technology, Inc. Mesoporous framework-modified zeolites
EA029867B1 (en) 2011-05-24 2018-05-31 Силурия Текнолоджиз, Инк. Catalysts for petrochemical catalysis
US9394215B2 (en) 2011-07-19 2016-07-19 Uop Llc Processes for making Cx-Cy olefins from C5 and C6 paraffins
US20130023079A1 (en) 2011-07-20 2013-01-24 Sang Won Kang Fabrication of light emitting diodes (leds) using a degas process
WO2013010662A1 (en) 2011-07-21 2013-01-24 Saudi Basic Industries Corporation Catalyst for the preparation of aromatic hydrocarbons and use thereof
DE102011080294A1 (en) 2011-08-02 2013-02-07 Technische Universität Berlin Process for the oxidative conversion of gaseous alkanes in a fluidized bed membrane reactor and a reactor for carrying out this process
CA2856310C (en) 2011-11-29 2021-09-21 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
WO2013082110A1 (en) 2011-12-02 2013-06-06 Bio2Electric, Llc Reactor, process, and system for the oxidation of gaseous streams
US20130172649A1 (en) 2011-12-30 2013-07-04 Sivadinarayana Chinta Supported nano sized zeolite catalyst for alkylation reactions
KR101294592B1 (en) 2012-01-11 2013-08-09 한국과학기술연구원 Catalyst for oxidative coupling reaction of methane, method for preparing the same, and method for oxidative coupling reaction of methane using the same
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
KR101566650B1 (en) 2012-01-20 2015-11-05 신닛테츠스미킨 카부시키카이샤 Continuous fixed-bed catalyst reaction device and catalyst reaction method using same
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
AR090777A1 (en) 2012-04-23 2014-12-03 Shell Int Research A PROCESS FOR THE AROMATIZATION OF A GAS CURRENT CONTAINING METHANE
WO2013169462A1 (en) 2012-05-07 2013-11-14 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
DE102012208417A1 (en) 2012-05-21 2013-11-21 INGEN GTL Ltd. Process for the preparation of an isoparaffinic hydrocarbon mixture
AU2013266189B2 (en) 2012-05-24 2018-01-04 Lummus Technology Llc Catalysts comprising catalytic nanowires and their use
WO2013177433A2 (en) 2012-05-24 2013-11-28 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US9610565B2 (en) 2012-08-20 2017-04-04 Purdue Research Foundation Catalysts for oxidative coupling of methane and solution combustion method for the production of the same
DE102012018602A1 (en) 2012-09-20 2014-03-20 Linde Aktiengesellschaft Plant and process for the production of ethylene
CN107663461A (en) 2012-09-28 2018-02-06 埃迪亚贝拉科技有限公司 For making the method and composition of composition desulfurization
EA201590400A1 (en) 2012-11-06 2015-09-30 Эйч А Ди Корпорейшн TURNING NATURAL GAS TO ORGANIC COMPOUNDS
WO2014074458A1 (en) 2012-11-06 2014-05-15 H R D Corporation Reactor and catalyst for converting natural gas to organic compounds
US20140135553A1 (en) 2012-11-12 2014-05-15 Uop Llc Process for recycling oligomerate to oligomerization
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
US10577291B2 (en) 2012-11-12 2020-03-03 Uop Llc Methods for producing jet-range hydrocarbons
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9055313B2 (en) 2012-12-20 2015-06-09 Hulu, LLC Device activation using encoded representation
US9688591B2 (en) 2013-01-10 2017-06-27 Equistar Chemicals, Lp Ethylene separation process
US20150376527A1 (en) 2013-02-21 2015-12-31 Jianguo Xu Co2 capture from co2-rich natural gas
WO2014131435A1 (en) 2013-02-27 2014-09-04 Haldor Topsøe A/S Reactor for an auto-poisoning proces
US9545610B2 (en) 2013-03-04 2017-01-17 Nova Chemicals (International) S.A. Complex comprising oxidative dehydrogenation unit
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
WO2014143880A1 (en) 2013-03-15 2014-09-18 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US20140275619A1 (en) 2013-03-15 2014-09-18 Celanese International Corporation Process for Producing Acetic Acid and/or Ethanol By Methane Oxidation
EP3008153B1 (en) 2013-06-14 2020-08-05 University Of Pretoria Apparatus for endothermic reactions
US9346721B2 (en) 2013-06-25 2016-05-24 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion
WO2015000061A1 (en) 2013-07-04 2015-01-08 Nexen Energy Ulc Olefins reduction of a hydrocarbon feed using olefins- aromatics alkylation
US9446343B2 (en) 2013-07-08 2016-09-20 Exxonmobil Research And Engineering Company Simulated moving bed system for CO2 separation, and method of same
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 Electrochemical hydroxide systems and methods using metal oxidation
WO2015021177A1 (en) 2013-08-06 2015-02-12 Massachusetts Institute Of Technology Production of non-sintered transition metal carbide nanoparticles
WO2015031366A1 (en) 2013-08-30 2015-03-05 Exxonmobil Chemical Patents Inc. Oxygen storage and catalytic alkane conversion
US10377117B2 (en) 2013-09-25 2019-08-13 Avery Dennison Corporation Tamper evident security labels
CN105517978B (en) 2013-10-16 2017-11-14 沙特基础工业公司 The method that methane is changed into ethene
US10035127B2 (en) 2013-11-04 2018-07-31 The Regents Of The University Of California Metal-organic frameworks with a high density of highly charged exposed metal cation sites
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9682900B2 (en) 2013-12-06 2017-06-20 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion
CN110655437B (en) 2014-01-08 2022-09-09 鲁玛斯技术有限责任公司 System and method for ethylene to liquids
US20150218786A1 (en) 2014-01-08 2015-08-06 Saundra Sue CULLEN Sink insert with cleaning surface
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US20180215682A1 (en) 2014-01-09 2018-08-02 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US9701597B2 (en) 2014-01-09 2017-07-11 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
GB201403788D0 (en) 2014-03-04 2014-04-16 Johnson Matthey Plc Catalyst arrangement
CA2947483C (en) 2014-05-02 2023-08-01 Siluria Technologies, Inc. Heterogeneous catalysts
WO2015177066A1 (en) 2014-05-19 2015-11-26 Shell Internationale Research Maatschappij B.V. Process for recovering methane from a gas stream comprising methane and ethylene
EA201790244A1 (en) 2014-07-22 2017-07-31 Хальдор Топсёэ А/С RECIRCULATION LINE IN THE METHOD OF PRODUCING HYDROCARBONS BY METHANE OXIDATIVE COMBINATION (METM)
US9950971B2 (en) 2014-07-23 2018-04-24 Exxonmobil Chemical Patents Inc. Process and catalyst for methane conversion to aromatics
EP3825001A1 (en) 2014-09-17 2021-05-26 Lummus Technology LLC Catalysts for natural gas processes
KR101728809B1 (en) 2014-09-25 2017-04-21 한국화학연구원 Nanoporous inorganic-organic hybrid materials with nitrogen sorption selectivity and a method for selective separation of nitrogen-containing gas mixtures using the same
EP3029019B1 (en) 2014-12-05 2017-10-04 Linde Aktiengesellschaft Method for the production of hydrocarbons
CN107001056B (en) 2014-12-11 2019-04-02 瑞弗科技有限公司 Mesoporous zeolite is prepared with the processing of reduction
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
ES2833079T3 (en) 2015-03-17 2021-06-14 Lummus Technology Inc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
EP3081292A1 (en) 2015-04-15 2016-10-19 Air Products And Chemicals, Inc. Perforated adsorbent particles
US20160318828A1 (en) 2015-04-30 2016-11-03 Exxonmobil Chemical Patents Inc. Catalytic Alkane Dehydrogenation
DE112016002573T5 (en) 2015-06-08 2018-03-22 Sabic Global Technologies B.V. Oxidative methane coupling with La-Ce catalysts
WO2016200504A1 (en) 2015-06-08 2016-12-15 Sabic Global Technologies B.V. Low inlet temperature for oxidative coupling of methane
US20180305273A1 (en) 2015-06-16 2018-10-25 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
WO2016205411A2 (en) 2015-06-16 2016-12-22 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
DK3310480T3 (en) 2015-06-22 2020-09-07 Exelus Inc IMPROVED CATALYZED ALKYLATION, ALKYLATION CATALYSTS AND METHODS OF PREPARING ALKYLATION CATALYSTS
WO2016209507A1 (en) 2015-06-23 2016-12-29 Sabic Global Technologies, B.V. A method for producing hydrocarbons by oxidative coupling of methane without catalyst
EP3322522A2 (en) 2015-07-15 2018-05-23 SABIC Global Technologies B.V. Silver promoted catalysts for oxidative coupling of methane
US20170022125A1 (en) 2015-07-21 2017-01-26 Uop Llc Processes for producing polymer grade light olefins from mixed alcohols
WO2017034949A1 (en) 2015-08-25 2017-03-02 Sabic Global Technologies, B.V. A method for producing hydrocarbons by oxidative coupling of methane with a heavy diluent
JP6517631B2 (en) 2015-08-26 2019-05-22 Jxtgエネルギー株式会社 Method of producing lubricating base oil
CA2904477A1 (en) 2015-09-14 2017-03-14 Nova Chemicals Corporation Heat dissipating diluent in fixed bed reactors
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
US20170190638A1 (en) 2016-01-04 2017-07-06 Sabic Global Technologies, B.V. Ethylbenzene Production with Ethylene from Oxidative Coupling of Methane
CA3017274A1 (en) 2016-03-16 2017-09-21 Siluria Technologies, Inc. Catalysts and methods for natural gas processes
WO2017180910A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
CN107335386B (en) 2016-04-29 2021-01-22 中国科学院大连化学物理研究所 Configuration and preparation of catalytic reactor and method for directly synthesizing ethylene by catalyzing methane under anaerobic condition
US20190233349A1 (en) 2016-07-06 2019-08-01 Sabic Global Technologies B.V. Enhanced selectivity to c2+hydrocarbons by addition of hydrogen in feed to oxidative coupling of methane
WO2018026501A1 (en) 2016-08-01 2018-02-08 Sabic Global Technologies, B.V. Oxidative coupling of methane process with enhanced selectivity to c2+ hydrocarbons by addition of h2o in the feed
WO2018085820A1 (en) 2016-11-07 2018-05-11 Sabic Global Technologies, B.V. Sr-Ce-Yb-O CATALYSTS FOR OXIDATIVE COUPLING OF METHANE
EP3548456A4 (en) 2016-12-02 2020-10-28 Lummus Technology LLC Ethylene-to-liquids systems and methods
US20180169561A1 (en) 2016-12-19 2018-06-21 Siluria Technologies, Inc. Methods and systems for performing chemical separations
WO2018114900A1 (en) 2016-12-20 2018-06-28 Shell Internationale Research Maatschappij B.V. Oxidative dehydrogenation (odh) of ethane
US11148985B2 (en) 2017-01-31 2021-10-19 Sabic Global Technologies, B.V. Process for oxidative conversion of methane to ethylene
WO2018217924A1 (en) 2017-05-23 2018-11-29 Siluria Technologies, Inc. Integration of oxidative coupling of methane processes
AU2018298234B2 (en) 2017-07-07 2022-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
WO2019055220A1 (en) 2017-09-15 2019-03-21 Exxonmobil Research And Engineering Company Modified trilobe and quadrilobe shaped catalyst extrudates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015799A (en) * 1989-07-06 1991-05-14 Amoco Corporation Oxidative coupling process for converting methane and/or natural gas to more transportable products
US6096934A (en) * 1998-12-09 2000-08-01 Uop Llc Oxidative coupling of methane with carbon conservation
US7687048B1 (en) * 2006-09-28 2010-03-30 Uop Llc Amine treatment in light olefin processing

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527784B2 (en) 2012-01-13 2016-12-27 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US11254626B2 (en) 2012-01-13 2022-02-22 Lummus Technology Llc Process for separating hydrocarbon compounds
US9556086B2 (en) 2012-05-24 2017-01-31 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US11242298B2 (en) 2012-07-09 2022-02-08 Lummus Technology Llc Natural gas processing and systems
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US11168038B2 (en) 2012-12-07 2021-11-09 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10927056B2 (en) 2013-11-27 2021-02-23 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US11407695B2 (en) 2013-11-27 2022-08-09 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US11254627B2 (en) 2014-01-08 2022-02-22 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9701597B2 (en) 2014-01-09 2017-07-11 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US11208364B2 (en) 2014-01-09 2021-12-28 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US11008265B2 (en) 2014-01-09 2021-05-18 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10829424B2 (en) 2014-01-09 2020-11-10 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US9790144B2 (en) 2015-03-17 2017-10-17 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US11542214B2 (en) 2015-03-17 2023-01-03 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9567269B2 (en) 2015-03-17 2017-02-14 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10787400B2 (en) 2015-03-17 2020-09-29 Lummus Technology Llc Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US20160376148A1 (en) * 2015-06-23 2016-12-29 Sabic Global Technologies, B.V. Method for Producing Hydrocarbons by Oxidative Coupling of Methane without Catalyst
US10125640B2 (en) 2015-08-24 2018-11-13 Saudi Arabian Oil Company Modified goswami cycle based conversion of gas processing plant waste heat into power and cooling with flexibility
US10174640B1 (en) 2015-08-24 2019-01-08 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling with flexibility
US20170058711A1 (en) * 2015-08-24 2017-03-02 Saudi Arabian Oil Company Organic Rankine Cycle Based Conversion of Gas Processing Plant Waste Heat into Power and Cooling
US10113448B2 (en) 2015-08-24 2018-10-30 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power
US10577981B2 (en) 2015-08-24 2020-03-03 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling
US10480352B2 (en) 2015-08-24 2019-11-19 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power and cooling
US10227899B2 (en) * 2015-08-24 2019-03-12 Saudi Arabian Oil Company Organic rankine cycle based conversion of gas processing plant waste heat into power and cooling
US10995636B2 (en) 2015-08-24 2021-05-04 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power
US10301977B2 (en) 2015-08-24 2019-05-28 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US11073050B2 (en) 2015-08-24 2021-07-27 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US10870611B2 (en) 2016-04-13 2020-12-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US11505514B2 (en) 2016-04-13 2022-11-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
WO2018128983A1 (en) * 2017-01-06 2018-07-12 Sabic Global Technologies, B.V. An integrated process utilizing methane oxidative conversion heat for ethylene and methanol production
US20210172076A1 (en) * 2017-02-27 2021-06-10 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
US20210172075A1 (en) * 2017-02-27 2021-06-10 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
US11519080B2 (en) * 2017-02-27 2022-12-06 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
US11519079B2 (en) * 2017-02-27 2022-12-06 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
US11505755B2 (en) 2017-07-20 2022-11-22 Proteum Energy, Llc Method and system for converting associated gas
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
US10329215B2 (en) 2017-10-24 2019-06-25 Sabic Global Technologies, B.V. Process for converting a natural gas feedstock with inert content to chemical intermediates
US20190193027A1 (en) * 2017-10-26 2019-06-27 Marc Privitera Mobile Extraction Array with brine constituent separation, purification and concentration
US11085124B2 (en) * 2018-03-20 2021-08-10 Kabushiki Kaisha Toshiba Electrochemical reaction device
CN112973584A (en) * 2021-02-07 2021-06-18 中国科学院过程工程研究所 Fluidized bed reaction device and application thereof

Also Published As

Publication number Publication date
WO2016160563A1 (en) 2016-10-06
US20200172452A1 (en) 2020-06-04
CA2975743A1 (en) 2016-10-06
US11186529B2 (en) 2021-11-30
CA2975743C (en) 2023-11-07

Similar Documents

Publication Publication Date Title
US11186529B2 (en) Advanced oxidative coupling of methane
US11001543B2 (en) Separation methods and systems for oxidative coupling of methane
US10960343B2 (en) Methods and systems for performing chemical separations
KR101887843B1 (en) System and Method for Generating Power and Enhanced Oil Recovery
KR101788346B1 (en) Apparatus & process for treating natural gas
AU2010298708B2 (en) Maintaining low carbon monoxide levels in product carbon dioxide
GB2591188A (en) Separations with ionic liquid solvents
US20110308388A1 (en) Absorption method for recovering gas contaminants at high purity
WO2019005716A1 (en) Process for gas separation by solvent or absorbent
CN104031681A (en) Method for recovering ethylene and hydrogen from refinery dry gases by combining cold oil absorption and pressure swing adsorption (PSA)
AU2010328581B2 (en) Maintaining lowered CO in a CO2 product stream in a process for treating synthesis gas
JP4758711B2 (en) Pretreatment method for gas hydrate production
CN112969677A (en) Process for recovering ethylene from dry gas
EP2627434A2 (en) Capturing carbon dioxide from high pressure streams

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILURIA TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUGGAL, SUCHIA;RADAELLI, GUIDO;MCCORMICK, JAROD;AND OTHERS;SIGNING DATES FROM 20151001 TO 20151005;REEL/FRAME:036886/0183

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION