JP2005161225A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas Download PDF

Info

Publication number
JP2005161225A
JP2005161225A JP2003404901A JP2003404901A JP2005161225A JP 2005161225 A JP2005161225 A JP 2005161225A JP 2003404901 A JP2003404901 A JP 2003404901A JP 2003404901 A JP2003404901 A JP 2003404901A JP 2005161225 A JP2005161225 A JP 2005161225A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
titania
layer
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003404901A
Other languages
Japanese (ja)
Inventor
Katsuo Suga
克雄 菅
Kazuyuki Shiratori
一幸 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003404901A priority Critical patent/JP2005161225A/en
Publication of JP2005161225A publication Critical patent/JP2005161225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for purifying exhaust gases that is superior in adsorbing and desorbing performance of HCs and useful for purifying cold HCs. <P>SOLUTION: The catalyst for purifying exhaust gases is a laminated structure where a layer for trapping hydrocarbons and a catalyst layer overlie a honeycomb carrier in this order. The layer for trapping hydrocarbons contains titania nanotubes, while the catalyst layer contains a noble metal and alumina. The titania nanotubes have a pore volume of not less than 0.1 cc/g, a specific surface area of not less than 50 m<SP>2</SP>/g and a pore size of 0.1 to 5 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エアコン、オーブンなどの電化製品や、自動車、ボイラーなどの内燃機関から排出される排ガス中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する排ガス浄化用触媒に係り、特にエンジン始動直後のHC(以下、コールドHC)の浄化に着目した排ガス浄化用触媒に関するものである。   The present invention is an exhaust gas for purifying hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas discharged from electrical appliances such as air conditioners and ovens, and internal combustion engines such as automobiles and boilers. The present invention relates to a purification catalyst, and particularly to an exhaust gas purification catalyst that focuses on purification of HC immediately after engine startup (hereinafter referred to as cold HC).

従来から、エンジン始動時のコールドHCを浄化する触媒が種々提案されており、例えばHCトラップ材を含む触媒に見られるように、低温でHCをトラップし、高温時にHCを放出して浄化する触媒が提案されている(例えば、特許文献1参照))。
このような排ガス浄化用触媒の特徴は、HCトラップ機能を持つゼオライトと、浄化のための貴金属を含むことにある。
Conventionally, various catalysts for purifying cold HC at the time of starting an engine have been proposed. For example, as seen in a catalyst including an HC trap material, a catalyst that traps HC at a low temperature and releases HC at a high temperature to purify the catalyst. (For example, refer to Patent Document 1)).
The feature of such an exhaust gas purification catalyst is that it contains a zeolite having an HC trap function and a precious metal for purification.

一方、近年、理論上はゼオライトと同様にHC吸着機能が期待できるチタニアナノチューブの製造方法が開示されている(例えば、特許文献2〜4参照)。
特開平04−231616号公報 特開2003−034531号公報 特開2002−241129号公報 特開平10−152323号公報
On the other hand, in recent years, a method for producing a titania nanotube that can theoretically be expected to have an HC adsorption function similar to zeolite has been disclosed (see, for example, Patent Documents 2 to 4).
Japanese Patent Laid-Open No. 04-231616 JP 2003-034531 A JP 2002-241129 A Japanese Patent Laid-Open No. 10-152323

しかしながら、かかる従来の排ガス浄化用触媒においては、HCトラップ材としてゼオライトを用いた場合、吸着したHCの一部が貴金属の活性温度以下で脱離してしまい、狙いとするコールド域のHC浄化率が十分に得られないという問題があった。
かかる問題を解決するには、高温までHCを保持するHCトラップ材が望まれるが、排ガス浄化の分野では、ゼオライト以上に高性能な材料は現状では知られていなかった。
However, in such a conventional exhaust gas purification catalyst, when zeolite is used as the HC trap material, a part of the adsorbed HC is desorbed below the activation temperature of the noble metal, and the target HC purification rate in the cold region is increased. There was a problem that it could not be obtained sufficiently.
In order to solve such a problem, an HC trap material that holds HC up to a high temperature is desired. However, in the field of exhaust gas purification, a material with higher performance than zeolite has not been known at present.

一方、チタニアナノチューブについては、上述の如くHC吸着機能が期待できるものの、吸着したHCを適切に放出して、排ガスの浄化に好適に供することができるか否かは不明であった。
また仮に、チタニアナノチューブを排ガス浄化用触媒に用いると、チタン(Ti)が貴金属やアルミナの熱劣化を促進してしまい、排ガス浄化性能が低下するおそれがあるという問題があった。
On the other hand, although titania nanotubes can be expected to have an HC adsorption function as described above, it has been unclear whether or not the adsorbed HC can be appropriately released and suitably used for exhaust gas purification.
Further, if titania nanotubes are used as an exhaust gas purification catalyst, titanium (Ti) promotes thermal degradation of noble metals and alumina, and there is a problem that exhaust gas purification performance may be reduced.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、HCの吸着及び放出性能に優れ、コールドHCの浄化に良好な排ガス浄化用触媒を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an exhaust gas purifying catalyst that is excellent in HC adsorption and release performance and good in the purification of cold HC. There is to do.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、層構造を適切に制御することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by appropriately controlling the layer structure, and have completed the present invention.

即ち、本発明の排ガス浄化用触媒は、ハニカム担体上に、炭化水素トラップ層及び触媒層をこの順で積層した積層構造を有するものである。また、炭化水素トラップ層がチタニアナノチューブを含有し、触媒層が貴金属とアルミナを含有する排ガス浄化用触媒である。   That is, the exhaust gas purifying catalyst of the present invention has a laminated structure in which a hydrocarbon trap layer and a catalyst layer are laminated in this order on a honeycomb carrier. The hydrocarbon trap layer contains a titania nanotube, and the catalyst layer is an exhaust gas purifying catalyst containing a noble metal and alumina.

本発明によれば、層構造を適切に制御することなどとしたため、HCの吸着及び放出性能に優れ、コールドHCの浄化に良好な排ガス浄化用触媒を提供することができる。   According to the present invention, it is possible to provide an exhaust gas purifying catalyst that is excellent in HC adsorption and release performance and good in purifying cold HC because the layer structure is appropriately controlled.

以下、本発明の排ガス浄化用触媒につき詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。
上述の如く、本発明の排ガス浄化用触媒は、ハニカム担体上に炭化水素トラップ層を被覆し、この炭化水素トラップ層上に触媒層を積層して形成されるものであり、炭化水素トラップ層に触媒層を積層した少なくとも2層の積層構造を有する排ガス浄化用触媒である。
また、上記炭化水素トラップ層がチタニアナノチューブを含有し、上記触媒層が貴金属とアルミナを含有する。
Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. In the present specification, “%” represents mass percentage unless otherwise specified.
As described above, the exhaust gas purifying catalyst of the present invention is formed by coating a hydrocarbon trap layer on a honeycomb carrier and laminating the catalyst layer on the hydrocarbon trap layer. An exhaust gas purifying catalyst having a laminated structure of at least two layers in which catalyst layers are laminated.
The hydrocarbon trap layer contains titania nanotubes, and the catalyst layer contains a noble metal and alumina.

本発明の排ガス浄化用触媒は、エンジン始動後などの排ガス度が低い場合にHCを吸着し、排ガス温度の上昇と共にHCを脱離して浄化する触媒であり、上述のように、ハニカム担体側の内層にチタニアナノチューブを、外層にアルミナと貴金属を含有させた積層構造を有している。
ここで、層構造において、内層と外層とに区分し、内層にチタニアナノチューブを、外層にアルミナと貴金属を含ませた理由は、チタニアナノチューブを構成するTiがアルミナや貴金属の熱劣化を促進してしまうので、Tiと貴金属やアルミナを分離して配置し、相互の接触を回避するとともに、脱離したHCの浄化効率の向上を考慮したからである。
The exhaust gas purifying catalyst of the present invention is a catalyst that adsorbs HC when the exhaust gas level is low, such as after starting the engine, and desorbs and purifies HC as the exhaust gas temperature rises. It has a laminated structure in which titania nanotubes are contained in the inner layer and alumina and a noble metal are contained in the outer layer.
Here, the layer structure is divided into an inner layer and an outer layer, the inner layer contains titania nanotubes, and the outer layer contains alumina and noble metal. The reason why Ti constituting the titania nanotubes is to promote thermal deterioration of alumina and noble metals. Therefore, Ti is separated from the precious metal and alumina to avoid mutual contact and to improve the purification efficiency of the detached HC.

また、上記チタニアナノチューブの含有量は、特に限定されるものではないが、この排気ガス浄化用触媒1L当り50〜400gとすることが好ましい。
排ガスのコールド時において、HCを十分に吸着するためには50g以上とすることが好ましく、50g未満では十分なHC吸着量が実現できないことがあり、400gを超えても、有意な増量効果が得られないことがある。
Further, the content of the titania nanotube is not particularly limited, but is preferably 50 to 400 g per liter of the exhaust gas purifying catalyst.
In order to sufficiently adsorb HC when the exhaust gas is cold, it is preferably 50 g or more. If it is less than 50 g, a sufficient amount of HC adsorption may not be realized, and if it exceeds 400 g, a significant increase effect is obtained. It may not be possible.

更に、このチタニアナノチューブについては、その細孔容積が0.1cc/g以上で、且つ比表面積が50m/g以上のものを用いることが好ましい。
コールドHCを適切に吸着するためには、細孔容積と比表面積が上記範囲内にあることが好ましく、細孔容積が0.1cc/g未満だと十分なHC吸着量が得られず、また比表面積が50m/g未満だと同様に十分なHC吸着量が得られないことがある。
Furthermore, it is preferable to use the titania nanotube having a pore volume of 0.1 cc / g or more and a specific surface area of 50 m 2 / g or more.
In order to adsorb cold HC appropriately, the pore volume and specific surface area are preferably within the above ranges, and if the pore volume is less than 0.1 cc / g, a sufficient amount of HC adsorption cannot be obtained. If the specific surface area is less than 50 m 2 / g, a sufficient HC adsorption amount may not be obtained.

なお、このチタニアナノチューブの細孔径は、0.1〜5nmであることが好ましい。
排ガス中のHCをトラップするには、細孔径が上記範囲内にあるのがよく、上記0.1nm未満ではHCが侵入できず、5nmを超えるとHCが通り抜けてしまうことがある。
In addition, it is preferable that the pore diameter of this titania nanotube is 0.1-5 nm.
In order to trap HC in the exhaust gas, the pore diameter should be within the above range, and if it is less than 0.1 nm, HC cannot enter, and if it exceeds 5 nm, HC may pass through.

更にまた、触媒原料としてのチタニアナノチューブは、トルエンの吸着脱離試験法による脱離ピークが400℃以上においても観測されるものであることが好ましい。
排ガス浄化用触媒という用途上の要請から、HCを高温まで吸着できることが好ましく、HCの脱離が400℃未満でのみ観測される場合は、貴金属が活性化する前にHCの一部が脱離してしまうこととなり、一部のHCが未浄化となる可能性がある。
Furthermore, it is preferable that the titania nanotube as the catalyst raw material has a desorption peak observed by toluene adsorption / desorption test method even at 400 ° C. or higher.
It is preferable that HC can be adsorbed to a high temperature because of the requirement for an exhaust gas purification catalyst. When HC desorption is observed only at less than 400 ° C., a part of HC is desorbed before the precious metal is activated. As a result, some HC may be unpurified.

なお、本発明の排ガス浄化用触媒においては、上述のHCトラップ層が、アルミナ、シリカ又はチタニア及びこれらの任意の混合物をバインダーとして含むことが好ましく、この場合、該バインダーとチタニアナノチューブの重量比を1/100〜1/5とすることが好ましい。
かかるバインダーを用いることにより、チタニアナノチューブをハニカム担体に十分に担持できるようになり、バインダー/チタニアナノチューブの重量比が1/100未満だとチタニアナノチューブが担体から剥離することがあり、1/5を超えると層内のチタニアナノチューブ量が相対的に減少してHC吸着率が十分に得られないことがある。
In the exhaust gas purifying catalyst of the present invention, the above-mentioned HC trap layer preferably contains alumina, silica or titania and any mixture thereof as a binder. In this case, the weight ratio of the binder to the titania nanotube is 1/100 to 1/5 is preferable.
By using such a binder, it becomes possible to sufficiently support the titania nanotubes on the honeycomb carrier. When the binder / titania nanotube weight ratio is less than 1/100, the titania nanotubes may be peeled off from the carrier. If it exceeds, the amount of titania nanotubes in the layer may be relatively reduced, and the HC adsorption rate may not be sufficiently obtained.

次に、触媒層に含有させる貴金属としては、白金(Pt)、パラジウム(Pd)又は(ロジウム(Rh)及びこれらの任意の組合せを挙げることができる。
また、貴金属含有量としては、触媒1L当たり1〜10gとすることが好ましい。1g/L未満では脱離HCの浄化機能が低下することがあり、10g/Lを超えて含有させても有為な増量効果が得られないことがある。
Next, examples of the noble metal to be contained in the catalyst layer include platinum (Pt), palladium (Pd), (rhodium (Rh), and any combination thereof.
The precious metal content is preferably 1 to 10 g per liter of the catalyst. If it is less than 1 g / L, the purification function of desorbed HC may be deteriorated, and if it is contained in excess of 10 g / L, a significant increase effect may not be obtained.

なお、使用するモノリス状ハニカム担体としては、GSA(幾何学表面積)が20〜50cm/cmのものが好ましい。
GSAが20cm/cm未満では、排ガスとの接触面積が少なくNOxトラップ機能が低下することがあり、50cm/cmを超えると、HCトラップ層の厚みが不足してHCトラップ機能が低下することがある。
また、ハニカム担体のセル断面形状は4角形〜6角形が好ましい。
The monolith honeycomb carrier to be used preferably has a GSA (geometric surface area) of 20 to 50 cm 2 / cm 3 .
If the GSA is less than 20 cm 2 / cm 3 , the contact area with the exhaust gas is small and the NOx trap function may be reduced. If it exceeds 50 cm 2 / cm 3 , the thickness of the HC trap layer is insufficient and the HC trap function is reduced. There are things to do.
In addition, the cell cross-sectional shape of the honeycomb carrier is preferably a tetragon to a hexagon.

更に、使用するアルミナは耐熱性に優れるものがよく、一般の排ガス浄化用触媒で知られているようにランタン(La)やセリウム(Ce)を担持すると良い。また、Rhを担持するアルミナにはZrを担持してあるものが好ましい。
また、本発明の排ガス浄化用触媒においては、助触媒として、一般に排ガス浄化用触媒で使用されている材料を添加してもよく、セリア、ジルコニア、ナトリウム(Na)やカリウム(K)等を含むアルカリ金属化合物、マグネシウム(Mg)、カルシウム(Ca)やバリウム(Ba)等を含むアルカリ土類金属化合物などを添加することができる。
Further, the alumina to be used is preferably excellent in heat resistance, and lanthanum (La) or cerium (Ce) is preferably supported as is known in general exhaust gas purification catalysts. Further, it is preferable that the alumina carrying Rh carries Zr.
In the exhaust gas purifying catalyst of the present invention, a material generally used in exhaust gas purifying catalysts may be added as a co-catalyst, including ceria, zirconia, sodium (Na), potassium (K) and the like. Alkali metal compounds including alkali metal compounds, magnesium (Mg), calcium (Ca), barium (Ba), and the like can be added.

なお、チタニアナノチューブの製法は、一般に報告されている方法でよく、例えばチタニアアルコキシド溶液と界面活性剤と水とを混合し固化させる方法や、チタニアをアルカリ処理する方法を挙げることができる。   In addition, the manufacturing method of a titania nanotube may be the method generally reported, for example, the method of mixing a titania alkoxide solution, surfactant, and water and solidifying, The method of alkali-treating titania.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
チタニアナノチューブとSiOゾルと水を磁性ボールミルに投入し、混合粉砕してスラリを得た。これをGSA=28.8cm/cm(4ミル、400セル)のセラミック製ハニカム担体に担持した。
次いで、活性アルミナ粉末にジニトロジアンミン白金水溶液を含浸し、乾燥後空気中で焼成してPt担持アルミナを得た。更に、同様の操作によりRh担持アルミナ粉末を得た。更に、これら粉末と水を磁性ボールミルに投入し、混合粉砕してスラリを得た。
しかる後、得られたスラリを上記チタニアナノチューブ担持担体に担持し、ハニカム担体側の1層目(内層)にチタニアナノチューブが、2層目(外層)に貴金属触媒層が担持された本例の触媒を得た。
なお、本例では、触媒1L当り、1層目にTiOを50g、SiOを5g、2層目にPtを3g、Rhを0.6g及びアルミナを200g担持した。
(Example 1)
Titania nanotubes, SiO 2 sol and water were put into a magnetic ball mill, mixed and ground to obtain a slurry. This was supported on a ceramic honeycomb carrier having GSA = 28.8 cm 2 / cm 3 (4 mil, 400 cells).
Next, the activated alumina powder was impregnated with a dinitrodiammine platinum aqueous solution, dried, and fired in air to obtain Pt-supported alumina. Further, Rh-supported alumina powder was obtained by the same operation. Furthermore, these powder and water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry.
Thereafter, the obtained slurry is supported on the titania nanotube supporting carrier, and the titania nanotube is supported on the first layer (inner layer) on the honeycomb carrier side, and the noble metal catalyst layer is supported on the second layer (outer layer). Got.
In this example, the catalyst per 1L, the TiO 2 50 g, the Pt and SiO 2 to 5 g, 2-layer 3g, the Rh and 0.6g and alumina was 200g supported on the first layer.

(比較例1)
チタニアナノチューブと、シリカゾルと、Pt担持アルミナ粉末と、Rh担持アルミナ粉末と、水とを磁性ボールミルに投入し、混合粉砕してスラリを得た。
得られたスラリをセラミックハニカム担体に担持し、チタニアナノチューブと貴金属とが同一層内に担持された本例の触媒を得た。
(Comparative Example 1)
Titania nanotubes, silica sol, Pt-supported alumina powder, Rh-supported alumina powder, and water were put into a magnetic ball mill, mixed and ground to obtain a slurry.
The obtained slurry was supported on a ceramic honeycomb carrier to obtain a catalyst of this example in which titania nanotubes and noble metal were supported in the same layer.

[性能評価]
チタニアを貴金属と別の層に担持することによる脱離HC浄化性能の向上効果を確認すべく、以下の条件下で試験を行った。得られた結果を表1に示す。
・耐久条件:入口700℃×30hr、日産製ガソリン3L、V6エンジン
・評価条件:モデルガス評価
・触媒容量:40cc
・評価ガス:流量=40L/min、O=5vol%、
HC(トルエン)=1000ppmC、HO=10vol%
[Performance evaluation]
In order to confirm the improvement effect of desorption HC purification performance by supporting titania on a layer different from the noble metal, a test was conducted under the following conditions. The obtained results are shown in Table 1.
-Durability conditions: inlet 700 ° C x 30 hr, Nissan gasoline 3L, V6 engine-Evaluation conditions: Model gas evaluation-Catalyst capacity: 40cc
Evaluation gas: flow rate = 40 L / min, O 2 = 5 vol%,
HC (toluene) = 1000 ppmC, H 2 O = 10 vol%

Figure 2005161225
Figure 2005161225

表1より、チタニアナノチューブから脱離するHCの浄化活性において、実施例1は低温から浄化できることが明らかであり、本発明の目的にも合致することが分かる。   From Table 1, it is clear that Example 1 can be purified from a low temperature in the purification activity of HC desorbed from the titania nanotube, and it can be seen that it also meets the object of the present invention.

(参考例1)
実施例1で用いたチタニアナノチューブ粉末を用意した。
(Reference Example 1)
The titania nanotube powder used in Example 1 was prepared.

(参考例2)
チタニアナノチューブ粉末を予め1000℃で焼成し、比表面積、細孔容積、細孔径を減じたものを用意した。
(Reference Example 2)
The titania nanotube powder was fired at 1000 ° C. in advance to prepare a product with reduced specific surface area, pore volume, and pore diameter.

(参考例3)
ゼオライト粉末(β型)を用意した。
(Reference Example 3)
Zeolite powder (β type) was prepared.

[試験例]
参考例1及び2の2種類のチタニアナノチューブ粉末の物性を評価した。
比表面積はBET式比表面積測定法、細孔容積はN吸着式測定法、細孔径は透過電子顕微鏡にて観測した。得られた結果を表2に示す。
また、HC吸着機能の評価は以下の手法にて行った。
トルエンを室温で揮発させ、150℃に保温した反応管内の粉末にトルエンを流して吸着させ、更に真空脱気し、Heガスを導入する。次いで、反応管を昇温し、質量分析計にて脱離トルエン量を測定する。得られた結果を図1に示す。
[Test example]
The physical properties of the two types of titania nanotube powders of Reference Examples 1 and 2 were evaluated.
The specific surface area was observed with a BET specific surface area measuring method, the pore volume was measured with an N 2 adsorption method, and the pore diameter was observed with a transmission electron microscope. The obtained results are shown in Table 2.
The HC adsorption function was evaluated by the following method.
Toluene is volatilized at room temperature, and toluene is allowed to flow and adsorb to the powder in the reaction tube kept at 150 ° C., vacuum degassed, and He gas is introduced. Next, the temperature of the reaction tube is raised, and the amount of desorbed toluene is measured with a mass spectrometer. The obtained results are shown in FIG.

Figure 2005161225
Figure 2005161225

表2及び図1に示したように、チタニアナノチューブを使用する際、比表面積、細孔容積、細孔径が本発明の好適範囲内である場合に、有効なHC吸着脱離反応が起こることがわかる。
また、ゼオライトに比べ、高温域でも脱離HCが観測されることから(図1参照)、より高温までHCを保持でき、本発明の目的に適切であることも分かる。
As shown in Table 2 and FIG. 1, when titania nanotubes are used, an effective HC adsorption / desorption reaction may occur when the specific surface area, pore volume, and pore diameter are within the preferred ranges of the present invention. Understand.
Further, since desorbed HC is observed even in a high temperature range as compared to zeolite (see FIG. 1), it can be understood that HC can be maintained at a higher temperature and is suitable for the purpose of the present invention.

このように、本発明に好適な参考例1のチタニアナノチューブは、HCトラップ能力が極めて高いことから、排ガス浄化用触媒として用いた場合、例えば触媒への担持量が少なくて済み、排気抵抗が下げられる等のメリットが期待できる。
また、高温までHCを保持できることから、例えば貴金属使用量を少なくできる可能性がある。即ち、貴金属の担持量を低減して活性温度が高くなった場合でも、HCの脱離浄化が可能となることによる。
Thus, since the titania nanotube of Reference Example 1 suitable for the present invention has an extremely high HC trapping capacity, when it is used as an exhaust gas purification catalyst, for example, the amount supported on the catalyst is small, and the exhaust resistance is reduced. Benefits such as being able to be expected.
Further, since HC can be maintained up to a high temperature, there is a possibility that the amount of noble metal used can be reduced. That is, even when the amount of noble metal supported is reduced and the activation temperature is increased, the HC can be desorbed and purified.

トルエンの脱離挙動を示すグラフである。It is a graph which shows the desorption behavior of toluene.

Claims (6)

ハニカム担体上に、炭化水素トラップ層及び触媒層をこの順で積層した積層構造を有する排ガス浄化用触媒において、
上記炭化水素トラップ層が、チタニアナノチューブを含有し、
上記触媒層が、貴金属とアルミナを含有することを特徴とする排ガス浄化用触媒。
In the exhaust gas purifying catalyst having a laminated structure in which a hydrocarbon trap layer and a catalyst layer are laminated in this order on a honeycomb carrier,
The hydrocarbon trap layer contains titania nanotubes,
An exhaust gas purifying catalyst, wherein the catalyst layer contains a noble metal and alumina.
チタニアナノチューブの含有量が触媒1L当り50〜400gであることを特徴とする請求項1に記載の排ガス浄化用触媒。   2. The exhaust gas purifying catalyst according to claim 1, wherein the titania nanotube content is 50 to 400 g per liter of the catalyst. チタニアナノチューブの細孔容積が0.1cc/g以上で、比表面積が50m/g以上であることを特徴とする請求項1又は2に記載の排ガス浄化用触媒。 3. The exhaust gas purifying catalyst according to claim 1, wherein the titania nanotube has a pore volume of 0.1 cc / g or more and a specific surface area of 50 m 2 / g or more. チタニアナノチューブの細孔径が0.1〜5nmであることを特徴とする請求項1〜3のいずれか1つの項に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the titania nanotube has a pore diameter of 0.1 to 5 nm. チタニアナノチューブは、トルエンの吸着脱離試験法による脱離ピークが400℃以上においても観測されることを特徴とする請求項1〜4のいずれか1つの項に記載の排ガス浄化用触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 4, wherein the titania nanotube has a desorption peak measured by an adsorption / desorption test method of toluene at 400 ° C or higher. 上記炭化水素トラップ層が、アルミナ、シリカ及びチタニアから成る群より選ばれた少なくとも1種のバインダーを含み、このバインダーとチタニアナノチューブの重量比が1/100〜1/5であることを特徴とする請求項1〜5のいずれか1つの項に記載の排ガス浄化用触媒。   The hydrocarbon trap layer contains at least one binder selected from the group consisting of alumina, silica and titania, and the weight ratio of the binder to titania nanotube is 1/100 to 1/5. The exhaust gas-purifying catalyst according to any one of claims 1 to 5.
JP2003404901A 2003-12-03 2003-12-03 Catalyst for purifying exhaust gas Pending JP2005161225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404901A JP2005161225A (en) 2003-12-03 2003-12-03 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404901A JP2005161225A (en) 2003-12-03 2003-12-03 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JP2005161225A true JP2005161225A (en) 2005-06-23

Family

ID=34727773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404901A Pending JP2005161225A (en) 2003-12-03 2003-12-03 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JP2005161225A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223986A (en) * 2005-02-17 2006-08-31 Sharp Corp Micro structure, production method of microstructure, air cleaner and air conditioner
WO2013177461A2 (en) * 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US8921256B2 (en) 2011-05-24 2014-12-30 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US8962517B2 (en) 2011-11-29 2015-02-24 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9321702B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US9352295B2 (en) 2014-01-09 2016-05-31 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US9738571B2 (en) 2013-03-15 2017-08-22 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9751079B2 (en) 2014-09-17 2017-09-05 Silura Technologies, Inc. Catalysts for natural gas processes
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US9956544B2 (en) 2014-05-02 2018-05-01 Siluria Technologies, Inc. Heterogeneous catalysts
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
KR20190127540A (en) * 2018-05-04 2019-11-13 박춘성 Carrier for hydrochloric acid gas and method of manufacturing thereof
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223986A (en) * 2005-02-17 2006-08-31 Sharp Corp Micro structure, production method of microstructure, air cleaner and air conditioner
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US10195603B2 (en) 2010-05-24 2019-02-05 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US9446387B2 (en) 2011-05-24 2016-09-20 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9963402B2 (en) 2011-05-24 2018-05-08 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US8921256B2 (en) 2011-05-24 2014-12-30 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9040762B2 (en) 2011-05-24 2015-05-26 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US10654769B2 (en) 2011-05-24 2020-05-19 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US11795123B2 (en) 2011-05-24 2023-10-24 Lummus Technology Llc Catalysts for petrochemical catalysis
US11078132B2 (en) 2011-11-29 2021-08-03 Lummus Technology Llc Nanowire catalysts and methods for their use and preparation
US9751818B2 (en) 2011-11-29 2017-09-05 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US8962517B2 (en) 2011-11-29 2015-02-24 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US11254626B2 (en) 2012-01-13 2022-02-22 Lummus Technology Llc Process for separating hydrocarbon compounds
US9527784B2 (en) 2012-01-13 2016-12-27 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
US9556086B2 (en) 2012-05-24 2017-01-31 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US11370724B2 (en) 2012-05-24 2022-06-28 Lummus Technology Llc Catalytic forms and formulations
AU2013266189B2 (en) * 2012-05-24 2018-01-04 Lummus Technology Llc Catalysts comprising catalytic nanowires and their use
US20140121433A1 (en) * 2012-05-24 2014-05-01 Siluria Technologies, Inc. Catalytic forms and formulations
WO2013177461A3 (en) * 2012-05-24 2014-01-16 Siluria Technologies, Inc. Catalysts comprising catalytic nanowires and their use
WO2013177461A2 (en) * 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US11242298B2 (en) 2012-07-09 2022-02-08 Lummus Technology Llc Natural gas processing and systems
US10183900B2 (en) 2012-12-07 2019-01-22 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US11168038B2 (en) 2012-12-07 2021-11-09 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10865166B2 (en) 2013-03-15 2020-12-15 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US10308565B2 (en) 2013-03-15 2019-06-04 Silura Technologies, Inc. Catalysts for petrochemical catalysis
US9738571B2 (en) 2013-03-15 2017-08-22 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US10927056B2 (en) 2013-11-27 2021-02-23 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US11407695B2 (en) 2013-11-27 2022-08-09 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9321703B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US11254627B2 (en) 2014-01-08 2022-02-22 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9512047B2 (en) 2014-01-08 2016-12-06 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9321702B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US11008265B2 (en) 2014-01-09 2021-05-18 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9352295B2 (en) 2014-01-09 2016-05-31 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US9701597B2 (en) 2014-01-09 2017-07-11 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10829424B2 (en) 2014-01-09 2020-11-10 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US11208364B2 (en) 2014-01-09 2021-12-28 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US9956544B2 (en) 2014-05-02 2018-05-01 Siluria Technologies, Inc. Heterogeneous catalysts
US10780420B2 (en) 2014-05-02 2020-09-22 Lummus Technology Llc Heterogeneous catalysts
US10300465B2 (en) 2014-09-17 2019-05-28 Siluria Technologies, Inc. Catalysts for natural gas processes
US9751079B2 (en) 2014-09-17 2017-09-05 Silura Technologies, Inc. Catalysts for natural gas processes
US11000835B2 (en) 2014-09-17 2021-05-11 Lummus Technology Llc Catalysts for natural gas processes
US11542214B2 (en) 2015-03-17 2023-01-03 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9567269B2 (en) 2015-03-17 2017-02-14 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US9790144B2 (en) 2015-03-17 2017-10-17 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10787400B2 (en) 2015-03-17 2020-09-29 Lummus Technology Llc Efficient oxidative coupling of methane processes and systems
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US10407361B2 (en) 2016-04-13 2019-09-10 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US11505514B2 (en) 2016-04-13 2022-11-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10870611B2 (en) 2016-04-13 2020-12-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
KR102073278B1 (en) * 2018-05-04 2020-02-04 (주)다인스 Carrier for hydrochloric acid gas and method of manufacturing thereof
KR20190127540A (en) * 2018-05-04 2019-11-13 박춘성 Carrier for hydrochloric acid gas and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
JP2005161225A (en) Catalyst for purifying exhaust gas
JP3904802B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4523911B2 (en) Exhaust gas purification device
JP5173180B2 (en) Exhaust gas purification catalyst
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
JPH10180099A (en) Catalyst for purifying waste gas and waste gas purifying system
JP2002045701A (en) Catalyst for purifying exhaust gas
JPWO2007145152A1 (en) Exhaust gas purification catalyst
JPH10180041A (en) Catalyst for purification of exhaust gas and exhaust gas purifying system
US9144789B2 (en) Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
JP2007196146A (en) Catalyst for cleaning exhaust gas
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP2008018418A (en) Catalyst for cleaning exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
JP2009208045A (en) Exhaust gas cleaning catalyst
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP2010051886A (en) Catalyst for cleaning exhaust gas
JP2007330879A (en) Catalyst for cleaning exhaust gas
JPH1190226A (en) Catalyst for exhaust gas purification
JP5428774B2 (en) Exhaust gas purification catalyst
JP2004321894A (en) Exhaust gas cleaning catalyst and method for producing the same
JP2004176589A (en) Emission control device
JP2005169203A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP3871110B2 (en) Exhaust gas purification catalyst and method for producing the same