RU2017121367A - Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк - Google Patents

Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк Download PDF

Info

Publication number
RU2017121367A
RU2017121367A RU2017121367A RU2017121367A RU2017121367A RU 2017121367 A RU2017121367 A RU 2017121367A RU 2017121367 A RU2017121367 A RU 2017121367A RU 2017121367 A RU2017121367 A RU 2017121367A RU 2017121367 A RU2017121367 A RU 2017121367A
Authority
RU
Russia
Prior art keywords
tpn
cell
crispr rna
million
sequence
Prior art date
Application number
RU2017121367A
Other languages
English (en)
Other versions
RU2734770C2 (ru
RU2017121367A3 (ru
Inventor
Эндрю Дж. МЕРФИ
Дэвид ФРЕНДЕВЕЙ
Ка-Ман Венус ЛАЙ
Войтек АУЭРБАХ
Густаво ДРОГУЭТТ
Энтони ГАЛЬЯРДИ
Дэвид М. ВАЛЕНЦУЭЛА
Вера ВОРОНИНА
Линн МАКДОНАЛЬД
Джордж Д. Янкопулос
Original Assignee
Регенерон Фармасьютикалз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Регенерон Фармасьютикалз, Инк. filed Critical Регенерон Фармасьютикалз, Инк.
Publication of RU2017121367A publication Critical patent/RU2017121367A/ru
Publication of RU2017121367A3 publication Critical patent/RU2017121367A3/ru
Application granted granted Critical
Publication of RU2734770C2 publication Critical patent/RU2734770C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/16Assays for determining copy number or wherein the copy number is of special importance

Claims (179)

1. Способ введения биаллельной модификации в геном в клетке, включающий в себя приведение генома в контакт с:
(a) первым белком Cas;
(b) первой РНК CRISPR, которая гибридизуется с первой последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса;
(c) второй РНК CRISPR, которая гибридизуется со второй последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса;
(d) тракрРНК; и
(e) нацеливающим вектором, содержащим полинуклеотидную вставку, фланкированную 5' гомологичным плечом, гибридизующимся с целевой 5'-последовательностью, и 3' гомологичным плечом,- гибридизующимся с целевой 3'-последовательностью, при условии, что если клетка представляет собой эмбрион на стадии единственной клетки, то нацеливающий вектор имеет длину не более 5 т.п.н.;
причем геном содержит пару из первой и второй гомологичных хромосом, содержащих целевой геномный локус; и
при этом первый белок Cas расщепляет по меньшей мере одну из первой и второй последовательностей распознавания РНК CRISPR с получением по меньшей мере одного двухцепочечного разрыва в по меньшей мере одной из первой и второй гомологичных хромосом.
2. Способ по п. 1, дополнительно включающий в себя идентификацию клетки, содержащей модифицированный геном.
3. Способ по п. 2, в котором полинуклеотидная вставка содержит кассету селекции, примыкающую к первому гомологичному плечу, которое гибридизуется с первой целевой последовательностью,
причем первое гомологичное плечо представляет собой 5' гомологичное плечо, а первая целевая последовательность представляет собой целевую 5'-последовательность, или причем первое гомологичное плечо представляет собой 3' гомологичное плечо, а первая целевая последовательность представляет собой целевую 3'-последовательность,
при этом идентификация включает в себя:
(a) получение ДНК из клетки;
(b) воздействие на ДНК клетки зондом, связывающимся в пределах первой целевой последовательности, зондом, связывающимся в пределах полинуклеотидной вставки, и зондом, связывающимся в пределах эталонного гена, имеющего известное число копий, при этом каждый зонд генерирует обнаруживаемый сигнал при связывании;
(c) обнаружение сигналов, обусловленных связыванием каждого из зондов; и
(d) сравнение сигнала от зонда эталонного гена с сигналом от зонда первой целевой последовательности для определения числа копий первой целевой последовательности и сравнение сигнала от зонда эталонного гена с сигналом от зонда полинуклеотидной вставки для определения числа копий полинуклеотидной вставки,
при этом число копий полинуклеотидной вставки, равное одной или двум, и число копий первой целевой последовательности, равное двум, указывает на нацеленную вставку полинуклеотидной вставки в целевой геномный локус, и
при этом число копий полинуклеотидной вставки, равное одной или более, и число копий первой целевой последовательности, равное трем или более, указывает на случайную вставку полинуклеотидной вставки в геномный локус, отличный от целевого геномного локуса.
4. Способ по любому предшествующему пункту, в котором первый белок Cas расщепляет по меньшей мере одну из первой и второй последовательностей распознавания РНК CRISPR в каждой из первой и второй гомологичных хромосом с получением по меньшей мере одного двухцепочечного разрыва в каждой из первой и второй гомологичных хромосом.
5. Способ по любому предшествующему пункту, в котором первый белок Cas расщепляет первую и вторую последовательности распознавания РНК CRISPR в по меньшей мере одной из первой и второй гомологичных хромосом с получением по меньшей мере двух двухцепочечных разрывов в по меньшей мере одной из первой и второй гомологичных хромосом.
6. Способ по любому предшествующему пункту, дополнительно включающий в себя приведение генома в контакт с:
(f) третьей РНК CRISPR, которая гибридизуется с третьей последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса; и
(g) четвертой РНК CRISPR, которая гибридизуется с четвертой последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса.
7. Способ по п. 6, в котором:
(a) первая последовательность распознавания РНК CRISPR и третья последовательность распознавания РНК CRISPR разделены на расстояние от приблизительно 25 до приблизительно 50 п.н., от приблизительно 50 до приблизительно 100 п.н., от приблизительно 100 до приблизительно 150 п.н., от приблизительно 150 до приблизительно 200 п.н., от приблизительно 200 до приблизительно 250 п.н., от приблизительно 250 до приблизительно 300 п.н., от приблизительно 300 до приблизительно 350 п.н., от приблизительно 350 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 450 п.н., от приблизительно 450 до приблизительно 500 п.н., от приблизительно 500 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 700 п.н., от приблизительно 700 до приблизительно 800 п.н., от приблизительно 800 до приблизительно 900 п.н., от приблизительно 900 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 2 т.п.н., от приблизительно 2 до приблизительно 3 т.п.н., от приблизительно 3 до приблизительно 4 т.п.н., от приблизительно 4 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 6 т.п.н., от приблизительно 6 до приблизительно 7 т.п.н., от приблизительно 7 до приблизительно 8 т.п.н., от приблизительно 8 до приблизительно 9 т.п.н., от приблизительно 9 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 30 т.п.н., от приблизительно 30 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 50 т.п.н., от приблизительно 50 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 70 т.п.н., от приблизительно 70 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 90 т.п.н. или от приблизительно 90 до приблизительно 100 т.п.н.; и/или
(b) вторая последовательность распознавания РНК CRISPR и четвертая последовательность распознавания РНК CRISPR разделены на расстояние от приблизительно 25 до приблизительно 50 п.н., от приблизительно 50 до приблизительно 100 п.н., от приблизительно 100 до приблизительно 150 п.н., от приблизительно 150 до приблизительно 200 п.н., от приблизительно 200 до приблизительно 250 п.н., от приблизительно 250 до приблизительно 300 п.н., от приблизительно 300 до приблизительно 350 п.н., от приблизительно 350 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 450 п.н., от приблизительно 450 до приблизительно 500 п.н., от приблизительно 500 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 700 п.н., от приблизительно 700 до приблизительно 800 п.н., от приблизительно 800 до приблизительно 900 п.н., от приблизительно 900 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 2 т.п.н., от приблизительно 2 до приблизительно 3 т.п.н., от приблизительно 3 до приблизительно 4 т.п.н., от приблизительно 4 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 6 т.п.н., от приблизительно 6 до приблизительно 7 т.п.н., от приблизительно 7 до приблизительно 8 т.п.н., от приблизительно 8 до приблизительно 9 т.п.н., от приблизительно 9 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 30 т.п.н., от приблизительно 30 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 50 т.п.н., от приблизительно 50 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 70 т.п.н., от приблизительно 70 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 90 т.п.н. или от приблизительно 90 до приблизительно 100 т.п.н.
8. Способ по п. 6 или 7, в котором первая иФ третья последовательности распознавания РНК CRISPR представляют собой первую пару последовательностей распознавания РНК CRISPR, а вторая и четвертая последовательности распознавания РНК CRISPR представляют собой вторую пару последовательностей распознавания РНК CRISPR, причем первая пара и вторая пара разделены на расстояние от приблизительно 25 до приблизительно 50 п.н., от приблизительно 50 до приблизительно 100 п.н., от приблизительно 100 до приблизительно 150 п.н., от приблизительно 150 до приблизительно 200 п.н., от приблизительно 200 до приблизительно 250 п.н., от приблизительно 250 до приблизительно 300 п.н., от приблизительно 300 до приблизительно 350 п.н., от приблизительно 350 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 450 п.н., от приблизительно 450 до приблизительно 500 п.н., от приблизительно 500 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 700 п.н., от приблизительно 700 до приблизительно 800 п.н., от приблизительно 800 до приблизительно 900 п.н., от приблизительно 900 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 150 т.п.н., от приблизительно 150 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 300 т.п.н., от приблизительно 300 до приблизительно 400 т.п.н., от приблизительно 400 до приблизительно 500 т.п.н., от приблизительно 500 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 1,5 млн п.н., от приблизительно 1,5 до приблизительно 2 млн п.н., от приблизительно 2 до приблизительно 2,5 млн п.н., от приблизительно 2,5 до приблизительно 3 млн п.н., от приблизительно 3 до приблизительно 4 млн п.н., от приблизительно 4 до приблизительно 5 млн п.н., от приблизительно 5 до приблизительно 10 млн п.н., от приблизительно 10 до приблизительно 20 млн п.н., от приблизительно 20 до приблизительно 30 млн п.н., от приблизительно 30 до приблизительно 40 млн п.н., от приблизительно 40 до приблизительно 50 млн п.н., от приблизительно 50 до приблизительно 60 млн п.н., от приблизительно 60 до приблизительно 70 млн п.н., от приблизительно 70 до приблизительно 80 млн п.н., от приблизительно 80 до приблизительно 90 млн п.н. или от приблизительно 90 до приблизительно 100 млн п.н.
9. Способ по п. 8, в котором первый белок Cas расщепляет по меньшей мере две из первой, второй, третьей и четвертой последовательностей распознавания РНК CRISPR с получением по меньшей мере двух двухцепочечных разрывов в по меньшей мере одной из первой и второй гомологичных хромосом.
10. Способ по п. 9, в котором первый белок Cas расщепляет по меньшей мере две из первой, второй, третьей и четвертой последовательностей распознавания РНК CRISPR с получением по меньшей мере двух двухцепочечных разрывов как в первой, так и во второй гомологичных хромосомах.
11. Способ по любому предшествующему пункту, в котором приведение генома в контакт как с первой, так и со второй РНК CRISPR приводит к повышенной эффективности биаллельной модификации по сравнению с приведением генома в контакт или только с первой РНК CRISPR, или только со второй РНК CRISPR.
12. Способ по любому предшествующему пункту, в котором полинуклеотидную вставку вставляют между целевыми 5'- и 3'-последовательностями.
13. Способ по любому предшествующему пункту, в котором клетка является диплоидной, а биаллельная модификация приводит к гомозиготности, компаунд-гетерозиготности или гемизиготности в целевом геномном локусе.
14. Способ по любому предшествующему пункту, в котором биаллельная модификация включает в себя делецию между первой и второй последовательностями распознавания РНК CRISPR в первой гомологичной хромосоме.
15. Способ по п. 14, в котором биаллельная модификация включает в себя делецию между первой и второй последовательностями распознавания РНК CRISPR как в первой, так и во второй гомологичных хромосомах.
16. Способ по п. 15, в котором биаллельная модификация дополнительно включает в себя вставку полинуклеотидной вставки между целевыми 5'- и 3'-последовательностями как в первой, так и во второй гомологичных хромосомах.
17. Способ по п. 14, в котором биаллельная модификация включает в себя:
(а) делецию между первой и второй последовательностями распознавания РНК CRISPR как в первой, так и во второй гомологичных хромосомах, и вставку полинуклеотидной вставки между целевыми 5'- и 3'-последовательностями в первой гомологичной хромосоме, но не во второй гомологичной хромосоме;
(b) делецию между первой и второй последовательностями распознавания РНК CRISPR в первой гомологичной хромосоме и нарушение локуса между первой и второй последовательностями распознавания РНК CRISPR во второй гомологичной хромосоме;
(c) делецию между первой и второй последовательностями распознавания РНК CRISPR в первой гомологичной хромосоме, вставку полинуклеотидной вставки между целевыми 5'- и 3'-последовательностями в первой гомологичной хромосоме и нарушение локуса между целевыми 5'- и 3'-последовательностями во второй гомологичной хромосоме; или
(d) делецию между первой и второй последовательностями распознавания РНК CRISPR в первой гомологичной хромосоме и вставку полинуклеотидной вставки между целевыми 5'- и 3'-последовательностями в первой гомологичной хромосоме, причем последовательность полинуклеотидной вставки гомологична или ортологична удаленной последовательности.
18. Способ по любому предшествующему пункту, в котором:
(a) каждая из первой и второй последовательностей распознавания РНК CRISPR расположена на расстоянии по меньшей мере 50 п.н., по меньшей мере 100 п.н., по меньшей мере 200 п.н., по меньшей мере 300 п.н., по меньшей мере 400 п.н., по меньшей мере 500 п.н., по меньшей мере 600 п.н., по меньшей мере 700 п.н., по меньшей мере 800 п.н., по меньшей мере 900 п.н., по меньшей мере 1 т.п.н., по меньшей мере 2 т.п.н., по меньшей мере 3 т.п.н., по меньшей мере 4 т.п.н., по меньшей мере 5 т.п.н., по меньшей мере 6 т.п.н., по меньшей мере 7 т.п.н., по меньшей мере 8 т.п.н., по меньшей мере 9 т.п.н., по меньшей мере 10 т.п.н., по меньшей мере 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н. или по меньшей мере 100 т.п.н. как от целевой 5'-последовательности, так и от целевой 3'-последовательности;
(b) каждая из первой и второй последовательностей распознавания РНК CRISPR расположена на расстоянии более, чем 50 п.н., более, чем 100 п.н., более, чем 200 п.н., более, чем 300 п.н., более, чем 400 п.н., более, чем 500 п.н., более, чем 600 п.н., более, чем 700 п.н., более, чем 800 п.н., более, чем 900 п.н., более, чем 1 т.п.н., более, чем 2 т.п.н., более, чем 3 т.п.н., более, чем 4 т.п.н., более, чем 5 т.п.н., более, чем 6 т.п.н., более, чем 7 т.п.н., более, чем 8 т.п.н., более, чем 9 т.п.н., более, чем 10 т.п.н., более, чем 20 т.п.н., более, чем 30 т.п.н., более, чем 40 т.п.н., более, чем 50 т.п.н., более, чем 60 т.п.н., более, чем 70 т.п.н., более, чем 80 т.п.н., более, чем 90 т.п.н. или более, чем 100 т.п.н. как от целевой 5'-последовательности, так и от целевой 3'-последовательности; или
(с) каждая из первой и второй последовательностей распознавания РНК CRISPR расположена на расстоянии от приблизительно 50 до приблизительно 100 п.н., от приблизительно 200 до приблизительно 300 п.н., от приблизительно 300 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 500 п.н., от приблизительно 500 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 700 п.н., от приблизительно 700 до приблизительно 800 п.н., от приблизительно 800 до приблизительно 900 п.н., от приблизительно 900 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 2 т.п.н., от приблизительно 2 до приблизительно 3 т.п.н., от приблизительно 3 до приблизительно 4 т.п.н., от приблизительно 4 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 30 т.п.н., от приблизительно 30 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 50 т.п.н. или от приблизительно 50 до приблизительно 100 т.п.н. как от целевой 5'-последовательности, так и от целевой 3'-последовательности.
19. Способ по любому предшествующему пункту, в котором:
(а) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние от приблизительно 1 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 150 т.п.н. или от приблизительно 150 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 300 т.п.н., от приблизительно 300 до приблизительно 400 т.п.н., от приблизительно 400 до приблизительно 500 т.п.н., от приблизительно 500 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 1,5 млн п.н., от приблизительно 1,5 до приблизительно 2 млн п.н., от приблизительно 2 до приблизительно 2,5 млн п.н. или от приблизительно 2,5 до приблизительно 3 млн п.н.;
(b) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние по меньшей мере 1 т.п.н., по меньшей мере 2 т.п.н., по меньшей мере 3 т.п.н., по меньшей мере 4 т.п.н., по меньшей мере 5 т.п.н., по меньшей мере 10 т.п.н., по меньшей мере 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н., по меньшей мере 100 т.п.н., по меньшей мере 110 т.п.н., по меньшей мере 120 т.п.н., по меньшей мере 130 т.п.н., по меньшей мере 140 т.п.н., по меньшей мере 150 т.п.н., по меньшей мере 160 т.п.н., по меньшей мере 170 т.п.н., по меньшей мере 180 т.п.н., по меньшей мере 190 т.п.н., по меньшей мере 200 т.п.н., по меньшей мере 250 т.п.н., по меньшей мере 300 т.п.н., по меньшей мере 350 т.п.н., по меньшей мере 400 т.п.н., по меньшей мере 450 т.п.н. или по меньшей мере 500 т.п.н.;
(c) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние от приблизительно 25 до приблизительно 50 п.н., от приблизительно 50 до приблизительно 100 п.н., от приблизительно 100 до приблизительно 150 п.н., от приблизительно 150 до приблизительно 200 п.н., от приблизительно 200 до приблизительно 250 п.н., от приблизительно 250 до приблизительно 300 п.н., от приблизительно 300 до приблизительно 350 п.н., от приблизительно 350 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 450 п.н., от приблизительно 450 до приблизительно 500 п.н., от приблизительно 500 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 700 п.н., от приблизительно 700 до приблизительно 800 п.н., от приблизительно 800 до приблизительно 900 п.н. или от приблизительно 900 п.н. до приблизительно 1 т.п.н.; или
(d) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние менее, чем 25 п.н., менее, чем 50 п.н., менее, чем 100 п.н., менее, чем 150 п.н., менее, чем 200 п.н., менее, чем 250 п.н., менее, чем 300 п.н., менее, чем 350 п.н., менее, чем 400 п.н., менее, чем 450 п.н., менее, чем 500 п.н., менее, чем 600 п.н., менее, чем 700 п.н., менее, чем 800 п.н., менее, чем 900 п.н., менее, чем 1 т.п.н., менее, чем 2 т.п.н., менее, чем 3 т.п.н., менее, чем 4 т.п.н., менее, чем 5 т.п.н. или менее, чем 10 т.п.н.
20. Способ по любому одному из пп. 14-19, в котором:
(a) удаленная нуклеиновая кислота составляет от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 150 т.п.н., от приблизительно 150 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 300 т.п.н., от приблизительно 300 до приблизительно 400 т.п.н., от приблизительно 400 до приблизительно 500 т.п.н., от приблизительно 500 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 1,5 млн п.н., от приблизительно 1,5 до приблизительно 2 млн п.н., от приблизительно 2 до приблизительно 2,5 млн п.н. или от приблизительно 2,5 до приблизительно 3 млн п.н.; или
(b) удаленная нуклеиновая кислота составляет по меньшей мере 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н., по меньшей мере 100 т.п.н., по меньшей мере 110 т.п.н., по меньшей мере 120 т.п.н., по меньшей мере 130 т.п.н., по меньшей мере 140 т.п.н., по меньшей мере 150 т.п.н., по меньшей мере 160 т.п.н., по меньшей мере 170 т.п.н., по меньшей мере 180 т.п.н., по меньшей мере 190 т.п.н., по меньшей мере 200 т.п.н., по меньшей мере 250 т.п.н., по меньшей мере 300 т.п.н., по меньшей мере 350 т.п.н., по меньшей мере 400 т.п.н., по меньшей мере 450 т.п.н. или по меньшей мере 500 т.п.н.; или
(c) удаленная нуклеиновая кислота составляет по меньшей мере 550 т.п.н., по меньшей мере 600 т.п.н., по меньшей мере 650 т.п.н., по меньшей мере 700 т.п.н., по меньшей мере 750 т.п.н., по меньшей мере 800 т.п.н., по меньшей мере 850 т.п.н., по меньшей мере 900 т.п.н., по меньшей мере 950 т.п.н., по меньшей мере 1 млн п.н., по меньшей мере 1,5 млн п.н. или по меньшей мере 2 млн п.н.
21. Способ по любому предшествующему пункту, в котором целевые 5'- и 3'-последовательности находятся в пределах целевого геномного локуса.
22. Способ по любому предшествующему пункту, в котором нацеливающий вектор имеет линейную форму.
23. Способ по любому предшествующему пункту, в котором нацеливающий вектор является одноцепочечным или двухцепочечным.
24. Способ по любому предшествующему пункту, в котором клетка представляет собой эукариотическую клетку.
25. Способ по п. 24, в котором эукариотическая клетка представляет собой клетку млекопитающего, человеческую клетку, нечеловеческую клетку, клетку грызуна, мышиную клетку, крысиную клетку, плюрипотентную клетку, неплюрипотентную клетку, нечеловеческую плюрипотентную клетку, человеческую плюрипотентную клетку, плюрипотентную клетку грызуна, мышиную плюрипотентную клетку, крысиную плюрипотентную клетку, мышиную эмбриональную стволовую (ЭС) клетку, крысиную ЭС-клетку, человеческую ЭС-клетку, стволовую клетку взрослого человека, ограниченную в развитии человеческую клетку-предшественник, человеческую индуцированную плюрипотентную стволовую клетку (ИПС) или эмбрион на стадии единственной клетки.
26. Способ по п. 25, в котором клетка представляет собой эмбрион на стадии единственной клетки и в котором:
(a) нацеливающий вектор имеет длину от приблизительно 50 нуклеотидов до приблизительно 5 т.п.н.; или
(b) нацеливающий вектор представляет собой одноцепочечную ДНК и имеет длину от приблизительно 60 до приблизительно 200 нуклеотидов.
27. Способ по п. 25, в котором клетка не является эмбрионом на стадии единственной клетки и в котором:
(а) нацеливающий вектор представляет собой большой нацеливающий вектор (LTVEC) длиной по меньшей мере 10 т.п.н.; или
(b) нацеливающий вектор представляет собой большой нацеливающий вектор (LTVEC), в котором общая длина 5' и 3' гомологичных плеч LTVEC составляет по меньшей мере 10 т.п.н.
28. Способ по п. 27, в котором:
(a) LTVEC составляет от приблизительно 50 до приблизительно 300 т.п.н., от приблизительно 50 до приблизительно 75 т.п.н., от приблизительно 75 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 125 т.п.н., от приблизительно 125 до приблизительно 150 т.п.н., от приблизительно 150 до приблизительно 175 т.п.н., от приблизительно 175 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 225 т.п.н., от приблизительно 225 до приблизительно 250 т.п.н., от приблизительно 250 до приблизительно 275 т.п.н. или от приблизительно 275 до приблизительно 300 т.п.н.; или
(b) общая длина 5' и 3' гомологичных плеч LTVEC составляет от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 30 т.п.н., от приблизительно 30 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 50 т.п.н., от приблизительно 50 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 70 т.п.н., от приблизительно 70 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 90 т.п.н., от приблизительно 90 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 110 т.п.н., от приблизительно 110 до приблизительно 120 т.п.н., от приблизительно 120 до приблизительно 130 т.п.н., от приблизительно 130 до приблизительно 140 т.п.н., от приблизительно 140 до приблизительно 150 т.п.н., от приблизительно 150 до приблизительно 160 т.п.н., от приблизительно 160 до приблизительно 170 т.п.н., от приблизительно 170 до приблизительно 180 т.п.н., от приблизительно 180 до приблизительно 190 т.п.н. или от приблизительно 190 до приблизительно 200 т.п.н.
29. Способ по любому одному из пп. 1-3, в котором клетка не является эмбрионом на стадии единственной клетки,
причем нацеливающий вектор представляет собой большой нацеливающий вектор (LTVEC), при этом общая сумма длин 5' и 3' гомологичных плеч составляет по меньшей мере 10 т.п.н.;
при этом каждая из первой и второй последовательностей распознавания РНК CRISPR расположена на расстоянии более, чем 200 п.н., более, чем 300 п.н., более, чем 400 п.н., более, чем 500 п.н., более, чем 600 п.н., более, чем 700 п.н., более, чем 800 п.н., более, чем 900 п.н., более, чем 1 т.п.н., более, чем 2 т.п.н., более, чем 3 т.п.н., более, чем 4 т.п.н., более, чем 5 т.п.н., более, чем 6 т.п.н., более, чем 7 т.п.н., более, чем 8 т.п.н., более, чем 9 т.п.н., более, чем 10 т.п.н., более, чем 20 т.п.н., более, чем 30 т.п.н., более, чем 40 т.п.н., более, чем 50 т.п.н., более, чем 60 т.п.н., более, чем 70 т.п.н., более, чем 80 т.п.н., более, чем 90 т.п.н. или более, чем 100 т.п.н. как от целевой 5'-последовательности, так и от целевой 3'-последовательности;
при этом первый белок Cas расщепляет первую и вторую последовательности распознавания РНК CRISPR в по меньшей мере одной из первой и второй гомологичных хромосом с получением по меньшей мере двух двухцепочечных разрывов в по меньшей мере одной из первой и второй гомологичных хромосом; и
при этом биаллельная модификация включает в себя делецию между первой и второй последовательностями распознавания РНК CRISPR в первой гомологичной хромосоме и вставку полинуклеотидной вставки между целевыми 5'- и 3'-последовательностями в первой гомологичной хромосоме, при этом последовательность полинуклеотидной вставки гомологична или ортологична удаленной последовательности.
30. Способ модификации генома в клетке, являющейся гетерозиготной по первому аллелю, включающий в себя приведение генома в контакт с:
(a) первым белком Cas;
(b) тракрРНК; и
(c) первой РНК CRISPR, которая гибридизуется с первой не аллель-специфической последовательностью распознавания РНК CRISPR, причем первый аллель находится на первой гомологичной хромосоме, а последовательность распознавания РНК CRISPR расположена в центромерном направлении от локуса, соответствующего первому аллелю на второй гомологичной хромосоме; и
при этом первый белок Cas расщепляет первую последовательность распознавания РНК CRISPR с получением двухцепочечного разрыва, а клетку модифицируют так, чтобы она стала гомозиготной по первому аллелю.
31. Способ по п. 30, дополнительно включающий в себя приведение генома в контакт со второй РНК CRISPR, гибридизующейся со второй не аллель-специфической последовательностью распознавания РНК CRISPR в центромерном направлении от локуса, соответствующего первому аллелю на второй гомологичной хромосоме,
при этом первый белок Cas расщепляет по меньшей мере одну из первой и второй последовательностей распознавания РНК CRISPR с получением по меньшей мере одного двухцепочечного разрыва.
32. Способ по п. 31, в котором первый белок Cas расщепляет первую последовательность распознавания РНК CRISPR и вторую последовательность распознавания РНК CRISPR.
33. Способ по любому одному из пп. 30-32, в котором потеря гетерозиготности происходит в теломерном направлении от двухцепочечного разрыва.
34. Способ по любому одному из пп. 31-33, в котором первая и вторая последовательности распознавания РНК CRISPR расположены на второй гомологичной хромосоме, но не на первой гомологичной хромосоме.
35. Способ по любому одному из пп. 30-34, в котором первый сайт распознавания РНК CRISPR находится на расстоянии от приблизительно 100 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 100 т.п.н., от приблизительно 100 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 10 млн п.н., от приблизительно 10 до приблизительно 20 млн п.н., от приблизительно 20 до приблизительно 30 млн п.н., от приблизительно 30 до приблизительно 40 млн п.н., от приблизительно 40 до приблизительно 50 млн п.н., от приблизительно 50 до приблизительно 60 млн п.н., от приблизительно 60 до приблизительно 70 млн п.н., от приблизительно 70 до приблизительно 80 млн п.н., от приблизительно 80 до приблизительно 90 млн п.н. или от приблизительно 90 до приблизительно 100 млн п.н. от центромеры.
36. Способ по любому одному из пп. 30-35, в котором первый аллель находится на расстоянии от приблизительно 100 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 100 т.п.н., от приблизительно 100 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 10 млн п.н., от приблизительно 10 до приблизительно 20 млн п.н., от приблизительно 20 до приблизительно 30 млн п.н., от приблизительно 30 до приблизительно 40 млн п.н., от приблизительно 40 до приблизительно 50 млн п.н., от приблизительно 50 до приблизительно 60 млн п.н., от приблизительно 60 до приблизительно 70 млн п.н., от приблизительно 70 до приблизительно 80 млн п.н., от приблизительно 80 до приблизительно 90 млн п.н. или от приблизительно 90 до приблизительно 100 млн п.н. от первого сайта распознавания РНК CRISPR.
37. Способ по любому одному из пп. 30-36, в котором область второй гомологичной хромосомы, заменяемая при потере гетерозиготности, составляет от приблизительно 100 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 100 т.п.н., от приблизительно 100 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 10 млн п.н., от приблизительно 10 до приблизительно 20 млн п.н., от приблизительно 20 до приблизительно 30 млн п.н., от приблизительно 30 до приблизительно 40 млн п.н., от приблизительно 40 до приблизительно 50 млн п.н., от приблизительно 50 до приблизительно 60 млн п.н., от приблизительно 60 до приблизительно 70 млн п.н., от приблизительно 70 до приблизительно 80 млн п.н., от приблизительно 80 до приблизительно 90 млн п.н. или от приблизительно 90 до приблизительно 100 млн п.н.
38. Способ по любому одному из пп. 30-37, в котором:
(a) первый аллель содержит мутацию; или
(b) первый аллель представляет собой аллель дикого типа, а соответствующий локус на второй гомологичной хромосоме содержит мутацию.
39. Способ по п. 38, в котором первый аллель содержит мутацию, причем мутация представляет собой нацеленную модификацию.
40. Способ модификации генома в клетке, являющейся гетерозиготной по первому аллелю, включающий в себя приведение генома в контакт с:
(a) первым белком Cas;
(b) тракрРНК;
(c) первой РНК CRISPR, которая гибридизуется с первой последовательностью распознавания РНК CRISPR в пределах второго аллеля, причем первый аллель находится на первой гомологичной хромосоме, а второй аллель находится в соответствующем локусе на второй гомологичной хромосоме; и
(d) второй РНК CRISPR, которая гибридизуется со второй последовательностью распознавания РНК CRISPR в пределах второго аллеля;
при этом первый белок Cas расщепляет по меньшей мере одну из первой и второй последовательностей распознавания РНК CRISPR с получением по меньшей мере одного двухцепочечного разрыва и концевых последовательностей, подвергающихся рекомбинации, при этом рекомбинация осуществляется между первым и вторым аллелями с получением модифицированного генома, гомозиготного по первому аллелю.
41. Способ по п. 40, в котором первый белок Cas расщепляет первую последовательность распознавания РНК CRISPR и вторую последовательность распознавания РНК CRISPR.
42. Способ по п. 40 или 41, в котором первая и вторая последовательности распознавания РНК CRISPR расположены в пределах второго аллеля, но не первого аллеля.
43. Способ по любому одному из пп. 40-42, в котором:
(а) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние от приблизительно 1 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 150 т.п.н. или от приблизительно 150 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 300 т.п.н., от приблизительно 300 до приблизительно 400 т.п.н., от приблизительно 400 до приблизительно 500 т.п.н., от приблизительно 500 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 1,5 млн п.н., от приблизительно 1,5 до приблизительно 2 млн п.н., от приблизительно 2 до приблизительно 2,5 млн п.н. или от приблизительно 2,5 до приблизительно 3 млн п.н.; или
(b) первая и вторая последовательности распознавания РНК CRISPR разделены на расстояние по меньшей мере 1 т.п.н., по меньшей мере 2 т.п.н., по меньшей мере 3 т.п.н., по меньшей мере 4 т.п.н., по меньшей мере 5 т.п.н., по меньшей мере 10 т.п.н., по меньшей мере 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н., по меньшей мере 100 т.п.н., по меньшей мере 110 т.п.н., по меньшей мере 120 т.п.н., по меньшей мере 130 т.п.н., по меньшей мере 140 т.п.н., по меньшей мере 150 т.п.н., по меньшей мере 160 т.п.н., по меньшей мере 170 т.п.н., по меньшей мере 180 т.п.н., по меньшей мере 190 т.п.н., по меньшей мере 200 т.п.н., по меньшей мере 250 т.п.н., по меньшей мере 300 т.п.н., по меньшей мере 350 т.п.н., по меньшей мере 400 т.п.н., по меньшей мере 450 т.п.н. или по меньшей мере 500 т.п.н.
44. Способ по любому одному из пп. 40-43, в котором:
(а) различия в последовательностях между первым аллелем и вторым аллелем охватывают от приблизительно 100 до приблизительно 200 п.н., от приблизительно 200 до приблизительно 400 п.н., от приблизительно 400 до приблизительно 600 п.н., от приблизительно 600 до приблизительно 800 п.н., от приблизительно 800 п.н. до приблизительно 1 т.п.н., от приблизительно 1 до приблизительно 2 т.п.н., от приблизительно 2 до приблизительно 3 т.п.н., от приблизительно 4 до приблизительно 5 т.п.н., от приблизительно 5 до приблизительно 10 т.п.н., от приблизительно 10 до приблизительно 20 т.п.н., от приблизительно 20 до приблизительно 40 т.п.н., от приблизительно 40 до приблизительно 60 т.п.н., от приблизительно 60 до приблизительно 80 т.п.н., от приблизительно 80 до приблизительно 100 т.п.н., от приблизительно 100 до приблизительно 150 т.п.н., от приблизительно 150 до приблизительно 200 т.п.н., от приблизительно 200 до приблизительно 300 т.п.н., от приблизительно 300 до приблизительно 400 т.п.н., от приблизительно 400 до приблизительно 500 т.п.н., от приблизительно 500 т.п.н. до приблизительно 1 млн п.н., от приблизительно 1 до приблизительно 1,5 млн п.н., от приблизительно 1,5 до приблизительно 2 млн п.н., от приблизительно 2 до приблизительно 2,5 млн п.н. или от приблизительно 2,5 до приблизительно 3 млн п.н; или
(b) различия в последовательностях между первым аллелем и вторым аллелем охватывают по меньшей мере 100 п.н., по меньшей мере 200 п.н., по меньшей мере 300 п.н., по меньшей мере 400 п.н., по меньшей мере 500 п.н., по меньшей мере 600 п.н., по меньшей мере 700 п.н., по меньшей мере 800 п.н., по меньшей мере 800 п.н., по меньшей мере 1 т.п.н., по меньшей мере 2 т.п.н., по меньшей мере 3 т.п.н., по меньшей мере 4 т.п.н., по меньшей мере 5 т.п.н., по меньшей мере 6 т.п.н., по меньшей мере 7 т.п.н., по меньшей мере 8 т.п.н., по меньшей мере 9 т.п.н., по меньшей мере 10 т.п.н., 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н., по меньшей мере 100 т.п.н., по меньшей мере 110 т.п.н., по меньшей мере 120 т.п.н., по меньшей мере 130 т.п.н., по меньшей мере 140 т.п.н., по меньшей мере 150 т.п.н., по меньшей мере 160 т.п.н., по меньшей мере 170 т.п.н., по меньшей мере 180 т.п.н., по меньшей мере 190 т.п.н., по меньшей мере 200 т.п.н., по меньшей мере 250 т.п.н., по меньшей мере 300 т.п.н., по меньшей мере 350 т.п.н., по меньшей мере 400 т.п.н., по меньшей мере 450 т.п.н. или по меньшей мере 500 т.п.н.
45. Способ по любому одному из пп. 40-44, в котором:
(a) первый аллель содержит нацеленную модификацию, а второй аллель представляет собой аллель дикого типа; или
(b) первый аллель представляет собой аллель дикого типа, а второй аллель содержит вызывающую заболевание мутацию.
46. Способ по любому одному из пп. 40-45, в котором рекомбинация включает в себя генную конверсию или потерю гетерозиготности (LOH).
47. Способ по любому одному из пп. 30-46, дополнительно включающий в себя идентификацию клетки, гомозиготной по первому аллелю.
48. Способ по любому одному из пп. 30-47, в котором белок Cas и первая РНК CRISPR в природе вместе не встречаются.
49. Способ по любому одному из пп. 30-48, в котором клетка представляет собой эукариотическую клетку.
50. Способ по п. 49, в котором эукариотическая клетка представляет собой клетку млекопитающего, человеческую клетку, нечеловеческую клетку, клетку грызуна, мышиную клетку, крысиную клетку, плюрипотентную клетку, неплюрипотентную клетку, нечеловеческую плюрипотентную клетку, человеческую плюрипотентную клетку, плюрипотентную клетку грызуна, мышиную плюрипотентную клетку, крысиную плюрипотентную клетку, мышиную эмбриональную стволовую (ЭС) клетку, крысиную ЭС-клетку, человеческую ЭС-клетку, стволовую клетку взрослого человека, ограниченную в развитии человеческую клетку-предшественник, человеческую индуцированную плюрипотентную стволовую клетку (ИПС) или эмбрион на стадии единственной клетки.
51. Способ по любому предшествующему пункту, в котором первый белок Cas представляет собой Cas9.
52. Способ по любому предшествующему пункту, в котором первый белок Cas имеет нуклеазную активность в отношении обеих цепей двухцепочечной ДНК.
53. Способ по любому одному из пп. 1-51, в котором первый белок Cas представляет собой никазу.
54. Способ по любому одному из пп. 1-39 и 41-53, в котором первый белок Cas представляет собой никазу, и причем способ дополнительно включает в себя приведение генома в контакт с:
(f) вторым белком Cas, представляющим собой никазу;
(g) третьей РНК CRISPR, гибридизующейся с третьей последовательностью распознавания РНК CRISPR; и
(h) четвертой РНК CRISPR, гибридизующейся с четвертой последовательностью распознавания РНК CRISPR;
при этом первый белок Cas расщепляет первую цепь геномной ДНК в пределах первой последовательности распознавания РНК CRISPR и в пределах второй последовательности распознавания РНК CRISPR, а второй белок Cas расщепляет вторую цепь геномной ДНК в пределах третьей последовательности распознавания РНК CRISPR и в пределах четвертой последовательности распознавания РНК CRISPR.
55. Способ по любому одному из пп. 1-29 и 31-54, в котором:
(a) первая РНК CRISPR и тракрРНК слиты вместе в первую гидовую РНК (гРНК) и/или вторая РНК CRISPR и тракрРНК слиты вместе во вторую гРНК; или
(b) первая РНК CRISPR и тракрРНК представляют собой отдельные молекулы РНК и/или вторая РНК CRISPR и тракрРНК представляют собой отдельные молекулы РНК.
56. Способ по любому предшествующему пункту, в котором приведение в контакт включает в себя введение первого белка Cas, первой и второй РНК CRISP и тракрРНК в клетку.
57. Способ по п. 56, в котором:
(a) первый белок Cas вводят в клетку в виде белка, матричной РНК (мРНК), кодирующей первый белок Cas, или ДНК, кодирующей первый белок Cas;
(b) первую РНК CRISPR вводят в клетку в виде РНК или в виде ДНК, кодирующей первую РНК CRISPR;
(c) вторую РНК CRISPR вводят в клетку в виде РНК или в виде ДНК, кодирующей вторую РНК CRISPR; и/или
(d) тракрРНК вводят в клетку в виде РНК или в виде ДНК, кодирующей тракрРНК.
58. Способ по п. 57, в котором первый белок Cas, первую РНК CRISPR и тракрРНК вводят в клетку в виде первого комплекса белок-РНК и/или первый белок Cas, вторую РНК CRISPR и тракрРНК вводят в клетку в виде второго комплекса белок-РНК.
59. Способ по п. 57, в котором:
(а) ДНК, кодирующая первый белок Cas, функционально связана с первым промотором в первом экспрессионном конструкте;
(b) ДНК, кодирующая первую РНК CRISPR, функционально связана со вторым промотором во втором экспрессионном конструкте;
(c) ДНК, кодирующая вторую РНК CRISPR, функционально связана с третьим промотором в третьем экспрессионном конструкте; и/или
(d) ДНК, кодирующая тракрРНК, функционально связана с четвертым промотором в четвертом экспрессионном конструкте;
причем первый, второй, третий и четвертый промоторы активны в клетке.
60. Способ по п. 59, в котором первый, второй, третий и/или четвертый экспрессионные конструкты являются компонентами одной молекулы нуклеиновой кислоты.
61. Способ по п. 57, в котором:
(a) ДНК, кодирующая первый белок Cas, функционально связана с первым промотором в первом экспрессионном конструкте;
(b) молекулы ДНК, кодирующие первую РНК CRISPR и тракрРНК, слиты вместе в ДНК, кодирующую первую гидовую РНК (гРНК), и функционально связаны со вторым промотором во втором экспрессионном конструкте; и/или
(c) молекулы ДНК, кодирующие вторую РНК CRISPR и тракрРНК, слиты вместе в ДНК, кодирующую вторую гРНК, и функционально связаны с третьим промотором в третьем экспрессионном конструкте;
причем первый, второй и третий промоторы активны в клетке.
62. Способ по п. 61, в котором первый, второй и/или третий экспрессионные конструкты являются компонентами одной молекулы нуклеиновой кислоты.
63. Способ по любому предшествующему пункту, в котором клетка модифицирована для снижения негомологичного соединения концов (NHEJ) и/или для повышения генной конверсии или направляемой гомологией репарации (HDR).
64. Способ по п. 63, в котором клетка модифицирована для снижения экспрессии или активности одной или более из следующего: DNA-PK, PARP1 и лигазы IV.
65. Способ по п. 64, в котором снижение экспрессии или активности является индуцируемым, обратимым, время-специфическим и/или пространственно-специфическим.
66. Способ получения не относящихся к человеку животных поколения F0, включающий в себя:
(a) введение нечеловеческой ЭС-клетки в нечеловеческий эмбрион-хозяин, причем нечеловеческая ЭС-клетка получена способом по любому одному из пп. 1-25 и 27-65; и
(b) вынашивание нечеловеческого эмбриона-хозяина в теле суррогатной матери;
при этом суррогатная мать дает потомство не относящегося к человеку животного поколения F0, имеющее биаллельную модификацию.
67. Способ получения не относящегося к человеку животного поколения F0, включающий в себя имплантацию генетически модифицированного эмбриона на стадии единственной клетки, полученного способом по любому одному из пп. 1-26 и 30-65, в тело суррогатной матери;
при этом суррогатная мать дает потомство не относящегося к человеку животного поколения F0, имеющее биаллельную модификацию.
68. Способ по п. 66 или 67, в котором не относящееся к человеку животное представляет собой мышь или крысу.
69. Способ идентификации нацеленной вставки полинуклеотидной вставки в целевой геномный локус в диплоидной клетке, не являющейся эмбрионом на стадии единственной клетки, включающий в себя:
(a) получение ДНК из клетки, причем клетку приводили в контакт с большим нацеливающим вектором (LTVEC), содержащим полинуклеотидную вставку, фланкированную первым гомологичным плечом, гибридизующимся с первой целевой последовательностью, и вторым гомологичным плечом, гибридизующимся со второй целевой последовательностью, при этом полинуклеотидная вставка содержит кассету селекции, прилегающую к первому гомологичному плечу;
(b) воздействие на ДНК клетки зондом, связывающимся в пределах первой целевой последовательности, зондом, связывающимся в пределах полинуклеотидной вставки, и зондом, связывающимся в пределах эталонного гена, имеющего известное число копий, при этом каждый зонд генерирует обнаруживаемый сигнал при связывании;
(c) обнаружение сигналов, обусловленных связыванием каждого из зондов; и
(d) сравнение сигнала от зонда эталонного гена с сигналом от зонда первой целевой последовательности для определения числа копий первой целевой последовательности и сравнение сигнала от зонда эталонного гена с сигналом от зонда полинуклеотидной вставки для определения числа копий полинуклеотидной вставки,
при этом число копий полинуклеотидной вставки, равное одной или двум, и число копий первой целевой последовательности, равное двум, указывает на нацеленную вставку полинуклеотидной вставки в целевой геномный локус, и
при этом число копий полинуклеотидной вставки, равное одной или более, и число копий первой целевой последовательности, равное трем или более, указывает на случайную вставку полинуклеотидной вставки в геномный локус, отличный от целевого геномного локуса.
70. Способ по п. 69, в котором сигнал, обусловленный связыванием зонда первой целевой последовательности, используют для определения значения порогового цикла (Ct) для первой целевой последовательности, а сигнал, обусловленный связыванием зонда эталонного гена, используют для определения значения порогового цикла (Ct) для эталонного гена, и число копий первой целевой последовательности определяют путем сравнения значения Ct первой целевой последовательности и значения Ct эталонного гена, и
при этом сигнал, обусловленный связыванием зонда полинуклеотидной вставки, используют для определения значения порогового цикла (Ct) для полинуклеотидной вставки, и число копий полинуклеотидной вставки определяют путем сравнения значения Ct первой целевой последовательности и значения Ct эталонного гена.
71. Способ по п. 69 или 70, в котором кассета селекции содержит ген резистентности к лекарственному средству.
72. Способ по любому одному из пп. 69-71, в котором полинуклеотидная вставка составляет по меньшей мере 5 т.п.н., по меньшей мере 10 т.п.н., по меньшей мере 20 т.п.н., по меньшей мере 30 т.п.н., по меньшей мере 40 т.п.н., по меньшей мере 50 т.п.н., по меньшей мере 60 т.п.н., по меньшей мере 70 т.п.н., по меньшей мере 80 т.п.н., по меньшей мере 90 т.п.н., по меньшей мере 100 т.п.н., по меньшей мере 150 т.п.н., по меньшей мере 200 т.п.н., по меньшей мере 250 т.п.н., по меньшей мере 300 т.п.н., по меньшей мере 350 т.п.н., по меньшей мере 400 т.п.н., по меньшей мере 450 т.п.н. или по меньшей мере 500 т.п.н.
73. Способ по любому одному из пп. 69-72, в котором расстояние между последовательностями, с которыми связываются зонды в первой целевой последовательности, и кассетой селекции составляет не более, чем 100 нуклеотидов, 200 нуклеотидов, 300 нуклеотидов, 400 нуклеотидов, 500 нуклеотидов, 600 нуклеотидов, 700 нуклеотидов, 800 нуклеотидов, 900 нуклеотидов, 1 т.п.н., 1,5 т.п.н., 2 т.п.н., 2,5 т.п.н., 3 т.п.н., 3,5 т.п.н., 4 т.п.н., 4,5 т.п.н. или 5 т.п.н.
74. Способ по любому одному из пп. 69-73, дополнительно включающий в себя определение числа копий второй целевой последовательности.
75. Способ по п. 74, в котором этап (b) дополнительно включает в себя воздействие на ДНК клетки зондом, связывающимся со второй целевой последовательностью, и
причем этап (с) дополнительно включает в себя обнаружение сигнала, обусловленного связыванием зонда второй целевой последовательности, и
при этом этап (d) дополнительно включает в себя сравнение сигнала от зонда эталонного гена с сигналом от зонда второй целевой последовательности для определения числа копий второй целевой последовательности.
76. Способ по любому одному из пп. 69-75, дополнительно содержащий определение числа копий одной или более дополнительных последовательностей в пределах полинуклеотидной вставки.
77. Способ по п. 76, в котором этап (b) дополнительно включает в себя воздействие на ДНК клетки одним или более дополнительными зондами, связывающимися с полинуклеотидной вставкой, и
причем этап (с) дополнительно включает в себя обнаружение сигнала, обусловленного связыванием одного или более дополнительных зондов, и
при этом этап (d) дополнительно включает в себя сравнение сигнала от зонда эталонного гена с сигналом от одного или более дополнительных зондов полинуклеотидной вставки для определения числа копий одной или более дополнительных последовательностей в пределах полинуклеотидной вставки.
78. Способ по п. 76 или 77, в котором одна или более дополнительных последовательностей в пределах полинуклеотидной вставки содержит последовательность, примыкающую ко второй целевой последовательности.
79. Способ по любому одному из пп. 69-78, в котором LTVEC выполнен с возможностью удаления эндогенной последовательности из целевого геномного локуса, или
в котором клетку дополнительно приводили в контакт с белком Cas, первой РНК CRISPR, которая гибридизуется с первой последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса, второй РНК CRISPR, которая гибридизуется со второй последовательностью распознавания РНК CRISPR в пределах целевого геномного локуса, и тракрРНК.
80. Способ по п. 79, дополнительно включающий в себя определение числа копий эндогенных последовательностей в целевом геномном локусе.
81. Способ по п. 80, в котором этап (b) дополнительно включает в себя воздействие на ДНК клетки зондом, связывающимся с эндогенной последовательностью в целевом геномном локусе, и
причем этап (с) дополнительно включает в себя обнаружение сигнала, обусловленного связыванием зонда эндогенной последовательности, и
при этом этап (d) дополнительно включает в себя сравнение сигнала от зонда эталонного гена с сигналом от зонда эндогенной последовательности для определения числа копий эндогенной последовательности.
RU2017121367A 2014-11-21 2015-11-20 Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк RU2734770C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462083005P 2014-11-21 2014-11-21
US62/083,005 2014-11-21
US201562182314P 2015-06-19 2015-06-19
US62/182,314 2015-06-19
US201562211421P 2015-08-28 2015-08-28
US62/211,421 2015-08-28
PCT/US2015/062023 WO2016081923A2 (en) 2014-11-21 2015-11-20 METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2020134412A Division RU2020134412A (ru) 2014-11-21 2015-11-20 Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк

Publications (3)

Publication Number Publication Date
RU2017121367A true RU2017121367A (ru) 2018-12-21
RU2017121367A3 RU2017121367A3 (ru) 2019-11-05
RU2734770C2 RU2734770C2 (ru) 2020-10-23

Family

ID=54771219

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2020134412A RU2020134412A (ru) 2014-11-21 2015-11-20 Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк
RU2017121367A RU2734770C2 (ru) 2014-11-21 2015-11-20 Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2020134412A RU2020134412A (ru) 2014-11-21 2015-11-20 Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк

Country Status (24)

Country Link
US (4) US10457960B2 (ru)
EP (2) EP3521437A1 (ru)
JP (2) JP6727199B2 (ru)
KR (3) KR20230070319A (ru)
CN (2) CN107208078B (ru)
AU (2) AU2015349692B2 (ru)
BR (1) BR112017010547A2 (ru)
CA (2) CA2968440A1 (ru)
CY (1) CY1121738T1 (ru)
DK (1) DK3221457T3 (ru)
ES (1) ES2731437T3 (ru)
HR (1) HRP20190949T1 (ru)
HU (1) HUE044907T2 (ru)
IL (3) IL283585B2 (ru)
LT (1) LT3221457T (ru)
MX (2) MX2017006670A (ru)
NZ (1) NZ731962A (ru)
PL (1) PL3221457T3 (ru)
PT (1) PT3221457T (ru)
RS (1) RS58893B1 (ru)
RU (2) RU2020134412A (ru)
SG (2) SG10201913829YA (ru)
SI (1) SI3221457T1 (ru)
WO (1) WO2016081923A2 (ru)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
EP1639009B1 (en) 2003-05-30 2013-02-27 Merus B.V. Fab library for the preparation of a mixture of antibodies
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
WO2013066438A2 (en) 2011-07-22 2013-05-10 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
EP3561050B1 (en) 2013-02-20 2021-12-08 Regeneron Pharmaceuticals, Inc. Genetic modification of rats
BR112015026197B1 (pt) 2013-04-16 2022-12-06 Regeneron Pharmaceuticals, Inc Método para modificação marcada de um lócus genômico de interesse em uma célula de rato pluripotente
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
LT3066201T (lt) 2013-11-07 2018-08-10 Editas Medicine, Inc. Su crispr susiję būdai ir kompozicijos su valdančiomis grnr
RU2685914C1 (ru) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Способы и композиции для направленной модификации генома
US20150165054A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting caspase-9 point mutations
ES2784754T3 (es) 2014-06-06 2020-09-30 Regeneron Pharma Métodos y composiciones para modificar un locus objetivo
DK3161128T3 (en) 2014-06-26 2018-11-05 Regeneron Pharma METHODS AND COMPOSITIONS FOR TARGETED GENTICAL MODIFICATIONS AND PROCEDURES FOR USE THEREOF
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
ES2741387T3 (es) 2014-10-15 2020-02-10 Regeneron Pharma Métodos y composiciones para generar o mantener células pluripotentes
CA2963820A1 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
LT3221457T (lt) 2014-11-21 2019-06-10 Regeneron Pharmaceuticals, Inc. Nukreipiančios genetinės modifikacijos būdai ir kompozicijos, naudojant suporuotas kreipiančiąsias rnr sekas
NZ732895A (en) 2014-12-19 2022-05-27 Regeneron Pharma Methods and compositions for targeted genetic modification through single-step multiple targeting
JP7030522B2 (ja) 2015-05-11 2022-03-07 エディタス・メディシン、インコーポレイテッド 幹細胞における遺伝子編集のための最適化crispr/cas9システムおよび方法
RU2020115485A (ru) 2015-05-29 2020-06-11 Регенерон Фармасьютикалс, Инк. Животные, отличные от человека, с нарушением в локусе c9orf72
WO2016201047A1 (en) 2015-06-09 2016-12-15 Editas Medicine, Inc. Crispr/cas-related methods and compositions for improving transplantation
CA3168241A1 (en) 2015-07-15 2017-01-19 Rutgers. The State University of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
EP3786294A1 (en) 2015-09-24 2021-03-03 Editas Medicine, Inc. Use of exonucleases to improve crispr/cas-mediated genome editing
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
EP3365357B1 (en) 2015-10-23 2024-02-14 President and Fellows of Harvard College Evolved cas9 proteins for gene editing
EP3370513A1 (en) * 2015-11-06 2018-09-12 The Jackson Laboratory Large genomic dna knock-in and uses thereof
IL302725A (en) 2016-01-13 2023-07-01 Regeneron Pharma Rodents with an engineered DIVERSITY region of the heavy chain
WO2017139505A2 (en) * 2016-02-11 2017-08-17 The Regents Of The University Of California Methods and compositions for modifying a mutant dystrophin gene in a cell's genome
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
WO2017180694A1 (en) 2016-04-13 2017-10-19 Editas Medicine, Inc. Cas9 fusion molecules gene editing systems, and methods of use thereof
KR20240016444A (ko) * 2016-05-20 2024-02-06 리제너론 파마슈티칼스 인코포레이티드 다중 가이드 RNAs를 이용한 면역학적 내성 파괴 방법
WO2017203275A1 (en) * 2016-05-27 2017-11-30 Cambridge Enterprise Limited Novel nucleic acid construct
EP3472311A4 (en) * 2016-06-17 2020-03-04 Montana State University BIDIRECTIONAL TARGETING FOR GENOMEDITATION
WO2017220527A1 (en) * 2016-06-20 2017-12-28 Glycotope Gmbh Means and methods for modifying multiple alleles
US10912287B2 (en) * 2016-06-28 2021-02-09 Biocytogen Pharmaceuticals (Beijing) Co., Ltd Genetically modified mice expressing humanized PD-1
US11124805B2 (en) 2016-07-13 2021-09-21 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
DK3491130T3 (da) 2016-07-28 2022-10-24 Dsm Ip Assets Bv Samlingssystem til en eukaryot celle
US10548302B2 (en) 2016-07-29 2020-02-04 Regeneron Pharmaceuticals, Inc. Fibrillin-1 mutations for modeling neonatal progeroid syndrome with congenital lipodystrophy
AU2017306676B2 (en) 2016-08-03 2024-02-22 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018064600A1 (en) 2016-09-30 2018-04-05 Regeneron Pharmaceuticals, Inc. Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
LT3407709T (lt) 2016-11-04 2020-10-12 Regeneron Pharmaceuticals, Inc. Gyvūnai, išskyrus žmogų, turintys sukonstruotą imunoglobulino lambda lengvosios grandinės lokusą
CN106520831B (zh) * 2016-11-18 2020-05-26 青岛市畜牧兽医研究所 一种哺乳动物基因组修饰方法
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
EP3565608A4 (en) * 2017-01-05 2020-12-16 Rutgers, The State University of New Jersey TARGETED GENEDITATION PLATFORM INDEPENDENT OF DNA DOUBLE STRAND BREAKAGE AND USES THEREOF
EP4317447A3 (en) 2017-02-15 2024-05-01 2seventy bio, Inc. Donor repair templates multiplex genome editing
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
IL306092A (en) 2017-03-23 2023-11-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
EP3615672A1 (en) 2017-04-28 2020-03-04 Editas Medicine, Inc. Methods and systems for analyzing guide rna molecules
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
EP3628008A4 (en) * 2017-05-16 2021-04-28 Generos Biopharma Ltd. COMPOSITIONS AND METHODS FOR THE TREATMENT OF ALZHEIMER'S DISEASE
EP3635104A1 (en) 2017-06-09 2020-04-15 Editas Medicine, Inc. Engineered cas9 nucleases
WO2019006034A1 (en) 2017-06-27 2019-01-03 Regeneron Pharmaceuticals, Inc. NON-HUMAN ANIMALS COMPRISING A HUMANIZED ASGR1 LOCUS
WO2019014564A1 (en) 2017-07-14 2019-01-17 Editas Medicine, Inc. SYSTEMS AND METHODS OF TARGETED INTEGRATION AND GENOME EDITING AND DETECTION THEREOF WITH INTEGRATED PRIMING SITES
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
CA3067872A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Cas-transgenic mouse embryonic stem cells and mice and uses thereof
US11021719B2 (en) 2017-07-31 2021-06-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
CN111163633B (zh) 2017-09-29 2022-09-09 瑞泽恩制药公司 包含人源化ttr基因座的非人类动物及其使用方法
WO2019072241A1 (en) 2017-10-13 2019-04-18 Beijing Biocytogen Co., Ltd NON-HUMAN ANIMAL GENETICALLY MODIFIED WITH PD-1 HUMAN OR CHIMERIC
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CA3076371C (en) 2017-11-10 2022-11-22 Regeneron Pharmaceuticals, Inc. Non-human animals comprising slc30a8 mutation and methods of use
AU2018375796A1 (en) 2017-11-30 2020-04-23 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized TRKB locus
HUE060608T2 (hu) 2017-12-05 2023-03-28 Regeneron Pharma Genetikailag módosított immunglobulin lambda könnyûlánccal rendelkezõ egerek és azok alkalmazása
BR112020014140A2 (pt) * 2018-01-17 2020-12-01 Vertex Pharmaceuticals Incorporated inibidores de dna-pk
WO2019148166A1 (en) * 2018-01-29 2019-08-01 Massachusetts Institute Of Technology Methods of enhancing chromosomal homologous recombination
AU2019239880B2 (en) 2018-03-19 2023-11-30 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using CRISPR/Cas systems
JP7469806B2 (ja) 2018-03-29 2024-04-17 学校法人自治医科大学 ゲノム編集方法、組成物、細胞、細胞製剤、及び細胞製剤の製造方法
WO2019213183A1 (en) * 2018-04-30 2019-11-07 The Trustees Of The University Of Pennsylvania In utero crispr-mediated therapeutic editing of genes
US20210230637A1 (en) * 2018-05-08 2021-07-29 Osaka University Method for producing homozygous cells
GB2589246A (en) 2018-05-16 2021-05-26 Synthego Corp Methods and systems for guide RNA design and use
SG11202012084WA (en) 2018-06-14 2021-01-28 Regeneron Pharma Non-human animals capable of dh-dh rearrangement in the immunoglobulin heavy chain coding sequences
CA3109953A1 (en) * 2018-08-28 2020-03-05 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US11845958B2 (en) * 2018-09-05 2023-12-19 Wisconsin Alumni Research Foundation Genetically modified genes and cells, and methods of using same for silencing virus gene expression
WO2020050294A1 (ja) * 2018-09-05 2020-03-12 学校法人慶應義塾 相同組換え効率上昇剤及びその使用
US20220053741A1 (en) 2018-09-13 2022-02-24 Regeneron Pharmaceuticals, Inc. Complement Factor H Gene Knockout Rat as a Model of C3 Glomerulopathy
SG11202105189RA (en) 2018-12-20 2021-06-29 Regeneron Pharma Nuclease-mediated repeat expansion
JP2022526908A (ja) 2019-03-19 2022-05-27 ザ ブロード インスティテュート,インコーポレーテッド 編集ヌクレオチド配列を編集するための方法および組成物
SG11202108454RA (en) 2019-04-04 2021-09-29 Regeneron Pharma Non-human animals comprising a humanized coagulation factor 12 locus
EP3801011A1 (en) 2019-06-04 2021-04-14 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
JP2022535418A (ja) 2019-06-05 2022-08-08 リジェネロン・ファーマシューティカルズ・インコーポレイテッド カッパ遺伝子座から発現される限られたラムダ軽鎖レパートリーを有する非ヒト動物及びその使用
MX2021015122A (es) 2019-06-07 2022-04-06 Regeneron Pharma Animales no humanos que comprenden un locus de albumina humanizado.
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
EP4096396A1 (en) 2020-01-28 2022-12-07 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized pnpla3 locus and methods of use
WO2021158883A1 (en) 2020-02-07 2021-08-12 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized klkb1 locus and methods of use
WO2021188526A1 (en) * 2020-03-16 2021-09-23 Pairwise Plants Services, Inc. Natural guide architectures and methods of making and using the same
EP4125348A1 (en) 2020-03-23 2023-02-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
JP6867635B1 (ja) * 2020-04-06 2021-04-28 株式会社Logomix ゲノム改変方法及びゲノム改変キット
JP2023515710A (ja) * 2020-04-27 2023-04-13 デューク ユニバーシティ CRISPR媒介式エクソン欠失用の最適なgRNA対を発見するためのハイスループットスクリーニング法
AU2021267940A1 (en) 2020-05-08 2022-12-08 President And Fellows Of Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2021263146A2 (en) 2020-06-26 2021-12-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ace2 locus
CN112481297A (zh) * 2020-11-02 2021-03-12 深圳先进技术研究院 一种制造染色体结构变异的方法
CN112382339A (zh) * 2020-11-17 2021-02-19 中国人民解放军军事科学院军事医学研究院 一种识别合子型基因激活zga基因的方法及装置
KR20230125236A (ko) 2020-12-23 2023-08-29 리제너론 파마슈티칼스 인코포레이티드 앵커 변형된 항체를 암호화하는 핵산 및 이의 사용
WO2022251179A1 (en) * 2021-05-26 2022-12-01 Inscripta, Inc. Crispr editing in diploid genomes
CN113832189B (zh) * 2021-09-06 2022-10-21 中国人民解放军军事科学院军事医学研究院 一种用于敲除猪免疫球蛋白重链IGHG区的gRNA及其应用
WO2023054573A1 (ja) * 2021-09-30 2023-04-06 国立大学法人大阪大学 相同染色体の一方に特異的なdna欠失を有する細胞を製造する方法
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
WO2023108047A1 (en) 2021-12-08 2023-06-15 Regeneron Pharmaceuticals, Inc. Mutant myocilin disease model and uses thereof
WO2023122506A1 (en) 2021-12-20 2023-06-29 Regeneron Pharmaceuticals, Inc. Non-human animals comprising humanized ace2 and tmprss loci
WO2023150798A1 (en) 2022-02-07 2023-08-10 Regeneron Pharmaceuticals, Inc. Compositions and methods for defining optimal treatment timeframes in lysosomal disease
US20230257432A1 (en) 2022-02-11 2023-08-17 Regeneron Pharmaceuticals, Inc. Compositions and methods for screening 4r tau targeting agents
WO2024073679A1 (en) 2022-09-29 2024-04-04 Regeneron Pharmaceuticals, Inc. Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes

Family Cites Families (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516228A (en) 1983-08-25 1985-05-07 Mobil Oil Corporation Acoustic well logging device for detecting compressional and shear waves
US5830729A (en) 1996-04-18 1998-11-03 Institut Pasteur I Sce I-induced gene replacement and gene conversion in embryonic stem cells
WO1999005266A2 (en) 1997-07-26 1999-02-04 Wisconsin Alumni Research Foundation Trans-species nuclear transfer
WO2000039316A1 (en) 1998-12-31 2000-07-06 The J. David Gladstone Institutes Transgenic rodents and rodent cell lines expressing hiv co-receptors
EP1147209A2 (en) 1999-02-03 2001-10-24 The Children's Medical Center Corporation Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site
ATE309536T1 (de) 1999-12-06 2005-11-15 Sangamo Biosciences Inc Methoden zur verwendung von randomisierten zinkfingerprotein-bibliotheken zur identifizierung von genfunktionen
US6974867B2 (en) 2000-05-31 2005-12-13 Chiron Corporation Compositions and methods for treating neoplastic disease using chemotherapy and radiation sensitizers
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
US7105348B2 (en) 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US6586251B2 (en) * 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
AUPR451401A0 (en) 2001-04-20 2001-05-24 Monash University A method of nuclear transfer
CA2474486C (en) 2002-01-23 2013-05-14 The University Of Utah Research Foundation Targeted chromosomal mutagenesis using zinc finger nucleases
US7612250B2 (en) 2002-07-29 2009-11-03 Trustees Of Tufts College Nuclear transfer embryo formation method
US20030175968A1 (en) 2002-10-30 2003-09-18 Golic Kent G. Gene targeting method
KR20060002745A (ko) 2003-01-13 2006-01-09 마헨드라 에스 라오 치료적 생성물의 전달을 위한 증식성 줄기세포 및전구세포에서의 후보 분자의 지속적 발현
CN102107008B (zh) 2003-12-01 2013-04-03 库多斯药物有限公司 用于治疗癌症的dna损伤修复抑制剂
WO2006044962A1 (en) 2004-10-19 2006-04-27 Regeneron Pharmaceuticals, Inc. Method for generating an animal homozygous for a genetic modification
FR2879622B1 (fr) 2004-12-17 2008-02-01 Agronomique Inst Nat Rech Procede in vitro de production d'ovocytes ou d'oeufs presentant une modification genomique ciblee
GB0615327D0 (en) 2006-03-30 2006-09-13 Univ Edinburgh Culture medium containing kinase inhibitors and uses thereof
JP5514539B2 (ja) 2006-03-31 2014-06-04 メダレックス・リミテッド・ライアビリティ・カンパニー ヒト抗体の調製に用いるためのキメラ抗体を発現するトランスジェニック動物
CN101117633B (zh) 2006-08-03 2011-07-20 上海交通大学附属儿童医院 一种细胞核移植方法
US7771967B2 (en) 2006-12-22 2010-08-10 The J. David Gladstone Institutes Nucleic acid encoding apolipoprotein E-I3
CN101679977B (zh) 2007-04-26 2013-05-01 桑格摩生物科学股份有限公司 向ppp1r12c基因座的靶向整合
KR101886610B1 (ko) 2007-06-01 2018-08-09 오픈 모노클로날 테크놀로지, 인코포레이티드 내생적 면역글로불린 유전자를 억제하고 트랜스제닉 인간 이디오타입 항체를 생산하기 위한 방법 및 조성물
CN102159722B (zh) 2008-08-22 2014-09-03 桑格摩生物科学股份有限公司 用于靶向单链切割和靶向整合的方法和组合物
KR101803737B1 (ko) 2008-12-04 2017-12-01 상가모 테라퓨틱스, 인코포레이티드 징크 핑거 뉴클레아제를 이용한 랫트의 유전체 편집
WO2011019385A1 (en) 2009-08-11 2011-02-17 Sangamo Biosciences, Inc. Organisms homozygous for targeted modification
US8354389B2 (en) 2009-08-14 2013-01-15 Regeneron Pharmaceuticals, Inc. miRNA-regulated differentiation-dependent self-deleting cassette
CA2779337A1 (en) 2009-10-28 2011-05-05 Helmholtz Zentrum Muenchen Deutsches Forschungszentrum Fuer Gesundheit U Nd Umwelt (Gmbh) Homologous recombination in the oocyte
CA2779858C (en) 2009-10-29 2019-10-29 Aris N. Economides Multifunctional alleles
WO2011053957A2 (en) 2009-11-02 2011-05-05 Gen9, Inc. Compositions and methods for the regulation of multiple genes of interest in a cell
CA2782596A1 (en) 2009-12-01 2011-06-09 National Cancer Center Method for constructing chimeric rat using rat embryonic stem cells
WO2011078665A1 (en) 2009-12-21 2011-06-30 Keygene N.V. Improved techniques for transfecting protoplasts
GEP201606544B (en) 2010-01-22 2016-09-26 Dow Agrosciences Llc Excision of transgenes in genetically modified organisms
US9255259B2 (en) 2010-02-09 2016-02-09 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
EP2571512B1 (en) 2010-05-17 2017-08-23 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
GB201009732D0 (en) 2010-06-10 2010-07-21 Gene Bridges Gmbh Direct cloning
US9149026B2 (en) 2010-06-11 2015-10-06 Regeneron Pharmaceuticals, Inc. Production of fertile XY animals from XY ES cells
AU2011281062B2 (en) 2010-07-21 2015-01-22 Board Of Regents, The University Of Texas System Methods and compositions for modification of a HLA locus
WO2012018726A1 (en) 2010-08-02 2012-02-09 Cellectis Sa Method for increasing double-strand break-induced gene targeting
WO2012129198A1 (en) 2011-03-23 2012-09-27 Transposagen Biopharmaceuticals, Inc. Genetically modified rat models for obesity and diabetes
US20140304847A1 (en) 2011-06-07 2014-10-09 Ralf Kühn Recombination efficiency by inhibition of nhej dna repair
DK2771357T3 (en) 2011-10-28 2018-10-29 Regeneron Pharma Genetically modified T cell receptor mice
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
SG10201702445TA (en) 2012-04-25 2017-04-27 Regeneron Pharma Nuclease-mediated targeting with large targeting vectors
RU2650819C2 (ru) 2012-05-07 2018-04-17 Сангамо Терапьютикс, Инк. Способы и композиции для опосредованной нуклеазой направленной интеграции трансгенов
LT3401400T (lt) 2012-05-25 2019-06-10 The Regents Of The University Of California Būdai ir kompozicijos, skirtos rnr molekulės nukreipiamai tikslinės dnr modifikacijai ir rnr molekulės nukreipiamam transkripcijos moduliavimui
CN104540382A (zh) 2012-06-12 2015-04-22 弗·哈夫曼-拉罗切有限公司 用于产生条件性敲除等位基因的方法和组合物
PT3494997T (pt) 2012-07-25 2019-12-05 Massachusetts Inst Technology Proteínas de ligação a adn indutíveis e ferramentas de perturbação do genoma e aplicações destas
JP5952141B2 (ja) * 2012-08-31 2016-07-13 京セラメディカル株式会社 人工心肺ポンプ用駆動装置
DE202013012597U1 (de) 2012-10-23 2017-11-21 Toolgen, Inc. Zusammensetzung zum Spalten einer Ziel-DNA, umfassend eine für die Ziel-DNA spezifische guide-RNA und eine Cas-Protein-codierende Nukleinsäure oder ein Cas-Protein, sowie deren Verwendung
EP3138911B1 (en) 2012-12-06 2018-12-05 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
EP4234696A3 (en) 2012-12-12 2023-09-06 The Broad Institute Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
ES2576128T3 (es) 2012-12-12 2016-07-05 The Broad Institute, Inc. Modificación por tecnología genética y optimización de sistemas, métodos y composiciones para la manipulación de secuencias con dominios funcionales
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
DK2898075T3 (en) 2012-12-12 2016-06-27 Broad Inst Inc CONSTRUCTION AND OPTIMIZATION OF IMPROVED SYSTEMS, PROCEDURES AND ENZYME COMPOSITIONS FOR SEQUENCE MANIPULATION
ES2658401T3 (es) 2012-12-12 2018-03-09 The Broad Institute, Inc. Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas
CA3081054A1 (en) 2012-12-17 2014-06-26 President And Fellows Of Harvard College Rna-guided human genome engineering
WO2014104878A1 (en) * 2012-12-27 2014-07-03 Keygene N.V. Method for removing genetic linkage in a plant
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
EP3561050B1 (en) 2013-02-20 2021-12-08 Regeneron Pharmaceuticals, Inc. Genetic modification of rats
AU2014218621B2 (en) 2013-02-25 2019-11-07 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
WO2014131833A1 (en) 2013-02-27 2014-09-04 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Gene editing in the oocyte by cas9 nucleases
US10612043B2 (en) * 2013-03-09 2020-04-07 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events
KR101780885B1 (ko) 2013-03-14 2017-10-11 카리부 바이오사이언시스 인코포레이티드 핵산-표적화 핵산의 조성물 및 방법
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
US9937207B2 (en) 2013-03-21 2018-04-10 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using talens
EP4286517A3 (en) 2013-04-04 2024-03-13 President and Fellows of Harvard College Therapeutic uses of genome editing with crispr/cas systems
US20160186208A1 (en) 2013-04-16 2016-06-30 Whitehead Institute For Biomedical Research Methods of Mutating, Modifying or Modulating Nucleic Acid in a Cell or Nonhuman Mammal
US20160040155A1 (en) 2013-04-16 2016-02-11 University Of Washington Through Its Center For Commercialization Activating an alternative pathway for homology-directed repair to stimulate targeted gene correction and genome engineering
BR112015026197B1 (pt) * 2013-04-16 2022-12-06 Regeneron Pharmaceuticals, Inc Método para modificação marcada de um lócus genômico de interesse em uma célula de rato pluripotente
EP2796558A1 (en) 2013-04-23 2014-10-29 Rheinische Friedrich-Wilhelms-Universität Bonn Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants
CA2910427C (en) 2013-05-10 2024-02-20 Sangamo Biosciences, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3004349B1 (en) 2013-05-29 2018-03-28 Cellectis S.A. A method for producing precise dna cleavage using cas9 nickase activity
US20140359795A1 (en) 2013-05-31 2014-12-04 Recombinetics, Inc. Genetic techniques for making animals with sortable sperm
EP3008181B1 (en) 2013-06-11 2019-11-06 The Regents of The University of California Methods and compositions for target dna modification
KR20160030187A (ko) 2013-06-17 2016-03-16 더 브로드 인스티튜트, 인코퍼레이티드 간의 표적화 및 치료를 위한 CRISPR­Cas 시스템, 벡터 및 조성물의 전달 및 용도
WO2014204725A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
WO2014204723A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Oncogenic models based on delivery and use of the crispr-cas systems, vectors and compositions
EP3011034B1 (en) 2013-06-17 2019-08-07 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
ES2777217T3 (es) 2013-06-17 2020-08-04 Broad Inst Inc Suministro, modificación y optimización de sistemas de guía en tándem, métodos y composiciones para la manipulación de secuencias
DK3011032T3 (da) 2013-06-17 2020-01-20 Broad Inst Inc Fremføring, modificering og optimering af systemer, fremgangsmåder og sammensætninger til målretning mod og modellering af sygdomme og forstyrrelser i postmitotiske celler
SG11201510297QA (en) 2013-06-19 2016-01-28 Sigma Aldrich Co Llc Targeted integration
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
EP3019595A4 (en) 2013-07-09 2016-11-30 THERAPEUTIC USES OF A GENERIC CHANGE WITH CRISPR / CAS SYSTEMS
US11060083B2 (en) 2013-07-19 2021-07-13 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
CN105392885B (zh) 2013-07-19 2020-11-03 赖瑞克斯生物科技公司 用于产生双等位基因敲除的方法和组合物
CN105705188A (zh) 2013-07-24 2016-06-22 梅迪克艾克提乌销售有限公司 可更换盒
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
CA3109801C (en) * 2013-08-22 2024-01-09 Andrew Cigan Plant genome modification using guide rna/cas endonuclease systems and methods of use
EA037850B1 (ru) 2013-08-29 2021-05-27 Тэмпл Юниверсити Оф Зе Коммонвэлс Систем Оф Хайе Эдьюкейшн Способы и композиции для рнк-направленного лечения вич-инфекции
ES2844174T3 (es) 2013-09-18 2021-07-21 Kymab Ltd Métodos, células y organismos
US20160237455A1 (en) 2013-09-27 2016-08-18 Editas Medicine, Inc. Crispr-related methods and compositions
US10822606B2 (en) 2013-09-27 2020-11-03 The Regents Of The University Of California Optimized small guide RNAs and methods of use
WO2015052231A2 (en) 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
CN105899665B (zh) 2013-10-17 2019-10-22 桑格摩生物科学股份有限公司 用于核酸酶介导的基因组工程改造的递送方法和组合物
JP5900942B2 (ja) 2013-11-06 2016-04-06 国立大学法人広島大学 核酸挿入用ベクター
LT3066201T (lt) 2013-11-07 2018-08-10 Editas Medicine, Inc. Su crispr susiję būdai ir kompozicijos su valdančiomis grnr
US10787684B2 (en) 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
AU2014356400A1 (en) 2013-11-28 2016-06-02 Horizon Discovery Limited Somatic haploid human cell line
RU2685914C1 (ru) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Способы и композиции для направленной модификации генома
WO2015089473A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
KR20160097327A (ko) 2013-12-12 2016-08-17 더 브로드 인스티튜트, 인코퍼레이티드 유전자 산물, 구조 정보 및 유도성 모듈형 cas 효소의 발현의 변경을 위한 crispr-cas 시스템 및 방법
WO2015089354A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
KR20160089527A (ko) 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용
MX2016007327A (es) 2013-12-12 2017-03-06 Broad Inst Inc Suministro, uso y aplicaciones terapeuticas de sistemas y composiciones crispr-cas para dirigirlos a trastornos y enfermedades usando componentes para suministro de particulas.
MX2016007324A (es) 2013-12-12 2017-03-06 Broad Inst Inc Suministro, uso y aplicaciones terapeuticas de los sistemas y composiciones crispr-cas para actuar sobre hbv y trastornos y enfermedades virales.
JP6652489B2 (ja) 2013-12-19 2020-02-26 アミリス, インコーポレイテッド ゲノム組込みのための方法
WO2015105928A1 (en) 2014-01-08 2015-07-16 President And Fellows Of Harvard College Rna-guided gene drives
JP6479024B2 (ja) 2014-01-24 2019-03-06 ザ チルドレンズ メディカル センター コーポレーション 抗体親和性の最適化のための高スループットマウスモデル
WO2015116969A2 (en) 2014-01-30 2015-08-06 The Board Of Trustees Of The University Of Arkansas Method, vectors, cells, seeds and kits for stacking genes into a single genomic site
WO2015117041A1 (en) 2014-01-30 2015-08-06 Nair Ramesh B Gene modification-mediated methods and compositions for generating dominant traits in eukaryotic systems
EP3957735A1 (en) 2014-03-05 2022-02-23 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
EP3553176A1 (en) 2014-03-10 2019-10-16 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
ES2821149T3 (es) 2014-03-12 2021-04-23 Prec Biosciences Inc Eliminación del exón del gen de la distrofina mediante nucleasas modificadas genéticamente
CN106455514A (zh) 2014-03-14 2017-02-22 希博斯美国有限公司 采用寡核苷酸介导的基因修复提高靶向基因修饰的效率的方法和组合物
JP6815986B2 (ja) 2014-03-26 2021-01-20 ユニバーシティ オブ メリーランド, カレッジ パーク 大型家畜の接合体における標的化ゲノム編集
GB201406968D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Deletion mutants
WO2015163733A1 (en) 2014-04-24 2015-10-29 Institute For Basic Science A method of selecting a nuclease target sequence for gene knockout based on microhomology
GB201407852D0 (en) 2014-05-02 2014-06-18 Iontas Ltd Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules
WO2015173436A1 (en) 2014-05-16 2015-11-19 Vrije Universiteit Brussel Genetic correction of myotonic dystrophy type 1
CA2949710A1 (en) 2014-05-30 2015-12-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
ES2784754T3 (es) 2014-06-06 2020-09-30 Regeneron Pharma Métodos y composiciones para modificar un locus objetivo
CA2952697A1 (en) 2014-06-16 2015-12-23 The Johns Hopkins University Compositions and methods for the expression of crispr guide rnas using the h1 promoter
DK3161128T3 (en) 2014-06-26 2018-11-05 Regeneron Pharma METHODS AND COMPOSITIONS FOR TARGETED GENTICAL MODIFICATIONS AND PROCEDURES FOR USE THEREOF
WO2016011210A2 (en) 2014-07-15 2016-01-21 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
US9944933B2 (en) 2014-07-17 2018-04-17 Georgia Tech Research Corporation Aptamer-guided gene targeting
EP3193944B1 (en) 2014-07-17 2021-04-07 University of Pittsburgh - Of the Commonwealth System of Higher Education Methods of treating cells containing fusion genes
AU2015308910B2 (en) 2014-08-27 2017-12-07 Caribou Biosciences, Inc. Methods for increasing Cas9-mediated engineering efficiency
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
WO2016049024A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016049258A2 (en) 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
CA2961954A1 (en) 2014-09-29 2016-04-07 The Jackson Laboratory High efficiency, high throughput generation of genetically modified mammals by electroporation
CA2963080A1 (en) 2014-10-01 2016-04-07 The General Hospital Corporation Methods for increasing efficiency of nuclease-induced homology-directed repair
US20180250424A1 (en) 2014-10-10 2018-09-06 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
WO2016061073A1 (en) 2014-10-14 2016-04-21 Memorial Sloan-Kettering Cancer Center Composition and method for in vivo engineering of chromosomal rearrangements
ES2741387T3 (es) 2014-10-15 2020-02-10 Regeneron Pharma Métodos y composiciones para generar o mantener células pluripotentes
WO2016061481A1 (en) 2014-10-17 2016-04-21 The Penn State Research Foundation Methods and compositions for multiplex rna guided genome editing and other rna technologies
US20170306306A1 (en) 2014-10-24 2017-10-26 Life Technologies Corporation Compositions and Methods for Enhancing Homologous Recombination
EP3215623A4 (en) 2014-11-06 2018-09-26 President and Fellows of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells
CA2963820A1 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
LT3221457T (lt) 2014-11-21 2019-06-10 Regeneron Pharmaceuticals, Inc. Nukreipiančios genetinės modifikacijos būdai ir kompozicijos, naudojant suporuotas kreipiančiąsias rnr sekas
KR20170081268A (ko) 2014-11-27 2017-07-11 단지거 이노베이션즈 엘티디. 게놈 편집용 핵산 구조체
WO2016089866A1 (en) 2014-12-01 2016-06-09 President And Fellows Of Harvard College Rna-guided systems for in vivo gene editing
WO2016094872A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016094880A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs)
WO2016097751A1 (en) 2014-12-18 2016-06-23 The University Of Bath Method of cas9 mediated genome engineering
NZ732895A (en) 2014-12-19 2022-05-27 Regeneron Pharma Methods and compositions for targeted genetic modification through single-step multiple targeting
WO2016104716A1 (ja) 2014-12-26 2016-06-30 国立研究開発法人理化学研究所 遺伝子のノックアウト方法
US20180155708A1 (en) 2015-01-08 2018-06-07 President And Fellows Of Harvard College Split Cas9 Proteins
EP3242938B1 (en) 2015-01-09 2020-01-08 Bio-Rad Laboratories, Inc. Detection of genome editing
CN107429263A (zh) 2015-01-15 2017-12-01 斯坦福大学托管董事会 调控基因组编辑的方法
WO2016130697A1 (en) 2015-02-11 2016-08-18 Memorial Sloan Kettering Cancer Center Methods and kits for generating vectors that co-express multiple target molecules
US20180200387A1 (en) 2015-02-23 2018-07-19 Crispr Therapeutics Ag Materials and methods for treatment of human genetic diseases including hemoglobinopathies
GB2535532B (en) 2015-02-23 2021-05-12 Knorr Bremse Systeme Fuer Nutzfahrzeuge Gmbh Brake valve arrangement
EP3262172A2 (en) 2015-02-23 2018-01-03 Crispr Therapeutics AG Materials and methods for treatment of hemoglobinopathies
US11261466B2 (en) 2015-03-02 2022-03-01 Sinai Health System Homologous recombination factors
GB201504223D0 (en) 2015-03-12 2015-04-29 Genome Res Ltd Biallelic genetic modification
EP3851530A1 (en) 2015-03-26 2021-07-21 Editas Medicine, Inc. Crispr/cas-mediated gene conversion
CN107847524A (zh) 2015-03-27 2018-03-27 哈佛学院校长同事会 经过修饰的t细胞及其制备和使用方法
EP3277816B1 (en) 2015-04-01 2020-06-17 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating duchenne muscular dystrophy and becker muscular dystrophy
US10155938B2 (en) 2015-04-14 2018-12-18 City Of Hope Coexpression of CAS9 and TREX2 for targeted mutagenesis
JP7055638B2 (ja) 2015-04-22 2022-04-18 ソニック マスター リミテッド 幹細胞からの筋肉系列細胞の生成
US11104897B2 (en) 2015-04-27 2021-08-31 Genethon Compositions and methods for the treatment of nucleotide repeat expansion disorders
DK3289080T3 (da) 2015-04-30 2021-11-08 Univ Columbia Genterapi til autosomalt dominante sygdomme
US11896651B2 (en) 2015-05-16 2024-02-13 Genzyme Corporation Gene editing of deep intronic mutations
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
IL297017A (en) 2015-10-08 2022-12-01 Harvard College Multiplexed genome editing
KR20180059535A (ko) 2015-10-20 2018-06-04 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 마커-프리 게놈 변형을 위한 방법 및 조성물
EP3370513A1 (en) 2015-11-06 2018-09-12 The Jackson Laboratory Large genomic dna knock-in and uses thereof
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
WO2017173004A1 (en) 2016-03-30 2017-10-05 Mikuni Takayasu A method for in vivo precise genome editing
EP3443080B1 (en) 2016-04-13 2021-08-11 University of Massachusetts Repairing compound heterozygous recessive mutations by allele exchange
KR20240016444A (ko) 2016-05-20 2024-02-06 리제너론 파마슈티칼스 인코포레이티드 다중 가이드 RNAs를 이용한 면역학적 내성 파괴 방법
WO2019148166A1 (en) 2018-01-29 2019-08-01 Massachusetts Institute Of Technology Methods of enhancing chromosomal homologous recombination

Also Published As

Publication number Publication date
IL283585B2 (en) 2023-09-01
WO2016081923A3 (en) 2016-07-07
SG11201703747RA (en) 2017-06-29
CA3176380A1 (en) 2016-05-26
CN107208078B (zh) 2021-07-16
WO2016081923A2 (en) 2016-05-26
HRP20190949T1 (hr) 2019-07-26
CN113444747A (zh) 2021-09-28
KR20170102234A (ko) 2017-09-08
CA2968440A1 (en) 2016-05-26
AU2015349692B2 (en) 2021-10-28
IL283585B1 (en) 2023-05-01
SI3221457T1 (sl) 2019-08-30
US20200002731A1 (en) 2020-01-02
LT3221457T (lt) 2019-06-10
JP6727199B2 (ja) 2020-07-22
KR102415093B1 (ko) 2022-07-04
MX2022000378A (es) 2022-02-10
RU2020134412A (ru) 2020-11-11
AU2021290301A1 (en) 2022-01-27
RS58893B1 (sr) 2019-08-30
KR20230070319A (ko) 2023-05-22
ES2731437T3 (es) 2019-11-15
DK3221457T3 (da) 2019-06-03
HUE044907T2 (hu) 2019-11-28
US20160145646A1 (en) 2016-05-26
JP7101211B2 (ja) 2022-07-14
RU2734770C2 (ru) 2020-10-23
IL252181A0 (en) 2017-07-31
KR102531016B1 (ko) 2023-05-10
SG10201913829YA (en) 2020-03-30
EP3221457B1 (en) 2019-03-20
CN107208078A (zh) 2017-09-26
EP3221457A2 (en) 2017-09-27
KR20220093013A (ko) 2022-07-04
BR112017010547A2 (pt) 2018-02-27
AU2021290301B2 (en) 2024-02-29
IL252181B (en) 2021-06-30
IL301900A (en) 2023-06-01
JP2017535271A (ja) 2017-11-30
US20200002730A1 (en) 2020-01-02
IL283585A (en) 2021-07-29
MX2017006670A (es) 2018-03-01
RU2017121367A3 (ru) 2019-11-05
JP2020191880A (ja) 2020-12-03
US10457960B2 (en) 2019-10-29
PL3221457T3 (pl) 2019-09-30
US20230332185A1 (en) 2023-10-19
CY1121738T1 (el) 2020-07-31
PT3221457T (pt) 2019-06-27
NZ731962A (en) 2022-07-01
AU2015349692A1 (en) 2017-06-08
EP3521437A1 (en) 2019-08-07
US11697828B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
RU2017121367A (ru) Способы и композиции для нацеленной генетической модификации с использованием парных гидовых рнк
JP2017535271A5 (ru)
JP7095066B2 (ja) 単一ステップの複数標的化を通じた標的化された遺伝子修飾のための方法及び組成物
US20200172935A1 (en) Modified cpf1 mrna, modified guide rna, and uses thereof
RU2016126989A (ru) Способы и композиции для направленной модификации генома
JP6958917B2 (ja) 遺伝子ノックイン細胞の作製方法
Terol et al. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation
US20190218544A1 (en) Gene editing, identifying edited cells, and kits for use therein
CA3171406A1 (en) Optimised methods for cleavage of target sequences
EP3374510B1 (en) Tissue selective transgene expression
KR102539173B1 (ko) 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도
CN117587008A (zh) 靶向Rbmxl2基因的核酸产品和少弱畸形精子症动物模型的构建方法
EP3243906A1 (en) Tissue selective transgene expression
Sumiyama et al. For Mol. Biol. Evol. Letters Loss-of–function mutation in a repressor module of human-specifically activated enhancer HACNS1
RU2019132992A (ru) Способы и композиции для модификации целевого локуса