KR20110079831A - 기상 에피택시 시스템 - Google Patents

기상 에피택시 시스템 Download PDF

Info

Publication number
KR20110079831A
KR20110079831A KR1020117010037A KR20117010037A KR20110079831A KR 20110079831 A KR20110079831 A KR 20110079831A KR 1020117010037 A KR1020117010037 A KR 1020117010037A KR 20117010037 A KR20117010037 A KR 20117010037A KR 20110079831 A KR20110079831 A KR 20110079831A
Authority
KR
South Korea
Prior art keywords
gas
electrode
precursor gas
precursor
substrate
Prior art date
Application number
KR1020117010037A
Other languages
English (en)
Inventor
조슈아 맨검
윌리엄 이. 퀸
에릭 아머르
Original Assignee
비코 프로세스 이큅먼트, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비코 프로세스 이큅먼트, 아이엔씨. filed Critical 비코 프로세스 이큅먼트, 아이엔씨.
Publication of KR20110079831A publication Critical patent/KR20110079831A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

기상 에피택시 시스템은 기상 에피택시용 기판을 지지하는 압반(platen) 및 가스 주입기를 포함한다. 가스 주입기는 제 1 전구체 가스를 제 1 영역 내로 주입하며, 제 2 전구체 가스를 제 2 영역 내로 주입한다. 적어도 하나의 전극은 제 1 영역 내에 위치되어 제 1 전구체 가스 분자가 전극에 인접하게 흐르도록 한다. 적어도 하나의 전극은 제 2 전구체 가스의 흐름으로부터 충분히 격리된다. 전원은 적어도 하나의 전극에 전기적으로 연결된다. 전원은 적어도 하나의 전극을 가열하는 전류를 생성하여 적어도 하나의 전극에 인접하여 흐르는 제 1 전구체 가스 분자의 적어도 일부를 열적으로 활성화함으로써, 제 1 전구체 가스 분자를 활성화한다.

Description

기상 에피택시 시스템{VAPOR PHASE EPITAXY SYSTEM}
본 발명은 기상 에피택시 시스템에 관한 것이다.
기상 에피택시(VPE)는 화학적 종(species)을 포함하는 하나 또는 그 이상의 가스를 기판의 표면으로 향하게 하여 반응성 종이 기판의 표면상에서 반응하여 막을 형성하도록 하는 단계를 포함하는 일종의 화학 기상 증착법(CVD)이다. 예를 들면, VPE는 기판상에 화합물 반도체 물질을 성장시키도록 사용될 수 있다. 기판은 통상 디스크 형태의 결정성 물질로서, 이는 통상 "웨이퍼"라고 불린다. 물질은 통상 적어도 제 1 및 제 2 전구체 가스를 결정성 기판을 포함하는 공정 챔버 내로 주입함으로써 성장된다.
III-V족 반도체와 같은 화합물 반도체는, 수소화물 전구체 가스 및 유기 금속 전구체 가스를 사용하여 기판상에 다양한 층의 반도체 물질을 성장시킴으로써 형성될 수 있다. 금속-유기 기상 에피택시(MOVPE)는 기상 증착 방법으로서, 이는 통상 금속-유기물의 표면 반응 및 원하는 화학 원소를 포함하는 금속 수소화물을 사용하여 화합물 반도체를 성장시키도록 사용된다. 예를 들면, 인듐 인화물(indium phosphide)은 트리메틸인듐(trimethylindium) 및 포스핀(phosphine)을 도입함으로서 기판 상의 반응기 내에서 성장될 수 있을 것이다. 본 기술 분야에서 사용되는 MOVPE의 선택적 명칭은 유기 금속 기상 에피택시(OMVPE), 금속-유기 화학 기상 증착법(MOCVD), 및 유기 금속 화학 기상 증착법(OMCVD)을 포함한다. 이들 공정에 있어서, 가스는 사파이어, Si, GaAs, InP, InAs 또는 GaP 기판과 같은 기판의 표면에서 서로 반응하여, 일반식 InxGaYAlzNAAsBPCSbD III-V족 화합물을 형성하며, 여기서, X+Y+Z는 대략 1이며, A+B+C+D는 대략 1이며, 및 각각의 X, Y, Z, A, B, C, 및 D는 0과 1 사이일 수 있다. 몇몇 예에 있어서, 비스무트(bismuth)는 기타 III족 금속의 일부 또는 전체 대신 사용될 수 있다.
III-V족 반도체와 같은 화합물 반도체는 또한, 수소화물 또는 할로겐화물 전구체 가스 공정을 사용하여 기판 상에 다양한 층의 반도체 물질을 성장시킴으로써 형성될 수 있다. 하나의 할로겐화물 기상 에피택시(HVPE) 공정에 있어서, III족 질화물(예를 들면, GaN, AlN)은 고온 가스 금속 염화물(예를 들면, GaCl 또는 AlCl)을 암모니아 가스 (NH3)와 반응시킴으로써 형성된다. 금속 염화물은 고온 III족 금속 위로 고온 HCl 가스를 통과시킴으로써 생성된다. 모든 반응은 온도-제어된 석영 로에서 수행된다. HVPE의 하나의 특징은 몇몇 최신 공정에서 시간당 100μm까지의 높은 성장률을 가질 수 있다는 것이다. HVPE의 다른 특징은 막이 카본-없는 환경에서 성장되고 고온 HCl 가스가 자체-청소 효과를 제공하므로 상대적으로 높은 품질의 막을 증착하도록 사용될 수 있다는 것이다.
이들 공정에 있어서, 기판은 반응 챔버 내의 상승된 온도에서 유지된다. 전구체 가스는 불활성 캐리어 가스와 통상적으로 혼합되며 및 반응 챔버 내로 배향된다. 통상적으로, 이들 가스는 반응 챔버 내로 유입 시 상대적으로 낮은 온도에 있게 된다. 가스가 고온 기판에 도달함에 따라, 그 온도, 및 그에 따른 반응의 가용 에너지가 증가한다. 에피택셜 층의 형성은 기판 표면에서 구성 화학 물질의 최종 열분해에 의해 나타난다. 결정은 물리적 증착 공정이 아니라 화학적 반응에 의해 형성된다. 성장은 중간 압력의 기체상(氣體相)에서 나타난다. 결과적으로, VPE는 열역학적으로 준안정의 합금에서 바람직한 성장 기술이다. 현재, VPE는 통상적으로 레이저 다이오드, 태양 전지, 및 LED를 제조하도록 사용된다.
본 발명의 목적은 전극이 촉매 반응을 위해 상대적으로 큰 표면적을 제공하도록 형성될 수 있는 기상 에피택시 시스템을 제공하는 데 있다.
전술한 목적을 달성하기 위해, 본 발명은 a. 기상 에피택시용 기판을 지지하는 압반(platen); b. 제 1 전구체 가스 공급원과 결합하는 제 1 영역 및 제 2 전구체 가스 공급원과 결합하는 제 2 영역을 포함하는 가스 주입기로서, 상기 제 1 전구체 가스를 상기 제 1 영역 내로 주입하고 상기 제 2 전구체 가스를 상기 제 2 영역 내로 주입하는 상기 가스 주입기; c. 제 1 전구체 가스 분자가 상기 적어도 하나의 전극에 인접하여 유동하고 상기 제 2 전구체 가스의 유동으로부터 실질적으로 격리되게 위치되도록 상기 제 1 영역 내에 위치되는 적어도 하나의 전극; 및 d. 상기 적어도 하나의 전극에 전기적으로 연결되는 출력부를 갖는 전원으로서, 상기 적어도 하나의 전극에 인접하여 흐르는 상기 제 1 전구체 가스 분자의 적어도 일부에서 열적으로 활성화하도록 상기 적어도 하나의 전극을 가열하는 전류를 발생시키는 상기 전원을 포함하는 기상 에피택시 시스템을 제공한다.
본 발명에 따라, 전극이 촉매 반응을 위해 상대적으로 큰 표면적을 제공하도록 형성될 수 있는 기상 에피택시 시스템을 제공할 수 있다.
바람직한 및 예시적인 실시예에 따라, 본 발명의 사상은, 그의 추가의 이점과 함께, 첨부 도면을 참조하여, 이하의 상세한 설명에서 특별하게 설명된다. 본 기술 분야에 통상의 지식을 가진 자라면 이하에 설명되는 도면이 예시적 목적으로만 사용된다는 것을 알 수 있을 것이다. 도면은 반드시 축척에 맞게 도시되어야 하는 것은 아니며, 그 대신 본 발명의 사상의 원리를 설명 시 강조 부분이 표시된다. 어쨌든, 도면은 출원인의 범주를 제한하도록 의도되지 않는다.
도 1은 화합물 반도체를 형성하도록 사용되는 공지된 기상 에피택시 시스템을 도시한다.
도 2는 제 1 전구체 가스의 흐름 내에 위치되는 적어도 하나의 전극을 포함하며 제 2 전구체 가스의 흐름으로부터 거의 격리되는 본 발명의 사상에 따른 기상 에피택시 시스템을 도시한다.
도 3은 가스 주입기의 사분면 내에 위치되는 제 1 영역 및 사분면을 통해 방사상으로 연장하는 제 2 영역을 포함하는 본 발명의 사상에 따른 디스크-형 가스 주입기의 실시예의 평면도이다.
도 4A는 가스 주입기를 교대로 교차하는 복수의 제 1 및 제 2 영역을 포함하는 본 발명의 사상에 따른 디스크-형 가스 주입기의 일 실시예의 단면도를 도시한다.
도 4B는 전극을 제 2 전구체 가스로부터 격리하는 기계적 또는 화학적 배리어를 도시하는 디스크-형 가스 주입기의 확대도를 도시한다.
도 5는 수평 유동 가스 주입기를 포함하는 본 발명의 사상에 따른 기상 에피택시 시스템의 상부 사시도이다.
도 6은 본 발명의 사상에 따른 기상 에피택시 시스템에서 전구체 가스를 열적으로 활성화시키기 위해 압반(platen)의 표면에 인접하여 위치되는 포일(foil)-형 전극을 도시한다.
명세서에서 "하나의 실시예" 또는 "일 실시예"에 대한 참조는 실시예와 관련하여 설명되는 특정 특징부, 구조 또는 특성이 본 발명의 사상의 적어도 하나의 실시예에 포함된다는 것을 의미한다. 본 명세서의 다양한 위치에서 “일 실시예에 있어서”라는 구절의 출현이 모두 동일 실시예를 참조하여야 하는 것은 아니다.
본 발명의 방법의 개별 단계는 본 발명의 사상이 작동 가능한 한 어떤 순서로든 및/또는 동시에 수행될 수 있다는 것을 이해하여야 할 것이다. 또한, 본 발명의 장치 및 방법이 본 발명의 사상이 작동 가능한 한 전술한 실시예들의 어떤 숫자 또는 모든 실시예를 포함할 수 있다는 것을 이해하여야 할 것이다.
본 발명은 또한 첨부 도면에 도시된 바와 같은 바람직한 실시예를 참조로 더욱 상세하게 설명될 것이다. 본 발명이 다양한 실시예 및 실시형태와 관련하여 설명된다 하더라도, 본 발명이 이러한 실시예에 제한되는 것으로 의도되지는 않는다. 반대로, 본 발명은, 본 기술 분야에 통상의 지식을 가진 자에게는 자명할, 다양한 대안, 변형예 및 균등물을 포함한다. 본 명세서의 내용에 접근하는 본 기술 분야에 통상의 지식을 가진 자라면, 본 명세서에서 설명되는 본 발명의 범주 내에서, 다른 사용 분야뿐만 아니라, 추가의 구현예, 변형예 및 실시예를 알 수 있을 것이다.
본 명세서에 사용되는 용어 “가용 에너지”는 화학적 반응에서 사용되는 반응물 종의 화학 포텐셜(chemical potential)을 지칭한다. 화학적 포텐셜은 시스템의 에너지(입자, 분자, 진동 또는 전자 상태, 반응 평형 등)을 설명하도록 열역학, 물리학, 및 화학에서 통상적으로 사용되는 용어이다. 그러나, 화학적 포텐셜의 보다 구체적인 대체 용어는 Gibbs 자유 에너지 (열역학) 및 Fermi 레벨 (고체 물리학), 등을 포함하는 다양한 학문적 규정으로 사용될 수 있다. 다르게 특정되지 않는 한, 가용 에너지에 대한 참조는 특정된 물질의 화학적 포텐셜을 지칭하는 것으로 이해되어야 할 것이다.
도 1은 화합물 반도체를 형성하도록 사용되는 공지된 VPE 시스템(100)을 도시한다. 이러한 시스템(100)은 그 안에 장착되는 스핀들(102)을 갖는 반응 챔버(101)를 포함한다. 스핀들(102)은 회전 구동 메커니즘(106)에 의해 축선(104)을 중심으로 회전 가능하다. 축선(104)은 도 1에 도시된 바와 같은 상류 방향(U) 및 하류 방향(D)으로 연장한다. 많은 시스템에 있어서 디스크-형 기판 캐리어인, 압반(108)은 그와의 회전을 위해 스핀들(102) 상에 장착된다. 통상적으로, 압반(108) 및 스핀들(102)은 대략 100 내지 2,000rpm(revolutions per minute)의 회전율로 회전한다. 압반(108)은 복수의 디스크-형 기판(110)을 유지하도록 적용되어 기판(110)의 표면(112)은 축선(104)과 직교하는 평면에 존재하며 상류 방향(U)으로 대면한다.
저항 가열 요소와 같은 히터(114)는 압반(108)에 인접한 반응 챔버(101) 내에 위치된다. 히터(114)는 기판 캐리어를 원하는 처리 온도까지 가열한다. 유동 입구 요소로서 본 기술 분야에 공지된 가스 주입기(116)는 압반(108) 및 스핀들(102)의 상류에 장착된다. 가스 주입기(116)는 공정 가스 공급원(118, 120, 122)에 연결된다. 가스 주입기(116)는 다양한 공정 가스의 흐름을 반응 챔버(101) 내로 향하게 한다. 유체 냉매 공급부(117)는 유동 주입기(116) 내의 액체 냉각 채널과 결합하여 가스 주입기(116)의 온도를 제어하도록 냉각 유체를 순환시킨다.
작동 시, 공정 가스 공급원(118, 120, 122)으로부터의 공정 가스의 흐름은 "유동 영역(124)"으로서 본 명세서에서 지칭되는 가스 주입기(116) 및 압반(108) 사이의 반응 챔버(101)의 영역에서 압반(108) 및 기판(110)을 향해 대체로 하류로 흐른다. 공지된 시스템에 있어서, 이러한 하향 흐름은 하향 유동 가스의 별개의 흐름 사이의 상당한 혼합을 초래하지 않는다. 유동 영역(124) 내의 층류 유동(laminar flow)이 있도록 시스템(100)을 설계 및 동작시키는 것이 바람직하다. 통상의 작동에 있어서, 압반(108)은 회전 구동부(106)와 함께 축선(104)을 중심으로 빠르게 회전되어 압반(108)의 표면 및 기판(110)의 표면이 빠르게 이동하도록 한다. 압반(108) 및 기판(110)의 빠른 이동은 축선(104)을 중심으로 하는 회전 이동 내로 가스를 혼입시킨다. 결과적으로, 공정 가스는 축선(104)으로부터 방사상으로 멀어지도록 유동하여, 다양한 흐름 내의 공정 가스가 경계층 영역(126)으로 개략적으로 표시되는 경계층 내에서 서로 혼합되도록 한다.
사실상, 유동 영역(124) 내에서 화살표(128)로 표시되는 대체로 하류 가스 유동 및 경계층(126) 내의 빠른 회전 유동 및 혼합 사이에는 점진적 천이가 존재한다. 그럼에도 불구하고, 경계층(126)은 대체로 가스 유동이 기판(110)의 표면과 거의 평행인 영역으로서 간주한다. 몇몇 동작 방법에 있어서, 경계층(126)의 두께는 대략 1cm 정도이며 가스 주입기(116)의 하류 표면으로부터 기판(110)의 표면(112)까지의 거리는 대략 5 내지 8cm이다. 그에 따라, 유동 영역(124)은 가스 주입기(116) 및 압반(108) 사이의 공간의 대부분을 점유한다. 압반(108)의 회전 이동은 가스를 압반(108)의 가장자리 둘레를 바깥 방향으로 펌핑하며, 및 그에 따라 가스가 배기 시스템(130)의 하류를 통과한다. 많은 동작 방법에 있어서, 반응 챔버(101)는 대략 25 내지 1,000Torr로부터 절대 압력 이하에서 유지된다. 많은 공정은 대략 50 내지 760Torr의 절대 압력에서 작동한다.
가스 주입기(116)는 상대적으로 낮은 온도에서 유지되는바, 이는 통상 대체로 60℃ 이하이며, 때때로 더 높은 온도가 사용되기도 한다. 할로겐화물 VPE 시스템에 있어서, III족 할로겐화물은 상승된 온도에서 유지되어 응축을 방지한다. 이러한 상승된 온도는 증착이 발생하는 기판(110)의 온도 미만이다. 상대적으로 낮은 온도는 반응물의 분해를 방해 및/또는 가스 주입기(116) 및 유동 영역(124) 내의 반응물의 원하지 않는 반응의 형성을 방해하도록 선택된다. 또한, 많은 공정에 있어서, 반응 챔버(101)의 벽(101')은 압반(108)으로부터 먼 유동 영역(124) 내의 공정 가스의 모든 반응의 비율을 최소화하도록 대략 25℃까지 냉각된다.
경계층(126) 내 가스의 체류기간이 상대적으로 짧으므로, 기판(110)의 표면에서 경계층(126) 내의 가스 사이의 신속한 반응을 촉진하는 것이 바람직하다. 통상의 VPE 시스템에 있어서, 반응 에너지는 압반(108) 및 기판(110)으로부터의 열에 의해 일차적으로 제공된다. 예를 들면, 몇몇 공정에 있어서, 반응 에너지는 NH3와 같은 V족 수소화물을 분해하여 NH2 및 NH와 같은 반응성 중간물질을 형성하도록 요구되는 에너지이다. 그러나, 압반(108) 및 기판(110)의 온도를 증가시키는 것은 증착된 화합물 반도체의 분해를 증가시키는 경향이 있다. 예를 들면, 압반(108) 및 기판(110)의 온도를 증가시키는 것은 InGaN 및 InN과 같은 인듐-풍부 화합물을 성장시키는 경우 특히 반도체로부터 질소의 손실을 초래할 수 있다.
본 발명의 일 양태에 있어서, VPE 시스템은 반응률을 증가시키거나 반응 화학적 성질을 변경하도록 추가 에너지를 공정 가스에 추가하도록 사용되는 하나 또는 그 이상의 전기 활성 전극을 포함한다. 본 기술 분야에 통상의 지식을 가진 자라면 공정 챔버(101) 내의 공정 가스에 노출되는 모든 형태의 와이어 및 필라멘트와 같은 모든 형태의 전기 활성 전극이 사용될 수 있다는 것을 알 수 있을 것이다.
본 발명의 많은 실시예에 있어서, 막대한 에너지를 기타 공정 가스에 공급하지 않고도 공정 가스 중 하나에 에너지를 공급하는 것이 바람직하다. 예를 들면, 많은 III-V족 증착 공정에 있어서, 막대한 에너지를 III족 금속 전구체 가스에 공급하지 않고도, 추가 에너지를, 예를 들면, 암모니아(NH3)일 수 있는, V족 수소화물 전구체 가스에 가하는 것이 바람직하다. 본 기술 분야에 통상의 지식을 가진 자라면 하나 또는 그 이상의 공정 가스에 대한 에너지의 선택적 인가가 많은 방식으로 수행될 수 있다는 것을 알 수 있을 것이다. 예를 들면, 하나 또는 그 이상의 전기 활성 전극은 상승한 온도 하에서 반응할 전구체 가스로부터 물리적으로 격리될 수 있다. 물리적 격리는 가스를 반응기의 각기 다른 영역에서 별개로 유입시키고 본 명세서에 설명되는 배플 및/또는 가스 커튼을 사용함으로써 달성될 수 있다. 본 발명의 하나의 특징은 기판(110)의 표면 위에 층류 유동을 유지하도록, 기판(110)으로부터 동일 거리이지만, 가스가 별개로 유입될 수 있다는 것이다.
도 2는 제 1 전구체 가스의 유동 내에 위치되며 제 2 전구체 가스의 유동으로부터 거의 격리되는 적어도 하나의 전극을 포함하는 본 발명에 따른 기상 에피택시 시스템(200)을 도시한다. VPE 시스템(200)은 도 1을 참조하여 설명된 VPE 시스템과 유사하다. VPE 시스템(200)은 공정 가스를 수용하기 위한 공정 챔버(201)를 포함한다. 또한, VPE 시스템(200)은 기상 에피택시를 위해 기판(204)을 지지하는 디스크-형 기판 캐리어인 압반(202)을 포함한다.
VPE 시스템(200)은 물리적 배리어 및/또는 화학적 배리어에 의해 분리되는 다중 영역을 포함하는 가스 주입기(206)를 포함한다. 예를 들면, VPE 시스템(200)은 제 1 전구체 가스 공급원(210)과 결합하는 제 1 영역(208) 및 제 2 전구체 가스 공급원(214)과 결합하는 제 2 영역(212)을 포함할 수 있다. 어떤 형태의 전구체 가스든 본 발명에 따른 VPE 시스템에 사용될 수 있다. 다양한 기타 실시예에 있어서, 가스 주입기(206)는 추가 전구체 및/또는 불활성 가스 공급원(211)과 결합하거나 결합하지 않을 수 있는 물리적 배리어 및/또는 화학적 배리어에 의해 분리되는 추가 영역을 포함할 수 있다.
본 명세서에 설명된 바와 같이, 각기 다른 전구체 가스를 공정 챔버(201)의 각기 다른 영역 내로 주입하는 많은 가능한 가스 주입기 디자인이 있다. 예를 들면, 도 3을 참조하여 설명되는 일 실시예에 있어서, 가스 주입기(206) 내의 제 1 영역(208)은 디스크의 사분면에 위치되며, 제 2 영역(212)은 사분면을 통해 방사상으로 연장한다. 도 4A를 참조하여 설명되는 다른 실시예에 있어서, 가스 주입기(206) 내의 제 1 및 제 2 영역(208, 212)은 가스 주입기(206)의 적어도 일부를 교대로 교차하는 복수의 제 1 및 제 2 영역을 포함한다. 많은 실용적 실시예에 있어서, 가스 주입기(206)는 가스 주입기(206)의 온도를 제어하는 액체 냉각 채널을 포함한다. 유체 냉매 공급부(216)는 유동 주입기(206) 내의 액체 냉각 채널과 결합하여 가스 주입기(206)의 온도를 제어하도록 냉각 유체를 순환시킨다.
다양한 실시예에 있어서, 가스 주입기(206)는 층류 유동 또는 비-층류 유동으로 기판(204)을 지지하는 압반(202) 위에 제 1 및 제 2 전구체 가스를 유동시키도록 설계된다. 또한, 다양한 실시예에 있어서, 가스 주입기(206)는 기판(204)을 지지하는 압반(202)에 대해 다양한 방향으로 제 1 및 제 2 전구체 가스를 유동시킨다. 예를 들면, 본 발명에 따른 몇몇 VPE 시스템에 있어서, 가스 주입기(206)는 기판(204)을 지지하는 압반(202)의 표면에 대해 직교하는 방향으로 1 및 제 2 전구체 가스 중 적어도 하나를 유동시킨다. 또한, 몇몇 VPE 시스템에 있어서, 가스 주입기(206)는 기판(204)을 지지하는 압반(202)과 평행한 방향으로 제 1 및 제 2 전구체 가스 중 적어도 하나를 유동시킨다. 하나의 특정 VPE 시스템에 있어서, 가스 주입기(206)는 기판(204)을 지지하는 압반(202)과 거의 평행한 방향으로 제 1 및 제 2 전구체 가스 중 하나 및 기판(204)을 지지하는 압반(202)과 거의 직교하는 방향으로 가스 주입기(206)를 통해 제 1 및 제 2 전구체 가스 중 나머지를 유동시킨다.
전극(218, 219)은 제 1 영역(212) 내에 위치되어 제 1 전구체 가스가 전극(218, 219)에 접촉하거나 인접하여 유동하도록 한다. 또한, 전극(218, 219)은 그들이 제 2 전구체 가스의 유동으로부터 거의 격리되도록 위치된다. 전극(218, 219)은 많은 방식으로 배향될 수 있다. 예를 들면, 전극(218, 219)은 가스 주입기(206) (예를 들면, 전극 218)의 평면으로 배향될 수 있다. 전극(218, 219)은 또한 가스 주입기(206) (예를 들면, 전극 219)의 평면에 직교하게 배향될 수 있다. 또한, 전극(218, 219)은 가스 주입기(206) 및 압반(202) 사이에 어디든 위치될 수 있는바, 압반(202)은 가스 주입기(206)에 인접하는 기판(204)을 지지하며 기판(204)을 지지하는 압반(202)에 인접한다.
다양한 실시예에 있어서, 전극(218, 219)은 어떤 형태의 전극 물질로든 형성될 수 있다. 그러나, 전극(218, 219)은 통상 부식에 저항하는 물질로 이루어져 어떤 오염 물질도 VPE 시스템(200) 내로 유입시키지 않도록 한다. 또한, 다양한 실시예에 있어서, 단 하나의 전극만을 포함할 수도 있는, 어떤 숫자의 전극이든 포함하는 모든 형태의 전극 구성이 사용될 수 있다. 또한, 다양한 실시예에 있어서, 전극(218, 219)은 어떤 형태로든 형성될 수 있다. 예를 들면, VPE 시스템(200)은 각기 다른 두 가지 형태의 전극, 즉, 선형 (직선) 전극(218) 및 비-선형 전극(219), 예를 들면, 제 1 전구체 가스에 노출되는 전극의 표면적을 증가 도는 최대화하는 코일형 전극 또는 기타 구조를 보여준다. 많은 시스템에 있어서, 동일한 형태의 전극이 사용되지만, 몇몇 시스템에 있어서, 둘 또는 그 이상의 각기 다른 형태의 전극이 사용된다.
전극(218, 219)은 전기적으로 활성이다. 도 2에 도시된 실시예에 있어서, 전극(218, 219)은 전원이 인가되지 않은 부유 포텐셜에 있게 된다. 전원(220)의 출력부는 전극(218, 219)에 전기적으로 연결된다. 전원(220)은 전극(218, 219)을 가열하는 전류를 생성하여 전극(218, 219)과 접촉 또는 그와 인접하여 흐르는 제 1 전구체 가스 분자의 적어도 일부를 열적으로 활성화한다.
본 기술 분야에 통상의 지식을 가진 자라면 전극(218, 219)을 격리시키는 많은 방식이 존재하여 이들이 제 2 전구체 가스의 유동으로부터 충분히 격리되도록 한다는 것을 알 수 있을 것이다. 예를 들면, 일 실시예에 있어서, 가스 주입기(206)는 하나 또는 그 이상의 배플(222) 또는 제 1 영역(208)을 제 2 영역(212)으로부터 물리적으로 분리하는 기타 형태의 물리적 구조를 포함하여 전극(218, 219)을 제 2 전구체 가스의 유동으로부터 격리시킨다. 많은 실시예에 있어서, 하나 또는 그 이상의 배플(222)은 비-열 전도성 물질로 형성되어 공정 챔버(201) 내의 열 프로파일이 배플(222)에 의해 방출되는 열복사로부터 현저하게 변화하지 않도록 한다. 일 실시예에 있어서, 하나 또는 그 이상의 배플(222)은 기판(204)을 지지하는 압반(202)을 가로지르는 제 1 및 제 2 전구체 가스 중 적어도 하나의 층류 유동을 보존하도록 형성된다.
일 실시예에 있어서, 전극(218, 219)은 촉매 물질로 형성된다. 히터는 촉매 물질의 반응률을 증가시키도록 촉매 물질과 열 연통 상태로 위치될 수 있다. 본 기술 분야에 통상의 지식을 가진 자라면 많은 형태의 촉매 물질이 사용될 수 있다는 것을 알 수 있을 것이다. 예를 들면, 몇몇 실시예에 있어서, 전극(218, 219)은 레늄, 텅스텐, 니오븀, 탄탈룸, 및 몰리브덴 중 적어도 하나를 포함하는 촉매 물질로 형성된다. 다양한 실시예에 있어서, 전극(218, 219)은 내화 및/또는 천이 금속으로 형성될 수 있다.
본 발명에 따른 기상 에피택시 시스템 작동 방법은 기판(204)을 지지하는 압반(202)에 인접한 제 1 영역(208) 내에 기상 에피택시용 제 1 전구체 가스를 분사하는 단계 및 기판을 지지하는 압반(202)에 인접한 제 2 영역(212) 내에 기상 에피택시용 제 2 전구체 가스를 분사하는 단계를 포함한다. 하나의 방법에 있어서, 제 1 및 제 2 전구체 가스는 도 4A를 참조하여 설명된 바와 같은 복수의 각각 교번하는 제 1 및 제 2 영역 내로 주입된다.
어떤 형태의 VPE 전구체 가스든 사용될 수 있다. 예를 들면, 제 1 전구체 가스는 NH3와 같은 수소화물 전구체 가스일 수 있으며, 제 2 전구체 가스는 VPE에 의해 GaN을 성장시키도록 사용되는 트리메틸 갈륨과 같은 유기 금속 전구체 가스일 수 있다. 또한, 제 1 전구체 가스는 NH3와 같은 수소화물 전구체 가스일 수 있으며 제 2 전구체 가스는 VPE에 의해 GaN을 성장시키도록 사용되는 염화 갈륨과 같은 금속 할로겐화물 전구체 가스일 수 있다. 몇몇 방법에 있어서, 세 가지 전구체 가스가 사용된다. 예를 들면, 이들 방법에 있어서, 제 1 전구체 가스는 NH3와 같은 수소화물 전구체 가스일 수 있으며, 제 2 전구체 가스는 트리메틸 갈륨과 같은 유기 금속 전구체 가스일 수 있다. 제 3 전구체 가스는 HCl과 같은 할로겐화물 전구체 가스일 수 있다. 이들 전구체 가스에 있어서, 할로겐화물 전구체 가스 및 유기 금속 전구체 가스는 금속 할로겐화물을 형성하도록 반응한다. 세 가지 전구체 가스를 사용하는 방법에 있어서, 가스 주입기(206)는 제 3 전구체 가스를 주입하기 위한 제 3 영역을 포함할 수 있다. 선택적으로, 제 3 전구체 가스는 제 1 또는 제 2 영역(208, 212) 내에 주입될 수 있다.
제 1 및 제 2 전구체 가스는 기판(204)을 지지하는 압반(202)에 수직 및 평행한 각도를 포함하는 어떤 각도로든 주입될 수 있다. 제 2 전구체 가스용 주입 각도는 제 1 전구체 가스의 주입 각도와 같거나 다를 수 있다. 제 1 전구체 가스 분자는 전극(218, 219)과 접촉하거나 인접하여 유동한다. 그러나, 전극(218, 219)은 제 2 전구체 가스의 유동으로부터 적어도 부분적으로 격리된다. 전극(218, 219)은 그 후 전기적으로 활성화된다. 몇몇 방법에 있어서, 전극(218, 219)은 물리적 배플(222)과 함께 상기 주입된 제 2 전구체 가스의 유동으로부터 격리된다. 배플(222)은 도 6을 참조하여 설명되는 바와 같이 기판(204)을 지지하는 압반(202) 위의 층류 유동을 보존하도록 수행될 수 있다.
가스 커튼을 사용하는 방법에 있어서, 불활성 가스는 전극(218, 219)을 제 2 전구체 가스의 유동으로부터 격리하는 영역 내로 주입된다. 본 명세서에 사용되는 용어 "불활성 가스"는 성장 반응에 거의 참여하지 않는 가스를 지칭한다. 불활성 가스는 전구체 가스와 종종 혼합된다. 이러한 불활성 가스는 본 기술 분야에서는 "캐리어 가스"라고 불린다. 예를 들면, III-V족 반도체 물질을 성장시키는 경우, N2, H2, He 또는 그 혼합물과 같은 가스는 통상적으로 전구체 가스용 캐리어 가스로서 사용된다.
전원(220)은 전극(218, 219)을 통해 흐르는 전류를 생성하여 전극(218, 219)이 충분한 양의 제 2 전구체 가스 분자를 활성화하지 않고도 제 1 전구체 가스 분자를 열적으로 활성화하는 열을 생성하도록 한다. 가열된 전극(218, 219)은 전자의 열이온 방출 및 전자와 반응물 종의 상호 작용을 포함하는 다양한 메커니즘에 의해 에너지를 제 1 전구체 가스 분자에 전달한다. 본 발명에 따른 몇몇 방법에 있어서, 전자는 반응물 종을 이온화시키는 충분한 에너지를 갖지 않는다. 전자가 반응물 종을 이온화시키는 충분한 에너지를 갖지 않는 하나의 예는 NH3을 이온화시키는 것이다. NH3을 이온화하는 방법에 있어서, 전자는 반응물 종과 상호 작용하여 반응물 종을 더 높은 에너지 상태까지 촉진한다.
본 발명에 따른 몇몇 VPE 시스템에 있어서, 전극(218, 219)은 촉매 전극으로서, 이들은 촉매 물질 조건이 바람직한 경우 제 1 전구체 가스의 반응을 촉진할 수 있는 촉매 물질로 형성된다. 촉매 전극은 촉매 반응을 증대하도록 별개의 히터로 가열될 수 있다. 몇몇 방법에 있어서, 이러한 촉매 전극은 그가 기판(204)을 지지하는 압반(202)으로부터 멀어지므로 가스 주입기(206) 표면에 인접한 NH3을 분해하는데 유용하며, 그에 따라, 분해를 위해 충분한 열에너지를 갖지 못한다. 촉매 전극을 사용하여 분해를 위한 활성 에너지를 낮추며, 그에 따라, 상대적으로 낮은 온도를 갖는 공정 챔버(201)의 영역 (즉, 기판에서 먼 가스 주입기(206)에 가까운 영역)에서도 NH3 분해 가능성을 증가시킨다. 촉매 전극은 상기 반응이 진행하도록 하거나, 상기 반응이 발생하려고 하면, 반응의 활성 에너지를 낮춤으로써 반응이 더 빠르게 진행되도록 하거나 반응이 각기 다른 반응 경로를 통해 진행하도록 한다. 본 발명에 따른 하나의 VPE 시스템에 있어서, 촉매 전극은 경계층 영역(126, 도 1)에 인접 위치되어 제 1 전구체 가스가 촉매 전극과 상호 작용한 직후 제 1 전구체 가스가 제 2 전구체 가스와 혼합하도록 한다.
본 발명에 따른 기타 VPE 시스템은 에너지가 인가되지 않는 촉매 전극을 포함한다. 이는 전원에 의해 전력을 받지 않고 촉매 물질 및 주변 열만을 사용하여 촉매 반응을 증대시키는 촉매 전극이다. 본 발명에 따른 다양한 VPE 시스템에 있어서, 촉매 전극은 공정 챔버(201) 내의 어디든 위치될 수 있다. 이들 VPE 시스템 중 몇몇에 있어서, 촉매 전극은 압반(202)에 인접하여 위치된다. 압반(202)에 인접 위치되는 촉매 전극은 압반(202) 단독으로부터의 이차 가열을 통해 유효 촉매 활성에 도달할 수 있다.
열적으로 활성화된 제 1 전구체 가스 분자의 슬라브-형(slab-like) 흐름은 가스 주입기(206) 및 압반(202) 사이의 반응 챔버(201)의 유동 영역(224) 내에서 압반(202) 및 기판(204)을 향해 대체로 하류로 유동한다. 본 발명에 다른 많은 방법에 있어서, 하향 유동은 하향 유동 가스의 별개의 흐름 사이의 상당한 혼합을 초래하지 않는다. 유동 영역(224) 내에 층류 유동이 존재하도록 시스템(200)을 설계 및 작동시키는 것이 바람직한 경우도 있다. 압반(202)은 회전 구동부(106)와 함께 축선(104)을 중심으로 빠르게 회전되어 압반(202)의 표면 및 기판(204)의 표면이 빠르게 이동하도록 한다. 압반(202) 및 기판(204)의 신속한 이동은 가스를 축선(104)을 중심으로 하는 회전 이동에 혼입시킨다. 결과적으로, 공정 가스는 축선(104)으로부터 멀어지게 방사상으로 유동하여, 다양한 흐름 내의 공정 가스가 경계층 영역(126) 내에 개략적으로 표시되는 경계층 내에서 서로 혼합하도록 한다. 경계층 내의 혼합물의 활성화된 제 1 전구체 가스 분자 및 제 2 전구체 가스 분자는 기판(204)의 표면 위를 유동하여, VPE 막을 형성하도록 반응한다.
통상의 VPE 시스템에 있어서, 전구체 가스는 상대적으로 낮은 온도에서 공정 챔버(201) 내로 유입되며, 그에 따라, 낮은 가용 에너지를 갖는바, 이는 통상적으로, 기판(204)의 표면상의 반응물의 빠른 반응을 유도하는데 필요한 에너지 이하이다. VPE의 통상의 방법에 있어서, 입구로부터 경계층 영역(126)을 향해 하류를 통과함에 따라 복사 열전달에 의해 반응물이 어느 정도 가열될 수 있다. 그러나, 대부분의 가열 및 그에 따른 대부분의 반응물의 가용 에너지 증가는 경계층 영역(126) 내에서 발생한다. 이들 통상의 VPE 시스템에 있어서, 거의 모든 가열은 기판(204) 및 압반(202)의 온도에 따라 변화한다.
본 발명에 따른 VPE 시스템에 있어서, 기판, 압반, 및 챔버 벽으로부터의 열전달에 의해 가해지는 에너지가 아닌, 상당량의 에너지는 적어도 하나의 전구체 가스에 공급된다. 에너지가 인가되는 위치는 제어될 수 있다. 예를 들면, 유동 영역(124, 도 1) 및 경계층 영역(126) 사이의 천이부에 가까운 제 1 전구체 가스에 에너지를 인가함으로써, 제 1 전구체 가스의 주어진 부분이 높은 가용 에너지에 도달하는 순간 및 상기 부분이 기판 표면과 만나는 시기 사이의 시간은 최소화될 수 있다. 이러한 제어는 원치 않는 부반응을 최소화하도록 도울 수 있다. 예를 들면, 높은 가용 에너지를 갖는 암모니아는 NH2 및 NH와 같은 종으로 자연스럽게 분해할 수 있으며, 이들 종은, N2를 매우 빠르게 형성하는, 단원자 질소로 분해할 것이다. 질소는 금속 유기물과의 반응용으로는 본질적으로 얻을 수 없는 것이다. 암모니아가 경계층으로 들어가기 직전 또는 들어감에 따라 에너지를 암모니아에 인가함으로써, 기판 표면에서의 여기된 NH3와 금속 유기물과의 반응, 또는 NH2 또는 NH 종과 금속 유기물과의 반응과 같은, 표면에서 반도체를 증착하는 원하는 반응은 증대되는 반면, 원하지 않는 부반응은 억제될 수 있다.
그에 따라, 본 발명의 하나의 특징은, 본 발명에 따른 전극을 사용함으로써, 작업자가 기판(204)의 온도와 독립적인 적어도 하나의 전구체 가스의 가용 에너지를 제어하는 능력을 갖게 된다는 것이다. 그에 따라, 경계층 영역(126, 도 1)의 적어도 하나의 전구체 가스의 가용 에너지는 기판(204) 및 압반(202)의 온도를 증가시키지 않고도 증가할 수 있다. 반대로, 기판(204) 및 압반(202)은 가용 에너지의 수용 가능한 레벨을 유지하면서 더 낮은 온도에서 유지될 수 있다.
도 3은 본 발명에 따른 디스크-형 가스 주입기(300)의 일 실시예의 평면도로서, 사분면을 통해 방사상으로 연장하는 가스 주입기(300) 및 제 2 영역(304)의 사분면에 위치되는 제 1 영역(302)을 포함한다. 도 3에 도시된 평면도는 가스 주입기(300)의 전구체 가스 입구를 향해 상류를 도시한다. 디스크-형 가스 주입기(300)는 제 1 및 제 2 영역(302, 304)을 격리시키는 기계적 또는 화학적 배리어(305)를 포함한다. 본 명세서에서 설명되는 바와 같이, 기계적 또는 화학적 배리어(305)는 제 1 및 제 2 영역(302, 304)을 격리시키도록 불활성 가스를 주입하는 배플 및/또는 가스 커튼과 같은 물리적 구조일 수 있다.
도 3은 명료성을 위해 두 개의 사분면에서 전극(306, 308)을 도시한다. 본 발명에 따른 많은 VPE 시스템에 있어서, 전극(306, 308)은 제 1 영역(302)의 사분면 각각에 위치된다. 몇몇 실시예에 있어서, 각각의 전극(306, 308)은 절연지지 구조물에 떠 있어서 전극(306, 308)이 전기적으로 부유하고 전원(220, 도 2)에 쉽게 연결되도록 한다. 다양한 실시예에 있어서, 전극은 제 1 전구체 가스에 노출되는 전극(306, 308)의 표면적을 증가시키거나 최대화하는 코일형 전극 또는 기타 구조와 같은 선형 (직선) 전극 또는 비-선형 전극일 수 있다.
많은 시스템에 있어서, 동일 타입의 전극은 제 1 영역(302) 전체에 사용되지만, 몇몇 시스템에 있어서, 둘 또는 그 이상의 각기 다른 타입의 전극은 제 1 영역(302) 내의 각기 다른 위치에서 사용된다. 예를 들면, 제 2 영역(304) (제 1 영역(302)의 에지에서)에 인접한 이러한 타입의 전극은 제 1 영역(302)의 중간에서 이러한 타입의 전극과 다를 수 있다. 각기 다른 전극을 위치시키는 것을 보여주기 위해, 도 3은 제 1 전구체 가스 유동의 평면에 위치되는, 선형 또는 비-선형일 수 있는, 제 1 타입의 전극(306)을 도시한다. 또한, 도 3은 가스 주입기(300)의 평면에 위치되는 제 2 타입의 전극(308)을 도시한다. 도 3은 선형 패턴인 제 2 타입의 전극(308)을 도시한다. 그러나, 제 2 타입의 전극 또한 코일과 같은 비-선형 패턴으로 형성될 수 있다는 것을 이해하여야 할 것이다.
전극(306, 308)은 제 2 영역(304)으로부터 충분히 멀리 위치되어 제 2 전구체의 화학적 포텐셜이 전극(306, 308)의 근접성을 토대로 변화되지 않도록 한다. 다시 말하면, 전극(306, 308)은 제 2 전구체 가스와 본질적으로 상호 작용하지 않는다. 본 발명의 VPE 시스템의 하나의 특징은 제 1 및 제 2 전구체 가스가 기판(204, 도 2)으로부터 동일한 거리에서 주입될 수 있다는 것이다. 다시 말하면, 제 2 전구체 가스는 활성화를 피하도록 공정 챔버(201) 내의 제 1 전구체 가스 아래로 주입되어야 하는 것은 아니다. 공정 챔버(201)의 동일 레벨에서 제 1 및 제 2 전구체 가스를 주입하는 것은 이러한 주입이 수직 유동 VPE 공정 챔버 내의 큰 면적에 걸쳐 층류 유동을 달성할 수 있으므로 많은 VPE 공정에서 중요하다. 층류 유동은 이것이 균일성을 향상시키기 때문에 많은 VPE 공정에 있어서 바람직하다.
도 3의 가스 주입기(300)를 포함하는 VPE 시스템을 동작시키는 방법은 제 1 전구체 가스 분자가 전극(306, 308)과 접촉하도록 제 1 영역(302)의 사분면 내에 제 1 전구체 가스를 주입하는 단계를 포함한다. 전극(306, 308)은 전원(220, 도 2)에 전력을 인가하여 제 1 전구체 가스 분자를 열적으로 활성화하도록 한다. 예를 들면, 제 1 전구체 가스는 캐리어 가스와의 수소화물 전구체 가스 전구체 가스 혼합물일 수 있다. 제 2 전구체 가스는 전극(306, 308)에 인접한 제 2 영역(304) 내에 주입된다. 예를 들면, 제 2 전구체 가스는 질소와 같은 캐리어 가스와의 유기 금속 혼합물일 수 있다. 공정 조건은 제 2 전구체 가스가 전극에 의해 생성되는 열에 의해 열적으로 활성화되도록 전극(306, 308)에 충분히 가깝게 유동하지 못하도록 선택된다. 활성화된 제 1 전구체 가스 분자 및 제 2 전구체 가스 분자는 기판(204, 도 2)의 표면 위를 흘러서, VPE 막을 형성하도록 반응한다.
도 4A는 가스 주입기(400)를 교대로 가로지르는 복수의 제 1 및 제 2 영역(402, 404)을 포함하는, 본 발명에 따른 디스크-형 가스 주입기(400)의 일 실시예의 단면도를 도시한다. 도 4A에 도시된 평면도는 가스 주입기(400) 내의 전구체 가스 입구를 향해 상류에 제공됨을 보여준다. 복수의 제 1 영역(402)은 캐리어 가스로 수소화물 또는 할로겐화물 전구체 가스를 주입하기 위한 가스 입구를 포함한다. 복수의 제 2 영역(404)은 캐리어 가스로 유기 금속 가스를 주입하기 위한 가스 입구를 포함한다.
본 발명에 따른 많은 VPE 시스템에 있어서, 제 1 영역(402)의 면적은 제 2 영역(404)의 면적보다 크다. 작동 중의 제 1 및 제 2 전구체 가스 및 캐리어 가스의 유량은 제 1 및 제 2 영역(402, 404)의 특정 치수에 대해 조절되어 원하는 체적 및 농도의 전구체 가스가 처리되는 기판(204, 도 2)을 가로질러 유동하도록 한다.
가스 주입기(400)는 복수의 제 1 영역(402)에 위치되는 복수의 전극(406, 408)을 포함한다. 본 발명에 따른 많은 VPE 시스템에 있어서, 복수의 전극(406, 408)은 제 1 영역(402) 내에 위치되거나 제 2 전구체 가스 분자의 전극(406, 408)과의 활성화를 최소화할 수 있는 한 제 2 전구체 가스의 유동으로부터 멀게 위치된다. 도 4A는 두 가지 각기 다른 배향의 전극(406, 408)을 도시한다. 전극은 명료성을 위해 복수의 제 1 영역(402)의 몇 개의 섹션에만 도시된다. 본 발명에 따른 많은 VPE 시스템에 있어서, 전극(406, 408)은 복수의 제 1 영역(402) 각각에 위치된다. 몇몇 실시예에 있어서, 각각의 전극(406, 408)은 절연 지지 구조에 매달려 전극(406, 408)이 전기적으로 부유 되고 전원(220, 도 2)에 쉽게 연결되도록 한다. 다양한 실시예에 있어서, 전극(406, 408)은 제 1 전구체 가스에 노출되는 전극(406, 408)의 표면적을 증대 또는 최대화하는 코일형 전극 또는 기타 구조와 같은 선형 (직선) 전극 또는 비-선형 전극일 수 있다.
많은 시스템에 있어서, 동일 타입의 전극은 제 1 영역(402) 전체에서 사용되지만, 몇몇 시스템에 있어서, 둘 또는 그 이상의 타입의 전극은 제 1 영역(402)의 각기 다른 위치에 사용된다. 각기 다른 타입의 전극의 위치 설정을 도시하기 위해, 도 4A는 제 1 전구체 가스 유동의 평면에 위치되는 선형 또는 비-선형일 수 있는 제 1 타입의 전극(406)을 도시한다. 또한, 도 4A는 가스 주입기(400)의 평면에 위치되는 제 2 타입의 전극(408)을 도시한다. 도 4A는 또한 코일형일 수 있는 비-선형 전극인 제 2 타입의 전극(408)을 도시한다. 그러나, 제 2 타입의 전극(408)이 선형 전극일 수도 있다는 것을 이해하여야 할 것이다.
도 4B는 제 2 전구체 가스로부터 전극((406, 도 4A), 408)을 격리시키는 기계적 또는 화학적 배리어(405)를 도시하는 디스크-형 가스 주입기(400)의 확대도이다. 기계적 또는 화학적 배리어(405)는 제 1 영역(402) 내의 전극(406, 408)을 제 2 영역(404) 내를 유동하는 전구체 가스로부터 격리시킨다. 본 명세서에 설명되는 바와 같이, 배리어(405)는 배플과 같은 물리적 구조일 수 있다. 또한, 배리어(405)는 본 명세서에 설명되는 바와 같은 제 1 및 제 2 영역(402, 404) 사이에 불활성 가스를 주입하는 가스 커튼일 수 있다.
도 4A 및 4B의 가스 주입기(400)를 포함하는 VPE 시스템을 동작시키는 방법은 제 1 전구체 가스 분자가 전극(406, 408)과 접촉하도록 복수의 제 1 영역(402) 내에 제 1 전구체 가스를 주입하는 단계를 포함한다. 전극(406, 408)은 전원(220, 도 2)에 전원을 인가하여 제 1 전구체 가스 분자를 열적으로 활성화하도록 한다. 예를 들면, 제 1 전구체 가스는 그가 전극(406, 408)과 접촉하여 유동하는 경우 열적으로 활성화되는 수소화물 전구체 가스의 캐리어 가스와의 혼합물일 수 있다. 제 2 전구체 가스는 복수의 제 2 영역(404) 내로 주입된다. 예를 들면, 제 2 전구체 가스는 유기 금속의 캐리어 가스와의 혼합물일 수 있다. 공정 조건은 제 2 전구체 가스가 전극(406, 408)에 의해 생성되는 열에 의해 열적으로 활성화되도록 전극(406, 408)에 충분히 가깝게 흐르지 못하도록 한다. 활성화된 제 1 전구체 가스 분자 및 제 2 전구체 가스 분자는 기판(204, 도 2)의 표면 위를 유동하여, VPE 막을 형성하도록 반응한다.
도 5는 수평 유동 가스 주입기(502)를 포함하는 본 발명에 따른 VPE 시스템(500)의 상부 사시도를 도시한다. VPE 시스템(500)은 도 2를 참조하여 설명되는 VPE 시스템(200)과 유사하다. 그러나, VPE 시스템(500)은 압반(510, 즉, 공정 챔버 내로의 수평 유동)의 평면 내에 전구체 가스 및 불활성 가스를 주입하는 원형 가스 주입기(504, 506, 508)를 포함한다.
도 5에 도시된 실시예에 있어서, 제 1 원형 가스 주입기(504)는 제 1 전구체 가스 공급원(512)과 결합한다. 제 2 원형 가스 주입기(506)는 불활성 가스 공급원(514)과 결합한다. 제 3 원형 가스 주입기(508)는 제 2 전구체 가스 공급원(516)과 결합한다. 본 발명에 따른 몇몇 VPE 시스템에 있어서, 제 1 및 제 3 원형 가스 주입기(504, 508)는 또한 캐리어 가스 공급원과 결합한다. 제 1 원형 가스 주입기(504)는 제 1 전구체 가스를 제 1 수평 영역(518) 내에 주입한다. 제 3 원형 가스 주입기(508)는 제 2 전구체 가스를 제 2 수평 영역(520) 내에 주입한다.
원형 전극(522)은 제 1 수평 영역(518)에 위치되어 제 1 전구체 가스 분자가 원형 전극(522)과 접촉하거나 근접하여 유동하도록 한다. 물리적 또는 화학적 배리어는 제 1 및 제 2 수평 영역(518, 520) 사이에 위치되어 원형 전극(522)을 제 2 전구체 가스 분자의 유동으로부터 격리하도록 할 수 있다. 본 발명에 따른 몇몇 시스템에 있어서, 배플은 원형 전극(522) 위에 위치되어 이들이 압반(510) 위로 유동함에 따라 전극(522)에 의해 열적으로 거의 활성화되지 않도록 한다.
본 발명에 따른 몇몇 시스템에 있어서, 가스 커튼은 제 1 및 제 2 수평 영역(518, 520)을 분리시키도록 사용된다. 이들 시스템에 있어서, 제 2 원형 가스 주입기(506)는 불활성 가스를 제 1 및 제 2 수평 영역(518, 520) 사이에, 제 2 전구체 가스 분자가 원형 전극(522)에 의해 거의 활성화되지 않도록 하는 패턴으로, 주입한다.
도 5의 VPE 시스템(500)을 동작시키는 방법은 제 1 전구체 가스를 제 1 원형 가스 주입기(504)로 주입하는 단계 및 제 2 전구체 가스를 제 3 원형 가스 주입기(508)로 주입하는 단계를 포함한다. 불활성 가스는 제 1 및 제 2 수평 영역(518, 520) 사이에 제 2 원형 가스 주입기(506)로 주입되어 제 2 전구체 가스 분자가 원형 전극(522)에 의해 활성화되지 않도록 하는 화학적 배리어를 형성한다. 원형 전극(522)이 전원(220, 도 2)에 의해 전력이 인가되는 경우, 원형 전극(522)은 원형 전극(522)에 접촉하거나 근접하여 유동하는 제 1 원형 가스 주입기(504)에 의해 주입되는 제 1 전구체 가스 분자를 열적으로 활성화한다. 활성화된 제 1 전구체 가스 분자 및 제 2 전구체 가스 분자는 기판(524)의 표면 위를 유동하여, VPE 막을 형성하도록 반응한다.
도 6은 본 발명에 따른 VPE 시스템 내의 전구체 가스를 열적으로 활성화하기 위해 압반(602)의 표면에 인접 위치되는 포일-형 전극(600)을 도시한다. 전극(600)은 압반(602)의 표면 및 처리되는 기판(604)에 인접하여 위치된다. 도 6에 도시된 전극(600)은 기판(604)의 표면을 가로지르는 전구체 가스의 층류 또는 유사 층류 유동을 제공하도록 에어 포일로서 형성된다. 또한, 전극(600)이 촉매 물질로 형성되는 실시예에 있어서, 전극(600)은 촉매 반응을 위해 상대적으로 큰 표면적을 제공하도록 형성될 수 있다.
균등물
본 출원인의 지침이 다양한 실시예를 참조하여 설명되었지만, 본 출원인의 지침이 이러한 실시예에 제한되도록 의도되지는 않는다. 반대로, 본 출원인의 지침은 다양한 대안, 변형예 및 균등물을 포괄하며, 본 기술 분야에 통상의 지식을 가진 자에게는 명료한 바와 같이, 이들은 본 지침의 사상 및 범주를 이탈하지 않고도 실시될 수 있을 것이다.
100: 시스템
101: 챔버
102: 스핀들
106: 회전 구동
116: 가스 주입기
117, 216: 냉매
130: 배기
220: 전원
600: 전극

Claims (37)

  1. 기상 에피택시 시스템에 있어서:
    a. 기상 에피택시용 기판을 지지하는 압반;
    b. 제 1 전구체 가스 공급원과 결합하는 제 1 영역 및 제 2 전구체 가스 공급원과 결합하는 제 2 영역을 포함하는 가스 주입기로서, 상기 제 1 전구체 가스를 상기 제 1 영역내로 주입하고 상기 제 2 전구체 가스를 상기 제 2 영역 내로 주입하는 가스 주입기;
    c. 제 1 전구체 가스 분자가 상기 적어도 하나의 전극에 인접하여 유동하고 상기 제 2 전구체 가스의 유동으로부터 실질적으로 격리되게 위치되도록 상기 제 1 영역 내에 위치되는 적어도 하나의 전극; 및
    d. 상기 적어도 하나의 전극에 전기적으로 연결되는 출력부를 갖는 전원으로서, 상기 적어도 하나의 전극에 인접하여 흐르는 상기 제 1 전구체 가스 분자의 적어도 일부를 열적으로 활성화하도록 상기 적어도 하나의 전극을 가열하는 전류를 발생시키는 전원을 포함하는 기상 에피택시 시스템.
  2. 제 1 항에 있어서, 상기 가스 주입기는 상기 가스 주입기의 온도를 제어하도록 액체 냉각 채널을 포함하는 시스템.
  3. 제 1 항에 있어서, 상기 가스 주입기 내의 상기 제 1 및 제 2 영역은 상기 가스 주입기의 적어도 일부를 교대로 가로지르는 복수의 제 1 및 제 2 영역을 포함하는 시스템.
  4. 제 1 항에 있어서, 상기 제 1 및 제 2 전구체 가스 중 적어도 하나는 상기 기판을 지지하는 상기 압반에 직교하는 방향으로 상기 가스 주입기를 통해 유동하는 시스템.
  5. 제 1 항에 있어서, 상기 제 1 및 제 2 전구체 가스 중 적어도 하나는 상기 기판을 지지하는 상기 압반에 평행한 방향으로 상기 가스 주입기를 통해 유동하는 시스템.
  6. 제 1 항에 있어서, 상기 제 1 및 제 2 전구체 가스 중 하나는 상기 기판을 지지하는 상기 압반에 실질적으로 평행한 방향으로 상기 가스 주입기를 통해 유동하며, 상기 제 1 및 제 2 전구체 가스 중 나머지는 상기 기판을 지지하는 상기 압반에 실질적으로 직교하는 방향으로 상기 가스 주입기를 통해 유동하는 시스템.
  7. 제 1 항에 있어서, 상기 가스 주입기는 상기 제 1 및 제 2 전구체 가스를 상기 압반 위에서 층류 유동으로 유동시키는 시스템.
  8. 제 1 항에 있어서, 상기 가스 주입기는 상기 제 1 및 제 2 전구체 가스를 상기 압반 위에서 비-층류 유동으로 유동시키는 시스템.
  9. 제 1 항에 있어서, 상기 가스 주입기는 상기 제 1 및 제 2 영역을 물리적으로 분리시키는 배플을 더 포함하는 시스템.
  10. 제 9 항에 있어서, 상기 배플은 상기 기판을 지지하는 상기 압반을 가로지르는 상기 제 1 및 제 2 전구체 가스의 층류 유동을 보존하는 형태인 시스템.
  11. 제 9 항에 있어서, 상기 배플은 비-열 전도성 물질로 형성되는 시스템.
  12. 제 1 항에 있어서, 상기 적어도 하나의 전극은 촉매 물질로 형성되는 시스템.
  13. 제 12 항에 있어서, 상기 촉매 물질은 텅스텐, 레늄 및 몰리브덴 중 적어도 하나를 포함하는 시스템.
  14. 제 1 항에 있어서, 상기 압반에 인접하게 위치되는 촉매 전극을 더 포함하는 시스템.
  15. 제 1 항에 있어서, 상기 전극은 비-선형 구조로 형성되는 시스템.
  16. 제 1 항에 있어서, 상기 전극은 상기 가스 주입기의 평면에 배향되는 시스템.
  17. 제 1 항에 있어서, 상기 전극은 상기 가스 주입기에 직교하는 평면에 배향되는 시스템.
  18. 제 1 항에 있어서, 상기 전극은 상기 압반에 인접 위치되는 시스템.
  19. 기상 에피택시 방법에 있어서:
    a. 기판을 지지하는 압반에 인접한 제 1 영역 내에 기상 에피택시용 제 1 전구체 가스를 주입하는 단계;
    b. 기판을 지지하는 상기 압반에 인접한 제 2 영역 내에 기상 에피택시용 제 2 전구체 가스를 주입하는 단계;
    c. 상기 주입된 제 1 전구체 가스의 유동 내에 전극을 위치시키는 단계;
    d. 상기 주입된 제 2 전구체 가스의 유동으로부터 상기 전극을 격리시키는 단계; 및
    e. 상기 전극으로 상기 제 1 전구체 가스를 활성화시키는 단계를 포함하는 기상 에피택시 방법.
  20. 제 19 항에 있어서, 상기 제 1 전구체 가스를 활성화하는 단계는 제 1 전구체 가스 래디컬을 생성하는 방법.
  21. 제 19 항에 있어서, 상기 제 1 전구체 가스를 활성화하는 단계는 상기 전극에 전원을 인가하여 상기 제 1 전구체 가스를 열적으로 활성화시키는 단계를 포함하는 방법.
  22. 제 19 항에 있어서, 상기 제 1 전구체 가스를 활성화하는 단계는 상기 제 1 전구체 가스를 촉매 전극 물질로 촉매-활성화시키는 단계를 포함하는 방법.
  23. 제 19 항에 있어서, 상기 제 1 전구체 가스를 주입하는 단계는 수소화물 전구체 가스를 주입하는 단계를 포함하며 상기 제 2 전구체 가스를 주입하는 단계는 유기 금속 전구체 가스를 주입하는 단계를 포함하는 방법.
  24. 제 23 항에 있어서, 할로겐화물 전구체 가스를 주입하는 단계를 더 포함하는 방법.
  25. 제 19 항에 있어서, 상기 기상 에피택시용 제 1 전구체 가스를 주입하는 단계는 수소화물 전구체 가스를 주입하는 단계를 포함하며 상기 기상 에피택시용 제 2 전구체 가스를 주입하는 단계는 금속 할로겐화물 전구체 가스를 주입하는 단계를 포함하는 방법.
  26. 제 19 항에 있어서, 상기 기상 에피택시용 제 1 및 제 2 전구체 가스를 주입하는 단계는 기판을 지지하는 상기 압반에 평행하게 상기 제 1 및 제 2 전구체 가스를 주입하는 단계를 포함하는 방법.
  27. 제 19 항에 있어서, 상기 기상 에피택시용 제 1 및 제 2 전구체 가스를 주입하는 단계는 기판을 지지하는 상기 압반에 직교하게 상기 제 1 및 제 2 전구체 가스를 주입하는 단계를 포함하는 방법.
  28. 제 19 항에 있어서, 상기 기상 에피택시용 제 1 및 제 2 전구체 가스를 주입하는 단계는 기판을 지지하는 상기 압반에 직교하게 상기 제 1 및 제 2 전구체 가스 중 하나를 주입하는 단계 및 기판을 지지하는 상기 압반에 평행하게 상기 제 1 및 제 2 전구체 가스 중 나머지를 주입하는 단계를 포함하는 방법.
  29. 제 19 항에 있어서, 상기 제 1 및 제 2 전구체 가스를 주입하는 단계는 복수의 교호하는 제 1 및 제 2 영역에 상기 제 1 및 제 2 전구체 가스를 주입하는 단계를 포함하되, 상기 제 1 전구체 가스는 상기 복수의 교호하는 제 1 및 제 2 영역 중 상기 제 1 영역 내에 주입되며 제 2 전구체 가스는 상기 제 2 영역 내에 주입되는 방법.
  30. 제 19 항에 있어서, 상기 전극을 상기 주입된 제 2 전구체 가스의 유동으로부터 격리하는 단계는 상기 전극을 배플링하는 단계를 포함하는 방법.
  31. 제 30 항에 있어서, 상기 배플링 단계는 기판을 지지하는 상기 압반 위의 층류 유동을 보존하는 방법.
  32. 기상 에피택시 시스템에 있어서:
    a. 기판을 지지하는 압반에 인접하는 제 1 영역 내에 기상 에피택시용 제 1 전구체 가스를 주입하는 수단;
    b. 기판을 지지하는 상기 압반에 인접하는 제 2 영역 내에 기상 에피택시용 제 2 전구체 가스를 주입하는 수단;
    c. 상기 주입된 제 1 전구체 가스의 유동 내에 위치되는 전극;
    d. 상기 전극을 상기 주입된 제 2 전구체 가스로부터 격리하는 수단; 및
    e. 상기 제 1 전구체 가스를 상기 전극으로 활성화하는 수단을 포함하는 기상 에피택시 시스템.
  33. 제 32 항에 있어서, 상기 제 1 전구체 가스를 상기 전극으로 활성화하는 상기 수단은 상기 전극에 전원을 인가하는 것을 포함하는 시스템.
  34. 제 32 항에 있어서, 상기 제 1 전구체 가스를 상기 전극으로 활성화하는 상기 수단은 상기 전극으로 촉매 반응을 형성하는 것을 포함하는 시스템.
  35. 제 32 항에 있어서, 상기 전극을 상기 주입된 제 2 전구체 가스의 흐름으로부터 격리시키는 상기 수단은 상기 전극을 배플링하는 것을 포함하는 시스템.
  36. 기상 에피택시 방법에 있어서:
    a. 기판을 지지하는 압반에 인접하는 제 1 영역 내에 기상 에피택시용 H2 및 N2를 포함하는 제 1 전구체 가스를 주입하는 단계;
    b. 기판을 지지하는 상기 압반에 인접하는 제 2 영역 내에 기상 에피택시용 제 2 전구체 가스를 주입하는 단계;
    c. 상기 주입된 제 1 전구체 가스의 흐름 내에 촉매 전극을 위치시키는 단계;
    d. 상기 전극을 상기 주입된 제 2 전구체 가스로부터 격리시키는 단계; 및
    e. 상기 촉매 전극에 전원을 인가하여 상기 제 1 전구체 가스를 활성화시켜 NH2 및 NH 중 적어도 하나를 생성하는 단계를 포함하는 기상 에피택시 방법.
  37. 제 36 항에 있어서, 기판을 지지하는 상기 압반과 열 연통하는, 전원이 인가되지 않은, 제 2 촉매 전극을 위치시키는 단계를 더 포함하는 방법.
KR1020117010037A 2008-10-03 2009-10-01 기상 에피택시 시스템 KR20110079831A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19509308P 2008-10-03 2008-10-03
US61/195,093 2008-10-03

Publications (1)

Publication Number Publication Date
KR20110079831A true KR20110079831A (ko) 2011-07-08

Family

ID=41429649

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020117010037A KR20110079831A (ko) 2008-10-03 2009-10-01 기상 에피택시 시스템
KR1020117010163A KR20110074899A (ko) 2008-10-03 2009-10-02 화학 기상 증착을 위한 장치 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020117010163A KR20110074899A (ko) 2008-10-03 2009-10-02 화학 기상 증착을 위한 장치 및 방법

Country Status (8)

Country Link
US (4) US20100086703A1 (ko)
EP (2) EP2332167A4 (ko)
JP (2) JP2012504873A (ko)
KR (2) KR20110079831A (ko)
CN (2) CN102171795A (ko)
SG (1) SG194408A1 (ko)
TW (2) TWI429791B (ko)
WO (2) WO2010040011A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491498B1 (ko) * 2021-12-06 2023-01-27 한국세라믹기술원 HVPE 성장법을 이용하여 성장한 고품질 β-Ga2O3 박막 제조장치 및 제조방법

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500961A (ja) 2007-10-11 2011-01-06 バレンス プロセス イクウィップメント,インコーポレイテッド 化学気相成長反応器
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20110073039A1 (en) * 2009-09-28 2011-03-31 Ron Colvin Semiconductor deposition system and method
EP2543063B1 (en) * 2010-03-03 2019-05-08 Veeco Instruments Inc. Wafer carrier with sloped edge
TWI390074B (zh) * 2010-04-29 2013-03-21 Chi Mei Lighting Tech Corp 有機金屬化學氣相沉積機台
US10138551B2 (en) 2010-07-29 2018-11-27 GES Associates LLC Substrate processing apparatuses and systems
TW201222636A (en) * 2010-07-30 2012-06-01 Lawrence Advanced Semiconductor Technologies Llc Systems, apparatuses, and methods for chemically processing substrates using the Coanda effect
DE102011002146B4 (de) 2011-04-18 2023-03-09 Aixtron Se Vorrichtung und Verfahren zum Abscheiden von Halbleiterschichten mit HCI-Zugabe zur Unterdrückung parasitären Wachstums
DE102011002145B4 (de) 2011-04-18 2023-02-09 Aixtron Se Vorrichtung und Verfahren zum großflächigen Abscheiden von Halbleiterschichten mit gasgetrennter HCI-Einspeisung
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
CN103361633B (zh) * 2012-04-01 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 一种进气装置、反应腔室以及等离子体加工设备
SG11201407907XA (en) * 2012-07-13 2015-01-29 Gallium Entpr Pty Ltd Apparatus and method for film formation
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
TWI502096B (zh) * 2013-06-17 2015-10-01 Ind Tech Res Inst 用於化學氣相沉積的反應裝置及反應製程
US9435031B2 (en) 2014-01-07 2016-09-06 International Business Machines Corporation Microwave plasma and ultraviolet assisted deposition apparatus and method for material deposition using the same
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US20150361582A1 (en) * 2014-06-17 2015-12-17 Veeco Instruments, Inc. Gas Flow Flange For A Rotating Disk Reactor For Chemical Vapor Deposition
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
CN106282969B (zh) * 2015-06-02 2019-02-15 中微半导体设备(上海)有限公司 化学气相沉积装置及其沉积方法
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10865477B2 (en) * 2016-02-08 2020-12-15 Illinois Tool Works Inc. Method and system for the localized deposit of metal on a surface
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
JP6665726B2 (ja) * 2016-08-01 2020-03-13 東京エレクトロン株式会社 成膜装置
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10357920B2 (en) * 2017-01-17 2019-07-23 Obsidian Advanced Manufacturing, Llc Gas phase integrated multimaterial printhead for additive manufacturing
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (zh) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 沈積方法
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
WO2019158960A1 (en) 2018-02-14 2019-08-22 Asm Ip Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TWI811348B (zh) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
TWI816783B (zh) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
CN112292477A (zh) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构
JP2021529254A (ja) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
JP2020136677A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
TW202113936A (zh) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
JP2021097227A (ja) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化バナジウム層および窒化バナジウム層を含む構造体を形成する方法
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
CN113555279A (zh) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 形成含氮化钒的层的方法及包含其的结构
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202147383A (zh) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 基材處理設備
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR20210145080A (ko) 2020-05-22 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
CN111678885A (zh) * 2020-05-29 2020-09-18 清华大学 化学反应观测系统及方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
KR20220076343A (ko) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231715A (ja) 1985-04-08 1986-10-16 Hitachi Ltd 光プロセス装置
US4868014A (en) * 1986-01-14 1989-09-19 Canon Kabushiki Kaisha Method for forming thin film multi-layer structure member
US4838014A (en) * 1986-03-31 1989-06-13 Ford New Holland, Inc. Disc cutter rotor assembly
JPH0744154B2 (ja) 1987-12-16 1995-05-15 株式会社豊田中央研究所 光照射型低温mocvd方法および装置
US5261959A (en) * 1988-05-26 1993-11-16 General Electric Company Diamond crystal growth apparatus
JPH0355827A (ja) 1989-07-25 1991-03-11 Matsushita Electric Ind Co Ltd 光励起エピタキシャル成長装置
DE3935865C1 (ko) * 1989-10-27 1990-10-04 Philips Patentverwaltung Gmbh, 2000 Hamburg, De
JP2822536B2 (ja) 1990-02-14 1998-11-11 住友電気工業株式会社 立方晶窒化ホウ素薄膜の形成方法
US5079038A (en) * 1990-10-05 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Hot filament CVD of boron nitride films
US5633192A (en) * 1991-03-18 1997-05-27 Boston University Method for epitaxially growing gallium nitride layers
US5856695A (en) * 1991-10-30 1999-01-05 Harris Corporation BiCMOS devices
EP0592227A3 (en) * 1992-10-07 1995-01-11 Sharp Kk Manufacture of a thin film transistor and production of a liquid crystal display device.
JPH086181B2 (ja) * 1992-11-30 1996-01-24 日本電気株式会社 化学気相成長法および化学気相成長装置
US5433977A (en) * 1993-05-21 1995-07-18 Trustees Of Boston University Enhanced adherence of diamond coatings by combustion flame CVD
KR100321325B1 (ko) * 1993-09-17 2002-06-20 가나이 쓰도무 플라즈마생성방법및장치와그것을사용한플라즈마처리방법및장치
JP3468859B2 (ja) * 1994-08-16 2003-11-17 富士通株式会社 気相処理装置及び気相処理方法
CA2205817C (en) * 1996-05-24 2004-04-06 Sekisui Chemical Co., Ltd. Treatment method in glow-discharge plasma and apparatus thereof
JP3737221B2 (ja) * 1996-09-06 2006-01-18 英樹 松村 薄膜作成方法及び薄膜作成装置
JPH10172473A (ja) * 1996-12-12 1998-06-26 Toshiba Corp 偏向ヨーク装置
US5820922A (en) * 1996-12-17 1998-10-13 Sandia Corporation Method for localized deposition of noble metal catalysts with control of morphology
US6066204A (en) * 1997-01-08 2000-05-23 Bandwidth Semiconductor, Llc High pressure MOCVD reactor system
JPH10226599A (ja) 1997-02-12 1998-08-25 Sharp Corp 気相成長装置
ATE350510T1 (de) * 1997-06-13 2007-01-15 Oerlikon Trading Ag Verfahren und anlage zur herstellung beschichteter werkstücke
US6161499A (en) * 1997-07-07 2000-12-19 Cvd Diamond Corporation Apparatus and method for nucleation and deposition of diamond using hot-filament DC plasma
US20030049372A1 (en) * 1997-08-11 2003-03-13 Cook Robert C. High rate deposition at low pressures in a small batch reactor
US6194036B1 (en) * 1997-10-20 2001-02-27 The Regents Of The University Of California Deposition of coatings using an atmospheric pressure plasma jet
JP4556329B2 (ja) * 1999-04-20 2010-10-06 ソニー株式会社 薄膜形成装置
KR100712241B1 (ko) 1999-05-13 2007-04-27 이엠에프 아일랜드 리미티드 기판상에 재료를 에피택셜성장시키는 방법 및 장치
WO2000070117A1 (en) * 1999-05-14 2000-11-23 The Regents Of The University Of California Low-temperature compatible wide-pressure-range plasma flow device
US7091605B2 (en) * 2001-09-21 2006-08-15 Eastman Kodak Company Highly moisture-sensitive electronic device element and method for fabrication
US6582780B1 (en) * 1999-08-30 2003-06-24 Si Diamond Technology, Inc. Substrate support for use in a hot filament chemical vapor deposition chamber
US6745717B2 (en) * 2000-06-22 2004-06-08 Arizona Board Of Regents Method and apparatus for preparing nitride semiconductor surfaces
KR100735932B1 (ko) * 2001-02-09 2007-07-06 동경 엘렉트론 주식회사 성막 장치
KR100402389B1 (ko) * 2001-03-23 2003-10-17 삼성전자주식회사 금속 게이트 형성 방법
KR100425449B1 (ko) * 2001-05-18 2004-03-30 삼성전자주식회사 포토 화학기상증착법을 이용한 다층막 형성방법과 그 장치
US6638839B2 (en) * 2001-07-26 2003-10-28 The University Of Toledo Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
US6677250B2 (en) * 2001-08-17 2004-01-13 Micron Technology, Inc. CVD apparatuses and methods of forming a layer over a semiconductor substrate
AUPS240402A0 (en) * 2002-05-17 2002-06-13 Macquarie Research Limited Gallium nitride
JP3759071B2 (ja) * 2002-05-29 2006-03-22 京セラ株式会社 Cat−PECVD法
JP2004103745A (ja) * 2002-09-06 2004-04-02 Japan Science & Technology Corp ホットワイヤcvd法による窒化物半導体膜のエピタキシャル成長方法
JP3809410B2 (ja) 2002-09-19 2006-08-16 独立行政法人科学技術振興機構 光化学気相堆積装置及び方法
JP2004165445A (ja) * 2002-11-13 2004-06-10 Furukawa Co Ltd 半導体製造装置
US7170027B2 (en) * 2003-04-16 2007-01-30 Toyo Seikan Kaisha Ltd. Microwave plasma processing method
JP2005089781A (ja) * 2003-09-12 2005-04-07 Mitsui Eng & Shipbuild Co Ltd 薄膜形成装置
US7311947B2 (en) * 2003-10-10 2007-12-25 Micron Technology, Inc. Laser assisted material deposition
KR100513920B1 (ko) * 2003-10-31 2005-09-08 주식회사 시스넥스 화학기상증착 반응기
JP4493379B2 (ja) 2003-11-26 2010-06-30 京セラ株式会社 発熱体cvd装置
GB2415707A (en) * 2004-06-30 2006-01-04 Arima Optoelectronic Vertical hydride vapour phase epitaxy deposition using a homogenising diaphragm
EP1809788A4 (en) 2004-09-27 2008-05-21 Gallium Entpr Pty Ltd METHOD AND APPARATUS FOR GROWING GROUP (III) METAL NITRIDE FILM AND GROUP (III) METAL FILM
DE102004052044A1 (de) * 2004-10-26 2006-04-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Glühlampe mit einem Leuchtkörper, der eine hochtemperaturbeständige Metallverbindung enthält
JP2006173242A (ja) * 2004-12-14 2006-06-29 Sharp Corp 触媒接触型ラジカル生成装置および半導体装置ならびに液晶表示装置
US20060156983A1 (en) * 2005-01-19 2006-07-20 Surfx Technologies Llc Low temperature, atmospheric pressure plasma generation and applications
CA2597623C (en) 2005-02-28 2015-07-14 Epispeed S.A. System and process for high-density,low-energy plasma enhanced vapor phase epitaxy
JP2006251025A (ja) * 2005-03-08 2006-09-21 Canon Inc 加熱装置
US7396415B2 (en) * 2005-06-02 2008-07-08 Asm America, Inc. Apparatus and methods for isolating chemical vapor reactions at a substrate surface
EP1916704A4 (en) 2005-08-05 2011-06-08 Sekisui Chemical Co Ltd METHOD FOR FORMING GROUP III NITRIDE FILMS SUCH AS GALLIUM NITRIDE
US7842355B2 (en) 2005-11-01 2010-11-30 Applied Materials, Inc. System and method for modulation of power and power related functions of PECVD discharge sources to achieve new film properties
US20070256635A1 (en) * 2006-05-02 2007-11-08 Applied Materials, Inc. A Delaware Corporation UV activation of NH3 for III-N deposition
WO2008016836A2 (en) * 2006-07-29 2008-02-07 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
WO2008023523A1 (fr) 2006-08-22 2008-02-28 National Institute Of Advanced Industrial Science And Technology Procédé de formation de film mince par traitement par microplasma et appareil associé
JP2008124060A (ja) 2006-11-08 2008-05-29 Showa Denko Kk Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
US20080185039A1 (en) 2007-02-02 2008-08-07 Hing Wah Chan Conductor fabrication for optical element
US20080241377A1 (en) * 2007-03-29 2008-10-02 Tokyo Electron Limited Vapor deposition system and method of operating
US7976631B2 (en) * 2007-10-16 2011-07-12 Applied Materials, Inc. Multi-gas straight channel showerhead
GB0805837D0 (en) 2008-03-31 2008-06-04 Qinetiq Ltd Chemical Vapour Deposition Process
US20100006023A1 (en) * 2008-07-11 2010-01-14 Palo Alto Research Center Incorporated Method For Preparing Films And Devices Under High Nitrogen Chemical Potential
WO2011106624A1 (en) 2010-02-26 2011-09-01 Alliance For Sustainable Energy, Llc Hot wire chemical vapor deposition (hwcvd) with carbide filaments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491498B1 (ko) * 2021-12-06 2023-01-27 한국세라믹기술원 HVPE 성장법을 이용하여 성장한 고품질 β-Ga2O3 박막 제조장치 및 제조방법

Also Published As

Publication number Publication date
CN102239277A (zh) 2011-11-09
TWI429791B (zh) 2014-03-11
CN102171795A (zh) 2011-08-31
WO2010039252A1 (en) 2010-04-08
JP5587325B2 (ja) 2014-09-10
WO2010040011A2 (en) 2010-04-08
TW201022488A (en) 2010-06-16
EP2347028A1 (en) 2011-07-27
EP2332167A4 (en) 2012-06-20
US8815709B2 (en) 2014-08-26
CN102239277B (zh) 2013-10-23
US20140318453A1 (en) 2014-10-30
JP2012504866A (ja) 2012-02-23
WO2010040011A3 (en) 2010-07-01
EP2332167A2 (en) 2011-06-15
US20100087050A1 (en) 2010-04-08
SG194408A1 (en) 2013-11-29
TWI411700B (zh) 2013-10-11
KR20110074899A (ko) 2011-07-04
TW201026887A (en) 2010-07-16
JP2012504873A (ja) 2012-02-23
US20100086703A1 (en) 2010-04-08
US20110174213A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
KR20110079831A (ko) 기상 에피택시 시스템
KR101094913B1 (ko) Iii-v 족 반도체 물질을 형성하기 위한 제조 공정 시스템
KR101379410B1 (ko) 3-5족 반도체 재료들의 대량생산을 위한 설비
JP6117169B2 (ja) 三塩化ガリウムの噴射方式
US8133322B2 (en) Apparatus for inverted multi-wafer MOCVD fabrication
US20100310766A1 (en) Roll-to-Roll Chemical Vapor Deposition System
WO2009055244A1 (en) Showerhead design with precursor source
US20100310769A1 (en) Continuous Feed Chemical Vapor Deposition System
KR20210132225A (ko) 그래핀 트랜지스터 및 디바이스를 제조하는 방법
KR20200127989A (ko) Mocvd를 사용하여 그래핀으로 코팅된 발광 디바이스를 제조하는 방법
JP2006225676A (ja) 気相成長装置

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application