KR102568116B1 - 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR - Google Patents

회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR Download PDF

Info

Publication number
KR102568116B1
KR102568116B1 KR1020227026144A KR20227026144A KR102568116B1 KR 102568116 B1 KR102568116 B1 KR 102568116B1 KR 1020227026144 A KR1020227026144 A KR 1020227026144A KR 20227026144 A KR20227026144 A KR 20227026144A KR 102568116 B1 KR102568116 B1 KR 102568116B1
Authority
KR
South Korea
Prior art keywords
light
light pulses
mirror
view
field
Prior art date
Application number
KR1020227026144A
Other languages
English (en)
Other versions
KR20220108217A (ko
Inventor
준웨이 바오
이민 리
루이 장
Original Assignee
이노뷰전, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이노뷰전, 인크. filed Critical 이노뷰전, 인크.
Publication of KR20220108217A publication Critical patent/KR20220108217A/ko
Application granted granted Critical
Publication of KR102568116B1 publication Critical patent/KR102568116B1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • G02B26/126Details of the optical system between the polygonal mirror and the image plane including curved mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

본 개시는 동축 LiDAR 스캐닝을 위한 시스템 및 방법을 기술한다. 시스템은 제1 광 펄스들을 제공하도록 구성된 제1 광원을 포함한다. 시스템은 또한 제1 광원에 광학적으로 결합된 하나 이상의 빔 조향 장치를 포함한다. 각각의 빔 조향 장치는 회전가능한 오목 반사체, 및 회전가능한 오목 반사체 내에 적어도 부분적으로 배치된 광 빔 조향 디바이스를 포함한다. 광 빔 조향 디바이스와 회전가능한 오목 반사체의 조합은, 서로에 대해 이동할 때, 시야 내의 물체를 조명하기 위해 하나 이상의 제1 광 펄스를 수직 및 수평 둘 모두로 조향하고, 시야 내의 물체를 조명하는 조향된 제1 광 펄스들에 기초하여 발생되는 하나 이상의 제1 복귀 광 펄스를 획득하고, 하나 이상의 제1 복귀 광 펄스를 방향 전환시킨다.

Description

회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR{2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES}
관련 출원의 상호 참조
본 출원은 2016년 12월 31일자로 출원된, 발명의 명칭이 "LiDAR를 위한 동축 인터레이싱된 래스터 스캐닝 시스템(COAXIAL INTERLACED RASTER SCANNING SYSTEM FOR LiDAR)"인 미국 가특허 출원 제62/441,280호; 및 2017년 7월 7일자로 출원된, 발명의 명칭이 "회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR(2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES)"인 미국 가특허 출원 제62/529,955호에 대한 우선권을 주장하는, 2017년 9월 29일자로 출원된, 발명의 명칭이 "회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR"인 미국 정규 특허 출원 제15/721,127호에 대한 우선권을 주장한다. 모든 출원들의 내용은 이에 의해 모든 목적을 위해 전체적으로 참고로 포함된다.
기술분야
본 개시는 일반적으로 광 검출 및 거리 측정(light detection and ranging, LiDAR)에 관한 것이며, 더 구체적으로는, 시야 내의 물체들을 조명하기 위해 연속적인 광 펄스들을 스캐닝하고 시야 내의 물체들을 거리 측정하기 위해 각각의 광 펄스로부터 산란된 광을 동축으로 수집하기 위한 시스템에 관한 것이다.
LiDAR 시스템의 크기를 감소시키기 위해, 시야 내의 물체들을 조명하는 광의 펄스들을 조향하는 온칩 마이크로-전자-기계 시스템(on-chip micro-electro-mechanical system, MEMS)을 구현하려는 노력이 있다. 그러한 온칩 솔루션들은 LiDAR 시스템의 크기를 감소시킨다. 그러나, 이들 온칩 MEMS 설계는 전형적으로 수(5 미만) 밀리미터 이하인 광학 개구 단면을 산출하며, 이는 더 먼 거리(예를 들어, 100 미터)에 있는 물체들에 의해 반사되는 광의 펄스를 배경 잡음 신호들과 구별하는 것을 어렵게 만든다. 더 큰 광학 개구 단면이 광에 대한 신호 대 잡음비를 증가시킨다는 것이 밝혀졌다. 그러나, 전형적인 LiDAR 시스템은 그것의 시스템 구성들로 인해 부피가 크고 비쌀 수 있다. 이들 시스템은 차량과 쉽게 통합되지 않을 수 있고/있거나 차량과 통합되는 데 엄청나게 비용이 많이 들 수 있다. 그러므로, 치수와 비용이 감소된 고정밀 LiDAR 시스템이 요망된다. 고정밀 LiDAR 시스템에 대한 난제들 중 일부는 단면 수집 광학 개구를 증가시키면서 LiDAR 시스템의 크기를 감소시키는 것이다.
하기는 본 개시의 기본적인 이해를 제공하기 위해 하나 이상의 예의 단순화된 요약을 제공한다. 이 요약은 모든 고려되는 예의 광범위한 개관은 아니며, 모든 예의 핵심적인 또는 중대한 요소를 식별하거나 임의의 또는 모든 예의 범위를 기술하도록 의도되지 않는다. 그것의 목적은 아래에 제공되는 더 상세한 설명에 대한 서문으로서 하나 이상의 예의 몇몇 개념을 단순화된 형태로 제공하는 것이다.
몇몇 실시예에 따르면, 광 검출 및 거리 측정(LiDAR) 스캐닝 시스템이 제공된다. 시스템은 하나 이상의 제1 광 펄스를 제공하도록 구성된 제1 광원을 포함한다. 시스템은 또한 제1 광원에 광학적으로 결합된 하나 이상의 빔 조향 장치를 포함한다. 각각의 빔 조향 장치는 회전가능한 오목 반사체 및 광 빔 조향 디바이스를 포함하며, 이들은 회전가능한 오목 반사체 또는 광 빔 조향 디바이스에 의해 지향되는 광 펄스들이 광 빔 조향 디바이스 또는 회전가능한 오목 반사체에 의해 상이한 방향으로 추가로 지향될 수 있게 하는 위치에 배치된다. 광 빔 조향 디바이스와 회전가능한 오목 반사체의 조합은, 서로에 대해 이동할 때, 시야 내의 물체를 조명하기 위해 하나 이상의 제1 광 펄스를 수직 및 수평 둘 모두로 조향하고, 시야 내의 물체를 조명하는 조향된 제1 광 펄스들에 기초하여 발생되는 하나 이상의 제1 복귀 광 펄스를 획득하고, 하나 이상의 제1 복귀 광 펄스를 하나 이상의 복귀 광 검출기로 방향 전환시킨다.
다양한 설명된 태양들에 대한 더 나은 이해를 위해, 다음의 도면들과 함께, 아래의 설명을 참조하여야 하며, 도면들 전반에 걸쳐 동일한 도면 부호들은 대응하는 부분들을 지시한다.
도 1a는 차량에 부착된 복수의 동축 LiDAR 시스템을 예시한다.
도 1b는 오목 반사체 내에 위치된 다면체를 갖는 예시적인 빔 조향 장치를 예시한다.
도 1c는 오목 반사체를 대체하는 진동 거울을 갖는 예시적인 빔 조향 장치를 예시한다.
도 2a는 양안 LiDAR 시스템을 예시한다.
도 2b는 수렴 렌즈를 갖는 동축 LiDAR 시스템을 예시한다.
도 2c는 수렴 거울을 갖는 동축 LiDAR 시스템을 예시한다.
도 3은 이중 동축 LiDAR 시스템을 예시한다.
도 4a는 전송된 광을 양의 x-축과 양의 z-축 사이의 방향으로 지향시키고 그 방향으로부터 산란된 광을 수집하는 예시적인 빔 조향 장치를 예시한다.
도 4b는 전송된 광을 음의 x-축과 양의 z-축 사이의 방향으로 지향시키고 그 방향으로부터 산란된 광을 수집하는 예시적인 빔 조향 장치를 예시한다.
도 5는 전송된 광을 시야의 양의 수평 범위의 에지 쪽으로 더 향하는 방향으로 지향시키고 그 방향으로부터 산란된 광을 수집하는 예시적인 빔 조향 장치를 예시한다.
도 6a 및 도 6b는 이중 동축 LiDAR 시스템에 대한 수평 및 수직 방향에 걸친 각도 분포에 대한 인터레이싱된 프레임 다이어그램들을 예시한다.
도 7은 이중 동축 LiDAR 시스템에 대한 수평 및 수직 방향들에 걸친 y=0에서의 x-z 평면을 따른 수집 개구의 폭들에 대응하는 히트 맵(heat map)을 예시한다.
도 8은 LiDAR 스캐닝 검출을 위한 예시적인 프로세스를 예시한다.
도 9a 내지 도 9d는 본 개시의 예들에 따른, 빔 조향 장치의 다른 실시예의 상이한 도면들을 예시한다.
도 10a 및 도 10b는 본 개시의 예들에 따른, 시준된 조명 레이저 빔을 발생시키기 위한 다양한 예시적인 구성들을 예시한다.
도 11은 본 개시의 예들에 따른, 수신 개구를 증가시키고 상이한 면(facet)들로부터의 복귀 광 펄스들을 수집하기 위한 빔 조향 장치의 예시적인 구성들을 예시한다.
도 12a 내지 도 12c는 본 개시의 예들에 따른, 수신 광학 시스템들의 예시적인 구성들을 예시한다.
도 13a 및 도 13b는 본 개시의 예들에 따른, 광학 감응 디바이스를 사용한 광 수집을 위한 예시적인 검출기 요소들을 예시한다.
도 14a 및 도 14b는 본 개시의 예들에 따른, 자유-공간 광학계 또는 파이버 번들 및/또는 전력 결합기의 조합을 사용하여 상이한 면들로부터의 광 펄스들을 결합하기 위한 예시적인 구성들을 예시한다.
도 15a 내지 도 15e는 본 개시의 예들에 따른, 만곡된 표면들 및 평탄한 표면들을 갖는 예시적인 다면체들의 다수의 면의 다양한 구성들을 예시한다.
도 16은 본 개시의 예들에 따른, 광 펄스의 비행 시간(time-of-flight)을 결정하기 위한 LiDAR 시스템의 예시적인 구성을 예시한다.
도 17은 본 개시의 예들에 따른, 기준 펄스 및 수신된 복귀 광 펄스를 예시한다.
도 18은 본 개시의 예들에 따른, 진동 거울을 갖는 빔 조향 장치의 다른 실시예를 예시한다.
도 19는 본 개시의 예들에 따른, 하나 이상의 레이저 펄스의 비행 시간을 결정하는 방법에 대한 예시적인 흐름도를 예시한다.
첨부된 도면들과 관련하여 아래에 기술되는 상세한 설명은 다양한 구성들의 설명으로서 의도되며, 본 명세서에 설명된 개념들이 실시될 수 있는 유일한 구성들을 나타내도록 의도되지 않는다. 상세한 설명은 다양한 개념들에 대한 철저한 이해를 제공할 목적으로 특정 세부 사항들을 포함한다. 그러나, 이들 개념은 이들 특정 세부 사항들 없이도 실시될 수 있음이 당업자들에게 명백할 것이다. 몇몇 경우에는, 그러한 개념을 모호하게 하는 것을 피하기 위해 잘 알려진 구조들 및 컴포넌트들은 블록 다이어그램 형식으로 도시된다.
이제 장치 및 방법들의 다양한 요소들과 관련하여 LiDAR 스캐닝 시스템들의 예들이 제시될 것이다. 이들 장치 및 방법들은 다음의 상세한 설명에서 설명되고, 다양한 블록들, 컴포넌트들, 회로들, 단계들, 프로세스들, 알고리즘들 등(집합적으로 "요소들"로 지칭됨)에 의해 첨부 도면에 예시될 것이다. 이들 요소는 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이들의 임의의 조합을 사용하여 구현될 수 있다. 그러한 요소들이 하드웨어로서 구현되는지 또는 소프트웨어로서 구현되는지는 전체 시스템에 부과된 설계 제약 사항들 및 특정 응용에 좌우된다.
본 개시는 회전가능한 오목 반사체와 광 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR 시스템을 설명한다. LiDAR 시스템은 중심 축 주위로 정렬되는 오목 반사체 내에 위치된 다면체 반사체를 갖는 빔 조향 장치를 포함한다. 오목 반사체는 중심 축을 중심으로 회전하도록 구성된다. 다면체는 중심 축에 대해 소정 각도(예를 들어, 90도)의 방향으로 피벗(pivot)을 중심으로 회전하도록 구성된다. 오목 반사체 및 다면체의 각자의 순간 위치들은 물체들에서 산란된 광의 펄스들로부터 산란된 광을 수집하면서, 시야 내의 물체들을 조명하기 위해 광의 펄스들을 조향한다. 각각의 전송된 광의 펄스는 대응하는 광의 펄스로부터의 수집된 산란된 광과 실질적으로 동축이거나 평행하다. LiDAR 시스템은 각각의 전송된 광의 펄스와 물체들에서 산란된 대응하는 광의 펄스로부터의 수집된 광 사이의 시간 차이들에 기초하여 물체들까지의 거리를 계산하는 마이크로컨트롤러를 포함한다. 본 개시는 더 높은 해상도 프레임을 달성하기 위해 서브-프레임들을 인터레이싱하는 것을 추가로 설명한다. 이 기술은 하나 이상의 서브-프레임을 형성하기 위해 연이은 수평 및 수직 방향들에 걸쳐 하나 이상의 물체에 대한 범위 포인트들을 샘플링하는 것을 포함한다. 연속적으로 캡처된 서브-프레임들에 대한 샘플 포인트들의 수직 및/또는 수평 위치들은 약간 오프셋되며, 이는, 결합될 때, 인터레이싱된 더 높은 밀도의 샘플링된 포인트들을 제공한다. 더 높은 밀도의 샘플링된 포인트들은 LiDAR 시스템에 대한 더 높은 해상도를 산출한다.
본 개시의 예들은 차량에의 통합에 대해 설명되지만, 다른 응용들이 고려된다. 예를 들어, 중앙 집중식 레이저 전달 시스템과 다수의 LiDAR 시스템이 로봇들에 배치되거나 로봇들과 통합되거나, 보안 모니터링 목적으로 건물의 다수의 위치에 설치되거나, 교통 모니터링을 위해 도로의 소정 위치 또는 교통 교차로에 설치될 수 있다.
도 1a는 차량(150)에 부착된 복수의 LiDAR 스캐닝 시스템(300A 내지 300F)을 예시한다. LiDAR 스캐닝 시스템들(300A 내지 300F)은 2D 스캐닝 LiDAR 시스템들일 수 있다. 각각의 LiDAR 스캐닝 시스템들(300A 내지 300F)은 차량(150)이 있는 그리고 그 주위의 위치들에 대응하는, 시야 내의 물체들을 검출하고 그것들까지의 범위를 계산한다. 예로서, 차량(150)의 전방에 배치된 LiDAR 스캐닝 시스템들(300A)은 각각의 각자의 광 펄스와 실질적으로 동축으로 또는 그것에 실질적으로 평행하게 수집된 광의 펄스들로 인접 차량(150')(및/또는 다른 물체들)을 조명한다. 인접 차량(150')까지의 범위(예를 들어, 거리)는 각각의 광 펄스가 전송되고 대응하는 광의 펄스로부터의 산란된 광이 검출되는 시간의 차이로부터 결정된다.
도 1a에 도시된 예에서와 같이, 복수의 LiDAR 스캐닝 시스템(300A 내지 300F)은 개개의 동축 LiDAR 시스템 각각 사이의 시야를 커버하도록 차량(150) 주위에 분포된다. 예를 들어, 시야는 LiDAR 스캐닝 시스템(300F)이 차량(150)의 일 측의 중심 선(154)을 검출할 수 있고 LiDAR 스캐닝 시스템(300C)이 차량(150)의 다른 측의 차선 구분 선(152)을 검출할 수 있도록 구성될 수 있다. 몇몇 경우에, 복수의 LiDAR 스캐닝 시스템(300A 내지 300F) 중 하나 이상에 대한 시야가 중첩될 수 있다. 예를 들어, LiDAR 스캐닝 시스템(300B)의 시야가 LiDAR 스캐닝 시스템(300A)의 시야와 중첩될 수 있다. 시야의 중첩은 더 높은 샘플링 밀도를 제공할 수 있다. 마찬가지로, LiDAR 스캐닝 시스템들(300A)의 시야가 LiDAR 스캐닝 시스템(300F)의 시야와 중첩될 수 있다. LiDAR 스캐닝 시스템들(300A 내지 300F) 각각은 물체들을 스캐닝하기 위해 시야로 전송하는 것에 수직으로뿐만 아니라 수평으로 광 펄스들을 조향할 수 있는 빔 조향 장치를 포함할 수 있다. 광 펄스들의 조향은 시야 내의 하나 이상의 물체로부터 포인트들의 연속적인 샘플링을 가능하게 한다.
도 1a에 도시된 LiDAR 스캐닝 시스템들(300A 내지 300F)의 크기들은 비교적 작을 수 있다는 점을 인식해야 한다. 즉, 각각의 각자의 LiDAR 스캐닝 시스템(예를 들어, 시스템들(300A 내지 300F))은, 예를 들어, 1 입방 피트 또는 1 입방 피트의 1/4 이하의 공간을 차지할 수 있다.
도 1b는 오목 반사체(112) 내에 배치된 광 빔 조향 디바이스(예를 들어, 다면체(102))를 갖는 예시적인 빔 조향 장치(100)를 예시한다. 도 1b에 도시된 바와 같이, 몇몇 실시예에서, 오목 반사체(112)는 제1 축(106)과 동축으로 정렬된다(예를 들어, 실질적으로 동심). 오목 반사체(112)는 개구(118)를 둘러싸는 오목 측에 하나 이상의 반사 표면(예를 들어, 평탄한 표면의 거울)을 포함할 수 있다. 오목 반사체(112)의 개구(118)는 제1 축(106)과 동축으로 정렬된다(예를 들어, 실질적으로 동심). 도 1b에 도시된 예에서, 거울들은 오목 반사체(112)의 육각 형상의 볼(hex-shaped bowl)을 형성하도록 안쪽을 향하여 기울어져 있다. 도 1b에 도시된 예에서, 오목 반사체(112)의 육각형 개구(118)는 (예를 들어, 육각형) 개구(118)의 서로 반대편에 있는 측면들을 가로질러 1 인치의 폭을 가질 수 있고, 오목 반사체(112)의 반사 표면들(예를 들어, 거울들)은 육각형 개구(118)로부터 45° 기울어질 수 있으며 (기울어진 거울들을 따른) 2.45 인치의 길이를 갖는다. 몇몇 실시예에서, 오목 반사체(112)의 반사 표면들(예를 들어, 거울들)은 0.2 인치 내지 4 인치의 범위이다. 몇몇 실시예에서, 오목 반사체(112)의 반사 표면들은 만곡될 수 있다. 몇몇 예에서, 만곡된 표면들은 바깥쪽으로 돌출하고(예를 들어, 볼록), 이는 빔 조향 장치(100)의 시야를 증가시키는 데 이용될 수 있다. 몇몇 예에서, 만곡된 표면들은 안쪽으로 돌출한다(예를 들어, 오목).
도 1b에 도시된 바와 같이, 다면체(102)는 오목 반사체(112) 내에 배치될 수 있다. 다면체(102)는 제1 축(106)에 수직인 제2 축(104)과 동축으로 정렬된(예를 들어, 실질적으로 동심) 피벗(120)을 포함한다. 다면체(102)는 오목 반사체(112)의 개구(118)와 오목 반사체(112)의 적어도 하나의 반사 표면(예를 들어, 거울) 사이의 광을 방향 전환시키기 위해 다면체(102)의 면에 배치된 적어도 하나의 반사 표면(예컨대, 거울)을 추가로 포함한다. 예를 들어, 개구(118)를 통해 다면체(102)의 반사 표면을 향해 전송된 광 펄스들은 오목 반사체(112)의 반사 표면을 향해 방향 전환되거나 조향될 수 있으며, 이는 시야로 추가로 방향 전환되거나 조향될 수 있다. 도 1b에 도시된 예에서, 다면체(102)는 6개의 면을 갖는 입방체이다. 몇몇 예에서, 피벗(120)을 갖는 2개의 서로 반대편에 있는 면은 반사 표면들(예를 들어, 거울들)을 갖지 않고 나머지 4개의 면은 바깥쪽으로 지향된 반사 표면들(예를 들어, 거울들)을 갖는다. 도 1b에 도시된 예에서, 입방체는 약 1.22 인치의 에지 길이를 갖는다.
다면체(102)는 모두 직교는 아닌 6개의 면을 가질 수 있다는 점을 인식해야 한다. 예를 들어, 몇몇 실시예에서, 다면체(102)는 비대칭인 면들을 가질 수 있으며, 이는 서브-프레임들 사이에서 수직 및 수평 스캐닝 방향을 오프셋하고/하거나 인터레이싱 래스터 패턴을 변화시킬 수 있다. 몇몇 예에서, 다면체(102)는 능면체(rhombohedron)이다. 다면체(102)는 6개 미만의 면을 가질 수 있다는 점도 인식해야 한다. 예를 들어, 몇몇 실시예에서, 다면체(102)는 오면체이다. 그러한 실시예에서, 다면체(102)는 2개의 서로 반대편에 있는 삼각형 면에 위치된 피벗 및 직사각형 면들에 위치된 하나 이상의 반사 표면(예를 들어, 거울)을 갖는 삼각형 프리즘일 수 있다. 다면체(102)는 6개 초과의 면을 가질 수 있다는 점도 인식해야 한다. 예를 들어, 다면체(102)는 육면체, 칠면체, 팔면체 등일 수 있다. 몇몇 실시예에서, 다면체(102)의 면들은 만곡된다. 몇몇 예에서, 만곡된 면들은 바깥쪽으로 돌출하고(예를 들어, 볼록), 이는 빔 조향 장치(100)의 시야를 증가시키는 데 이용될 수 있다. 몇몇 예에서, 만곡된 면들은 안쪽으로 돌출하고(예를 들어, 오목), 이는 시야를 감소시키고 출사하는 레이저 빔의 프로파일을 형상화할 수 있다.
몇몇 실시예에서, 빔 조향 장치(100)는 오목 반사체(112) 및 다면체(102)에 작동 가능하게 결합되는 하나 이상의 모터(도시되지 않음)를 포함한다. 이 예에서, 하나 이상의 모터는, 도 1b에 도시된 바와 같이, 오목 반사체(112)를 제1 회전 속도(116)로 제1 축(106)을 중심으로 반시계 방향(-z 방향에서 볼 때)으로 회전시키도록 구성될 수 있다. 하나 이상의 모터는 또한 다면체(102)를 제2 회전 속도(114)로 반시계 방향(+y 방향에서 볼 때)으로 제2 축(104) 주위에 있는 피벗(120)을 중심으로 회전시키도록 구성될 수 있다. 몇몇 실시예에서, 회전 제어기가 오목 반사체(112)의 제1 회전 속도(116) 및 다면체(102)의 제2 회전 속도(114)를 제어하도록 구성된다. 몇몇 경우에, 회전 제어기는 하나 이상의 모터에 전기적으로 결합되어 오목 반사체(112)의 제1 회전 속도(116) 및 다면체(102)의 제2 회전 속도(114)를 독립적으로 제어한다. 몇몇 실시예에서, 오목 반사체(112)의 제1 회전 속도(116)는 다면체(102)의 제2 회전 속도(114)와는 상이하다. 예를 들어, 다면체(102)의 제2 회전 속도(114)는 오목 반사체(112)의 제1 회전 속도(116)보다 빠를 수 있다. 도 1b에 도시된 예에서, 다면체(102)의 제2 회전 속도(114)는 500 rps(revolutions per second)로 설정될 수 있는 반면, 오목 반사체(112)의 제1 회전 속도(116)는 10 rps로 설정될 수 있다. 몇몇 실시예에서, 다면체(102)의 제2 회전 속도(114)는 오목 반사체(112)의 제1 회전 속도(116)보다 느릴 수 있다.
몇몇 실시예에서, 빔 조향 장치(100)에 의해 인에이블되는 스캔 내의 각각의 샘플링된 포인트에 대해, 회전 오목 반사체(112)에 대한 회전 다면체(102)의 순간 위치들은 빔 조향 장치(100)가 물체로 광 펄스들을 지향시키거나 조향하고 실질적으로 유사한 광학 경로를 따라 물체로부터의 복귀 광 펄스들을 수집할 수 있게 한다. 도 1b를 참조하면, 회전 다면체(102)의 순간 위치들은 양의 z-축에 대해 측정될 수 있다. 다면체(102)의 각도는 y-축을 따라 볼 때 반시계 방향으로부터 측정될 때 양(positive)이다. 회전 오목 반사체(112)의 순간 위치들은 음의 y-축에 대해 측정될 수 있다. 오목 반사체(112)의 각도는 z-축을 따라 볼 때 시계 방향으로부터 측정될 때 양이다.
오목 반사체(112)를 회전시키는 것 및/또는 다면체(102)를 회전시키는 것과 동일한 효과를 제공하는 다른 메커니즘들이 적용될 수 있다는 점을 인식해야 한다. 예를 들어, 도 1c에 도시된 바와 같이, 오목 반사체(112)는 축(129)을 따라 진동하는 진동 거울(112A)로 대체될 수 있다. 그렇기 때문에, 진동 거울(112A)과 결합된 다면체(102)의 회전은 시야 내의 물체들을 조명하기 위해 연속적인 광 펄스들을 스캐닝하고 시야 내의 물체들을 거리 측정하기 위해 조명 광 펄스들에 평행하게 또는 동축으로 각각의 광 펄스로부터의 복귀 광을 수집하기 위한 유사한 조향 메커니즘을 제공할 수 있다. 다른 예에서, 다면체(102)는 다면체가 축을 따라 앞뒤로 진동하게 하는 액추에이터(actuator)에 의해 구동될 수 있다. 몇몇 예에서, 도 1c에 예시된 바와 같이, 진동 거울(112A)은 제1 축을 중심으로 진동할 수 있고 다면체(102)는 진동 거울(112A)에 인접하게 배치될 수 있다. 다면체(102)는 제2 축과 동축으로 정렬된 피벗을 포함할 수 있다. 제2 축은 제1 축에 대해 소정 각도(예를 들어, 90도 또는 75도)로 배치될 수 있다. 적어도 하나의 거울이 개구와 오목 반사체(112) 사이의 광 펄스들을 반사하기 위해 다면체(102)의 면에 배치될 수 있다. 하나 이상의 모터 또는 액추에이터가 진동 거울(112A) 및 다면체(102)에 작동 가능하게 결합될 수 있다. 하나 이상의 모터 또는 액추에이터는 제1 주파수로 제1 축을 중심으로 진동 거울(112A)을 회전시키거나(128A로서 예시됨) 진동시키거나(128B로서 예시됨), 제2 주파수로 제2 축을 중심으로 회전가능한 다면체를 회전시키거나(125A로서 예시됨) 진동시키도록(125B로서 예시됨) 구성될 수 있다.
도 1b에 도시된 예에서, 광원으로부터 획득된 광 펄스들(307A)은 개구(118)를 통해 다면체(102)를 향해 지향되며, 이 다면체는 광 펄스들(307A)을 방향 전환시키거나 반사함으로써 방향 전환된 광 펄스들(307B)을 발생시킨다. 광 펄스들(307B)은 오목 반사체(112) 상의 거울을 향해 지향된다. 오목 반사체(112)는 이어서 조향된 광 펄스들(307B)을 방향 전환시키거나 반사함으로써 조향된 광 펄스들(312A)을 발생시킨다. 조향된 광 펄스들(312A)은 시야 내의 물체들을 조명하기 위해 시야를 향해 지향된다. 조향된 광 펄스들(312A)은 물체들을 조명하며, 이 물체들은 하나 이상의 방향으로 광의 펄스들을 산란시킨다. 산란된 광의 펄스들 중 일부는 제1 복귀 광 펄스들(207A)로서 빔 조향 장치(100)로 복귀한다. 도 1b에 예시된 바와 같이, 몇몇 예에서, 제1 복귀 광 펄스들(207A)은 조향된 광 펄스들(312A)과 실질적으로 유사한 광학 경로를 따라 (동축으로) 빔 조향 장치(100)로 복귀할 수 있다. 제1 복귀 광 펄스들(207A) 각각은 오목 반사체(112)에 의해 방향 전환되거나 반사되어 방향 전환된 복귀 광 펄스들(209)을 발생시킬 수 있다. 방향 전환된 복귀 광 펄스들(209)은 다면체(102)를 향해 지향되고, 이 다면체는 이어서 광 펄스들을 방향 전환 및 반사하여 방향 전환된 복귀 광 펄스들(214A)을 발생시킨다. 방향 전환된 복귀 광 펄스들(214A)은 다시 개구(118)를 통해 광 검출기로 지향된다.
도 2a는 양안 LiDAR 시스템(200)을 예시한다. 몇몇 예에서, 양안 LiDAR 시스템(200)은 광원으로부터 발생된 광 펄스들을 제1 개구(210A)를 통해 조명 광학 경로(210C)를 따라 시야 내의 물체들로 전송한다. 전송된 광 펄스들은 물체들에 도달하고 하나 이상의 방향으로 산란 및 분산된다. 산란된 광의 펄스들 중 일부는 검출 광학 경로(210D)를 따라 제2 개구(210B)를 통해 광 검출기로 복귀한다. 양안 LiDAR 시스템(200)의 기하학적 구조는 도 2a에 도시된 예시적인 조명 광학 경로(210C)와 검출 광학 경로(210D) 사이의 중첩 영역에 의해 결정되는 검출 범위를 결정한다. 그렇기 때문에, 양안 LiDAR 시스템(200)의 광학 경로를 따른 소정 영역들 내의 산란된 광의 펄스들은 제2 개구(210B)를 통해 복귀하지 않을 수 있다. 몇몇 실시예에서, 조명 광학 경로(210C)와 검출 광학 경로(210D)는 실질적으로 평행하다(예를 들어, 작은 각도로). 그 결과, 검출 범위가 넓을 수 있다. 예를 들어, 도 2a에 도시된 바와 같이, 검출 범위는 우측에 경계를 갖지 않을 수 있다. 양안 LiDAR 시스템의 이점은 조명 광학계와 검출 광학계가 LiDAR 스캐닝 시스템 내에서 물리적으로 분리되어, 조명 광학계에서의 광 산란에 의한 검출 모듈에서의 광 간섭을 피하는 것이 더 쉽다는 점이다.
도 2b는 수렴 렌즈(224)를 갖는 동축 LiDAR 스캐닝 시스템(250)을 예시한다. 몇몇 실시예에서, 동축 LiDAR 스캐닝 시스템(250)은 광원(220), 반사 거울(222), 수렴 렌즈(224), 개구를 갖는 마스크(226), 광 검출기(230) 및 빔 조향 장치(100)를 포함한다. 도 2b에 도시된 바와 같이, 광원(220)으로부터 발생된 입사 광 펄스들(212A)은 반사 거울(222)로 지향되고, 이 반사 거울은 입사 광 펄스들(212A)을 방향 전환시키거나 반사하여 방향 전환된 광 펄스들(212B)을 발생시킨다. 방향 전환된 광 펄스들(212B)은 광학 축(211)을 따라 빔 조향 장치(100)로 지향된다. 빔 조향 장치(100)는 이어서 전술된 것과 유사하게 방향 전환된 광 펄스들(212B)을 조향하여 FOV 내의 물체들을 조명하기 위한 조향된 광 펄스들(212C)을 발생시킬 수 있으며, 여기서 도 2b에서의 212C의 방향은 조향된 방향이 212B의 방향에 평행한 시점을 예시할 뿐이다. 다른 시점들에서, 212C의 방향은 FOV 내의 다른 방향들일 수 있다. 도 2b에 도시된 예에서, 반사 거울(222)은 방향 전환된 광 펄스들(212B) 및 방향 전환된 복귀 광 펄스들(214) 둘 모두의 광학 경로를 따르는 광학 축(211)에 배치된 거의 100% 반사 거울이다. 반사 거울(222)은 방향 전환된 복귀 광 펄스들(214)을 방해하거나 간섭하지 않도록 충분히 작아야 한다는 점을 인식해야 한다.
도 2b의 예에서, 빔 조향 장치(100)는 도 1b로부터의 동축 빔 조향 장치(100)일 수 있다. 몇몇 예에서, 빔 조향 장치(100)는 시야 내의 하나 이상의 물체로 지향된 2개의 실질적으로 평행한 광의 펄스를 구현하는 이중 동축 장치일 수 있다. 빔 조향 장치(100)는 조향된 광 펄스들(212C)과 실질적으로 동일한 광학 경로를 따라 복귀 광 펄스들(212D)을 수집하면서, 조향된 광 펄스들(212C)을 발생시키기 위해 방향 전환된 광 펄스들(212B)을 수직 및 수평 방향들로 조향하도록 구성될 수 있다. 빔 조향 장치(100)는 복귀 광 펄스들(212D)을 방향 전환시켜 212B의 반대 방향으로 방향 전환된 복귀 광 펄스들(214)을 발생시킨다. 그렇기 때문에, 방향 전환된 복귀 광 펄스들(214)에 대한 복귀 광 펄스들(212D)의 광학 경로는 조향된 광 펄스들(212C)에 대한 방향 전환된 광 펄스들(212B)의 조명 광학 경로와 중첩되며, 이에 따라 유효 검출 범위를 증가시킨다.
도 2b를 참조하면, 동축 LiDAR 스캐닝 시스템(250)의 수렴 렌즈(224)는 광학 축(211)을 따라 방향 전환된 복귀 광 펄스들(214)을 수집하고 방향 전환된 복귀 광 펄스들(214)을 마스크(226)의 개구를 통해 광 검출기(230)로 지향시키도록 구성된다. 수렴 렌즈(224)는 고굴절률 유리, 플라스틱 등과 같은 임의의 투명 재료로부터 제조될 수 있다. 도 2b에 도시된 바와 같이, 수렴 렌즈(224)는 광학 축(211)과 실질적으로 동심일 수 있다. 몇몇 실시예에서, 수렴 렌즈(224)는 그것이 광학 축(210)과 비-동심이 되도록 배치된다는 점을 인식해야 한다.
도 2b에 도시된 바와 같이, 몇몇 예에서, 광 검출기(230)는 광학 축(211)과 실질적으로 동심으로 배치된다. 광 검출기(230)는 포토다이오드, 애벌란시 포토다이오드(avalanche photodiode) 등일 수 있다. 몇몇 실시예에서, 도 2b에 도시된 광 검출기(230)의 확대된 다이어그램에 예시된 바와 같이, 광 검출기(230)는 광 입사 표면(232)의 반대측을 향하는 반사 표면(231)(예를 들어, 반사 거울)을 포함할 수 있다. 반사 표면(231)은 광을 다시 광 검출기(230)의 흡수 영역으로 방향 전환(예를 들어, 반사)시키고, 이에 의해 검출 효율 및 감도를 증가시킬 수 있다. 몇몇 실시예에서, 마스크(226)는 광 검출기(230)의 부분일 수 있다. 일반적으로, 마스크(226)는, 광학 축(211)에 실질적으로 평행한 광 펄스들만이 광 검출기(230)에 도달할 수 있도록, 광학 경로(예를 들어, 광학 축(211)을 따른 광학 경로)에 대해 비스듬하게 기울어진 광 검출기(230) 부근의 방향 전환된 복귀 광 펄스들(214)을 필터링한다.
도 2b에 도시된 예에서, 광원(220)은 레이저 광원일 수 있다. 몇몇 예에서, 광원(220)에 의해 발생된 레이저 광은 가시 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 적외선 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 자외선 스펙트럼 내의 파장을 가질 수 있다.
도 2c는 수렴 거울(221)을 갖는 동축 LiDAR 스캐닝 시스템(250')을 예시한다. 몇몇 실시예에서, 동축 LiDAR 스캐닝 시스템(250')은 광원(220), 수렴 거울(221), 개구를 갖는 마스크(226), 광 검출기(230), 및 빔 조향 장치(100)를 포함한다. 도 2c에 도시된 바와 같이, 광원(220)으로부터 발생된 입사 광 펄스들(212A)은 수렴 거울(221)의 개구를 통해 광학 축(211)을 따라 빔 조향 장치(100)로 지향된다. 빔 조향 장치(100)는 입사 광 펄스들(212A)을 조향(예를 들어, 방향 전환 및 반사)하여 조향된 광 펄스들(212C)을 발생시켜 물체를 조명한다. 물체는 조향된 광 펄스들(212C)을 산란시킬 수 있다. 산란된 광의 펄스들 중 일부는 복귀 광 펄스들(212D)로서 빔 조향 장치(100)로 복귀한다. 복귀 광 펄스들(212D)은 조향된 광 펄스들(212C)의 경로와 실질적으로 유사한 또는 그것에 평행한 경로를 따라 지향된다. 빔 조향 장치(100)는 이어서 복귀 광 펄스들(212D)을 지향시켜 광학 축(211)과 동축으로 수렴 거울(221)을 향하는 방향에 있는 방향 전환된 복귀 광 펄스들(214)을 발생시키고, 수렴 거울은 방향 전환된 복귀 광 펄스들(214)을 마스크(226)의 개구를 통해 광 검출기(230)를 향해 방향 전환(예를 들어, 반사)시킨다.
몇몇 실시예에서, 설명된 바와 같이, 동축 LiDAR 스캐닝 시스템(250)의 수렴 거울(221)는 광학 축(211)을 따라 방향 전환된 복귀 광 펄스들(214)을 수집하고 방향 전환된 복귀 광 펄스들(214)을 마스크(226)의 개구를 통해 광 검출기(230)로 방향 전환시키도록 구성된다. 도 2c에 도시된 예에서, 수렴 거울(221)은 조향된 광 펄스들(212C) 및 방향 전환된 복귀 광 펄스들(214) 둘 모두의 광학 경로를 따르는 광학 축(211)에 또는 그 부근에 배치된 거의 100% 반사 거울일 수 있다. 수렴 거울(221)은 방향 전환된 복귀 광 펄스들(214)이 광 검출기(230) 상에 포커싱하게 한다. 몇몇 실시예에서, 수렴 거울(221)은 광학 축(211)과 비-동심이 되도록 배치될 수 있다는 점을 인식해야 한다. 수렴 거울(221)은 반사 거울 마무리 층을 갖는 임의의 기판(예를 들어, 유리, 플라스틱, 금속 등)으로부터 제조될 수 있다. 몇몇 예에서, 반사 층을 공기로부터 밀폐식으로 격리시키기 위해 반사 거울 마무리 층에 산화-방지 층이 적용된다. 이는 산소 및 다른 부식제들(예를 들어, 부식성 기체들 또는 부식성 액체들)이 수렴 거울(221)의 표면의 반사 부분들을 손상시키는 것을 방지한다.
도 2c에 도시된 예에서, 빔 조향 장치(100)는 도 1b의 동축 빔 조향 장치(100)일 수 있다. 몇몇 실시예에서, 빔 조향 장치(100)는 시야 내의 하나 이상의 물체로 지향된 2개의 실질적으로 평행한 광의 펄스를 구현하는 이중 동축 장치일 수 있다. 빔 조향 장치(100)는 조향된 광 펄스들(212C)과 실질적으로 동일한 광학 경로를 따라 복귀 광 펄스들(212D)을 수집하면서, 조향된 광 펄스들(212C)을 발생시키기 위해 입사 광 펄스들(212A)을 수직 및 수평 방향들로 지향시키도록 구성될 수 있다. 예를 들어, 도 2c에 도시된 바와 같이, 복귀 광 펄스들(212D)의 광학 경로는 조향된 광 펄스들(212C)의 광학 경로의 적어도 부분과 실질적으로 평행할 수 있다. 그렇기 때문에, 212D의 복귀 광 펄스들의 광학 경로는 조향된 광 펄스들(212C)의 광학 경로와 중첩된다.
도 2c에 도시된 바와 같이, 몇몇 실시예에서, 광 검출기(230)는 반사된 광학 축(211')과 실질적으로 동심으로 배치된다. 몇몇 실시예에서, 반사된 광학 축(211')은 수렴 거울(221)(예를 들어, 수렴 거울(221)의 개구의 중심)로부터 수렴 거울(221)의 초점을 통해 연장된다. 반사된 광학 축(211')은 방향 전환된 복귀 광 펄스들(214) 및 조향된 광 펄스들(212C)의 광학 경로와 실질적으로 평행한 광학 축(211)과 소정 각도를 형성할 수 있다. 광 검출기(230)는 포토다이오드, 애벌란시 포토다이오드 등일 수 있다. 몇몇 실시예에서, 도 2b에 예시된 것과 유사하게, 광 검출기(230)는 광 입사 표면의 반대측을 향하는 반사 표면(예를 들어, 반사 거울)을 포함할 수 있다. 반사 표면은 광을 다시 광 검출기(230)의 흡수 영역으로 방향 전환(예를 들어, 반사)시키고, 이에 의해 검출 효율 및 감도를 증가시킬 수 있다. 몇몇 실시예에서, 마스크(226)는 광 검출기(230)의 부분일 수 있다.
도 2c에 도시된 예에서, 광원(220)은 레이저 광원일 수 있다. 몇몇 예에서, 광원(220)에 의해 발생된 레이저 광은 가시 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 적외선 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 자외선 스펙트럼 내의 파장을 가질 수 있다.
도 3은 이중 동축 LiDAR 스캐닝 시스템(300)을 예시한다. 도 3에 도시된 바와 같이, 이중 동축 LiDAR 스캐닝 시스템(300)은 광원(220), 반사 거울(222), 부분 반사 거울(322), 제1 수렴 렌즈(224A), 제2 수렴 렌즈(224B), 개구를 갖는 제1 마스크(226A), 개구를 갖는 제2 마스크(226B), 제1 광 검출기(230A), 제2 광 검출기(230B), 및 이중 빔 조향 장치(100')를 포함할 수 있다. 도 3에 도시된 바와 같이, 광원(220)으로부터 발생된 입사 광 펄스들(212A)은 부분 반사 거울(322)로 지향되고, 부분 반사 거울은 입사 광 펄스들(212A)의 제1 부분을 반사하여 방향 전환된 광 펄스들(212B)을 발생시킨다. 방향 전환된 광 펄스들(212B)에 기초하여, 다면체(102)는 방향 전환된 광 펄스들(212C)을 발생시키고, 이 방향 전환된 광 펄스들은 이어서 오목 반사체(112)에 의해 방향 전환되어 조향된 광 펄스들(312A)을 발생시킨다. 조향된 광 펄스들(312A)은 빔 조향 장치(100')의 개구(118)를 통해 FOV 내의 물체들로 지향될 수 있다. 도 3에 도시된 예에서, 부분 반사 거울(322)은 제1 광학 축(311A)을 따라 배치된 50% 반사 거울이다. 부분 반사 거울(322)은 제1 광학 축(311A)을 따라, 예를 들어, 입사 광의 50%를 반사하도록 구성될 수 있다. 몇몇 실시예에서, 부분 반사 거울(322)은 제1 광학 축(311A)을 따라 입사 광의 50% 초과를 반사하도록 구성될 수 있다. 몇몇 실시예에서, 부분 반사 거울(322)은 제1 광학 축(311A)을 따라 입사 광의 50% 미만을 반사하도록 구성될 수 있다. 부분 반사 거울(322)은 제1 복귀 광 펄스들(207A)의 상당한 부분을 차단하지 않도록 충분히 작아야 한다는 점을 인식해야 한다.
도 3에 도시된 바와 같이, 입사 광 펄스들(212A)의 다른 부분은 부분 반사 거울(322)을 통과하고 입사 광 펄스들(212A)의 제2 부분이 된다. 입사 광 펄스들(212A)의 제2 부분은 반사 거울(222)로 방향 전환될 수 있고, 이 반사 거울은 입사 광 펄스들(212A)의 제2 부분을 방향 전환시켜 방향 전환된 광 펄스들(213B)을 발생시킨다. 방향 전환된 광 펄스들(213B)에 기초하여, 다면체(102)는 방향 전환된 광 펄스들(213C)을 발생시키고, 이 방향 전환된 광 펄스들은 이어서 오목 반사체(112)에 의해 방향 전환되어 조향된 광 펄스들(312B)을 발생시킨다. 조향된 광 펄스들(312B)은 빔 조향 장치(100)의 개구(118)를 통해 제2 광학 축(311B)을 따라 지향될 수 있다. 도 3에 도시된 예에서, 반사 거울(222)은 제2 광학 축(311B)에 배치된 거의 100% 반사 거울일 수 있다. 반사 거울(222)은 복귀 광 펄스들(207B)의 상당한 부분을 차단하지 않도록 충분히 작아야 한다는 점을 인식해야 한다. 도 3은 입사 광 펄스들(212A)의 2개의 부분이 광원(220)으로부터 발생되는 것을 예시하지만, 2개의 별개의 독립적인 광원이 입사 광 펄스들(212A)의 2개의 부분을 개별적으로 발생시키는 데 사용될 수 있다는 점이 또한 인식된다.
도 3에 예시된 이중 빔 조향 장치(100')는 도 1b에 도시된 동축 빔 조향 장치(100)일 수 있다. 이 예에서의 차이점은, 빔 조향 장치(100')는 시야 내의 하나 이상의 물체를 조명하기 위해 광 펄스들의 2개의 빔(예를 들어, 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B))을 지향시키도록 구성된다는 점이다. 예를 들어, 빔 조향 장치(100')는 제1 복귀 광 펄스들(207A) 및 제2 복귀 광 펄스들(207B)을 수집하면서, 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B)을 수직 및 수평 방향들로 지향시키도록 구성될 수 있다. 제1 복귀 광 펄스들(207A) 및 제2 복귀 광 펄스들(207B)은 각각 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B)의 광학 경로들과 실질적으로 동일하거나 그것과 평행한 광학 경로들을 가질 수 있다. 그렇기 때문에, 제1 복귀 광 펄스들(207A) 및 제2 복귀 광 펄스들(207B)의 광학 경로들은 각각 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B)의 광학 경로들과 중첩된다. 몇몇 실시예에서, 이중 동축 LiDAR 스캐닝 시스템(300)은 또한 광원(220)의 전력을 동적으로 제어하도록 구성된 전력 제어기(도시되지 않음)를 포함할 수 있다. 광원(220)의 전력의 제어는 복귀 광 펄스들(207A 및 207B)과 연관된 개구의 단면적에 기초할 수 있다. 광원(220)의 전력의 제어는 시야 내의 개구 변화를 보상할 수 있다.
도 3에 도시된 예에서, 이중 빔 조향 장치(100')는 일반적으로 x-z 평면 상에서 비대칭일 수 있다. 그렇기 때문에, 제1 조향된 광 펄스들(312A)을 발생시키기 위한 광학 컴포넌트들의 기하학적 구조는 임의의 시점에서 제2 조향된 광 펄스들(312B)을 발생시키기 위한 것에 비대칭일 수 있다. 유사하게, 제1 복귀 광 펄스들(207A)을 지향시키기 위한 광학 컴포넌트들의 기하학적 구조는 임의의 시점에서 제2 복귀 광 펄스들(207B)을 지향시키기 위한 것에 비대칭일 수 있다. 그 결과, 제1 조향된 광 펄스들(312A)의 광학 경로는 제2 조향된 광 펄스들(312B)과는 상이한 범위 및 패턴으로 스캐닝할 수 있다.
도 3을 참조하면, 전술된 것들과 유사하게, 제1 복귀 광 펄스들(207A) 및 제2 복귀 광 펄스들(207B)은 이중 빔 조향 장치(100')에 의해 개구(118)를 통해 제1 수렴 렌즈(224A) 및 제2 수렴 렌즈(224B)를 향해 지향될 수 있다. 전술된 것들과 유사하게, 제1 및 제2 복귀 광 펄스들(207A 및 207B)은 다면체(102) 및 오목 반사체(112)에 의해 방향 전환되어 각각 제1 및 제2 방향 전환된 복귀 광 펄스들(214A 및 214B)을 발생시킬 수 있다. 몇몇 실시예에서, 동축 LiDAR 스캐닝 시스템(300)의 제1 수렴 렌즈(224A)는 제1 광학 축(311A)을 따라 제1 방향 전환된 복귀 광 펄스들(214A)을 수집하고 제1 방향 전환된 복귀 광 펄스들(214A)을 제1 마스크(226A)의 개구를 통해 제1 광 검출기(230A)로 지향시키도록 구성된다. 마찬가지로, 동축 LiDAR 스캐닝 시스템(300)의 제2 수렴 렌즈(224B)는 제2 광학 축(311B)을 따라 제2 방향 전환된 복귀 광 펄스들(214B)을 수집하고 제2 방향 전환된 복귀 광 펄스들(214B)을 제2 마스크(226B)의 개구를 통해 제2 광 검출기(230B)로 지향시키도록 구성된다. 제1 수렴 렌즈(224A) 및 제2 수렴 렌즈(224B) 둘 모두는 고굴절률 유리, 플라스틱 등과 같은 임의의 투명 재료로부터 제조될 수 있다. 도 3에 도시된 예에서, 제1 수렴 렌즈(224A)는 제1 광학 축(311A)과 비-동심이고 제2 수렴 렌즈(224B)는 제2 광학 축(311B)과 비-동심이다. 몇몇 실시예에서, 제1 수렴 렌즈(224A) 및 제2 수렴 렌즈(224B) 중 하나 또는 둘 모두는 각각 제1 광학 축(311A) 및 제2 광학 축(311B)과 동심일 수 있다는 점을 인식해야 한다.
도 3에 도시된 바와 같이, 몇몇 예에서, 제1 광 검출기(230A)는 제1 수렴 렌즈(224A)의 초점 영역에 또는 그 부근에 배치될 수 있다. 마찬가지로, 제2 광 검출기(230B)는 제2 수렴 렌즈(224B)의 초점 영역에 또는 그 부근에 배치될 수 있다. 그 결과, 제1 방향 전환된 복귀 광 펄스들(214A)은 제1 광 검출기(230A) 상에 포커싱될 수 있고 제2 방향 전환된 복귀 광 펄스들(214B)은 제2 광 검출기(230B) 상에 포커싱될 수 있다. 제1 광 검출기(230A) 또는 제2 광 검출기(230B) 중 하나 또는 둘 모두는 포토다이오드, 애벌란시 포토다이오드 등일 수 있다. 몇몇 실시예에서, 전술된 광 검출기(230)와 유사하게, 제1 광 검출기(230A) 또는 제2 광 검출기(230B) 중 하나 또는 둘 모두는 광 입사 표면의 반대측을 향하는 반사 표면(예를 들어, 반사 거울)을 포함할 수 있다. 광 입사 표면은 광을 다시 각각 제1 광 검출기(230A) 또는 제2 광 검출기(230B)의 흡수 영역으로 방향 전환(예를 들어, 반사)시킬 수 있다. 그 결과, 제1 및 제2 광 검출기들(230A 및 230B)의 효율 및 감도가 개선될 수 있다. 몇몇 실시예에서, 제1 마스크(226A)는 제1 광 검출기(230A)의 부분일 수 있다. 몇몇 실시예에서, 제2 마스크(226B)는 제2 광 검출기(230B)의 부분일 수 있다.
도 3에 도시된 예에서, 광원(220)은 레이저 광원일 수 있다. 몇몇 예에서, 광원(220)에 의해 발생된 레이저 광은 가시 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 적외선 스펙트럼 내의 파장을 가질 수 있다. 몇몇 예에서, 레이저 광은 자외선 스펙트럼 내의 파장을 가질 수 있다.
도 3에 예시된 바와 같이, 몇몇 예에서, 이중 동축 LiDAR 스캐닝 시스템(300)은 컴퓨터-판독가능 매체/메모리(304), 광원(220), 제1 광 검출기(230A), 제2 광 검출기(230B), 또는 하나 이상의 모터(302)에 전기적으로 결합되는 마이크로프로세서(306)를 포함한다. 이중 동축 LiDAR 스캐닝 시스템(300) 내의 마이크로프로세서는 소프트웨어를 실행할 수 있다. 소프트웨어는, 소프트웨어로, 펌웨어로, 미들웨어로, 마이크로코드로, 하드웨어 기술 언어로, 또는 다른 것으로 지칭되든지 간에, 예를 들어, 명령, 명령 세트, 코드, 코드 세그먼트, 프로그램 코드, 프로그램, 서브프로그램, 소프트웨어 컴포넌트, 애플리케이션, 소프트웨어 애플리케이션, 소프트웨어 패키지, 루틴, 서브루틴, 개체, 실행 파일, 실행 스레드, 프로시저, 함수 등을 포함할 수 있다.
몇몇 실시예에서, 마이크로프로세서(306)는 시야 내의 하나 이상의 물체까지의 거리를 결정하도록 구성될 수 있다. 도 3에 도시된 바와 같이, 마이크로프로세서(306)는 타이머/클록 모듈(308) 및 계산기(310)를 포함하는데, 이들은 조향된 광 펄스들(312A)을 전송하는 것과 각각의 대응하는 광의 펄스에 대한 제1 복귀 광 펄스들(207A)을 검출하는 것 사이의 시간 차이에 기초하여 하나 이상의 물체까지의 거리를 계산하도록 구성된다.
타이머/클록 모듈(308)은 전송되거나 수신되는 각각의 광 펄스를 타임스탬프로 마킹하도록 구성된다. 타임스탬프는 인코딩된 날짜와 시간이다. 시간 타임스탬프들의 예는 "월-일-년@시:분:초", "월-일-년@시:분:초", "년-일-월@시:분:초", "1234567890(유닉스 시간)" 등을 포함한다. 몇몇 실시예에서, 조향된 광 펄스의 전송은 조향된 광 펄스를 타임스탬프로 마킹하도록 타이머/클록 모듈(308)을 트리거링한다. 타이머/클록 모듈(308)은 또한 조향된 광 펄스를 대응하는 복귀 광 펄스와 짝을 짓고 타임스탬프들에 기초하여 시간 차이를 결정할 수 있다.
계산기(310)는 시간 차이로부터 하나 이상의 물체까지의 거리를 계산하도록 구성된다. 몇몇 예에서, 계산기(310)는 시간 차이에 광속을 곱하고 2로 나누어(대칭 광학 경로를 가정함) 물체까지의 거리를 결정할 수 있다. 예를 들어, 시간 차이가 0.8 마이크로초이면, 계산기(310)는 물체까지의 거리를 약 120 미터 떨어진 것으로 계산한다(예를 들어, (0.8*10-6)*(2.9979*108)/2). 거리를 계산한 후에, 계산기(310)는 그 값들을 컴퓨터-판독가능 매체/메모리(304)에 저장할 수 있다.
컴퓨터-판독가능 매체/메모리(304)는 마이크로프로세서(306)에 전기적으로 결합되고, FOV로 전송된 조향된 광 펄스들과 연관된 식별자들, 복귀 광 펄스들과 연관된 식별자들, 타임스탬프들, 거리 결정들 등에 대한 저장을 제공할 수 있다. 몇몇 예에서, 각각의 펄스(예를 들어, FOV로 전송된 조향된 광 펄스 및/또는 복귀 광 펄스)에는 특정 펄스를 고유하게 식별하는 식별자가 할당될 수 있다. 펄스들의 식별은 대응하는 전송된 광 펄스와 복귀 광 펄스 사이의 시간 차이들의 결정을 가능하게 한다.
몇몇 실시예에서, 마이크로프로세서(306)는 선택적으로 회전 제어기(312)를 포함할 수 있다. 회전 제어기(312)는 오목 반사체(112)의 제1 회전 속도 및 다면체(102)의 제2 회전 속도를 제어하도록 구성된다. 회전 제어기(312)는 오목 반사체(112) 및 다면체(102)에 작동 가능하게 결합된 하나 이상의 모터(302)에 전기적으로 결합된다. 몇몇 예에서, 회전 제어기(312)는 하나 이상의 모터(302)로의 구동 전류를 변화시킴으로써 오목 반사체(112)의 제1 회전 속도 및 다면체(102)의 제2 회전 속도를 변경할 수 있다.
몇몇 실시예에서, 회전 제어기(312)는 제어 파라미터에 랜덤 퍼터베이션(random perturbation)을 중첩시켜 오목 반사체(112)의 제1 회전 속도 및/또는 다면체(102)의 제2 회전 속도가 랜덤 퍼터베이션에 비례하여 증가하게 하도록 구성된다. 오목 반사체(112)의 제1 회전 속도 및/또는 다면체(102)의 제2 회전 속도의 랜덤 퍼터베이션은 빔 조향 장치(100')로부터 전송된 광 펄스와 연관된 수평 및 수직 스캐닝 각도들이 광 펄스들이 실질적으로 주기적(예를 들어, 동일한 간격)일 때 랜덤하게 분포되게 한다. 이는 서브-프레임에서 보다 랜덤한 커버리지를 용이하게 한다. 몇몇 예에서, 회전 제어기(312)는 오목 반사체(112)의 제1 회전 속도를 10 rps로 설정하고 다면체(102)의 제2 회전 속도를 500 rps로 설정할 수 있다. 회전 제어기(312)는 또한 오목 반사체(112)의 제1 회전 속도와 다면체(102)의 제2 회전 속도 중 하나 또는 둘 모두에 ±1 rps의 퍼터베이션을 부가할 수 있다. 몇몇 경우에, 퍼터베이션은 동일할 수 있고 다른 경우들에서 퍼터베이션은 상이할 수 있다.
하나 이상의 모터는 오목 반사체(112) 및 다면체(102)에 작동 가능하게 결합된다. 몇몇 예에서, 제1 모터가 오목 반사체(112)를 회전시킬 수 있는 반면 제2 모터가 다면체(102)를 회전시킬 수 있다. 몇몇 예에서, 하나 이상의 기어에 결합된 단일 모터가 오목 반사체(112)를 회전시키고 다면체(102)를 회전시킬 수 있다. 도 3에 도시된 예에서, 하나 이상의 모터(302)는 오목 반사체(112)를 제1 축(106)을 중심으로 제1 회전 속도로 회전시키고 다면체(102)를 제2 축(104)을 중심으로 제2 회전 속도로 회전시키도록 구성될 수 있다. 몇몇 실시예에서, 제1 및 제2 회전 속도들은 서로 독립적이도록 제어된다.
도 3은 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B)이 양의 z-축의 방향을 따라 지향되는 것을 예시한다. 양의 z-축의 방향을 따라 지향되는 제1 조향된 광 펄스들(312A) 및 제2 조향된 광 펄스들(312B)을 발생시키기 위한, 도 3에 도시된 바와 같은, 다면체(102) 및 오목 반사체(112)의 위치들은 공칭 위치로 정의될 수 있다. 빔 조향 장치(100)는 다면체(102) 및 오목 반사체(112)가 소정 각도로 회전할 때 조향된 광 펄스들을 시야 내의 임의의 원하는 방향으로 지향시키고 그 방향으로부터 복귀 광 펄스들을 수집할 수 있다. 도 4a는 조향된 광 펄스들을 양의 x-축과 양의 z-축 사이의 방향으로 지향시키고 그 방향으로부터 복귀 광 펄스들을 수집하는 예시적인 빔 조향 장치(100)를 예시한다. 몇몇 예에서, 도 4a에 도시된 바와 같이, 회전 다면체(102)의 순간 위치는 공칭 위치에 대해 +15°에 있고, 회전 오목 반사체(112)의 순간 위치는 공칭 위치에 있다. 도 4a에 도시된 바와 같이, 광 펄스들(307A)은 빔 조향 장치(100)의 개구(118)를 통해 지향되고 다면체(102)에 의해 방향 전환(예를 들어, 그로부터 반사)되어 방향 전환된 광 펄스들(307B)을 발생시킨다. 방향 전환은 포인트(402)에서 또는 그 부근에서 발생할 수 있고 방향 전환된 광 펄스들(307B)을 오목 반사체(112)를 향해 조향할 수 있다. 방향 전환된 광 펄스들(307B)은 오목 반사체(112)의 반사 표면(예를 들어, 거울)에 의해 추가로 방향 전환(예를 들어, 그로부터 반사)되어 제1 조향된 광 펄스들(312A)을 발생시킨다. 방향 전환은 포인트(404)에서 또는 그 부근에서 발생할 수 있고 제1 조향된 광 펄스들(312A)을 시야 내에서 양의 x-축과 양의 z-축 사이의 방향으로 하나 이상의 물체를 향해 지향시킬 수 있다. 제1 조향된 광 펄스들(312A)은 물체들을 조명하고 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 실질적으로 동축이거나 평행한 광학 경로를 따라 복귀한다. 도 4a에 도시된 예에서, 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 중첩된다. 예를 들어, 제1 조향된 광 펄스들(312A)은 수평 방향을 향해 약 30° 각도(예를 들어, 양의 z-축과 전송된 광 펄스들(312A)의 방향 사이의 30° 각도)에서 물체를 조명하고, 예시적인 빔 조향 장치(100)는 수평 방향을 향해 약 30° 각도에서 제1 복귀 광 펄스들(207A)을 수집한다. 전술된 것들과 유사하게, 제1 복귀 광 펄스들(207A)은 다면체(102) 및 오목 반사체(112)에 의해 방향 전환되어 방향 전환된 복귀 광 펄스들(214A)을 발생시킬 수 있다.
도 4b는 조향된 광 펄스들을 FOV로 지향시키고 음의 x-축과 양의 z-축 사이의 방향으로부터 복귀 광 펄스들을 수집하는 예시적인 빔 조향 장치(100)를 예시한다. 몇몇 예에서, 도 4b에 도시된 바와 같이, 회전 다면체(102)의 순간 위치는 공칭 위치에 대해 -5°(또는 355°)에 있고, 회전 오목 반사체(112)의 순간 위치는 공칭 위치에 있다. 도 4b에 도시된 바와 같이, 광 펄스들(307A)은 빔 조향 장치(100)의 개구(118)를 통해 지향되고 다면체(102)에 의해 방향 전환(예를 들어, 그로부터 반사)되어 방향 전환된 광 펄스들(307B)을 발생시킨다. 방향 전환은 포인트(402)에서 또는 그 부근에서 발생할 수 있고 방향 전환된 광 펄스들(307B)을 오목 반사체(112)를 향해 조향할 수 있다. 방향 전환된 광 펄스들(307B)은 오목 반사체(112)의 반사 표면(예를 들어, 거울)에 의해 추가로 방향 전환(예를 들어, 그로부터 반사)되어 제1 조향된 광 펄스들(312A)을 발생시킨다. 방향 전환은 포인트(404)에서 또는 그 부근에서 발생할 수 있고 제1 조향된 광 펄스들(312A)을 시야 내에서 음의 x-축과 양의 z-축 사이의 방향으로 하나 이상의 물체를 향해 지향시킬 수 있다. 제1 조향된 광 펄스들(312A)은 물체들을 조명하고 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 실질적으로 동축이거나 평행한 광학 경로를 따라 복귀한다. 도 4b에 도시된 예에서, 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 중첩되며, 여기서 제1 조향된 광 펄스들(312A)은 수평 방향을 향해 약 -10° 각도(예를 들어, 양의 z-축과 제1 조향된 광 펄스들(312A)의 방향 사이의 -10° 각도)에서 물체를 조명하고, 예시적인 빔 조향 장치(100)는 수평 방향을 향해 약 -10° 각도에서 제1 복귀 광 펄스들(207A)을 수집한다. 전술된 것들과 유사하게, 제1 복귀 광 펄스들(207A)은 다면체(102) 및 오목 반사체(112)에 의해 방향 전환되어 방향 전환된 복귀 광 펄스들(214A)을 발생시킬 수 있다.
몇몇 실시예에서, 빔 조향 장치(100)는 시야의 에지 쪽으로 더 향하는 방향으로 광 펄스들을 전송하고 그 방향으로부터 복귀 광 펄스들을 수집하도록 구성될 수 있다. 도 5는 조향된 광 펄스들을 시야의 양의 수평 범위의 에지 쪽으로 더 향하는 방향으로 지향시키고 그 방향으로부터 복귀 광을 수집하는 예시적인 빔 조향 장치(100)를 예시한다. 도 5에 예시된 바와 같이, 회전 다면체(102)의 순간 위치는 공칭 위치에 대해 15°에 있고, 회전 오목 반사체(112)의 순간 위치는 공칭 위치에 대해 30°에 있다. 도 5에 도시된 바와 같이, 광 펄스들(307A)은 빔 조향 장치(100)의 개구(118)를 통해 지향되고 다면체(102)에 의해 방향 전환(예를 들어, 그로부터 반사)되어 포인트(402)에서 또는 그 부근에서 방향 전환된 광 펄스들(307B)을 발생시킨다. 방향 전환은 방향 전환된 광 펄스들(307B)을 오목 반사체(112)를 향해 조향할 수 있다. 방향 전환된 광 펄스들(307B)은 오목 반사체(112)의 반사 표면(예를 들어, 거울)에 의해 추가로 방향 전환(예를 들어, 그로부터 반사)되어 포인트(404)에서 또는 그 부근에서 제1 조향된 광 펄스들(312A)을 발생시킨다. 방향 전환은 조향된 광 펄스들(312A)을 시야의 에지 쪽으로 더 향하는 방향으로 하나 이상의 물체를 향해 지향시킬 수 있다. 제1 조향된 광 펄스들(312A)은 물체들을 조명하고 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 실질적으로 동축이거나 평행한 광학 경로를 따라 복귀한다. 도 5에 도시된 예에서, 제1 복귀 광 펄스들(207A)은 제1 조향된 광 펄스들(312A)과 중첩된다. 예를 들어, 제1 조향된 광 펄스들(312A)은 양의 x-방향을 향해 약 40° 각도(예를 들어, 양의 z-축과 X-Z 평면 상의 조향된 광 펄스들(312A)의 투영 사이의 40° 각도) 및 y-방향을 향해 약 -7°(예를 들어, z-축과 Y-Z 평면 상의 조향된 광 펄스들(312A)의 투영 사이의 음의 y 방향에서 7°)에서 물체를 조명하고, 예시적인 빔 조향 장치(100)는 양의 x-방향을 향해 약 40°의 각도 및 y-방향을 향해 약 -7°에서 제1 복귀 광 펄스들(207A)을 수집한다. 전술된 것들과 유사하게, 제1 복귀 광 펄스들(207A)은 다면체(102) 및 오목 반사체(112)에 의해 방향 전환되어 방향 전환된 복귀 광 펄스들(214A)을 발생시킬 수 있다.
몇몇 실시예에서, 스캐닝 범위를 더욱 확장하기 위해, 조향된 광 펄스들(312A) 및/또는 제2 조향된 광 펄스들(312B)이 빔 조향 장치(100)로부터 전송되고 있을 때 그것들의 광학 경로 내에 오목 렌즈들 또는 원통형 렌즈들이 배치될 수 있다. 이러한 구성은 수평 및/또는 수직 스캐닝 범위를 더욱 확장할 수 있다. 몇몇 예에서, 볼록 렌즈들을 포함시키는 것이 또한 광 각도를 확장할 수 있으며, 이는 해상도를 감소시킬 수 있다.
도 6a 및 도 6b는 이중 동축 LiDAR 스캐닝 시스템(300)(도 3)에 대한 수평 및 수직 방향들에 걸친 각도 분포에 대한 인터레이싱된 프레임 다이어그램들을 예시한다. 도 6a 및 도 6b의 다이어그램들(600A 및 600B)은 이중 동축 LiDAR 스캐닝 시스템(300)이 약 50 밀리초 내에 데이터를 수집하도록 구성된 시뮬레이션의 결과들을 예시한다. 다이어그램들은 약 20 fps(frames per second)에 대응하는, 하나의 프레임을 형성하는 3개의 연속적인 서브-프레임의 조합을 보여준다. 제1 서브-프레임(604)을 형성하기 위해, 이중 동축 LiDAR 스캐닝 시스템(300)은 수평 방향 및 수직 방향 둘 모두에서 시야를 가로질러 주기적인 간격으로 하나 이상의 물체를 연속적으로 샘플링한다. 그렇게 함에 있어서, (도 4a, 도 4b, 또는 도 5에 도시된 바와 같은) 오목 반사체(112)의 반사 표면(예를 들어, 거울)에 의해 방향 전환(예를 들어, 그로부터 반사)된 레이저 광 빔(도 4a 및 도 4b와 도 5에 도시된 바와 같은 포인트(404) 또는 그 부근의 광 빔 스폿)은 다면체(102)의 면들 중 하나에서 거울을 가로질러 이동하여, 광 빔 스폿이 거울의 하나의 에지로부터 거울의 다른 에지로 이동한다. 제2 서브-프레임(606)을 형성하기 위해, 이중 동축 LiDAR 스캐닝 시스템(300)은, 이번에는 수평 및 수직 방향들에서의 스캐닝이 제1 서브-프레임(604)을 생성하기 위한 스캐닝으로부터 약간 오프셋되는 것을 제외하고는, 시야를 가로질러 주기적인 간격으로 하나 이상의 물체를 연속적으로 샘플링한다. 이러한 스캐닝 오프셋을 갖고서, 광 빔은 다면체(102)의 면들 중 하나에서 거울을 가로질러 이동하여, 광 빔 스폿이 거울의 하나의 에지로부터 거울의 다른 에지로 이동한다. 제3 서브-프레임(608)을 형성하기 위해, 이중 동축 LiDAR 스캐닝 시스템(300)은, 이번에는 수평 및 수직 방향들에서의 스캐닝이 제1 서브-프레임(604)을 생성하기 위한 스캐닝 및 제2 서브-프레임(606)을 생성하기 위한 스캐닝으로부터 약간 오프셋되는 것을 제외하고는, 시야에 걸쳐 주기적인 간격으로 하나 이상의 물체를 연속적으로 샘플링한다. 제1 서브-프레임(604), 제2 서브-프레임(606), 및 제3 서브-프레임(608)은 인터레이싱되어 더 높은 해상도에 대응하는, 더 높은 밀도의 샘플들을 갖는 단일 프레임을 형성한다. 단일 프레임은 또한 LiDAR 스캐닝 시스템의 움직임과 검출된 물체의 움직임 둘 모두의 움직임 보정을 나타낸다.
도 6a에 도시된 바와 같이, 조향된 광 펄스들(312A)에 의해 발생된 프레임으로부터의 래스터화된 포인트들은 x 방향으로 대략 -10° 내지 40°와 y 방향으로 -30° 내지 30°의 범위를 커버하는 패턴을 형성한다. 유사하게 조향된 광 펄스들(312B)에 의해 발생된 프레임의 래스터화된 포인트들은 x 방향으로 대략 -40° 내지 10°와 y 방향으로 -30° 내지 30°의 범위를 커버하는 패턴을 형성한다. 이중 동축 LiDAR 스캐닝 시스템(300)에 대한 범위 내에서, 제1 조향된 광 펄스들(312A)과 제2 조향된 광 펄스들(312B) 사이의 약간의 중첩 영역(602)이 있다. 중첩은 시야의 중심(예를 들어, 대략 x 방향으로 -10° 내지 10°와 y 방향으로 -30° 내지 30°)에서 더 밀도가 높은 데이터 샘플링을 제공한다. 그렇기 때문에, 해상도는 중첩 영역(602)에서 더 높다.
도 6a 및 도 6b에 도시된 래스터화된 프레임 패턴의 형상은 이중 빔 조향 장치(100')의 기하학적 구조(예를 들어, 다면체(102) 및 오목 반사체(112)의 기하학적 구조)에 기초한다. 광학 경로를 방해하는 인자들은 도 6a 및 도 6b에 도시된 바와 같이 전체적인 래스터화된 프레임 패턴에 기여할 수 있다. 예를 들어, 도 4a 및 도 4b, 도 5, 및 도 6a 및 도 6b를 참조하면, 몇몇 경우에 제1 조향된 광 펄스들(312A)은 소정 각도에서 오목 반사체(112)에 도달할 수 없는데, 이는 이중 빔 조향 장치(100')의 스캐닝 범위의 끝을 결정한다. 이들은 수평 주변 범위에 대응할 수 있다. 전체적으로, 몇몇 실시예에서, 이중 빔 조향 장치(100')가 제1 조향된 광 펄스들(312A)을 지향시킬 수 있는 스캐닝 범위는 x 방향으로 대략 -10° 내지 40° 그리고 y 방향으로 대략 -30° 내지 30°이다. 유사하게, 이중 빔 조향 장치(100')의 스캐닝 범위는 x 방향으로 대략 -40°와 10° 그리고 y 방향으로 -30°와 30° 사이에서 제2 조향된 광 펄스들(312B)을 지향시킬 수 있다.
도 6b는 이중 동축 LiDAR 스캐닝 시스템(300)에 대한 수평 및 수직 방향들에 걸친 각도 분포에 대한 프레임 다이어그램의 확대된 부분을 예시한다. 도 6b는 이에 따라 3개의 연속적인 서브-프레임(예를 들어, 제1 서브-프레임(604), 제2 서브-프레임(606), 및 제3 서브-프레임(608))의 조합을 더 명확하게 예시한다. 전술된 바와 같이, 다면체(102) 및/또는 오목 반사체(112)의 회전 속도에 퍼터베이션들이 부가되면, 수평 및 수직 방향들에 걸친 각도 분포는 랜덤일 수 있다.
몇몇 예에서, 도 6a 및 도 6b에 도시된 서브-프레임들 및/또는 프레임들은 3개의 차원으로 맵핑되어 "포인트 클라우드(point cloud)"를 형성할 수 있다. 예를 들어, 도 6a 및 도 6b는 물체 상의 광 산란에 대한 2개의 차원에서의 위치들을 도시한다. 몇몇 예에서, (도 3에 도시된) 마이크로프로세서(306)의 계산기(310)는 제3 차원(예를 들어, 대응하는 수평 및 수직 각도들에서의 거리)을 제공할 수 있다. 그렇기 때문에, LiDAR 스캐닝 시스템(300) 주위의 물체들의 형상이 재구성될 수 있다(예를 들어, 데이터 분석 알고리즘들을 사용하여 "포인트 클라우드"를 분석함으로써).
몇몇 예에서, 시야 내에 위치된 물체들은 프레임 또는 서브-프레임을 형성하기 위한 스캔 동안 이동하고 있거나 시프팅하고 있을 수 있다. 예를 들어, 몇몇 경우에, 하나의 프레임 내의 광 펄스들의 시간 범위는 실질적으로 짧을 수 있으며(예를 들어, 1 밀리초 미만), 이는 이중 동축 LiDAR 스캐닝 시스템(300A) 및 시야 내의 물체들 둘 모두를 포함한 물체들이 실질적으로 이동하지 않음을 의미한다. 그러한 경우들에서, 프레임 내의 포인트 클라우드 내의 샘플 포인트들은 실질적으로 동시에 수집된다. 그러나, 몇몇 경우에, 시간 범위는 비교적 길 수 있는데(예를 들어, 20 내지 50 밀리초), 이는 하나 이상의 물체가 측정가능한 거리를 이동하기에 충분한 시간이다. 예를 들어, 시간당 약 65 마일을 이동하는 물체는 20 밀리초 내에 약 2 피트를 이동할 수 있다. 그렇기 때문에, 프레임의 포인트 클라우드 내의 각각의 포인트의 위치는 시야 내의 움직이는 물체의 검출된 속도 및 LiDAR 자체의 움직임에 의해 보상될 수 있다.
물체들의 그러한 움직임을 수용하기 위해, 이중 동축 LiDAR 스캐닝 시스템(300)은 하나 이상의 서브-프레임으로부터 샘플링 레이트를 결정하고, 하나 이상의 물체의 상대 속도를 결정하고, 집계된 거리를 보상하는 것에 기초하여 3개의 차원에서 포인트들의 포인트 클라우드를 형성할 때 샘플링 레이트 및 상대 속도를 보상할 수 있다. 임의의 임의적인 시간 간격에 걸쳐 수집된 데이터는 포인트 클라우드의 하나의 프레임을 형성하도록 집계될 수 있다는 점을 인식해야 한다. 그렇기 때문에, 포인트 클라우드의 밀도는 전술된 것보다 밀도가 높거나 밀도가 낮을 수 있다.
도 7은 소정의 시스템 파라미터 값들을 갖는 이중 동축 LiDAR 시스템에 대한 수집 개구 면적들에 대응하는 히트 맵(700)을 예시하며, 여기서 도 1, 도 3, 도 4a, 도 4b, 및 도 5에 도시된 제1 방향 전환된 복귀 광 펄스들(214A) 및 제2 방향 전환된 복귀 광 펄스들(214B)의 수집된 단면적들이 둘 모두 도 7에 도시되고 FOV의 중간에서 중첩된다. 그렇기 때문에, 수집 개구의 면적은 다면체(102)의 각도 및 오목 반사체(112)의 각도에 따라 변한다. 예를 들어, 도 4a에 도시된 214A의 제1 방향 전환된 복귀 광 펄스들의 단면적은 도 4b에 도시된 214A의 제1 방향 전환된 복귀 광 펄스들의 단면적보다 작다. 그렇기 때문에, 도 4a에 도시된 각도들을 갖는 다면체(102) 및 오목 반사체(112)의 구성에 대응하는 수집된 광의 강도는 제1 조향된 광 펄스들(312A)의 동일한 강도 및 시야 내의 물체로부터의 동일한 반사율 및 거리에 대해 도 4b에 도시된 것보다 작다.
도 7에 도시된 예에서, x 방향으로 약 -10° 내지 10° 및 y 방향으로 -30° 내지 30°에 대응하는 히트 맵(700)의 중심 영역은 높은 수집 개구를 갖는다. 이 영역은 대략 동일한 영역에서 중첩되는 이중 광학 경로들로부터 모래시계 형상을 형성한다. x 방향으로 약 -35° 내지 -30° 및 y 방향으로 약 -5° 내지 5°뿐만 아니라 x 방향으로 약 30° 내지 35° 및 y 방향으로 약 -5° 내지 5°에 대응하는 영역들은 오목 반사체(112)에서의 사각(oblique angle)들로부터의 것인 낮은 수집 개구를 갖는다.
몇몇 실시예에서, 광원(220)(도 2b, 도 2c, 및 도 3에 도시됨)으로부터의 입사 광 펄스들(212)의 전력은 수집 개구에 기초하여 변경될 수 있다. 입사 광 펄스들(212)의 전력을 변경하는 것은 시야 내에서 수직 및 수평 방향들을 가로질러 제1 방향 전환된 복귀 광 펄스들(214A) 및 제2 방향 전환된 복귀 광 펄스들(214B)의 수집 개구 크기들의 변화를 보상할 수 있다.
도 8은 본 개시의 예들에 따른 LiDAR 스캐닝 검출을 위한 예시적인 프로세스(800)를 예시한다. 프로세스(800)는 도 1a 및 도 1b, 도 2a 내지 도 2c, 도 3, 도 4a 및 도 4b, 및 도 5에 도시된 다양한 시스템들 및, 아래에 상세히 설명되는 바와 같은, 도 9a 내지 도 9d, 도 10a 및 도 10b, 및 도 11에 도시된 시스템들과 같은, 차량 내에 배치되거나 포함된 시스템에 의해 수행될 수 있다. 도 8에 도시된 바와 같이, 블록 802에서, LiDAR 스캐닝 시스템의 제1 광원이 하나 이상의 제1 광 펄스를 제공할 수 있다. 본 명세서에 설명된 예들에서, 제1 광원은 레이저 광원일 수 있다. 제1 광원은 백열등, 형광등 등일 수 있다는 점을 인식해야 한다. 또한, 제1 광원은 가시 스펙트럼 내의 하나 이상의 파장, 적외선 스펙트럼 내의 하나 이상의 파장, 또는 자외선 스펙트럼 내의 하나 이상의 파장을 가질 수 있다.
블록 804에서, LiDAR 스캐닝 시스템의 빔 조향 장치가 광학 경로를 따라 물체를 조명하도록 제1 광 펄스들을 조향할 수 있다. 빔 조향 장치는 광 펄스들의 단일 빔(예를 들어, 도 1b에 도시된 바와 같은 광 펄스들(312A))을 전송하도록 구성된 동축 빔 조향 장치(100), 또는 광 펄스들의 이중 빔들(예를 들어, 도 3에 도시된 바와 같은 광 펄스들(312A 및 312B))을 전송하도록 구성된 이중 동축 빔 조향 장치(100')일 수 있다. 연속적인 스캔들 동안, 광 빔 조향 디바이스(예를 들어, 다면체(102)) 및 오목 반사체(예를 들어, 오목 반사체(112))의 회전은 광 펄스들의 광학 경로 내에 있는 광 빔 조향 디바이스 및 오목 반사체의 반사 면들이 시간 경과에 따라 변화하게 할 수 있다. 빔 조향 장치에 의한 광 펄스들의 조향 각도는 광 빔 조향 디바이스 및 오목 반사체의 회전 위치들을 이용하여 계산될 수 있다. 몇몇 실시예의 경우, 광 빔 조향 디바이스 및 오목 반사체의 회전 위치들은 광 펄스를 전송하도록 광원을 트리거링할 수 있다는 점을 인식해야 한다.
블록 806에서, 몇몇 예에서, 빔 조향 장치(예를 들어, 빔 조향 장치(100) 또는 이중 빔 조향 장치(100'))는 복귀 광 펄스들(예를 들어, 물체를 조명한 제1 조향된 광 펄스들(312A)에 기초하여 발생된 제1 복귀 광 펄스들(207A))을 수집하고 방향 전환시킬 수 있다. 수집된 복귀 광 펄스들은 광학 경로와 동축으로 또는 평행하게 정렬될 수 있다. 복귀 광 펄스들은 오목 반사체 및 광 빔 조향 디바이스에 의해 수신 광학 시스템들을 향해 방향 전환될 수 있다. 빔 조향 장치를 사용할 때, 몇몇 예에서, 조향된 광 펄스들 및 복귀 광 펄스들은 동축으로 정렬될 수 있다. 또한, 빔 조향 장치는 복귀 광 펄스들을 병렬로 또는 실질적으로 동시에 수집하면서 조향된 광 펄스들을 전송할 수 있다. 예를 들어, 전송된 조향된 광 펄스가 물체를 조명하고 동일한 광학 경로를 따라 복귀하기 위해 이동하는 시간은 광 빔 조향 디바이스(예를 들어, 다면체(102)) 및 오목 반사체의 위치들에 대해 거의 순간적이다. 예를 들어, 광 펄스의 비행 시간은 약 150 미터 떨어진 물체에 대해 약 1 마이크로초이다. 이는 광 빔 조향 디바이스(예를 들어, 500 rps로 회전하는 다면체(102))의 약 0.18° 회전에 대응한다.
블록 808에서, 광 수렴 장치를 포함하는 수신 광학 시스템이 방향 전환된 복귀 광 펄스들을 광 검출기(예를 들어, 도 3에 도시된 제1 광 검출기(230A)) 상으로 추가로 지향(예를 들어, 수렴 또는 포커싱)시킬 수 있다. 몇몇 예에서, 광 수렴 장치는 수렴 렌즈(224)(도 2b) 또는 수렴 거울(221)(도 2c)일 수 있다.
블록 810에서, 마이크로컨트롤러/프로세서가 조향된 광 펄스들을 전송하는 것과 대응하는 복귀 광 펄스들을 검출하는 것 사이의 시간 차이에 기초하여 LiDAR 스캐닝 시스템으로부터 물체까지의 거리를 계산(예를 들어, 결정)할 수 있다. 광 펄스가 광학 경로를 따라 이동하는 비행 시간은 광 펄스가 물체를 조명하기 위해 이동하는 거리에 비례한다. 일반적으로, 광 펄스가 물체를 조명하기 위한 이 비행 시간은 광 펄스가 검출되는 데 걸리는 시간의 약 절반이다.
선택적인 블록 812에서, 마이크로컨트롤러는 연이은 또는 연속적인 수평 및 수직 스캔들에 걸쳐 하나 이상의 물체까지의 거리들의 집계에 기초하여 하나 이상의 서브-프레임(예를 들어, 제1 서브-프레임(604), 제2 서브-프레임(606), 제3 서브-프레임(608), 도 6a 및 도 6b)을 생성할 수 있다. 예를 들어, 동축 LiDAR 스캐닝 시스템 또는 이중 동축 LiDAR 시스템(예를 들어, 시스템(300))이 수평 방향 및 수직 방향 둘 모두에서 시야에 걸쳐 주기적인 간격으로 동일한 하나 이상의 물체를 연속적으로 샘플링할 수 있다. 샘플링되는(예를 들어, 스캐닝되는) 시야는, 도 6a 및 도 6b에서 주해된, 제1 서브-프레임(604)과 유사한 제1 서브-패턴에 따라 집계될 수 있다. 이중 동축 LiDAR 시스템은, 이번에는 수평 및 수직 방향들이 제1 서브-프레임(604)으로부터 약간 오프셋되는 것을 제외하고는, 동일한 시야에 걸쳐 주기적인 간격으로 하나 이상을 한 번 더 연속적으로 샘플링할 수 있다. 샘플링되는(예를 들어, 스캐닝되는) 시야는 도 6a 및 도 6b의 제2 서브-프레임(606)과 유사한 제2 서브-패턴에 따라 집계될 수 있다. 이중 동축 LiDAR 시스템은, 이번에는 수평 및 수직 방향들이 제1 서브-프레임(604) 및 제2 서브-프레임(606)으로부터 약간 오프셋되는 것을 제외하고는, 동일한 시야 또는 부분적으로 동일한 시야에 걸쳐 주기적인 간격으로 동일한 하나 이상을 한 번 더 연속적으로 샘플링할 수 있다. 샘플링되는(예를 들어, 스캐닝되는) 시야는 도 6a 및 도 6b의 제3 서브-프레임(608)과 유사한 제3 서브-패턴에 따라 집계될 수 있다.
선택적인 블록 814에서, 마이크로컨트롤러는 하나 이상의 서브-프레임을 인터레이싱하여 더 높은 해상도를 갖는 프레임을 형성할 수 있다. 예를 들어, 도 6a 및 도 6b에 도시된 바와 같이, LiDAR 시스템은 제1 서브-프레임(604), 제2 서브-프레임(606), 및 제3 서브-프레임(608)을 인터레이싱하여 더 높은 밀도의 샘플들을 갖는 프레임을 형성할 수 있다. (비-중첩 샘플 포인트들의) 더 높은 밀도의 샘플들은 더 높은 해상도에 대응한다. 이중 동축 LiDAR 시스템(예를 들어, 시스템(300))의 중첩 영역(602)(도 6a) 내의 샘플 포인트들 중 다수가 더 높은 밀도를 가질 수 있다는 점을 인식해야 한다. 그렇기 때문에, 해상도는 도 6a에 도시된 중첩 영역(602)에서 더 높다.
도 2a 및 도 2b, 도 3, 도 4a 및 도 4b 및 도 5에 도시된 바와 같은 빔 조향 장치(100 및 100')는 6개의 면을 갖는 다면체(102)를 포함한다. 설명된 바와 같이, 다면체는 임의의 수(예를 들어, 6개 초과 또는 6개 미만)의 면을 가질 수 있다. 도 9a 내지 도 9d는 빔 조향 장치(900)의 다른 예시적인 실시예의 상이한 도면들을 예시한다. 빔 조향 장치(900)는 6개 초과인 다수의 면을 갖는 다면체를 가질 수 있다. 빔 조향 장치(900)는 프로세스(800 및/또는 1900)의 하나 이상의 단계(예를 들어, 도 19에 도시된 블록 1904 및 블록 1910에서의 광 펄스들의 조향)를 수행하는 데 사용될 수 있다. 도 9a는 빔 조향 장치(900)의 사시도를 예시하고; 도 9b는 양의 y 축 방향을 따른 빔 조향 장치(900)의 측면도를 예시하고; 도 9c는 양의 z 축 방향을 따른 빔 조향 장치(900)의 배면도를 예시하고; 도 9d는 양의 x 축 방향을 따른 빔 조향 장치(900)의 측면도를 예시한다. 도 9a 내지 도 9d를 참조하면, 다면체(910)는 다면체(910)의 y-축에 평행한 복수의(예를 들어, 18 개의) 측부-면을 포함할 수 있다. 몇몇 실시예에서, 다면체(910)는 y-축에 중심을 두고 그것을 중심으로 또는 그것을 따라 회전할 수 있다. 즉, y-축은 다면체(910)의 회전 축일 수 있다. 몇몇 실시예에서, 복수의 측부-면 각각은 폴리싱될 수 있고, 레이저 광을 전송 및 수집하기 위한 반사 표면(예를 들어, 거울 표면)과 유사하게 동작할 수 있다.
도 9a 내지 도 9d를 참조하면, 빔 조향 장치(900)는 또한 오목 반사체(920)를 포함할 수 있다. 오목 반사체(920)는 복수의(예를 들어, 4개의) 평탄한 또는 만곡된 반사 표면들(예를 들어, 거울들)을 포함할 수 있다. 몇몇 실시예에서, 오목 반사체(920)의 평탄한 또는 만곡된 거울들 각각은 다각형 형상(예를 들어, 사다리꼴 형상) 또는 임의의 다른 원하는 형상을 가질 수 있다. 몇몇 실시예에서, 평탄한 또는 만곡된 거울들 각각은 입사 레이저 광이 오목 반사체(920)를 통과할 수 있도록 절단되거나 트리밍된 모서리들 및/또는 저부 에지들을 가질 수 있다. 예를 들어, 오목 반사체(920)에서 절단된 모서리들 및/또는 저부 에지들이 도 9a 내지 도 9d에 예시된다. 몇몇 실시예에서, 도 1b에 도시된 오목 반사체(112)와 유사하게, 오목 반사체(920)는 z-축을 중심으로 또는 그것을 따라 회전할 수 있으며, 이때 회전 속도는 다면체(910)에 대한 회전 속도와는 독립적이다. 도 9b를 참조하면, 회전하는 다면체(910) 및 회전하는 오목 반사체(920)의 순간 위치에서, 시준된 하나 이상의 광 펄스(930)의 빔이 각도(935)(예를 들어, 시준된 하나 이상의 광 펄스(930)의 빔과 음의 z 방향 사이의 각도)로 x-z 평면 내의 다면체(910)의 면(940)을 향해 지향될 수 있다.
도 10a는 하나 이상의 광 펄스를 포함하는 시준된 조명 레이저 빔을 발생시키기 위한 구성의 일 실시예를 예시한다. 도 10a에 예시된 바와 같이, 광원(1010)은 광학 렌즈(1020)를 향해 하나 이상의 광 펄스를 지향시킬 수 있다. 몇몇 실시예에서, 광학 렌즈(1020) 및 광원(1010)은 조명 레이저 빔(예를 들어, 가우스 빔(Gaussian beam))이 미리 결정된 빔 발산 각도를 갖도록 형성될 수 있도록 미리 결정된 거리를 갖도록 구성될 수 있다. 조명 레이저 빔은 다면체(910)의 면으로 지향될 수 있다. 광원(1010)은 파이버 레이저, 반도체 레이저, 또는 다른 유형의 레이저 광원들일 수 있다. 대안적으로, 비구면 렌즈, 복합 렌즈, 반사 구면 표면, 반사 포물면 표면 등과 같은 다른 시준 광학계가 시준된 레이저 빔을 발생시키는 데 사용될 수 있다. 몇몇 실시예에서, 오목 반사체(920)는 조명 레이저 빔이 오목 반사체(920)의 하나 이상의 반사 표면(예를 들어, 거울)에 의해 소정 회전 각도에서 차단되거나 부분적으로 차단될 수 있게 하는 기하학적 구조 파라미터 값들을 갖도록 구성될 수 있다. 위에서 논의된 바와 같이, 오목 반사체(920)에서, 도 10a에 도시된 바와 같이, 광원으로부터의 레이저 빔이 통과할 수 있게 하기 위해, 하나 이상의 사다리꼴-형상의 거울의 저부 에지들의 일부(예를 들어, 컷아웃 섹션(cutout section)(1030))가 컷 오프되거나 노출될 수 있다.
도 10b는 광 펄스들을 포함하는 시준된 조명 레이저 빔을 발생시키기 위한 구성의 다른 실시예를 예시한다. 이 구성에서, 파이버 레이저, 반도체 레이저, 또는 다른 유형의 레이저 소스들과 같은 광원(도 10b에 도시되지 않음)에 의해 하나 이상의 광 펄스가 발생될 수 있다. 하나 이상의 광 펄스는 광학 파이버(1042)에 의해 전달되고 거울(1040)에 의해 다면체(910)의 면을 향해 지향될 수 있다. 도 10b에 예시된 광 전달 구성은 광학계(예를 들어, 파이버, 거울)가 오목 반사체(920)의 내부에 배치되는 것을 가능하게 하여서, 오목 반사체(920)의 에지들을 컷 오프하는 것에 대한 필요성을 제거하거나 감소시킨다(예를 들어, 도 10a에 예시된 바와 같은 컷아웃 섹션(1030)을 제거하거나 컷아웃 섹션(1030)의 크기를 감소시킴).
도 9b 및 도 10b를 참조하면, 몇몇 실시예에서, 반사 표면들(예를 들어, 다각형 거울들) 다면체(910)의 회전 축에 대한 전달되는 레이저 빔(예를 들어, 광학 파이버(1042) 및 거울(1040)에 의해 전달되는 레이저 빔)의 상대 위치 및/또는 각도는 유효 LiDAR 스캐닝 범위(예를 들어, 수평 및 수직 스캐닝 커버리지 각도들)가 원하는 커버리지 값들에 도달하는 방식으로 구성될 수 있다. 일 예에서, 다면체(910)의 다각형 거울들의 면들 중 하나에 도달하는 레이저 빔의 위치 및/또는 각도는 약 100°의 수평 FOV 및 25°의 수직 FOV를 달성하기 위해 (도 9b에 도시된) 각도(965)가 수직 방향(예를 들어, 도 9b에서 음의 z 방향)으로부터 대략 59°이도록 구성된다.
광 전달 구성들의 몇몇 실시예에서, 다면체(910)의 측부 면에 도달하는 레이저 빔은 y-축 방향 및 x-z 평면 내의 방향에서, 빔 웨이스트 폭(beam waist width)들 및 빔 발산 각도들과 같은, 상이한 가우스 빔 파라미터들을 가질 수 있다. 상이한 가우스 빔 파라미터들은 레이저 광원과 다면체(910)의 측부 면 사이에 하나 이상의 비구면 렌즈 또는 원통형 렌즈를 사용함으로써 달성될 수 있다. 몇몇 실시예에서, 레이저 빔이 다면체(910)의 측부 면에 도달하는 위치에서 빔 웨이스트 폭이 매우 좁도록 LiDAR 시스템의 렌즈들 또는 다른 컴포넌트들을 구성하는 것이 바람직하고 유익하다. 하나의 전형적인 실시예에서, 0.45 mm의 빔 웨이스트 폭이 대략 0.06° 발산 각도로 달성될 수 있다. 좁거나 작은 레이저 빔 웨이스트(예를 들어, 0.2 mm) 폭은 광 빔이 도달하는 모든 다면체 회전 위치들에 대한, 광 빔의 일부가 2개의 측부 면에 동시에 도달하는(예를 들어, 레이저 빔 스폿이 공통 에지를 공유하는 2개의 면에 도달하는) 다면체 회전 위치들의 비율 또는 백분율을 감소시킬 수 있다. 2개의 측부 면에 동시에 도달하는 광 빔은 그것이 신호를 분석하는 데 어려움을 야기할 수 있기 때문에 바람직하지 않을 수 있다.
하나의 방향에서 가우스 빔의 빔 웨이스트가 좁을 때, 그의 빔 발산 각도는 이 방향에서 더 커질 수 있으며, 이는 소정 실시예들의 경우에 바람직하지 않을 수 있다. 예를 들어, 0.2 mm 웨이스트 폭을 갖는 가우스 빔의 경우, 발산 각도는 약 0.14°일 수 있다. 빔 발산 각도를 감소시키기 위해, 몇몇 예에서, 다면체(910)는 만곡된 표면들을 갖는 만곡된 면들을 가질 수 있다. 몇몇 실시예에서, 도 15a에 도시된 바와 같이, 만곡된 표면이 다면체(910)의 측부 면들에 대해 사용될 수 있다.
도 15a는 만곡된 표면들을 갖는 예시적인 다면체(910)의 다수의 면(1510A 내지 1510C)을 예시한다. 도 15a에서, 실선들은 평탄한 표면들이 사용되는 경우 다면체(910)의 다수의 측부 면 중 3개를 예시한다. 파선들은 빔 발산 각도를 감소시키기 위해 가우스 빔을 수정할 수 있는 만곡된 표면들을 예시한다. 도 15a는 만곡된 표면들을 볼록 표면들로서 예시하지만, 당업자는 몇몇 실시예의 경우 오목 표면들이 또한 사용될 수 있다는 것을 인식할 수 있다. 다른 실시예에서, 가우스 빔을 수정하기 위해 오목 반사체(920)(도 9a 내지 도 9d 및 도 10a 및 도 10b에 도시됨)의 반사 표면들(예를 들어, 거울들)에 대해서도 만곡된 표면들이 사용될 수 있다.
몇몇 실시예에서, 조명 레이저 빔을 반사하는 다면체의 부분은 하나의 파라미터 세트(평탄한 또는 만곡된 표면, 직경, 면의 수)를 갖도록 구성될 수 있는 반면, 복귀 광을 수집하는 다면체의 나머지 부분은 상이한 파라미터 세트를 갖도록 구성될 수 있다. 도 15b는 하나의 그러한 실시예의 평면도를 예시하며, 여기서 조명 또는 전송 레이저 빔을 반사하는 다면체(910)의 부분은 만곡된 표면들(예를 들어, 면들(1520A 내지 1520C)) 및 더 큰 직경을 갖는 반면, 복귀 광을 수집하는 다면체의 나머지 부분은 더 작은 직경을 갖는 평탄한 표면들(예를 들어, 면들(1522A 내지 1522C))을 갖는다. 다면체(910)의 둘 모두의 부분들은 동일한 수(예를 들어, 18개)의 면을 가질 수 있다. 도 15c는 조명 또는 전송 레이저 빔을 반사하기 위한 만곡된 표면들을 갖는 면들(1520A 내지 1520N)을 포함하고 복귀 광을 수집하기 위한 평탄한 표면들을 갖는 면들(1522A 내지 1522N)을 포함하는, 다면체(910)의 이 실시예의 측면도를 예시한다.
도 15d는 다면체(910)의 다른 실시예의 평면도를 예시한다. 도 15d에 예시된 바와 같이, 조명 레이저 빔을 반사하는 다면체의 부분은 만곡된 표면들 및 더 큰 직경을 갖는 제1 수(예를 들어, 18개)의 면(예를 들어, 면들(1540A 내지 1540D))을 가질 수 있는 반면, 복귀 광을 수집하는 부분은 평탄한 표면들 및 더 작은 직경을 갖는 제2 수(예를 들어, 6개)의 면(예를 들어, 면들(1542A 및 1542B))을 가질 수 있다. 도 10e는 조명 또는 전송 레이저 빔을 반사하기 위한 만곡된 표면들을 갖는 면들(1540A 내지 1540N)을 포함하고 복귀 광을 수집하기 위한 평탄한 표면들을 갖는 면들(1542A 내지 1542M)을 포함하는, 다면체(910)의 이 실시예의 측면도를 예시한다.
다시 도 9a 및 도 9b를 참조하면, 위에서 논의된 바와 같이, 시준된 하나 이상의 광 펄스(930)의 빔이 각도(935)로 x-z 평면 내의 다면체(910)의 하나의 면(940)을 향해 지향될 수 있다. 각도(935)는 조명 레이저 빔의 광 펄스들(930)의 방향과 복귀 광 검출기(960)에 입사하는 복귀 광의 방향 사이의 각도가 다면체(910)의 하나의 측면의 스패닝 각도(spanning angle)의 2N배가 되도록 구성될 수 있다. 스패닝 각도는 다면체(910)의 중심으로부터 면의 2개의 이웃하는 에지까지 연장되는 2개의 반경 사이의 각도이다. 따라서, 18-면 다각형의 경우, 스패닝 각도는 20°(즉, 360°/18 = 20°)이다. 도 9a 내지 도 9d에서의 예시적인 실시예에서, 20°의 스패닝 각도를 갖는 18-면 다각형에 대해 "N"은 1의 값을 가질 수 있고 각도(935)는 40°의 값을 가질 수 있다. 도 9b에 예시된 바와 같이, 면(940)으로부터 발생된(예를 들어, 반사된) 하나 이상의 방향 전환된 광 펄스(942)는 오목 반사체(920)의 거울(945)로 지향되고, 이어서 거울(945)에 의해 반사되고 조향된 광 펄스들(948)로서 시야로 방향 전환된다.
도 9a 및 도 9b를 참조하면, 하나 이상의 조향된 광 펄스(948)가 시야 내의 물체에 도달한 후에, 이들은 다수의 방향으로 반사되거나 산란될 수 있고, 복귀 광 펄스들(950) 중 일부가 다시 거울(945)로 반사되고 그것에 의해 수집될 수 있다. 물체가 LiDAR 시스템으로부터 비교적 멀리(예를 들어, 1 미터보다 더 멀리) 있을 때, 복귀 광 펄스들(950)은 시준된 빔으로서 근사화될 수 있으며 조향된 광 펄스들(948)의 원래의 방향과 실질적으로 평행한 방향에, 그러나 그와는 반대 방향에 있다. 복귀 광 펄스들(950)은 거울(945)에 의해 방향 전환되고 방향 전환된 광 펄스들(942)과는 반대 방향을 따라 다면체(910)를 향해 전파될 수 있다.
도 11은 수신 개구를 효과적으로 증가시키고 상이한 면들로부터의 복귀 광 펄스들을 수집하기 위한 빔 조향 장치(1100)의 예시적인 구성을 예시한다. 도 9b 및 도 11을 참조하면, 도 9b에 도시된 하나 이상의 복귀 광 펄스(950)(예를 들어, 시야 내의 물체에 의해 산란되거나 반사된 광 펄스들로부터 LiDAR 시스템에 의해 수집된 광 펄스)는 도 11에 도시된 복귀 광 펄스들(1110)에 대응할 수 있다. 복귀 광 펄스들(1110)은, 예를 들어, 오목 반사체(920)의 반사 표면(예를 들어, 거울(1130))에 도달할 수 있다. 오목 반사체(920)의 거울(1130)에 의한 제1 반사 후에, 복귀 광 펄스들(1110)은 다면체(910)를 향해 방향 전환될 수 있다. 몇몇 실시예에서, 하나 이상의 복귀 광 펄스(1110)는 산란될 수 있고 빔 전파에 수직인 방향들로 광범위하게 연장될 수 있다. 그 결과, (다면체(910)에 의해 차단되어 그것의 그늘 내에 있는 부분을 제외하고) 거울(1130)의 상당한 부분 또는 전체 표면이 하나 이상의 복귀 광 펄스(1110)를 수신할 수 있다. 그러므로, 하나 이상의 복귀 광 펄스(1110)는 거울(1130)에 의해 반사되어 다면체(910)의 상이한 면들로 지향되는 광의 다수의 부분의 펄스들을 발생시킬 수 있다. 예를 들어, 도 11에 도시된 바와 같이, 다면체(910)를 향해 전파되는 복귀 광 펄스들(1120)의 하나의 부분이 면(1140)(예를 들어, 도 9b에 도시된 동일한 면(940))에 도달할 수 있고 광 펄스들(1150)로서 면(1140)에 의해 반사/방향 전환될 수 있으며; 다면체(910)를 향해 전파되는 복귀 광 펄스들(1122)의 다른 부분이 상이한 면(1142)에 도달할 수 있고 광 펄스들(1152)로서 면(1142)에 의해 반사/방향 전환될 수 있으며; 다면체(910)를 향해 전파되는 복귀 광 펄스들(1124)의 또 다른 부분이 상이한 면(1144)에 도달할 수 있고 광 펄스들(1154)로서 면(1144)에 의해 반사/방향 전환될 수 있다.
도 11을 참조하면, 몇몇 실시예에서, 다면체(910)의 상이한 면들에 의해 반사/방향 전환된 빔들은 상이한 수신 광학 시스템들(예를 들어, 시스템들(1160, 1162, 및 1164))에 의해 수집될 수 있다. 예를 들어, 제1 수신 광학 시스템(1160)이 광 펄스들(1150)의 경로 내에 배치될 수 있고; 제2 수신 광학 시스템(1162)이 광 펄스들(1152)의 경로 내에 배치될 수 있고, 기타 등등이다.
도 12a 내지 도 12c는 수신 광학 시스템들의 예시적인 구성들을 예시한다. 도 12a, 도 12b, 및 도 12c를 참조하면, 수신 광학 시스템은 하나의 굴절 광학 렌즈(1210)(도 12a에 도시됨), 또는 다수의 광학 요소를 포함하는 하나의 복합 광학 렌즈(1220)(도 12b에 도시됨), 또는 하나의 포물면 또는 구면 거울 및 하나의 굴절 광학 렌즈를 포함하는 하나의 복합 포커싱 광학계(1230)(도 12c에 도시됨)를 포함할 수 있다. 도 12a 내지 도 12c에 도시된 굴절 광학 렌즈들은 구면 또는 비구면 렌즈들, 또는 둘 모두의 조합일 수 있다. 도 12a 내지 도 12c에 도시된 수신 광학 시스템들 중 임의의 것이, 입사 광의 펄스들이 약간 기울어지고 발산하는 각도들을 가질 수 있는지 여부에 관계없이, 실질적으로 평행한 입사 광을 검출기 요소(1240) 상에 포커싱할 수 있다. 3개의 예시적인 실시예가 도 12a 내지 도 12c에 열거되지만, 수신 광학 시스템들의 다른 구성들이 동일한 목적에 기여하기 위해 사용될 수 있다는 점이 인식된다.
도 12a 내지 도 12에 예시된 검출기 요소(1240)는 광학 신호들을 검출하고 광학 신호들을 전기 신호들로 변환할 수 있는 광학 감응 디바이스를 포함할 수 있다. 도 13a는 광학 감응 디바이스(1320)를 사용한 직접 광 수집을 위한 검출기 요소(1240)의 예시적인 실시예를 예시한다. 도 13a에 도시된 바와 같이, 광 펄스들은 선택적인 윈도우(1310)를 통해 전파되고 광학 감응 디바이스(1320)에 도달할 수 있으며, 이 광학 감응 디바이스는 광학 신호들을 전기 신호들로 변환한다. 전기 신호들은 전기 회로 보드(1330) 상의 전기 회로 요소들에 의해 추가로 처리될 수 있고 추가 처리를 위해 디지털 데이터로 변환될 수 있다. 몇몇 예에서, 광학 감응 디바이스(1320)는 광학 감응 디바이스(1320)의 표면 상에 배치된 굴절률 매칭 재료를 포함할 수 있다. 예를 들어, 광학 감응 디바이스(1320)는 InGaAs 재료를 포함할 수 있는데, 그것의 굴절률은 공기와 불일치한다. 그러므로, 불일치를 완화하거나 제거하기 위해 굴절률 매칭 재료가 광학 감응 디바이스(1320)의 표면 상에 배치된다.
도 13b는 광학 파이버(1350)를 사용한 광 수집을 위한 검출기 요소(1240)의 다른 예시적인 실시예를 예시한다. 도 13b에 도시된 바와 같이, 광학 감응 디바이스(1370)에 의해 수신된 광 펄스들은 먼저 광학 디바이스(1340)에 의해 광학 파이버(1350)의 일 단부에 포커싱될 수 있다. 광학 파이버(1350)는 다중-모드 파이버, 또는 단일 모드 파이버, 또는 파이버 내부 클래딩에 들어가는 광이 작은 코어 내로 천천히 흡수되는 이중 클래딩 파이버일 수 있다. 일 실시예에서, 광학 파이버(1350)의 다른 단부로부터 출사하는 광 펄스들은 광학 디바이스(1360)에 의해 광학 감응 디바이스(1370)에 수렴될 수 있으며, 이 광학 감응 디바이스는 광학 신호들을 전기 신호들로 변환할 수 있다. 광학 파이버(1350) 밖으로 나오는 광 신호를 수렴시키는 광학 디바이스(1360)는 광학 렌즈, 구면 또는 비구면 거울, 또는 광학 감응 디바이스(1370)에 대한 직접 결합일 수 있으며, 이때 광학 감응 디바이스(1370)에 의해 수신되는 광의 양을 개선하기 위해 디바이스(1370)의 표면 상에 선택적인 굴절률 매칭 재료가 배치된다. 전기 신호들은 전기 보드(1380) 상의 전기 회로 요소들에 의해 추가로 처리될 수 있다. 이 실시예에서, 전기 디바이스들(예를 들어, 전기 보드(1380)) 및/또는 광학 감응 디바이스(1370)는 도 11에 도시된 빔 조향 장치(1100)로부터 멀리 떨어져서(예를 들어, 0.1 미터 초과, 1 미터 초과, 또는 심지어 5 미터 초과) 배치될 수 있어, 빔 조향 장치(1100)의 크기가 감소될 수 있다. 예를 들어, 광학 파이버(1350)의 광 출사 단부 이외에, 빔 조향 장치(1100)는 작은 물리적 치수를 갖도록 구성될 수 있다.
다시 도 11을 참조하면, 다른 실시예에서 수신 광학 시스템(1160)은 광 펄스들(1150)의 경로 내에 배치될 수 있다. 다른 실시예에서, 수신 광학 시스템(1164)은 광 펄스들(1154)의 경로 내에 배치될 수 있다. 또 다른 실시예에서, 2개 이상의 수신 광학 시스템(예를 들어, 1160 및 162 둘 모두, 또는 1160, 1162 및 1164 전부)이 LiDAR 시스템에서 공존할 수 있다. 일 실시예에서 이러한 수신 광학 시스템들 각각은 서로 독립적일 수 있으며, 각각은 그 자신의 광학 감응 디바이스를 갖는다. 다른 실시예에서 이들 수신 광학 시스템의 일부 또는 전부가 하나의 광학 감응 디바이스를 공유할 수 있다.
도 14a 및 도 14b는 자유-공간 광학계 또는 파이버 번들 및/또는 전력 결합기의 조합을 사용하여 상이한 면들로부터의 방향 전환된 복귀 광 펄스들을 결합하기 위한 예시적인 구성들을 예시한다. 도 14a에 도시된 바와 같이, 몇몇 실시예에서, 하나의 광학 감응 디바이스(예를 들어, 디바이스(1420))는 다수의 수신 광학 시스템들 사이에서 공유될 수 있다. 그러한 실시예들에서, 상이한 방향들로부터 오는 빔들의 광 펄스들은 다수의 거울 및 포커싱 광학계(예를 들어, 광학계(1410, 1412, 및 1414))에 의해 동일한 광학 감응 디바이스(1420)로 방향 전환될 수 있다. 예를 들어, 광 펄스들(1150)은 포커싱 광학계(1410)에 의해 포커싱되고 후속하여 포커싱된 광(1450)의 펄스들이 되고 광학 감응 디바이스(1420)에 도달할 수 있다. 유사하게, 광 펄스들(1152)의 펄스들은 광학계(1412)에 의해 방향 전환 및 포커싱되고 후속하여 포커싱된 광 빔(1452)의 펄스들이 되고 광학 감응 디바이스(1420)에 도달할 수 있다. 1154의 펄스들은 광학계(1414)에 의해 방향 전환 및 포커싱되고 후속하여 포커싱된 광 빔(1454)이 되고 광학 감응 디바이스(1420)에 도달할 수 있다.
도 14b는 하나의 광학 감응 디바이스(1440)가 다수의 수신 광학 시스템들 사이에서 공유되는 다른 실시예를 예시한다. 이 실시예에서, 각각의 상이한 방향으로부터 오는 각각의 광의 펄스들은 광학 수렴 디바이스(도 14b에 도시되지 않음)에 의해 포커싱될 수 있다. 후속하여, 포커싱된 광 빔들 각각은 각각 3개의 광학 파이버 채널(1430, 1432, 및 1434) 각각의 수신 단부 내로 결합될 수 있다. 이들 3개의 광학 파이버 채널은, 예를 들어, 3 대 1 광학 결합 디바이스(예를 들어, 리버스 팬-아웃 파이버 광학계 번들(reverse fan-out fiber optics bundle))를 사용하여 하나의 광학 채널로 함께 결합될 수 있다. 후속하여, 결합된 광학 채널의 전송 단부로부터 전송된 광 펄스들은 하나의 공유된 광학 감응 디바이스(1440)로 지향될 수 있다. 몇몇 실시예에서, 광학 결합 디바이스들이 사용되지 않을 수 있고, 광학 파이버 번들(예를 들어, 3개의 광학 파이버의 번들)의 전송 단부로부터 전송된 광 펄스들은 하나의 공유된 광학 감응 디바이스 상에 직접 포커싱될 수 있다.
도 18은 진동 거울을 갖는 빔 조향 장치(1800)의 다른 실시예를 예시한다. 도 18에 도시된 바와 같이, 다면체(910)(도 9a 내지 도 9d에 도시됨)를 갖는 대신에, 빔 조향 장치(1800)는 1-면 또는 다중-면 진동 거울(1810)을 포함한다. 다중-면 거울의 경우, 이웃하는 면들은 도 11에 도시된 다면체(910)의 이웃하는 면들의 각도와 유사한 각도(예를 들어, 20°)에 있을 수 있다. 거울(1810)은 y-축에 평행한 또는 그것을 따르는 축(1820)을 따라 앞뒤로 진동할 수 있어서, 거울(1810)의 하나 이상의 면에서 조명하는 광 빔의 펄스들이 x-z 평면을 따라 상이한 방향들로 조향될 수 있다. 다면체에 대해 도 15a 내지 도 15e에서 설명된 실시예들과 유사하게, 조명 광 펄스들을 반사하는 진동 거울(1810)의 부분은 만곡될 수 있고/있거나 복귀 광 펄스들을 수집하는 진동 거울(1810)의 부분과는 상이한 크기를 가질 수 있다는 것이 인식된다.
다시 도 16을 참조하면, 몇몇 실시예에서, 펄스의 비행 시간(예를 들어, 펄스가 LiDAR 시스템 밖으로 전송되는 것으로부터 FOV 내의 물체에 의해 산란/반사되는 것까지 그리고 LiDAR 시스템의 검출기에 의해 수신되는 것까지 걸리는 시간)을 정확하게 결정하기 위해, 펄스가 LiDAR 시스템 밖으로 전송되는 시간이 결정될 필요가 있다. 도 16은 광학 빔 조향 장치(1610), 광원(1620), 및 광학 감응 디바이스(1630)를 예시한다. 광학 빔 조향 장치(1610)는 도 1b, 도 4a, 도 4b, 또는 도 5에 예시된 빔 조향 장치(100), 도 9a 내지 도 9d에 예시된 장치(900)와 유사하거나 동일할 수 있고; 광원(1620)은 도 2b, 도 2c, 또는 도 3에 예시된 광원(220), 도 10a 및 도 10b에 예시된 광원(1010)과 유사하거나 동일할 수 있고; 광학 감응 디바이스(1630)는 도 12a 내지 도 12c, 도 13a 및 도 13b, 및 도 14a 및 도 14b에 예시된 것들과 유사하거나 동일할 수 있다. 위에서 논의된 바와 같이, 광학 감응 디바이스는 수신된 광 신호들을 검출 및 변환하는 광 검출 모듈을 포함할 수 있다.
도 16을 참조하면, 일 실시예에서, 광원(1620)은 외부 신호 소스 또는 내부적으로 발생된 신호 소스로부터 제공될 수 있는 전기 트리거 신호에 기초하여 하나 이상의 광 펄스를 발생시킨다. 몇몇 실시예에서, 전기 트리거 신호를 발생시키는 것과 광원(1620) 밖으로 하나 이상의 광 펄스를 전송하는 것 사이에 걸리는 시간은 펄스마다 상수로 간주될 수 있고/있거나(예를 들어, 무시할 만한 편차를 갖고서) 교정될 수 있다. 이러한 전기 트리거 신호는 전기 접속부(예를 들어, 케이블)(1640)를 통해 광학 감응 디바이스(1630)로 전송되고 광 펄스의 기준 시간을 결정하는 데 사용될 수 있다.
몇몇 실시예에서, 광학 파이버(1650)가 광원(1620) 밖으로 전송된 하나 이상의 광 펄스의 일부를 지향시키는 데 사용될 수 있다. 광학 스플리터가 광 펄스를 분할하고 광 펄스의 일부를 기준 신호로서 획득하는 데 사용될 수 있다. 이 부분은 10%, 1%, 0.1%, 또는 0.0001%, 또는 임의의 원하는 백분율과 같은 총 광 펄스의 임의의 백분율일 수 있다. 광 펄스의 이 부분은 광학 파이버(1650)에 의해 광학 감응 디바이스(1630)로 지향되고 광원(1620) 밖으로 전송된 광 펄스의 기준 시간을 결정하는 데 사용될 수 있다.
몇몇 실시예에서, 광 펄스의 일부를 기준 신호로서 획득하고 광 펄스가 광원(1620) 밖으로 전송된 후에 그 부분을 광학 감응 디바이스(1630)로 방향 전환시키기 위해 기준 펄스 발생 디바이스(1660)가 광학 빔 조향 장치(1610)와 함께 배치될 수 있다. 이 부분은 10%, 1%, 0.1%, 또는 0.0001%, 또는 임의의 원하는 백분율과 같은 총 광 펄스의 임의의 백분율일 수 있다. 당업자는 도 16에 도시된 기준 펄스 발생 디바이스(1660)는 단지 예시일 뿐이고; 하나 이상의 광 펄스의 일부를 기준 신호들로서 획득하고 이들을 광학 감응 디바이스(1630)로 방향 전환시킬 수 있는 임의의 광학계가 사용될 수 있다는 점을 인식할 수 있다. 예를 들어, 기준 펄스 발생 디바이스(1660)는 광 펄스들의 일부를 광학 감응 디바이스로 반사하는 부분 반사 디바이스일 수 있다.
도 16과 관련하여 논의된 이전의 실시예들에서, 기준 신호(예를 들어, 기준 광 펄스)는 광학 감응 디바이스(1630)에 의해 검출될 수 있다. 도 17을 참조하면, 기준 신호는 기준 펄스(1710)로서 예시된다. 도 17은 또한 복귀 광 펄스(1720)를 예시한다. 복귀 광 펄스(예를 들어, FOV 내의 물체에 의해 반사/산란되고 광학 감응 디바이스(1630)에 의해 수신되는 펄스)는 펄스(1720)로서 예시된다. 펄스(1720)는 기준 펄스(1710)와는 상이한 강도 및 펄스 폭을 가질 수 있다. 몇몇 실시예에서, 펄스들(1710 및 1720)은 유사한 형상 프로파일을 가질 수 있다. 일 실시예에서, 기준 펄스(1710)는 복귀 펄스와 기준 펄스 사이의 시간 차이(또는 TOF)를 정확하게 결정하기 위해 수신된 복귀 펄스(1720)를 매칭시키기 위한 템플릿으로서 사용될 수 있다. TOF에 기초하여, 시야 내의 물체의 거리가 결정될 수 있다.
도 19는 LiDAR 스캐닝 시스템(예를 들어, 도 1a 및 도 1b, 도 2a 내지 도 2c, 도 3, 도 4a 및 도 4b, 도 5, 도 9a 내지 도 9d, 도 10a 및 도 10b, 및 도 11에 도시된 다양한 시스템들)을 사용하여 3D 이미지를 생성하기 위한 하나 이상의 광 펄스의 비행 시간을 결정하는 프로세스에 대한 예시적인 흐름도를 예시한다. 도 19를 참조하면, 블록 1902에서, 하나 이상의 광 펄스(예를 들어, 약 0.01 나노초 내지 5 나노초의 펄스 폭을 갖는 짧은 레이저 광 펄스들, 또는 5 나노초 내지 30 나노초 또는 그보다 긴 펄스 폭을 갖는 광 펄스들)가 LiDAR 스캐닝 시스템의 광원으로부터 발생될 수 있다. 블록 1904에서, 빔 조향 장치가 수평 방향 및 수직 방향 둘 모두에서 시야를 가로질러 하나 이상의 광 펄스를 조향하거나 스캐닝할 수 있다. 블록 1906에서, 하나 이상의 광 펄스 또는 그의 일부가 물체를 조명하거나 그에 도달하고 하나 이상의 방향으로 산란되거나 반사된다. 몇몇 실시예에서, 산란되거나 반사된 광 펄스들 중 일부가 LiDAR 스캐닝 시스템으로 복귀하고 LiDAR 스캐닝 시스템의 검출기의 수집 개구에 도달할 수 있다.
블록 1910에서, 하나 이상의 복귀 광 펄스는 LiDAR 스캐닝 시스템 밖으로 전송된 광 펄스들의 조향 방향과 실질적으로 반대이고 그 광 펄스들에 실질적으로 평행한 방향으로 조향되거나 방향 전환될 수 있다. 블록 1912에서, 하나 이상의 방향 전환된 복귀 광 펄스는 수신 광학 시스템의 광 검출기 상에 포커싱될 수 있다. 블록 1914에서, 광 검출기는 광 검출기에 도달하는 방향 전환된 복귀 광 펄스들의 광자들을 하나 이상의 전기 신호로 변환한다. 블록 1916에서, 광 검출기에 의해 발생된 하나 이상의 출력 전기 신호가 미리 결정된 비율만큼 증폭 회로 또는 디바이스를 사용하여 증폭될 수 있다. 블록 1920에서, 증폭된 하나 이상의 전기 신호는 미리 결정된 샘플링 레이트로 샘플링되고 디지털 값으로 변환될 수 있다. 몇몇 실시예에서, 디지털화된 신호 데이터는 시야 내의 가장 먼 물체에 대응하는 예상 최대 TOF의 기간 내에 수집될 수 있다. 블록 1922에서, 디지털화된 신호 데이터는 하나 이상의 복귀 광 펄스의 TOF를 결정하고, LiDAR 스캐닝 시스템으로부터 물체들의 반사 또는 산란 포인트들까지의 거리를 결정하기 위해 분석될 수 있다.
개시된 프로세스들 및/또는 흐름도들에서의 블록들의 특정 순서 또는 계층 구조는 예시적인 접근법들의 예시라는 것이 이해된다. 설계 선호도에 기초하여, 프로세스들 및/또는 흐름도들에서의 블록들의 특정 순서 또는 계층 구조가 재배열될 수 있다는 것이 이해된다. 또한, 몇몇 블록들이 결합되거나 생략될 수 있다. 첨부한 방법 청구항들은 다양한 블록들의 요소들을 샘플 순서로 제시하며, 제시된 특정 순서 또는 계층 구조로 제한되도록 의도되지 않는다.
이전의 설명은 임의의 당업자가 본 명세서에 설명된 다양한 태양들을 실시하는 것을 가능하게 하기 위해 제공된다. 이들 태양들에 대한 다양한 수정들을 당업자가 손쉽게 알 수 있을 것이며, 본 명세서에서 정의된 일반적인 원리들은 다른 태양들에 적용될 수 있다. 따라서, 청구항들은 본 명세서에 도시된 태양들로 제한되도록 의도되지 않고, 청구항 언어와 일치하는 전체 범위가 부여되어야 하며, 여기서 요소를 단수 형태로 언급하는 것은 명확하게 그렇게 명시되지 않는 한 "오직 유일한 하나"를 의미하도록 의도되기보다는 "하나 이상"을 의미하도록 의도된다. 단어 "예시적인"은 본 명세서에서 "예, 사례, 또는 예시로서의 역할을 하는"을 의미하도록 사용된다. 본 명세서에서 "예시적인"으로 설명된 임의의 태양은 반드시 다른 태양들에 비해 바람직하거나 유리한 것으로 해석되어야 하는 것은 아니다. 명확하게 달리 명시되지 않는 한, 용어 "몇몇"은 하나 이상을 말한다. "A, B, 또는 C 중 적어도 하나", "A, B, 또는 C 중 하나 이상", "A, B, 및 C 중 적어도 하나", "A, B, 및 C 중 하나 이상", 및 "A, B, C, 또는 이들의 임의의 조합"과 같은 조합들은 A, B, 및/또는 C의 임의의 조합을 포함하며, 다수의 A, 다수의 B, 또는 다수의 C를 포함할 수 있다. 구체적으로, "A, B, 또는 C 중 적어도 하나", "A, B, 또는 C 중 하나 이상", "A, B, 및 C 중 적어도 하나", "A, B, 및 C 중 하나 이상", 및 "A, B, C, 또는 이들의 임의의 조합"과 같은 조합들은 A만, B만, C만, A와 B, A와 C, B와 C, 또는 A와 B와 C일 수 있으며, 여기서 임의의 그러한 조합들은 A, B, 또는 C의 하나 이상의 멤버 또는 멤버들을 포함할 수 있다. 당업자에게 알려진 또는 나중에 알려지게 되는 본 개시 전체에 걸쳐 설명된 다양한 태양들의 요소들에 대한 모든 구조적 및 기능적 등가물들은 본 명세서에 참고로 명시적으로 포함되며 청구항들에 의해 포함되도록 의도된다. 더욱이, 본 명세서에 개시된 어떠한 것도 그러한 개시가 청구항들에 명시적으로 언급되는지 여부에 관계없이 대중에 헌정되도록 의도되지 않는다. 단어 "모듈", "메커니즘", "요소", "디바이스" 등은 단어 "수단"에 대한 대체물이 아닐 수 있다. 그렇기 때문에, 어떠한 청구항 요소도, 그 요소가 어구 "~하기 위한 수단"을 사용하여 명시적으로 언급되지 않는 한, 35 U.S.C. § 112(f)에 따라 해석되어서는 안 된다.

Claims (28)

  1. 차량에 사용되기 위한 광 검출 및 거리 측정(light detection and ranging, LiDAR) 시스템으로서,
    하나 이상의 광 빔을 제공하도록 구성되는 광원과,
    광원에 광학적으로 결합되는 빔 조향 장치를 포함하며,
    빔 조향 장치는,
    서로에 대해 모두 직교하지 않는 복수의 반사 면(facet)을 포함하고, 복수의 반사 면 각각은 인접한 두 반사 면 각각과 경계를 공유하는, 다각형 구조체와,
    다각형 구조체에 광학적으로 결합되는 이동 가능한 거울을 포함하고,
    다각형 구조체와 이동 가능한 거울의 조합은, 서로에 대해 이동할 때,
    시야 내의 물체를 조명하기 위해 하나 이상의 광 빔을 수직 및 수평으로 조향하고,
    시야 내의 물체의 조명에 기초하여 발생되는 복귀 광을 수신하고,
    복귀 광을 검출기로 지향시키도록 구성되는, 광 검출 및 거리 측정 시스템.
  2. 제1항에 있어서,
    복수의 반사 면 중 임의의 인접한 두 반사 면 사이의 각도는 90도가 아닌, 광 검출 및 거리 측정 시스템.
  3. 제1항에 있어서,
    다각형 구조체는, 복수의 반사 면과 2개의 비반사 면을 포함하여 총 6개보다 많은 면을 포함하는, 광 검출 및 거리 측정 시스템.
  4. 제3항에 있어서,
    다각형 구조체는 육면체나 칠면체나 팔면체인, 광 검출 및 거리 측정 시스템.
  5. 제1항에 있어서,
    다각형 구조체는 총 6개 미만의 면을 포함하는, 광 검출 및 거리 측정 시스템.
  6. 제5항에 있어서,
    다각형 구조체는 오면체인, 광 검출 및 거리 측정 시스템.
  7. 제5항에 있어서,
    서브-프레임들 사이에서 수직 및 수평 스캐닝 방향을 오프셋하기 및 인터레이싱 래스터 패턴을 변화시키기 중 어느 하나 또는 양자 모두를 용이하게 하기 위해 복수의 반사 면은 비대칭이 되도록 구성되는, 광 검출 및 거리 측정 시스템.
  8. 제1항에 있어서,
    복수의 반사 면 중 적어도 하나는 만곡된 면인, 광 검출 및 거리 측정 시스템.
  9. 제1항에 있어서,
    이동 가능한 거울은 진동 거울을 포함하는, 광 검출 및 거리 측정 시스템.
  10. 제9항에 있어서,
    진동 거울은 제1 축을 중심으로 진동하도록 작동하고, 다각형 구조체는 제2 축을 중심으로 회전하도록 작동하며,
    진동 거울과 다각형 구조체의 조합은, 각각의 축에 기초하여 이동할 때, 하나 이상의 광 빔을 이용하여 물체를 동축으로 조명하고 복귀 광을 수집하는, 광 검출 및 거리 측정 시스템.
  11. 제9항에 있어서,
    진동 거울은 다수 면 진동 거울인, 광 검출 및 거리 측정 시스템.
  12. 제1항에 있어서,
    다각형 구조체가 회전하도록 구성되는 축에 대해 직교하는 축을 중심으로 진동 거울이 진동하도록 구성되는, 광 검출 및 거리 측정 시스템.
  13. 제1항에 있어서,
    하나 이상의 광 빔은 제1 광 빔과 제2 광 빔을 포함하고,
    빔 조향 장치는, 시야 내의 제1 범위에서 제1 광 빔을 스캐닝하고 시야 내의 제2 범위에서 제2 광 빔을 스캐닝하고,
    제1 범위와 제2 범위는 중첩되는, 광 검출 및 거리 측정 시스템.
  14. 차량에 사용되기 위한 광 검출 및 거리 측정 시스템으로서,
    하나 이상의 광 빔을 생성하도록 구성되는 하나 이상의 광원과,
    하나 이상의 광 빔을 이용하여 광 검출 및 거리 측정 시스템의 시야를 스캐닝하도록 구성되는 빔 스캐너를 포함하며,
    빔 스캐너는,
    복수의 반사 표면을 포함하는 블록을 구비하는 회전 가능한 다각형 거울로서, 회전 가능한 다각형 거울의 적어도 두 개의 인접한 반사 표면은 서로에 대해 직교하지 않고, 복수의 반사 표면 각각은 인접한 두 반사 표면 각각과 경계를 공유하는, 회전 가능한 다각형 거울과,
    회전 가능한 평면 거울을 포함하고,
    빔 스캐너는 광학적으로 광원에 결합되고 광 검출 및 거리 측정 시스템의 시야 내의 물체를 조명하기 위해 광을 수직 및 수평으로 조향하도록 배치되는, 광 검출 및 거리 측정 시스템.
  15. 제14항에 있어서,
    빔 스캐너에 의해 지향되는 복귀 광을 수신하도록 구성되는 검출기를 더 포함하는, 광 검출 및 거리 측정 시스템.
  16. 제14항에 있어서,
    복수의 반사 표면은 4개 이상의 반사 표면을 포함하는, 광 검출 및 거리 측정 시스템.
  17. 제14항에 있어서,
    회전 가능한 다각형 거울은 다각형 거울 축을 중심으로 회전하도록 작동하고, 다각형 거울 축은 2개의 서로 반대편에 있는 블록의 비반사 표면을 통해 회전 가능한 다각형 거울 블록 안으로 연장하는, 광 검출 및 거리 측정 시스템.
  18. 제14항에 있어서,
    회전 가능한 평면 거울은 다각형 거울 축에 직교하는 축을 중심으로 회전할 수 있는, 광 검출 및 거리 측정 시스템.
  19. 제14항에 있어서,
    회전 가능한 평면 거울은 제1 축을 중심으로 진동하도록 작동하고, 회전 가능한 다각형 거울의 블록은 제2 축을 중심으로 회전하도록 작동하고,
    회전 가능한 평면 거울과 회전 가능한 다각형 거울의 블록의 조합은, 각각의 축에 기초하여 이동할 때, 하나 이상의 광 빔을 이용하여 물체를 동축으로 조명하고 복귀 광을 수집하는, 광 검출 및 거리 측정 시스템.
  20. 제14항에 있어서,
    하나 이상의 광 빔을 빔 스캐너로 전달하는 하나 이상의 광학 파이버를 더 포함하는, 광 검출 및 거리 측정 시스템.
  21. 제14항에 있어서,
    하나 이상의 광 빔은 제1 광 빔과 제2 광 빔을 포함하고,
    제1 광 빔과 제2 광 빔은 빔 스캐너에 의해 스캐닝되어 각각 제1 시야와 제2 시야를 형성하고,
    제1 시야와 제2 시야는 결합되어 광 검출 및 거리 측정 시스템의 시야를 형성하고,
    제1 시야와 제2 시야는 부분적으로 중첩되어 광 검출 및 거리 측정 시스템의 시야 내의 중첩 영역을 형성하는, 광 검출 및 거리 측정 시스템.
  22. 제14항에 있어서,
    하나 이상의 광 빔은 제1 광 빔과 제2 광 빔을 포함하고,
    제1 광 빔과 제2 광 빔 각각은 빔 스캐너에 의해 스캐닝되어 한 방향에서 약 60도 폭의 개별적인 부분 시야를 형성하는, 광 검출 및 거리 측정 시스템.
  23. 제14항에 있어서,
    회전 가능한 평면 거울은 회전 가능한 다각형 거울에 의해 반사되는 광을 수신하도록 배치되고, 회전 가능한 평면 거울은 광을 시야를 향해 지향하도룩 배치되는, 광 검출 및 거리 측정 시스템.
  24. 차량에 사용되기 위한 광 검출 및 거리 측정 시스템으로서,
    입사 광을 제공하도록 작동하는 광원과,
    복귀 광을 수신하도록 작동하는 검출기와,
    광원에 광학적으로 결합되는 다각형 구조체로서, 다각형 구조체는 복수의 반사 면을 포함하고, 복수의 반사 면 중 임의의 인접한 두 반사 면 사이의 각도는 90도가 아닌, 복수의 반사 면 각각은 인접한 두 반사 면 각각과 경계를 공유하는, 다각형 구조체와,
    다각형 구조체에 광학적으로 결합되는 이동 가능한 거울을 포함하고,
    다각형 구조체와 이동 가능한 거울은 서로 직교하는 두 방향으로 광을 조향하도록 배치되는, 광 검출 및 거리 측정 시스템.
  25. 제24항에 있어서,
    다각형 구조체의 복수의 반사 면은 3개 이상의 면을 포함하는, 광 검출 및 거리 측정 시스템.
  26. 제24항에 있어서,
    이동 가능한 거울은 진동 거울을 포함하는, 광 검출 및 거리 측정 시스템.
  27. 제24항에 있어서,
    다각형 구조체가 회전하도록 구성되는 축에 대해 직교하는 축을 중심으로 진동 거울이 진동하도록 구성되는, 광 검출 및 거리 측정 시스템.
  28. 제24항에 있어서,
    이동 가능한 거울은 다각형 구조체에 의해 반사되는 광을 수신하도록 배치되고, 이동 가능한 거울은 광을 시야를 향해 지향하도룩 배치되는, 광 검출 및 거리 측정 시스템.
KR1020227026144A 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR KR102568116B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662441280P 2016-12-31 2016-12-31
US62/441,280 2016-12-31
US201762529955P 2017-07-07 2017-07-07
US62/529,955 2017-07-07
US15/721,127 2017-09-29
US15/721,127 US10942257B2 (en) 2016-12-31 2017-09-29 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
KR1020217041437A KR102428152B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
PCT/US2017/067701 WO2018125725A1 (en) 2016-12-31 2017-12-20 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OR ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217041437A Division KR102428152B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR

Publications (2)

Publication Number Publication Date
KR20220108217A KR20220108217A (ko) 2022-08-02
KR102568116B1 true KR102568116B1 (ko) 2023-08-21

Family

ID=62708482

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020217041437A KR102428152B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
KR1020227026144A KR102568116B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
KR1020207022102A KR102342621B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
KR1020187030223A KR102141127B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020217041437A KR102428152B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020207022102A KR102342621B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
KR1020187030223A KR102141127B1 (ko) 2016-12-31 2017-12-20 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR

Country Status (6)

Country Link
US (8) US10942257B2 (ko)
JP (3) JP6764942B2 (ko)
KR (4) KR102428152B1 (ko)
CN (9) CN114675287A (ko)
DE (1) DE112017000127T5 (ko)
WO (1) WO2018125725A1 (ko)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
US9933513B2 (en) 2016-02-18 2018-04-03 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
US20170242104A1 (en) 2016-02-18 2017-08-24 Aeye, Inc. Ladar Transmitter with Induced Phase Drift for Improved Gaze on Scan Area Portions
US10754015B2 (en) 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
US10042159B2 (en) 2016-02-18 2018-08-07 Aeye, Inc. Ladar transmitter with optical field splitter/inverter
CN114296093A (zh) 2016-11-29 2022-04-08 布莱克莫尔传感器和分析有限责任公司 用于以点云数据集合对对象进行分类的方法和系统
CN113985427A (zh) 2016-11-30 2022-01-28 布莱克莫尔传感器和分析有限责任公司 对光学啁啾距离检测进行多普勒检测和校正的方法和系统
US11624828B2 (en) 2016-11-30 2023-04-11 Blackmore Sensors & Analytics, Llc Method and system for adaptive scanning with optical ranging systems
WO2018102188A1 (en) 2016-11-30 2018-06-07 Blackmore Sensors and Analytics Inc. Method and system for automatic real-time adaptive scanning with optical ranging systems
CN110506220B (zh) 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
US11054508B2 (en) 2017-01-05 2021-07-06 Innovusion Ireland Limited High resolution LiDAR using high frequency pulse firing
US10422880B2 (en) 2017-02-03 2019-09-24 Blackmore Sensors and Analytics Inc. Method and system for doppler detection and doppler correction of optical phase-encoded range detection
CN110431439A (zh) 2017-02-17 2019-11-08 艾耶股份有限公司 用于激光雷达脉冲冲突消除的方法和系统
US10401495B2 (en) 2017-07-10 2019-09-03 Blackmore Sensors and Analytics Inc. Method and system for time separated quadrature detection of doppler effects in optical range measurements
US11002857B2 (en) 2017-09-15 2021-05-11 Aeye, Inc. Ladar system with intelligent selection of shot list frames based on field of view data
US11415676B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Interlaced scan patterns for lidar system
US11415675B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Lidar system with adjustable pulse period
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
US10571567B2 (en) 2017-11-22 2020-02-25 Luminar Technologies, Inc. Low profile lidar scanner with polygon mirror
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
US20190257924A1 (en) * 2018-02-22 2019-08-22 Innovusion Ireland Limited Receive path for lidar system
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
WO2019245614A2 (en) 2018-03-09 2019-12-26 Innovusion Ireland Limited Lidar safety systems and methods
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
WO2019209727A1 (en) 2018-04-23 2019-10-31 Blackmore Sensors and Analytics Inc. Method and system for controlling autonomous vehicle using coherent range doppler optical sensors
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
KR102637175B1 (ko) * 2018-07-02 2024-02-14 현대모비스 주식회사 라이다 센싱장치
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
KR102363751B1 (ko) * 2018-09-05 2022-02-15 블랙모어 센서스 앤드 애널리틱스, 엘엘씨 코히런트 lidar의 피치-캐치 스캐닝을 위한 방법 및 시스템
JP2020046341A (ja) * 2018-09-20 2020-03-26 パイオニア株式会社 投光装置、投受光装置及び測距装置
US11408983B2 (en) * 2018-10-01 2022-08-09 Infineon Technologies Ag Lidar 2D receiver array architecture
US10656277B1 (en) 2018-10-25 2020-05-19 Aeye, Inc. Adaptive control of ladar system camera using spatial index of prior ladar return data
DE112019005684T5 (de) 2018-11-14 2021-08-05 Innovusion Ireland Limited Lidar-systeme und verfahren, bei denen ein mehrfacettenspiegel verwendet wird
US11391822B2 (en) * 2018-11-30 2022-07-19 Seagate Technology Llc Rotating pyramidal mirror
KR20200066947A (ko) * 2018-12-03 2020-06-11 삼성전자주식회사 라이다 장치 및 이의 구동 방법
US11940559B2 (en) 2018-12-11 2024-03-26 Baidu Usa Llc Light detection and range (LIDAR) device with component stacking for coaxial readout without splitter mirror for autonomous driving vehicles
TR201819800A2 (tr) * 2018-12-19 2020-07-21 Orta Dogu Teknik Ueniversitesi Hizli lidar ve konum tespi̇t uygulamalari i̇çi̇n adapti̇f yöntem ve mekani̇zmalar
US11822010B2 (en) * 2019-01-04 2023-11-21 Blackmore Sensors & Analytics, Llc LIDAR system
WO2020142316A1 (en) * 2019-01-04 2020-07-09 Blackmore Sensors & Analytics Llc Lidar apparatus with rotatable polygon deflector having refractive facets
DE112020000407B4 (de) * 2019-01-10 2024-02-15 Innovusion, Inc. Lidar-systeme und -verfahren mit strahllenkung und weitwinkelsignaldetektion
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
US20220357451A1 (en) * 2019-03-05 2022-11-10 Waymo Llc Lidar transmitter/receiver alignment
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US10656272B1 (en) 2019-04-24 2020-05-19 Aeye, Inc. Ladar system and method with polarized receivers
US20200341116A1 (en) * 2019-04-26 2020-10-29 Continental Automotive Systems, Inc. Lidar system including light emitter for multiple receiving units
US11728621B2 (en) 2019-06-05 2023-08-15 Stmicroelectronics (Research & Development) Limited Voltage controlled steered VCSEL driver
US11579290B2 (en) 2019-06-05 2023-02-14 Stmicroelectronics (Research & Development) Limited LIDAR system utilizing multiple networked LIDAR integrated circuits
US11525892B2 (en) * 2019-06-28 2022-12-13 Waymo Llc Beam homogenization for occlusion resistance
CN114144699A (zh) * 2019-07-16 2022-03-04 佳能株式会社 光学装置以及设置有光学装置的车载系统和移动设备
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
US11536807B2 (en) 2019-09-13 2022-12-27 Waymo Llc Systems and methods for modifying LIDAR field of view
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
US11453348B2 (en) * 2020-04-14 2022-09-27 Gm Cruise Holdings Llc Polyhedral sensor calibration target for calibrating multiple types of sensors
WO2021231559A1 (en) 2020-05-13 2021-11-18 Luminar, Llc Lidar system with high-resolution scan pattern
JP7427153B2 (ja) * 2020-05-15 2024-02-05 オーロラ・オペレイションズ・インコーポレイティッド Lidarシステム
US10942277B1 (en) 2020-06-19 2021-03-09 Aurora Innovation, Inc. LIDAR system
US20220004012A1 (en) * 2020-07-06 2022-01-06 Seagate Technology Llc Variable resolution and automatic windowing for lidar
US11828879B2 (en) 2020-07-29 2023-11-28 Lg Innotek Co., Ltd. Vibrated polarizing beam splitter for improved return light detection
US11164391B1 (en) 2021-02-12 2021-11-02 Optum Technology, Inc. Mixed reality object detection
US11210793B1 (en) * 2021-02-12 2021-12-28 Optum Technology, Inc. Mixed reality object detection
US20220260686A1 (en) * 2021-02-16 2022-08-18 Innovusion Ireland Limited Attaching a glass mirror to a rotating metal motor frame
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11260881B1 (en) * 2021-02-23 2022-03-01 Blackmore Sensors & Analytics, Llc LIDAR system
WO2022178575A1 (en) * 2021-02-24 2022-09-01 Baraja Pty Ltd An optical beam director
EP4260086A1 (en) 2021-03-01 2023-10-18 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11474212B1 (en) 2021-03-26 2022-10-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control and shot order simulation
US11822016B2 (en) 2021-03-26 2023-11-21 Aeye, Inc. Hyper temporal lidar using multiple matched filters to orient a lidar system to a frame of reference
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US11467263B1 (en) 2021-03-26 2022-10-11 Aeye, Inc. Hyper temporal lidar with controllable variable laser seed energy
US20230044929A1 (en) 2021-03-26 2023-02-09 Aeye, Inc. Multi-Lens Lidar Receiver with Multiple Readout Channels
US11686845B2 (en) 2021-03-26 2023-06-27 Aeye, Inc. Hyper temporal lidar with controllable detection intervals based on regions of interest
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (en) 2021-04-22 2024-01-17 Innovusion, Inc. A compact lidar design with high resolution and ultra-wide field of view
JP2024515659A (ja) * 2021-04-30 2024-04-10 上海禾賽科技有限公司 光探知装置及び乗り物、レーザーレーダー並びに探知方法
EP4314885A1 (en) 2021-05-12 2024-02-07 Innovusion, Inc. Systems and apparatuses for mitigating lidar noise, vibration, and harshness
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
DE102021205285A1 (de) 2021-05-25 2022-12-01 Zf Friedrichshafen Ag Haltevorrichtung
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
JP7311718B2 (ja) * 2021-07-30 2023-07-19 三菱電機株式会社 測距装置
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123170A1 (en) * 2006-11-27 2008-05-29 Riegl Laser Measurement Systems Gmbh Scanning apparatus
JP2010038859A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 3次元レーザ測距装置

Family Cites Families (436)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3122330A (en) 1961-12-11 1964-02-25 Ernest J Trentini Arc reflectors
US3854821A (en) 1971-10-29 1974-12-17 Westinghouse Electric Corp Optical system for wide band light energy
JPS5245479B2 (ko) 1972-02-19 1977-11-16
US3897150A (en) 1972-04-03 1975-07-29 Hughes Aircraft Co Scanned laser imaging and ranging system
JPS5085346A (ko) 1973-11-27 1975-07-09
DE2726999C2 (de) 1977-06-15 1983-05-05 Impulsphysik Gmbh, 2000 Hamburg Verfahren zur Wolkenhöhenmessung und langlebiger augensicherer Wolkenhöhenmesser nach dem Laufzeitprinzip
IT1130802B (it) 1980-04-23 1986-06-18 Cselt Centro Studi Lab Telecom Sistema ottico ad alta efficienza di accoppiamento in particolare per dispositivi di misura della attenuazione di fibre ottiche mediante retrodiffusione
US4464048A (en) 1981-03-25 1984-08-07 Barr & Stroud Limited Laser rangefinders
US4923263A (en) 1988-09-22 1990-05-08 The United States Of America As Represented By The Secretary Of The Army Rotating mirror optical scanning device
US5006721A (en) 1990-03-23 1991-04-09 Perceptron, Inc. Lidar scanning system
US5736958A (en) * 1990-10-29 1998-04-07 Essex Corporation Image synthesis using time sequential holography
JPH04223422A (ja) 1990-12-26 1992-08-13 Ricoh Co Ltd 内面ポリゴンミラーおよびその製造方法
JPH04255280A (ja) 1991-02-07 1992-09-10 Nippon Steel Corp 半導体レーザ励起固体レーザ装置
US5157451A (en) 1991-04-01 1992-10-20 John Taboada Laser imaging and ranging system using two cameras
US5166944A (en) 1991-06-07 1992-11-24 Advanced Laser Technologies, Inc. Laser beam scanning apparatus and method
US5442358A (en) 1991-08-16 1995-08-15 Kaman Aerospace Corporation Imaging lidar transmitter downlink for command guidance of underwater vehicle
US5303084A (en) 1991-08-27 1994-04-12 Kaman Aerospace Corporation Laser light beam homogenizer and imaging lidar system incorporating same
GB2266620B (en) 1992-04-27 1996-08-28 Univ Southampton Optical power limited amplifier
US5475207A (en) * 1992-07-14 1995-12-12 Spectra-Physics Scanning Systems, Inc. Multiple plane scanning system for data reading applications
US5838239A (en) 1992-10-20 1998-11-17 Robotic Vision Systems, Inc. System for detecting ice or snow on surface which specularly reflects light
GB2272123B (en) 1992-11-03 1996-08-07 Marconi Gec Ltd Laser radar system
US5546188A (en) * 1992-11-23 1996-08-13 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system sensor and method
US5319434A (en) 1992-12-30 1994-06-07 Litton Systems, Inc. Laser rangefinder apparatus with fiber optic interface
US5793491A (en) 1992-12-30 1998-08-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system multi-lane sensor and method
DE69427860T2 (de) 1993-02-03 2002-04-11 Nitor San Jose Verfahren und vorrichtung zur projektion von bildern
US5657077A (en) 1993-02-18 1997-08-12 Deangelis; Douglas J. Event recording system with digital line camera
US5689519A (en) 1993-12-20 1997-11-18 Imra America, Inc. Environmentally stable passively modelocked fiber laser pulse source
US6175440B1 (en) * 1994-02-02 2001-01-16 Advanced Laser Technologies, Inc. Laser beam display
US5600487A (en) 1994-04-14 1997-02-04 Omron Corporation Dichroic mirror for separating/synthesizing light with a plurality of wavelengths and optical apparatus and detecting method using the same
US5734874A (en) 1994-04-29 1998-03-31 Sun Microsystems, Inc. Central processing unit with integrated graphics functions
JPH07301756A (ja) * 1994-05-09 1995-11-14 Omron Corp 光走査装置並びに当該光走査装置を用いた光センサ装置、符号情報読み取り装置及びposシステム
US8041483B2 (en) 1994-05-23 2011-10-18 Automotive Technologies International, Inc. Exterior airbag deployment techniques
US7209221B2 (en) 1994-05-23 2007-04-24 Automotive Technologies International, Inc. Method for obtaining and displaying information about objects in a vehicular blind spot
JP3839932B2 (ja) 1996-09-26 2006-11-01 キヤノン株式会社 プロセスカートリッジ及び電子写真画像形成装置及び電子写真感光体ドラム及びカップリング
US5623335A (en) 1995-05-04 1997-04-22 Bushnell Corporation Laser range finder with target quality display
US5691808A (en) 1995-07-31 1997-11-25 Hughes Electronics Laser range finder receiver
US5936756A (en) 1996-01-10 1999-08-10 Ricoh Company Ltd. Compact scanning optical system
JP3446466B2 (ja) 1996-04-04 2003-09-16 株式会社デンソー 車間距離制御装置用の反射測定装置及びこれを利用した車間距離制御装置
US5682225A (en) * 1996-06-07 1997-10-28 Loral Vought Systems Corp. Ladar intensity image correction for laser output variations
JPH10170636A (ja) * 1996-12-16 1998-06-26 Omron Corp 光走査装置
US6420698B1 (en) 1997-04-24 2002-07-16 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three-dimensional objects
DE19757848C2 (de) 1997-12-24 2003-04-30 Sick Ag Vorrichtung zur optischen Erfassung von Objekten
US6266442B1 (en) 1998-10-23 2001-07-24 Facet Technology Corp. Method and apparatus for identifying objects depicted in a videostream
JP2000147124A (ja) 1998-11-12 2000-05-26 Denso Corp 車載レーダ装置
US6163378A (en) 1999-06-14 2000-12-19 Khoury; Jehad Spectroscopic time integrative correlation for rapid medical diagnostic and universal image analysis
JP2001051225A (ja) 1999-08-10 2001-02-23 Asahi Optical Co Ltd ポリゴンミラー,走査光学系,及び内視鏡装置
US6351324B1 (en) 2000-03-09 2002-02-26 Photera Technologies, Inc. Laser imaging system with progressive multi-beam scan architecture
US6891960B2 (en) 2000-08-12 2005-05-10 Facet Technology System for road sign sheeting classification
JP2002222694A (ja) 2001-01-25 2002-08-09 Sharp Corp レーザー加工装置及びそれを用いた有機エレクトロルミネッセンス表示パネル
US6594000B2 (en) 2001-01-25 2003-07-15 Science And Technology Corporation Automatic gain control system for use with multiple wavelength signal detector
US6723975B2 (en) 2001-02-07 2004-04-20 Honeywell International Inc. Scanner for airborne laser system
US6847477B2 (en) 2001-02-28 2005-01-25 Kilolamdia Ip Limited Optical system for converting light beam into plurality of beams having different wavelengths
DE10110420A1 (de) 2001-03-05 2002-09-12 Sick Ag Vorrichtung zur Bestimmung eines Abstandsprofils
US6864498B2 (en) 2001-05-11 2005-03-08 Orbotech Ltd. Optical inspection system employing a staring array scanner
ATE405853T1 (de) 2001-06-15 2008-09-15 Ibeo Automobile Sensor Gmbh Verfahren zur verarbeitung eines tiefenaufgelösten bildes
DE10143060A1 (de) 2001-09-03 2003-03-20 Sick Ag Optoelektronische Erfassungseinrichtung
US6650407B2 (en) * 2001-09-04 2003-11-18 Rosemount Aerospace Inc. Wide field scanning laser obstacle awareness system
DE10153270A1 (de) 2001-10-29 2003-05-08 Sick Ag Optoelektronische Entfernungsmesseinrichtung
US6788445B2 (en) 2002-01-14 2004-09-07 Applied Materials, Inc. Multi-beam polygon scanning system
US6584000B1 (en) 2002-01-18 2003-06-24 Ching-Chung Lee Electronic stabilizer
US7489865B2 (en) 2002-02-01 2009-02-10 Cubic Corporation Integrated optical communication and range finding system and applications thereof
CN100516972C (zh) * 2002-05-09 2009-07-22 精工爱普生株式会社 光扫描装置的盖玻片清洁机构
WO2003096101A1 (fr) 2002-05-09 2003-11-20 Seiko Epson Corporation Scanner optique et mecanisme pour nettoyer le verre de protection du scanner optique
US6650404B1 (en) 2002-05-28 2003-11-18 Analog Modules, Inc. Laser rangefinder receiver
DE10244641A1 (de) 2002-09-25 2004-04-08 Ibeo Automobile Sensor Gmbh Optoelektronische Erfassungseinrichtung
US6783074B1 (en) * 2002-11-07 2004-08-31 Ncr Corporation Methods and apparatus for efficient use of space in arranging and configuring optical components of bar code scanners
EP1576385A2 (en) 2002-11-26 2005-09-21 James F. Munro An apparatus for high accuracy distance and velocity measurement and methods thereof
GB0305304D0 (en) 2003-03-07 2003-04-09 Qinetiq Ltd Scanning apparatus and method
US20040189195A1 (en) 2003-03-24 2004-09-30 Osram Opto Semiconductors Gmbh Devices including, methods using, and compositions of reflowable getters
JP4335816B2 (ja) 2003-05-30 2009-09-30 三菱電機株式会社 コヒーレントレーザレーダ装置
DE10331467A1 (de) 2003-07-11 2005-02-10 Sick Ag Vorrichtung zum optischen Abtasten von Objekten, insbesondere von Markierungen
US6950733B2 (en) 2003-08-06 2005-09-27 Ford Global Technologies, Llc Method of controlling an external object sensor for an automotive vehicle
TW591210B (en) 2003-10-23 2004-06-11 Asia Optical Co Inc Method for testing rangefinders
US7078672B2 (en) 2004-01-16 2006-07-18 Tong Xie Method and system for optically tracking a target using interferometric technique
US20060119535A1 (en) 2004-01-28 2006-06-08 Mark Van Fossan Variable signing system and method thereof
DE102004009496A1 (de) 2004-02-27 2005-09-15 Sick Ag Verfahren und Vorrichtung zum optischen Abtasten von Objekten
JP3867724B2 (ja) 2004-02-27 2007-01-10 オムロン株式会社 表面状態検査方法およびその方法を用いた表面状態検査装置ならびに基板検査装置
JP2005291787A (ja) 2004-03-31 2005-10-20 Denso Corp 距離検出装置
KR100462358B1 (ko) 2004-03-31 2004-12-17 주식회사 이오테크닉스 폴리곤 미러를 이용한 레이저 가공장치
US7505196B2 (en) 2004-03-31 2009-03-17 Imra America, Inc. Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems
WO2005100613A2 (en) 2004-04-13 2005-10-27 Hyo Sang Lee Ultraviolet lidar for detection of biological warfare agents
US7323987B2 (en) 2004-06-28 2008-01-29 Sigma Space Corporation Compact single lens laser system for object/vehicle presence and speed determination
US7649616B2 (en) 2004-07-08 2010-01-19 Lockheed Martin Corporation Fiber laser ladar
US7541944B2 (en) 2004-07-12 2009-06-02 The Boeing Company Systems and methods for collision avoidance
US7405676B2 (en) 2004-09-10 2008-07-29 Gatsometer B.V. Method and system for detecting with laser the passage by a vehicle of a point for monitoring on a road
IL165212A (en) 2004-11-15 2012-05-31 Elbit Systems Electro Optics Elop Ltd Device for scanning light
US7440084B2 (en) 2004-12-16 2008-10-21 Arete' Associates Micromechanical and related lidar apparatus and method, and fast light-routing components
WO2006077588A2 (en) 2005-01-20 2006-07-27 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle detection and display
US7532311B2 (en) 2005-04-06 2009-05-12 Lockheed Martin Coherent Technologies, Inc. Efficient lidar with flexible target interrogation pattern
JPWO2006109730A1 (ja) 2005-04-07 2008-11-20 松下電器産業株式会社 レーザ光源及び光学装置
US7652752B2 (en) 2005-07-14 2010-01-26 Arete' Associates Ultraviolet, infrared, and near-infrared lidar system and method
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
GB0515605D0 (en) 2005-07-29 2005-09-07 Qinetiq Ltd Laser measurement device and method
JP4694304B2 (ja) 2005-08-15 2011-06-08 株式会社トプコン 測量装置
WO2007025363A1 (en) 2005-09-02 2007-03-08 Neptec Apparatus and method for tracking an object
US8248272B2 (en) 2005-10-31 2012-08-21 Wavetronix Detecting targets in roadway intersections
JP2007144667A (ja) 2005-11-24 2007-06-14 Fuji Xerox Co Ltd 画像形成装置及び形成画像補正方法
JP2007144687A (ja) 2005-11-25 2007-06-14 Nihon Tetra Pak Kk レトルト食品用包装容器及び包装積層材料
US7936448B2 (en) 2006-01-27 2011-05-03 Lightwire Inc. LIDAR system utilizing SOI-based opto-electronic components
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
JP5020980B2 (ja) 2006-02-15 2012-09-05 プリズム インコーポレイテッド 蛍光スクリーンを用いるサーボ支援型走査ビーム表示システム
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US7724423B2 (en) 2006-03-16 2010-05-25 Alcatel-Lucent Usa Inc. Optical fiber laser having improved efficiency
US7626193B2 (en) 2006-03-27 2009-12-01 Princeton Lightwave, Inc. Apparatus comprising a single photon photodetector having reduced afterpulsing and method therefor
US7443903B2 (en) 2006-04-19 2008-10-28 Mobius Photonics, Inc. Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
US7541943B2 (en) 2006-05-05 2009-06-02 Eis Electronic Integrated Systems Inc. Traffic sensor incorporating a video camera and method of operating same
JP4788467B2 (ja) 2006-05-09 2011-10-05 ブラザー工業株式会社 インクジェット記録装置
US7969558B2 (en) 2006-07-13 2011-06-28 Velodyne Acoustics Inc. High definition lidar system
US8767190B2 (en) 2006-07-13 2014-07-01 Velodyne Acoustics, Inc. High definition LiDAR system
US7576837B2 (en) 2006-08-29 2009-08-18 The United States Of America As Represented By The Secretary Of The Army Micro-mirror optical tracking and ranging system
JP4160610B2 (ja) 2006-09-12 2008-10-01 北陽電機株式会社 走査式測距装置
US7701558B2 (en) 2006-09-22 2010-04-20 Leica Geosystems Ag LIDAR system
US7405678B2 (en) 2006-09-25 2008-07-29 International Business Machines Corporation Method of retrieving data from a storage device using a recovered read-back parameter
WO2008052365A1 (en) 2006-10-30 2008-05-08 Autonosys Inc. Scanning system for lidar
JP5056362B2 (ja) * 2007-02-06 2012-10-24 株式会社デンソーウェーブ レーザレーダ装置
US9880283B2 (en) 2007-02-13 2018-01-30 Zih Corp. System, apparatus and method for locating and/or tracking assets
US7639347B2 (en) 2007-02-14 2009-12-29 Leica Geosystems Ag High-speed laser ranging system including a fiber laser
EP2115507A4 (en) 2007-02-14 2017-11-22 Finisar Corporation Collimated ball lenses for optical triplexers
CN101246218B (zh) 2007-02-15 2010-06-02 中国石油化工股份有限公司 一种三分量vsp波场分离方法
JP5266739B2 (ja) * 2007-02-28 2013-08-21 株式会社デンソーウェーブ レーザレーダ装置
EP1965225A3 (en) * 2007-02-28 2009-07-15 Denso Wave Incorporated Laser radar apparatus for three-dimensional detection of objects
DE102007010236B4 (de) 2007-03-02 2008-11-20 Toposys Topographische Systemdaten Gmbh Vorrichtung und Verfahren zur Entfernungsbestimmung mittels Lichtpulsen
CN101641813B (zh) 2007-03-05 2013-01-02 促进科学E.V.麦克斯-普朗克公司 特别用于电化学电池或超电容器的材料及其制备方法
US7882861B2 (en) 2007-03-23 2011-02-08 Swanson David C Vacuum storage system
US8842356B2 (en) 2007-04-02 2014-09-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Micromechanical device with temperature stabilization and method for adjusting a defined temperature or a defined temperature course on a micromechanical device
US7649920B2 (en) 2007-04-03 2010-01-19 Topcon Corporation Q-switched microlaser apparatus and method for use
US7830527B2 (en) 2007-04-13 2010-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
US7472590B2 (en) 2007-04-30 2009-01-06 Hunter Solheim Autonomous continuous atmospheric present weather, nowcasting, and forecasting system
JP2008298520A (ja) * 2007-05-30 2008-12-11 Nec Corp 走査型距離計測装置
US8556430B2 (en) 2007-06-27 2013-10-15 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
US7746450B2 (en) 2007-08-28 2010-06-29 Science Applications International Corporation Full-field light detection and ranging imaging system
US8138849B2 (en) 2007-09-20 2012-03-20 Voxis, Inc. Transmission lines applied to contact free slip rings
US7945408B2 (en) 2007-09-20 2011-05-17 Voxis, Inc. Time delay estimation
US8027029B2 (en) 2007-11-07 2011-09-27 Magna Electronics Inc. Object detection and tracking system
JP5181628B2 (ja) * 2007-11-12 2013-04-10 株式会社デンソーウェーブ レーザレーダ装置
JP2009121838A (ja) 2007-11-12 2009-06-04 Hitachi High-Technologies Corp 検体分注装置、および自動分析装置装置
CN101231383B (zh) * 2008-02-26 2011-03-16 上海激光等离子体研究所 用于啁啾脉冲放大的自准直凹面调制光谱调制整形装置
US8526473B2 (en) 2008-03-31 2013-09-03 Electro Scientific Industries Methods and systems for dynamically generating tailored laser pulses
US7919764B2 (en) 2008-05-06 2011-04-05 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for enhanced terahertz radiation from high stacking fault density
US8805518B2 (en) 2008-05-09 2014-08-12 Medtronic, Inc. Peripheral nerve field stimulation control
US8324031B2 (en) 2008-06-24 2012-12-04 Globalfoundries Singapore Pte. Ltd. Diffusion barrier and method of formation thereof
JP2010008775A (ja) 2008-06-27 2010-01-14 Canon Inc 画像形成装置
DE102008031681A1 (de) 2008-07-04 2010-01-14 Eads Deutschland Gmbh LIDAR-Verfahren zur Messung von Geschwindigkeiten und LIDAR-Vorrichtung mit zeitgesteuerter Detektion
DE102008032216A1 (de) 2008-07-09 2010-01-14 Sick Ag Vorrichtung zur Erkennung der Anwesenheit eines Objekts im Raum
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
US7869112B2 (en) 2008-07-25 2011-01-11 Prysm, Inc. Beam scanning based on two-dimensional polygon scanner for display and other applications
CN201251669Y (zh) * 2008-07-30 2009-06-03 中国科学院上海光学精密机械研究所 近单光周期激光脉冲产生装置
US7982861B2 (en) 2008-07-31 2011-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Time delay and distance measurement
JP2010035385A (ja) 2008-07-31 2010-02-12 Kyocera Mita Corp モータ駆動制御装置
IL200332A0 (en) 2008-08-19 2010-04-29 Rosemount Aerospace Inc Lidar system using a pseudo-random pulse sequence
JP5267785B2 (ja) 2008-09-01 2013-08-21 株式会社Ihi レーザレーダ及びレーザレーダによる境界監視方法
DE102008045387B4 (de) * 2008-09-02 2017-02-09 Carl Zeiss Ag Vorrichtung und Verfahren zum Vermessen einer Oberfläche
CN201251869Y (zh) 2008-09-17 2009-06-03 丁业英 平面镜成像教学仪
US8126642B2 (en) 2008-10-24 2012-02-28 Gray & Company, Inc. Control and systems for autonomously driven vehicles
US8364334B2 (en) 2008-10-30 2013-01-29 Honeywell International Inc. System and method for navigating an autonomous vehicle using laser detection and ranging
ES2348823T3 (es) 2008-11-21 2010-12-15 Sick Ag SENSOR OPTOELÉCTRONICO Y PROCEDIMIENTO PARA MEDIR DISTANCIAS SEGÚN EL PRINCIPIO DEL TIEMPO DE PROPAGACIÓN DE LA LUZ.
WO2010068499A1 (en) 2008-11-25 2010-06-17 Tetravue, Inc. Systems and methods of high resolution three-dimensional imaging
US8116968B2 (en) 2008-12-23 2012-02-14 National Chiao Tung University Method for identification of traffic lane boundary
EP2202533A1 (de) 2008-12-23 2010-06-30 IBEO Automobile Sensor GmbH Erfassungsvorrichtung
JP5359424B2 (ja) 2009-03-18 2013-12-04 富士ゼロックス株式会社 文書処理システム、検索装置およびプログラム
EP2237065B1 (de) * 2009-03-31 2012-02-01 Pepperl + Fuchs GmbH Optischer Sensor nach dem Laufzeitprinzip
US8675181B2 (en) 2009-06-02 2014-03-18 Velodyne Acoustics, Inc. Color LiDAR scanner
CN101576620B (zh) * 2009-06-08 2011-06-15 北京理工大学 大口径光学潜望式非同轴激光雷达三维扫描装置
EP2449637B1 (en) 2009-06-30 2013-04-10 Trimble AB Optical pulse transmitter
US8125622B2 (en) 2009-07-28 2012-02-28 Applied Concepts, Inc. Lidar measurement device with target tracking and method for use of same
US8279420B2 (en) 2009-08-06 2012-10-02 ISC8 Inc. Phase sensing and scanning time of flight LADAR using atmospheric absorption bands
US9091754B2 (en) 2009-09-02 2015-07-28 Trimble A.B. Distance measurement methods and apparatus
TWI407081B (zh) 2009-09-23 2013-09-01 Pixart Imaging Inc 利用成像位置差異以測距之測距裝置及其校正方法
US8081301B2 (en) 2009-10-08 2011-12-20 The United States Of America As Represented By The Secretary Of The Army LADAR transmitting and receiving system and method
US8950733B2 (en) 2009-10-28 2015-02-10 American Crane, Inc. Hydraulic system for lifting a crane on a vehicle
DE102009055989B4 (de) * 2009-11-20 2017-02-16 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8934509B2 (en) 2009-11-23 2015-01-13 Lockheed Martin Corporation Q-switched oscillator seed-source for MOPA laser illuminator method and apparatus
ES2372191B1 (es) 2010-02-25 2012-09-06 Abengoa Solar New Technologies, S.A. Espectrofotómetro portátil y método de caracterización de tubos de colectores solares.
TW201133412A (en) 2010-03-19 2011-10-01 Cct Co Ltd Method of using radar vehicle detector to determine vehicle type, speed, and radar detection zone width
US8881319B2 (en) 2010-03-19 2014-11-11 Danco, Inc. External float extension
JP5484976B2 (ja) 2010-03-23 2014-05-07 株式会社豊田中央研究所 光走査装置及び距離測定装置
US8629977B2 (en) 2010-04-14 2014-01-14 Digital Ally, Inc. Traffic scanning LIDAR
CN101813778B (zh) * 2010-04-20 2012-04-11 长春艾克思科技有限责任公司 汽车多线激光雷达系统
LU91688B1 (en) 2010-05-17 2011-11-18 Iee Sarl Scanning 3D imager
JP5598100B2 (ja) 2010-06-07 2014-10-01 株式会社Ihi 物体検出装置
EP2395368B1 (de) 2010-06-11 2012-02-08 Sick AG Entfernungsmessender Laserscanner zur Erfassung von Objekten in einem Überwachungsbereich
DE102010030603A1 (de) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen eines Signals zur Entfernungsmessung und Verfahren und System zur Entfernungsmessung zwischen einem Sender und einem Empfänger
JP6033222B2 (ja) * 2010-07-22 2016-11-30 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company レーザ走査システムおよび使用方法
KR101162177B1 (ko) 2010-08-05 2012-07-04 (주)이오시스템 광학측정장치의 아발란치 포토 다이오드 이득 보상 장치
US8736818B2 (en) 2010-08-16 2014-05-27 Ball Aerospace & Technologies Corp. Electronically steered flash LIDAR
WO2012051700A1 (en) 2010-10-22 2012-04-26 Neptec Design Group Ltd. Wide angle bistatic scanning optical ranging sensor
US8918270B2 (en) 2010-10-28 2014-12-23 Tongqing Wang Wireless traffic sensor system
US9300321B2 (en) 2010-11-05 2016-03-29 University of Maribor Light detection and ranging (LiDAR)data compression and decompression methods and apparatus
EP2643883B1 (en) 2010-11-25 2018-08-29 Nokia Technologies Oy Antenna apparatus and methods
KR101746499B1 (ko) 2010-12-23 2017-06-14 한국전자통신연구원 다이내믹 레인지 삼차원 영상 시스템
US8659643B2 (en) 2011-01-18 2014-02-25 Disney Enterprises, Inc. Counting system for vehicle riders
CN103403616B (zh) 2011-01-20 2016-05-18 日本电信电话株式会社 光信号放大器
US8659748B2 (en) 2011-02-15 2014-02-25 Optical Air Data Systems, Llc Scanning non-scanning LIDAR
US8812149B2 (en) 2011-02-24 2014-08-19 Mss, Inc. Sequential scanning of multiple wavelengths
EP2682784B1 (en) 2011-03-02 2015-06-24 Toyota Jidosha Kabushiki Kaisha Laser radar device
JP5532003B2 (ja) * 2011-03-31 2014-06-25 株式会社デンソーウェーブ レーザレーダ装置
US8835945B2 (en) 2013-01-11 2014-09-16 Lighting Science Group Corporation Serially-connected light emitting diodes, methods of forming same, and luminaires containing same
US8788881B2 (en) 2011-08-17 2014-07-22 Lookout, Inc. System and method for mobile device push communications
US8740237B2 (en) 2011-09-23 2014-06-03 Specialized Bicycle Components, Inc. Bicycle with suspension
US9000347B2 (en) 2011-10-05 2015-04-07 Telcordia Technologies, Inc. System and method for nonlinear optical devices
WO2013058715A1 (en) 2011-10-20 2013-04-25 Agency For Science, Technology And Research Avalanche photodiode
DE102011119707A1 (de) 2011-11-29 2013-05-29 Valeo Schalter Und Sensoren Gmbh Optische Messvorrichtung
KR101301453B1 (ko) 2011-12-15 2013-09-03 여우순엽 지상라이다부·무타켓토탈스테이션부·사면지형 변위 제어모듈의 트레블측량제어를 통한 사면지형 변위 모니터링장치 및 방법
EP2607924A1 (de) 2011-12-23 2013-06-26 Leica Geosystems AG Entfernungsmesser-Justage
DE102011122345A1 (de) 2011-12-23 2013-06-27 Valeo Schalter Und Sensoren Gmbh Optische Messvorrichtung und Verfahren zur Herstellung einer Abdeckscheibe für ein Gehäuse einer optischen Messvorrichtung
US9213085B2 (en) 2012-02-16 2015-12-15 Nucript LLC System and method for measuring the phase of a modulated optical signal
JP6025014B2 (ja) * 2012-02-22 2016-11-16 株式会社リコー 距離測定装置
EP3171201B1 (de) 2012-03-07 2018-05-09 Safran Vectronix AG Entfernungsmesser
US20130241761A1 (en) 2012-03-16 2013-09-19 Nikon Corporation Beam steering for laser radar and other uses
US9915726B2 (en) 2012-03-16 2018-03-13 Continental Advanced Lidar Solutions Us, Llc Personal LADAR sensor
GB201204792D0 (en) 2012-03-19 2012-05-02 Qinetiq Ltd Detection techniques
DE102012006869A1 (de) 2012-04-04 2013-10-10 Valeo Schalter Und Sensoren Gmbh Optoelektronische Sensoreinrichtung, insbesondere Laserscanner, mit einer angepassten Empfangseinheit zur optimierten Empfangspegelreduzierung
WO2013177650A1 (en) 2012-04-26 2013-12-05 Neptec Design Group Ltd. High speed 360 degree scanning lidar head
WO2014011241A2 (en) 2012-04-30 2014-01-16 Zuk David M System and method for scan range gating
US9354485B2 (en) 2012-05-01 2016-05-31 Imra America, Inc. Optical frequency ruler
US8796605B2 (en) 2012-05-04 2014-08-05 Princeton Lightwave, Inc. High-repetition-rate single-photon receiver and method therefor
US9835490B2 (en) 2012-05-10 2017-12-05 Voxtel, Inc. Discriminating photo counts and dark counts in an avalanche photodiode
JP2013238440A (ja) 2012-05-14 2013-11-28 Mitsubishi Electric Corp ビームスキャン式対象物検知装置
JP6111617B2 (ja) 2012-07-03 2017-04-12 株式会社リコー レーザレーダ装置
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
JP5968137B2 (ja) 2012-07-20 2016-08-10 ナミックス株式会社 液状封止材、それを用いた電子部品
WO2014022681A1 (en) 2012-08-01 2014-02-06 Gentex Corporation Assembly with laser induced channel edge and method thereof
US8996228B1 (en) 2012-09-05 2015-03-31 Google Inc. Construction zone object detection using light detection and ranging
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
JP2014071038A (ja) 2012-09-28 2014-04-21 Denso Wave Inc レーザレーダ装置
US8749784B1 (en) 2012-10-18 2014-06-10 Checkpoint Technologies, Llc Probing circuit features in sub-32 nm semiconductor integrated circuit
EP2722684B1 (de) 2012-10-19 2019-08-28 Sick Ag Laserscanner
US9638799B2 (en) 2012-11-21 2017-05-02 Nikon Corporation Scan mirrors for laser radar
EP2735389A1 (de) 2012-11-23 2014-05-28 Universität Duisburg-Essen Verfahren zur Herstellung reiner, insbesondere kohlenstofffreier Nanopartikel
US9823351B2 (en) 2012-12-18 2017-11-21 Uber Technologies, Inc. Multi-clad fiber based optical apparatus and methods for light detection and ranging sensors
EP2746808B1 (de) 2012-12-18 2015-02-25 Sick Ag Optoelektronischer Sensor zur Erfassung von Objekten
ES2512965B2 (es) 2013-02-13 2015-11-24 Universitat Politècnica De Catalunya Sistema y método para escanear una superficie y programa de ordenador que implementa el método
US9086273B1 (en) 2013-03-08 2015-07-21 Google Inc. Microrod compression of laser beam in combination with transmit lens
US9618742B1 (en) 2013-03-08 2017-04-11 Google Inc. Rotatable mirror assemblies
EP2972081B1 (en) * 2013-03-15 2020-04-22 Apple Inc. Depth scanning with multiple emitters
US9239959B1 (en) 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor
JP5754564B2 (ja) 2013-04-11 2015-07-29 コニカミノルタ株式会社 走査光学系及びレーダー
US9476988B2 (en) 2013-05-09 2016-10-25 Samsung Electronics Co., Ltd. Method, apparatus and system for reducing power consumption in GNSS receivers
US9069080B2 (en) 2013-05-24 2015-06-30 Advanced Scientific Concepts, Inc. Automotive auxiliary ladar sensor
US9857472B2 (en) 2013-07-02 2018-01-02 Electronics And Telecommunications Research Institute Laser radar system for obtaining a 3D image
EP2824478B1 (de) 2013-07-11 2015-05-06 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten in einem Überwachungsbereich
DE102013011853A1 (de) 2013-07-16 2015-01-22 Valeo Schalter Und Sensoren Gmbh Optoelektronische Detektionseinrichtung und Verfahren zur abtastenden Erfassung der Umgebung eines Kraftfahrzeugs
DE102013215117A1 (de) 2013-08-01 2015-02-05 Robert Bosch Gmbh Objektbestimmung mittels Radarsensor
US8836922B1 (en) 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
US9702966B2 (en) 2013-09-16 2017-07-11 Appareo Systems, Llc Synthetic underwater visualization system
KR102136401B1 (ko) 2013-10-21 2020-07-21 한국전자통신연구원 다-파장 이미지 라이다 센서장치 및 이의 신호처리 방법
KR102070089B1 (ko) 2013-10-23 2020-01-29 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
KR102083993B1 (ko) 2013-10-31 2020-03-03 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
JP2015111090A (ja) 2013-11-05 2015-06-18 株式会社リコー 物体検出装置
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9454054B2 (en) 2013-11-18 2016-09-27 Magna Mirrors Of America, Inc. Electro-optic mirror element and process of making same
US9048616B1 (en) 2013-11-21 2015-06-02 Christie Digital Systems Usa, Inc. Method, system and apparatus for automatically determining operating conditions of a periodically poled lithium niobate crystal in a laser system
CA2931055C (en) 2013-11-22 2022-07-12 Ottomotto Llc Lidar scanner calibration
KR101480651B1 (ko) 2013-12-09 2015-01-09 현대자동차주식회사 오브젝트 처리 방법 및 이를 지원하는 차량
AT515214B1 (de) 2013-12-16 2015-07-15 Riegl Laser Measurement Sys Verfahren zur Entfernungsmessung
JP6146295B2 (ja) 2013-12-26 2017-06-14 株式会社豊田中央研究所 レーダ装置および速度の方向測定方法
US9625580B2 (en) 2014-01-03 2017-04-18 Princeton Lightwave, Inc. LiDAR system comprising a single-photon detector
DE102014100696B3 (de) 2014-01-22 2014-12-31 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
JP2015143620A (ja) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ レーザレーダ装置
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
NL2012607B1 (nl) 2014-04-11 2016-05-09 Aviation Glass & Tech Holding B V Voertuigspiegel, en werkwijze ter vervaardiging van een dergelijke spiegel.
DE102014106465C5 (de) 2014-05-08 2018-06-28 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
CN103954971B (zh) * 2014-05-22 2016-03-30 武汉大学 机载彩色三维扫描激光雷达
EP3161511B1 (en) 2014-06-27 2020-02-26 HRL Laboratories, LLC Scanning lidar and method of producing the same
US9753351B2 (en) 2014-06-30 2017-09-05 Quanergy Systems, Inc. Planar beam forming and steering optical phased array chip and method of using same
US9575184B2 (en) 2014-07-03 2017-02-21 Continental Advanced Lidar Solutions Us, Inc. LADAR sensor for a dense environment
JP6309099B2 (ja) * 2014-07-03 2018-04-11 三菱電機株式会社 監視装置
US9476968B2 (en) 2014-07-24 2016-10-25 Rosemount Aerospace Inc. System and method for monitoring optical subsystem performance in cloud LIDAR systems
EP3174169B1 (en) 2014-07-25 2019-04-24 Mitsuboshi Diamond Industrial Co., Ltd. Optical fiber cooling device and laser oscillator
JP2016040662A (ja) * 2014-08-12 2016-03-24 株式会社Ihi レーザレーダ装置およびレーザレーダ方法
JP2016040862A (ja) 2014-08-12 2016-03-24 株式会社リコー 通信システム、サーバ装置、映像調整方法、及びプログラム
EP3195010A4 (en) 2014-08-15 2018-04-11 Aeye, Inc. Methods and systems for ladar transmission
US9869753B2 (en) 2014-08-15 2018-01-16 Quanergy Systems, Inc. Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same
US9720072B2 (en) 2014-08-28 2017-08-01 Waymo Llc Methods and systems for vehicle radar coordination and interference reduction
US9605998B2 (en) 2014-09-03 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Measurement system
US9927915B2 (en) 2014-09-26 2018-03-27 Cypress Semiconductor Corporation Optical navigation systems and methods for background light detection and avoiding false detection and auto-movement
US10782392B2 (en) * 2014-10-09 2020-09-22 Konica Minolta, Inc. Scanning optical system and light projecting and receiving apparatus
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
CN104496956B (zh) 2014-11-25 2016-04-13 程金生 一种基于氨基化石墨烯的黄酮类成分提取分离方法
US10317672B2 (en) 2014-12-11 2019-06-11 AdHawk Microsystems Eye-tracking system and method therefor
JP2016115740A (ja) 2014-12-12 2016-06-23 オムロン株式会社 光増幅装置およびレーザ加工装置
KR20160075231A (ko) 2014-12-19 2016-06-29 한화테크윈 주식회사 라이다 시스템
US9998717B2 (en) 2014-12-24 2018-06-12 Prysm, Inc. Scanning beam display system
JP6416633B2 (ja) 2015-01-09 2018-10-31 株式会社ジャパンディスプレイ 液晶表示装置
WO2016123320A1 (en) 2015-01-29 2016-08-04 Massachusetts Institute Of Technology Systems and methods for light amplification
US10107914B2 (en) 2015-02-20 2018-10-23 Apple Inc. Actuated optical element for light beam scanning device
US10557923B2 (en) 2015-02-25 2020-02-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Real-time processing and adaptable illumination lidar camera using a spatial light modulator
US10698110B2 (en) * 2015-03-05 2020-06-30 Teledyne Digital Imaging, Inc. Laser scanning apparatus and method
US9625582B2 (en) 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
US9880263B2 (en) 2015-04-06 2018-01-30 Waymo Llc Long range steerable LIDAR system
KR101665938B1 (ko) 2015-04-28 2016-10-13 전자부품연구원 미러 회전 방식의 다채널 라이더 스캐너 광학계
US10215847B2 (en) 2015-05-07 2019-02-26 GM Global Technology Operations LLC Pseudo random sequences in array lidar systems
JP2017003347A (ja) 2015-06-08 2017-01-05 日本信号株式会社 物体検知装置及び物体検知方法
CN104914448A (zh) * 2015-06-16 2015-09-16 中国科学技术大学 基于差分像运动法的距离分辨主动大气湍流激光雷达系统
KR101699273B1 (ko) 2015-06-30 2017-01-24 한국표준과학연구원 테라헤르츠파를 이용한 실시간 비접촉 비파괴 두께 측정장치
CN204758260U (zh) 2015-07-21 2015-11-11 北京杏林睿光科技有限公司 一种多管芯特性监测的半导体激光器结构
CN204885804U (zh) 2015-07-21 2015-12-16 北京杏林睿光科技有限公司 一种窄线宽合束模块及具有该模块的多波长拉曼激光器
CN106405753B (zh) 2015-08-03 2020-05-08 住友电气工业株式会社 制作光学组件的方法及光学组件
FR3040853A1 (fr) 2015-09-07 2017-03-10 Stmicroelectronics (Grenoble 2) Sas Optical pulse emitter
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
US10641672B2 (en) 2015-09-24 2020-05-05 Silicon Microstructures, Inc. Manufacturing catheter sensors
WO2017080728A1 (de) 2015-11-11 2017-05-18 Siemens Healthcare Gmbh Detektorelement zur erfassung von einfallender röntgenstrahlung
EP3377918B1 (en) 2015-11-18 2020-01-08 Scint-X AB System and method for melting and solidification of scintillating material in micromechanical structures
WO2017095817A1 (en) 2015-11-30 2017-06-08 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads and pulsed laser for lidar system
US10324171B2 (en) 2015-12-20 2019-06-18 Apple Inc. Light detection and ranging sensor
US11194023B2 (en) 2015-12-21 2021-12-07 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle
EP3185038B1 (de) 2015-12-23 2018-02-14 Sick Ag Optoelektronischer sensor und verfahren zur messung einer entfernung
JP2017138301A (ja) 2016-01-28 2017-08-10 株式会社デンソー レーザレーダ装置
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
US10754015B2 (en) * 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
US10042159B2 (en) 2016-02-18 2018-08-07 Aeye, Inc. Ladar transmitter with optical field splitter/inverter
US20170242104A1 (en) 2016-02-18 2017-08-24 Aeye, Inc. Ladar Transmitter with Induced Phase Drift for Improved Gaze on Scan Area Portions
US11573325B2 (en) 2016-03-11 2023-02-07 Kaarta, Inc. Systems and methods for improvements in scanning and mapping
DE102016207009A1 (de) 2016-04-26 2017-10-26 Krones Aktiengesellschaft Bediensystem für eine Maschine der Lebensmittelindustrie, insbesondere der Getränkemittelindustrie
JP6860656B2 (ja) 2016-05-18 2021-04-21 オキーフェ, ジェームスO’KEEFEE, James 車両の形状に適応したダイナミックステアドlidar
US9778384B1 (en) 2016-05-24 2017-10-03 Thermo Fisher Scientific Messtechnik Gmbh Method of operational status verification for a neutron detecting device
CA3024510C (en) 2016-06-01 2022-10-04 Velodyne Lidar, Inc. Multiple pixel scanning lidar
WO2017217663A1 (ko) 2016-06-13 2017-12-21 엘지이노텍(주) 이물질 검출 방법 및 그를 위한 장치 및 시스템
US20170365105A1 (en) 2016-06-17 2017-12-21 Ford Global Technologies, Llc Method and apparatus for inter-vehicular safety awareness and alert
EP3475860A1 (en) 2016-06-28 2019-05-01 Koninklijke Philips N.V. System and architecture for seamless workflow integration and orchestration of clinical intelligence
DE102016113149A1 (de) 2016-07-15 2018-01-18 Triple-In Holding Ag Aufnahme von Entfernungsprofilen
US9940761B2 (en) 2016-08-02 2018-04-10 International Business Machines Corporation Self-driving vehicle sensor fault remediation
US10137903B2 (en) 2016-08-16 2018-11-27 Uber Technologies, Inc. Autonomous vehicle diagnostic system
US10534074B2 (en) * 2016-08-31 2020-01-14 Qualcomm Incorporated Hybrid scanning lidar systems
KR102547651B1 (ko) 2016-09-20 2023-06-26 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법
CN106597471B (zh) 2016-11-08 2019-05-24 上海禾赛光电科技有限公司 具有透明障碍物自动检测功能的车辆及方法
CN206314210U (zh) 2016-11-25 2017-07-11 苏州迈威斯精密机械有限公司 割草机机头的轴承与齿轮轴装配机的轴承夹紧组件
CN106658366B (zh) 2016-11-30 2020-05-22 建荣半导体(深圳)有限公司 蓝牙工作模式的切换方法、装置及蓝牙芯片、电子设备
US10157630B2 (en) 2016-12-02 2018-12-18 Breakaway Records, L.L.C. Record stabilizer for multiple vinyl sizes
US10551471B2 (en) 2016-12-05 2020-02-04 GEIRI North America Data mining based approach for online calibration of phasor measurement unit (PMU)
US10942272B2 (en) 2016-12-13 2021-03-09 Waymo Llc Power modulation for a rotary light detection and ranging (LIDAR) device
CN110506220B (zh) 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11054508B2 (en) * 2017-01-05 2021-07-06 Innovusion Ireland Limited High resolution LiDAR using high frequency pulse firing
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
DE102017101501B3 (de) 2017-01-26 2018-01-04 Sick Ag Optoelektronischer Sensor und Verfahren zur Bestimmung der Entfernung eines Objekts in einem Überwachungsbereich
US10386489B2 (en) 2017-02-01 2019-08-20 Jeffrey Albelo Beam scanner for autonomous vehicles
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
CN110495159A (zh) 2017-03-20 2019-11-22 开利公司 供应无线通信系统的无头设备的方法
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
KR101946870B1 (ko) 2017-03-22 2019-02-11 (주)위키옵틱스 패턴의 회전 현상을 개선한 라이다 발광 시스템
WO2018175990A1 (en) 2017-03-23 2018-09-27 Innovusion Ireland Limited High resolution lidar using multi-stage multi-phase signal modulation, integration, sampling, and analysis
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
US11022688B2 (en) * 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
US10386465B2 (en) 2017-03-31 2019-08-20 Velodyne Lidar, Inc. Integrated LIDAR illumination power control
US11555893B2 (en) 2017-04-19 2023-01-17 Hefei Surestar Technology Co., Ltd. Laser scanning device, radar device and scanning method thereof
KR102657365B1 (ko) 2017-05-15 2024-04-17 아우스터, 인크. 휘도 향상된 광학 이미징 송신기
US10081019B1 (en) 2017-05-25 2018-09-25 Lucian D. Whitman Modular portable sluice box
CN108132472A (zh) 2017-12-08 2018-06-08 上海禾赛光电科技有限公司 激光雷达系统
US11016193B2 (en) 2017-07-05 2021-05-25 Ouster, Inc. Light ranging device having an electronically scanned emitter array
CN207557465U (zh) 2017-08-08 2018-06-29 上海禾赛光电科技有限公司 基于转镜的激光雷达系统
CN207457508U (zh) 2017-08-08 2018-06-05 上海禾赛光电科技有限公司 基于二维扫描振镜的激光雷达系统
CN107450060B (zh) 2017-08-28 2024-03-29 苏州元坤智能科技有限公司 一种激光扫描装置
US11002857B2 (en) 2017-09-15 2021-05-11 Aeye, Inc. Ladar system with intelligent selection of shot list frames based on field of view data
EP3460519A1 (en) 2017-09-25 2019-03-27 Hexagon Technology Center GmbH Laser scanner
US11194022B2 (en) 2017-09-29 2021-12-07 Veoneer Us, Inc. Detection system with reflection member and offset detection array
US11415676B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Interlaced scan patterns for lidar system
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
DE102017124535A1 (de) 2017-10-20 2019-04-25 Sick Ag Sende-Empfangsmodul für einen optoelektronischen Sensor und Verfahren zur Erfassung von Objekten
CN109725320B (zh) 2017-10-27 2020-12-29 上海禾赛光电科技有限公司 一种激光雷达
DE102017127420A1 (de) 2017-11-21 2019-05-23 Sick Ag Polygonscanner und Verfahren zum Erfassen von Objekten in einem Überwachungsbereich
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US10571567B2 (en) 2017-11-22 2020-02-25 Luminar Technologies, Inc. Low profile lidar scanner with polygon mirror
CN108089201B (zh) 2017-12-08 2020-04-24 上海禾赛光电科技有限公司 障碍物信息获取方法、激光脉冲的发射方法及装置
CN208421228U (zh) 2018-06-29 2019-01-22 上海禾赛光电科技有限公司 激光雷达系统
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
KR102059258B1 (ko) * 2018-01-08 2019-12-24 주식회사 에스오에스랩 라이다 스캐닝 장치
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
JP6965784B2 (ja) 2018-02-13 2021-11-10 株式会社リコー 距離測定装置、およびこれを用いた移動体
US20190257924A1 (en) 2018-02-22 2019-08-22 Innovusion Ireland Limited Receive path for lidar system
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US20210086294A1 (en) 2018-02-23 2021-03-25 Corning Incorporated Method of separating a liquid lens from an array of liquid lenses
US20190265336A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited 2-dimensional steering system for lidar systems
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
DE102018203534A1 (de) 2018-03-08 2019-09-12 Ibeo Automotive Systems GmbH Empfängeranordnung zum Empfang von Lichtimpulsen, LiDAR-Modul und Verfahren zum Empfangen von Lichtimpulsen
CN108445468B (zh) 2018-04-03 2019-11-05 上海禾赛光电科技有限公司 一种分布式激光雷达
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
US10578720B2 (en) 2018-04-05 2020-03-03 Luminar Technologies, Inc. Lidar system with a polygon mirror and a noise-reducing feature
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
KR102450299B1 (ko) 2018-05-15 2022-10-05 에스케이하이닉스 주식회사 증폭기, 이를 이용하는 수신 회로, 반도체 장치 및 시스템
WO2019237581A1 (en) 2018-06-13 2019-12-19 Hesai Photonics Technology Co., Ltd. Lidar systems and methods
CN108445488B (zh) 2018-06-14 2020-08-14 西安交通大学 一种激光主动成像探测系统及方法
CN109116367B (zh) 2018-06-27 2020-05-19 上海禾赛光电科技有限公司 一种激光雷达
CN109116331B (zh) 2018-06-27 2020-04-24 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
US10466342B1 (en) 2018-09-30 2019-11-05 Hesai Photonics Technology Co., Ltd. Adaptive coding for lidar systems
CN109116366B (zh) 2018-06-27 2020-05-19 上海禾赛光电科技有限公司 一种非均匀脉冲能量的多线束激光雷达
CN208314210U (zh) 2018-06-29 2019-01-01 上海禾赛光电科技有限公司 激光雷达系统
CN208705508U (zh) 2018-07-27 2019-04-05 福州海创光学有限公司 一种偏振无关分光棱镜结构
CN208705506U (zh) 2018-08-28 2019-04-05 上海禾赛光电科技有限公司 一种用于激光雷达的透镜组
CN109188397B (zh) 2018-08-29 2020-11-24 上海禾赛科技股份有限公司 激光收发装置及激光雷达
CN109116368B (zh) 2018-10-10 2023-12-12 福建汇川物联网技术科技股份有限公司 位移监测系统及方法
CN209280923U (zh) 2018-10-16 2019-08-20 上海禾赛光电科技有限公司 一种用于激光雷达的接收端电路、接收装置及激光雷达
US11656358B2 (en) 2018-11-02 2023-05-23 Waymo Llc Synchronization of multiple rotating sensors of a vehicle
US10670728B2 (en) 2018-11-05 2020-06-02 Mapsted Corp. Method and system for crowd-sourced trusted-GPS region for mobile device localization
CN112327275B (zh) 2019-01-07 2022-08-02 上海禾赛科技有限公司 一种激光雷达
CN109814082B (zh) 2019-01-21 2021-10-22 上海禾赛科技有限公司 光接收模块、及激光雷达系统
CN109917348B (zh) 2019-01-25 2020-11-03 上海禾赛科技股份有限公司 一种激光雷达系统
CN109917408B (zh) 2019-03-28 2020-04-24 上海禾赛光电科技有限公司 激光雷达的回波处理方法、测距方法及激光雷达
CN116338703A (zh) 2019-04-02 2023-06-27 上海禾赛科技有限公司 用于激光雷达的激光系统
CN109950784B (zh) 2019-04-10 2021-05-28 上海禾赛科技股份有限公司 激光器和激光雷达
CN110031823B (zh) 2019-04-22 2020-03-24 上海禾赛光电科技有限公司 可用于激光雷达的噪点识别方法以及激光雷达系统
CN110988847A (zh) 2019-04-22 2020-04-10 上海禾赛光电科技有限公司 可用于激光雷达的噪点识别方法以及激光雷达系统
JP7277266B2 (ja) 2019-06-05 2023-05-18 キヤノン株式会社 Pwm出力回路及びそれを有する画像形成装置
US11486986B2 (en) 2019-06-21 2022-11-01 Aeva, Inc. LIDAR system with solid state spectral scanning
US10508319B1 (en) 2019-06-27 2019-12-17 MM Metals USA, LLC Method and system for producing low carbon ferrochrome from chromite ore and low carbon ferrochrome produced thereby
KR20190096865A (ko) 2019-07-31 2019-08-20 엘지전자 주식회사 라이다 시스템과 이를 이용한 자율 주행 시스템
CN110492856B (zh) 2019-08-12 2020-11-13 上海禾赛光电科技有限公司 跨阻放大单元电路反馈电路、光电探测电路及激光雷达系统
CN110492349B (zh) 2019-08-20 2021-03-19 上海禾赛科技股份有限公司 驱动电路、驱动方法和激光器系统
CN211855309U (zh) 2019-09-17 2020-11-03 姚文杰 一种铁路工程测量用水准仪
CN112578396B (zh) 2019-09-30 2022-04-19 上海禾赛科技有限公司 雷达间坐标变换方法及装置、计算机可读存储介质
CN110784220B (zh) 2019-11-07 2021-02-02 上海禾赛光电科技有限公司 动态阈值定时电路、激光雷达、以及获取时间信息的方法
CN110736975B (zh) 2019-11-07 2020-11-27 上海禾赛光电科技有限公司 接收模组以及包括其的激光雷达
CN110780284B (zh) 2019-11-22 2020-12-29 上海禾赛光电科技有限公司 接收系统、包括其的激光雷达、以及回波接收处理的方法
CN110780283B (zh) 2019-11-22 2021-01-26 上海禾赛光电科技有限公司 接收系统、包括其的激光雷达以及回波接收的方法
CN211655309U (zh) 2019-12-23 2020-10-09 上海禾赛光电科技有限公司 激光器以及包括其的激光雷达
CN213182011U (zh) 2020-04-26 2021-05-11 上海禾赛光电科技有限公司 激光雷达的发射单元、接收单元及激光雷达
CN212623082U (zh) 2020-04-29 2021-02-26 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达
WO2021231559A1 (en) 2020-05-13 2021-11-18 Luminar, Llc Lidar system with high-resolution scan pattern
CN212823082U (zh) 2020-06-30 2021-03-30 刘宝清 一种便于使用的机械加工用棒料切割装置
CN213750313U (zh) 2020-11-27 2021-07-20 上海禾赛科技有限公司 光学视窗和激光雷达
CN214151038U (zh) 2020-12-11 2021-09-07 上海禾赛科技有限公司 激光雷达
CN214795206U (zh) 2021-04-07 2021-11-19 上海禾赛科技股份有限公司 激光雷达
CN214795200U (zh) 2021-04-30 2021-11-19 上海禾赛科技有限公司 用于激光雷达的视窗和激光雷达
CN215641806U (zh) 2021-04-30 2022-01-25 上海禾赛科技有限公司 激光雷达
CN214895810U (zh) 2021-04-30 2021-11-26 上海禾赛科技有限公司 分光装置和激光雷达
CN214895784U (zh) 2021-04-30 2021-11-26 上海禾赛科技有限公司 光探测装置及行驶载具
CN215932142U (zh) 2021-09-15 2022-03-01 上海禾赛科技有限公司 激光雷达

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123170A1 (en) * 2006-11-27 2008-05-29 Riegl Laser Measurement Systems Gmbh Scanning apparatus
JP2010038859A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 3次元レーザ測距装置

Also Published As

Publication number Publication date
JP2021177183A (ja) 2021-11-11
CN114706091A (zh) 2022-07-05
JP6764942B2 (ja) 2020-10-07
KR20180126019A (ko) 2018-11-26
KR102428152B1 (ko) 2022-08-01
CN114675285A (zh) 2022-06-28
US11782131B2 (en) 2023-10-10
WO2018125725A1 (en) 2018-07-05
CN114675284A (zh) 2022-06-28
KR102141127B1 (ko) 2020-08-04
CN114706090A (zh) 2022-07-05
KR20210156875A (ko) 2021-12-27
US11899134B2 (en) 2024-02-13
JP2019518204A (ja) 2019-06-27
US20230176191A1 (en) 2023-06-08
CN114675287A (zh) 2022-06-28
CN108450025B (zh) 2022-04-19
CN114646972A (zh) 2022-06-21
DE112017000127T5 (de) 2018-11-08
JP2021004888A (ja) 2021-01-14
US20230168347A1 (en) 2023-06-01
US20180188355A1 (en) 2018-07-05
JP6909347B2 (ja) 2021-07-28
US20210156966A1 (en) 2021-05-27
CN108450025A (zh) 2018-08-24
US20230194668A1 (en) 2023-06-22
CN114646972B (zh) 2023-08-08
US20230176192A1 (en) 2023-06-08
KR20200093708A (ko) 2020-08-05
KR102342621B1 (ko) 2021-12-22
CN114660616B (zh) 2023-04-11
CN114675286A (zh) 2022-06-28
US11782132B2 (en) 2023-10-10
JP7273898B2 (ja) 2023-05-15
KR20220108217A (ko) 2022-08-02
US20230176193A1 (en) 2023-06-08
CN114660616A (zh) 2022-06-24
US20220390567A1 (en) 2022-12-08
US10942257B2 (en) 2021-03-09
US11977183B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
KR102568116B1 (ko) 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
KR102210101B1 (ko) 광학계 모듈 및 그를 갖는 스캐닝 라이다
JP7230443B2 (ja) 距離測定装置及び移動体
KR20200102900A (ko) 라이다 장치
WO2017135225A1 (ja) 光走査型の対象物検出装置
CN110895340A (zh) 一种光学测距模组
JP2024017519A (ja) 測定装置、受光器、及び投光器
JP2023099238A (ja) 計測装置
JP2001272623A (ja) 走査型投受光器の光学系

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant