JP2014071038A - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
JP2014071038A
JP2014071038A JP2012218488A JP2012218488A JP2014071038A JP 2014071038 A JP2014071038 A JP 2014071038A JP 2012218488 A JP2012218488 A JP 2012218488A JP 2012218488 A JP2012218488 A JP 2012218488A JP 2014071038 A JP2014071038 A JP 2014071038A
Authority
JP
Japan
Prior art keywords
light
reflecting
reflected
reflection
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012218488A
Other languages
English (en)
Inventor
Hideyuki Tanaka
秀幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2012218488A priority Critical patent/JP2014071038A/ja
Publication of JP2014071038A publication Critical patent/JP2014071038A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】傾斜角度が異なる複数の反射部を受光ミラーとして物体検出を行うレーザレーダ装置において、受光ミラーの傾斜角度に起因する入力光量の低下を抑制しつつ三次元的な検出を行う。
【解決手段】レーザレーダ装置1において、回動反射装置40は、各反射領域構成部の各第1反射部51a,52a,53a,54aがレーザダイオード10からのレーザ光L1の投光経路上に順次位置し、各第1反射部51a,52a,53a,54aに対応する上下方向の向きにレーザ光を反射する。そして、照射されたレーザ光が物体で反射したときには、その反射光の一部を照射元の第1反射部で上下方向一方側に反射させて第1入力光として第1フォトダイオード21に導き、物体からの反射光の他の一部を当該照射元と対をなす第2反射部で上下方向他方側に反射させて第2入力光として第2フォトダイオード22に導いている。
【選択図】図1

Description

本発明は、レーザレーダ装置に関するものである。
レーザレーダ装置の分野では、特許文献1のような水平スキャン方式の構成が提供されている。例えば、特許文献1の装置では、レーザ光発生手段からのレーザ光の光軸上に、レーザ光を透過させ、かつ検出物体からの反射光を検出手段に向けて反射する光アイソレータを設けている。さらに、光アイソレータを透過するレーザ光の光軸上において当該光軸方向の中心軸を中心として回動する凹面鏡を設け、この凹面鏡によってレーザ光を空間に向けて反射させると共に、検出物体からの反射光を光アイソレータに向けて反射させることで360°の水平走査を可能としている。しかしながら、このような一般的な水平スキャン方式のものでは、検出領域が平面に限定されてしまうという問題があり、走査平面から外れた領域については検出不能となってしまう。従って、走査平面から外れた物体は検出することができず、また、走査平面内に物体が存在する場合であってもその物体を立体的に把握することはできなかった。
一方、このような問題を解消し得る技術として、特許文献2のような技術が提供されている。特許文献2で開示される3次元レーザ測距装置は、小鏡面群を有するポリゴンミラー30と、揺動ミラー22を有する2次元走査ミラーユニット20とを備えており、2次元走査ミラーユニット20では、揺動ミラー22が2軸ジンバル構造で揺動可能となっている。そして、揺動ミラー22で多方向に走査される光をポリゴンミラー30で反射して空間に投射するように構成することで、3次元的な広い走査レンジが確保されるようになっている。
特許2789741号公報 特開2010−38859公報
ところで、3次元的な走査を行う方法としては、図11のように、傾斜の異なる複数のミラー151〜154を周方向に並べて配置した回転体150(例えばポリゴンミラー等)を用い、これらミラー151〜154をレーザ光の投光経路上に順次配置するように回転体を回転させて高さ方向の向きを変化させるような方法を用いることもできる。この場合、物体からの反射光は、ポリゴンミラーの各反射面で反射して入力光として導き、受光センサ120で検出することになる。このような構成によれば、単純な駆動構成で3次元的な走査が可能となる。
しかしながら、このようにポリゴンミラーによって受光系を構成する場合、水平面に対する傾斜角度を大きくとった場合に受光し得る面積(ポリゴンミラーの反射面への投影面積)が小さくなるという問題がある。例えば、図11のように水平方向に照射して水平方向からの反射光を検出する角度範囲では、ある程度広い高さ範囲H1の領域からの反射光をポリゴンミラーの反射面(図11では、ミラー151の反射面)で反射して受光センサ120で受光し得るのに対し、図12のように水平方向に対する傾斜が大きい角度範囲には、これよりも小さい高さ範囲H2の領域からの反射光しか反射面(図12の例ではミラー153の反射面)によって受光センサ120に導けず、受光センサ120での受光量が相対的に小さくなってしまう。つまり、ポリゴンミラーでは、図11の例のように各ミラー151〜154の高さ方向のサイズが同一である場合、傾斜角度が大きい反射面ほど検出量が小さくなってしまうことになる。
図13では、このような特徴をグラフにて示している。この図13は、図11のような構成に、ミラーの向き(レーザ光と水平方向とのなす角度(鋭角))と受光面積(ポリゴン面(ミラー面)への投影面積)との関係を示すグラフである。なお、ミラーの向き(角度)は下向きに照射する場合を正とし、水平方向の場合を0°としている。このグラフでも明らかなように、同一高さのミラーとする場合、より下向きに照射するミラーほど、受光面積が低減してしまうため、このような角度依存性を抑える構成が望まれる。
本発明は、上述した課題を解決するためになされたものであり、傾斜角度が異なる複数の反射部を受光ミラーとして検出側に順次配置することで、受光ミラーに対応する方向での物体検出を行うレーザレーダ装置において、受光ミラーの傾斜角度に起因する入力光量の低下を抑制しつつ三次元的な検出を行い得る構成を提供することを目的とする。
第1の発明は、レーザレーダ装置を対象とするものであり、
レーザ光を発生させる光源を備えた投光手段と、
所定の中心軸を中心として回動可能に構成され、前記中心軸の方向を上下方向としたとき、前記投光手段からの前記レーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されてなる反射領域構成部が前記中心軸の周りにおいて周方向に複数配置されてなり、前記中心軸と直交する平面と各第1反射部の反射面とのなす角度がそれぞれ異なるように構成された回動体と、前記回動体を回動させる駆動手段とを備えた回動反射手段と、
前記回動反射手段の各第1反射部からの光を受光するための第1受光部と、
前記回動反射手段の各第2反射部からの光を受光するための第2受光部と、
を備え、
前記回動反射手段は、
前記駆動手段による前記回動体の回動に応じて、各反射領域構成部の各第1反射部が前記投光手段からの前記レーザ光の投光経路上に順次位置し、各第1反射部に対応する上下方向の向きに前記レーザ光を反射する構成をなし、
各反射領域構成部の各第1反射部から照射された前記レーザ光が前記外部空間に存在する物体で反射したときに、前記物体からの反射光の一部を照射元の各第1反射部で上下方向一方側に反射させて第1入力光として前記第1受光部に向けて導き、前記物体からの前記反射光の他の一部を当該照射元と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として前記第2受光部に導くことを特徴とする。
第2の発明は、レーザレーダ装置を対象とするものであり、
レーザ光を発生させる光源を備えた投光手段と、
前記投光手段からの前記レーザ光の向きを変化させて走査する走査手段と、
所定の中心軸を中心として回動可能に構成され、前記中心軸の方向を上下方向としたとき、前記投光手段からの前記レーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されてなる反射領域構成部が前記中心軸の周りにおいて周方向に複数配置されてなり、前記中心軸と直交する平面と各第1反射部の反射面とのなす角度がそれぞれ異なるように構成された回動体と、前記回動体を回動させる駆動手段とを備えた回動反射手段と、
前記回動反射手段の各第1反射部からの光を受光するための第1受光部と、
前記回動反射手段の各第2反射部からの光を受光するための第2受光部と、
を備え、
前記走査手段は、各反射領域構成部がレーザ光照射側に配置される各角度範囲のときに、そのレーザ光照射側に配置される各反射領域構成部の各第1反射部の移動に合わせて且つ各第1反射部の反射面の傾斜に対応する方向に前記レーザ光の走査を行い、
前記回動反射手段は、各反射領域構成部の各第1反射部に合わせて照射された前記レーザ光が前記外部空間に存在する物体で反射したときに、前記物体からの反射光の一部をその合わせられた各第1反射部で上下方向一方側に反射させて第1入力光として前記第1受光部に向けて導き、前記物体からの前記反射光の他の一部を当該各第1反射部と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として前記第2受光部に導くことを特徴とする。
請求項1では、中心軸を中心として回動する回動体において、複数の反射領域構成部が中心軸の周りにおいて周方向に複数配置されている。そして、各反射領域構成部は、投光手段からのレーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されており、それぞれの第1反射部は、中心軸と直交する平面と各第1反射部の反射面とのなす角度がそれぞれ異なるように構成されている。そして、駆動手段による回動体の回動に応じて、各反射領域構成部の各第1反射部が投光手段からのレーザ光の投光経路上に順次位置する構成であるため、各第1反射部の角度(中心軸と直交する平面とのなす角度)に対応する上下方向の向きにレーザ光を照射することができる。つまり、回転体を回転させることだけで第1反射部の面数分だけレーザ光の向きを上下に切り替えて物体検出を行うことができるため、レーザ光を上下方向に変化させるための揺動機構等が必須とならず、走査の高速化も図りやすくなる。
更に、本発明では、各反射領域構成部の各第1反射部から照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部を照射元の各第1反射部で上下方向一方側に反射させて第1入力光として前記第1受光部に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として第2受光部に導く構成となっている。この構成では、照射された各レーザ光に応じた反射光を照射元の各第1反射部だけで受けるのではなく、各第1反射部と対をなす第2反射部によっても受けることができ、両受光部での総受光量は第1反射部からの入力光を受光する場合に比べて非常に大きくなる。
特にこの構成では、第1反射部を回転させるだけでその第1反射部に自動的に同期するように第2反射部が回転し、この第2反射部により、第1反射部が取りこぼした上下方向一方側の入力光を入力光として導くことができるため、例えば上下方向を精密にサーチしようとして第1反射部の枚数を多くしても、入力光の量の低下を特に追加制御をかけることなく抑制できる。また、このような効果は、請求項4の発明でも同様に奏することができる。
請求項2の発明では、前記回動反射手段の各反射領域構成部は、前記第1反射部の反射面と前記第2反射部の反射面とのなす角度が90°となるように構成されている。
対をなす反射面の角度関係をこのように構成することで、反射光の検出特性(検出し得る受光量の特性)が上下方向の照射の向き(スキャン角度)に依存しにくくなる。
例えば、図11、図12でも説明したように、第1反射部に対してレーザ光が照射される側を上側とした場合、第1反射部の高さサイズが同一であれば、照射の向きがより下側になる第1反射部ほど(即ち、入射光軸と直交する平面に対する傾斜が大きい第1反射部ほど)、上側(即ち第1受光部側)に導ける受光量が低下するという特徴があるが、逆に、斜め下側からの反射光を受光する場合、下側の第2反射部は、水平面(第1反射部への入射光軸と直交する平面)に対する傾斜が小さくなるほど、より多くの反射光を下側(第2受光部側)に導けるという特徴がある。従って、このような特徴を有する第1反射部と第2反射部を各反射領域構成部に設け、第1反射部の反射面と第2反射部の反射面とのなす角度が90°となるように構成すれば、回動体の各回動角度において反射光の検出特性を一定に保ちやすくなり、反射光の検出特性(検出し得る受光量の特性)が上下方向の照射の向き(スキャン角度)に依存しにくくなる。
なお、図6、図7の例では、第1反射部からのレーザ光の照射方向が水平方向又は水平方向よりも下向きに照射される例を示したが、いずれか1又は複数の第1照射部において、レーザ光を水平方向に反射するように反射面の傾きが設定されていてもよい。この場合でも、その反射領域構成部は、第1反射部の反射面と第2反射部の反射面とのなす角度が90°となるように構成されていることが望ましい。
請求項3の発明では、前記投光手段は、前記レーザ光を拡散させて照射する構成をなし、前記回動体の各第1反射部から照射される前記レーザ光の上下方向の向きがそれぞれ異なるように構成され、且つ各第1反射部から照射される前記レーザ光が少なくとも上下方向に拡散するように構成され、前記第1受光部及び前記第2受光部の少なくともいずれかは、複数の受光素子が配列されてなり、前記物体からの前記反射光の入射位置における前記第1反射部の傾き及び当該第1反射部に対する前記反射光の入射の向きに応じて、前記第1受光部での前記第1入力光の受光位置が定まる構成、及び前記物体からの前記反射光の入射位置における前記第2反射部の傾き及び当該第2反射部に対する前記反射光の入射の向きに応じて、前記第2受光部での前記第2入力光の受光位置が定まる構成の少なくともいずれかを有している。
この構成では、各第1反射部からレーザ光を照射したときに、当該レーザ光の方向(当該レーザ光がカバーする範囲)における物体の具体的位置、即ち、レーザレーダ装置と物体が上下になす角度に応じて第1受光部又は第2受光部での入力光の検出位置が変化することになる。つまり、各第1反射部からのレーザ光の方向(当該レーザ光がカバーする範囲)において、物体の方位が具体的にどの位置にあるか詳細に特定することができ、回転体における反射部の数以上の分解能を実現できる。
図1は、本発明の第1実施形態に係るレーザレーダ装置を概略的に例示する断面概略図である。 図2は、図1のレーザレーダ装置で用いられる回動体を概略的に示す平面図である。 図3は、図1のレーザレーダ装置において回動体が図1とは異なる角度範囲にあるときの投光及び受光の様子を説明する説明図である。 図4は、図3のときの回動体の向きを説明する説明図である。 図5は、各反射領域構成部の反射面の角度関係を説明する説明図である。 図6(A)は、第1の反射領域構成部における反射面の角度関係を説明する説明図であり、図6(B)は、第2の反射領域構成部における反射面の角度関係を説明する説明図である。 図7(A)は、第3の反射領域構成部における反射面の角度関係を説明する説明図であり、図7(B)は、第4の反射領域構成部における反射面の角度関係を説明する説明図である。 図8は、本発明の第2実施形態に係るレーザレーダ装置を概略的に例示する断面概略図である。 図9は、図8のレーザレーダ装置において回動体が図8とは異なる角度範囲にあるときの投光及び受光の様子を説明する説明図である。 図10は、他の実施形態に係るレーザレーダ装置を概略的に例示する断面概略図である。 図11は、関連技術を説明する説明図である。 図12は、図11の関連技術において回転体が図10とは異なる角度であるときの投光及び受光の様子を説明する説明図である。 図13は、ミラーの向き(スキャン角度)と受光し得る面積との関係を示すグラフである。
[第1実施形態]
以下、本発明を具現化した第1実施形態について、図面を参照して説明する。
(全体構成)
図1に示すように、レーザレーダ装置1は、レーザダイオード10と、検出物体からの反射光を受光するフォトダイオード(第1フォトダイオード21,第2フォトダイオード22)とを備え、装置外の走査エリアに存在する検出物体までの距離や方位を検出する装置として構成されている。
レーザダイオード10は、「投光手段」の一例に相当するものであり、図示しない制御回路の制御により、図示しない駆動回路からパルス電流を受け、このパルス電流に応じたパルスレーザ光(レーザ光L1)を間欠的に出射している。また、レーザダイオード10から出射されるレーザ光L1の光軸上には図示しないレンズが設けられている。このレンズは、コリメートレンズとして構成されるものであり、レーザダイオードで発生して拡散しようとするレーザ光L1を集光し略平行光に変換している。なお、図1では、レーザダイオード10から装置外の物体(図示略)に至るまでのレーザ光を符号L1にて概念的に示し、装置外の物体からフォトダイオード20に至るまでの反射光を符号L21a,L21b,L21cにて概念的に示している。
第1フォトダイオード21,第2フォトダイオード22は、例えばアバランシェフォトダイオード(avalanche photodiode)などによって構成されている。これら第1フォトダイオード21,第2フォトダイオード22は、光を受光する受光領域を有し、当該受光領域に入射する光を検出する構成をなしている。そして、レーザダイオード10からレーザ光L1が発生し、そのレーザ光L1が装置外に存在する検出物体(図示略)にて反射したとき、その反射光を受光して電気信号に変換するように機能している。
このうち、第1フォトダイオード21は、第1受光部の一例に相当し、後述する回動反射装置40の各第1反射部51a,52a,53a,54aからの光(第1入力光)を受光するように機能している。図2では、第1反射部51aを介して第1フォトダイオード21で受光し得る範囲(視野範囲)の境界を符号L21a,L21bの2つのラインによって示しており、このライン付近を境界としてこのラインL21a,L21b間の領域の反射光が第1反射部51aで反射して第1フォトダイオード21で受光されるようになっている。また、図3では、第1反射部53aを介して第1フォトダイオード21で受光し得る範囲(視野範囲)の境界を符号L23a,L23bの2つのラインによって示しており、このライン付近を境界としてこのラインL23a,L23b間の領域の反射光が第1反射部53aで反射して第1フォトダイオード21で受光されるようになっている。
第2フォトダイオード22は、第2受光部の一例に相当し、後述する回動反射装置40の各第2反射部51b,52b,53b,54bからの光(第1入力光)を受光するように機能している。図2では、第2反射部51bを介して第2フォトダイオード22で受光し得る範囲(視野範囲)の境界を符号L21b,L21cの2つのラインによって示しており、このライン付近を境界としてこのラインL21b,L21c間の領域の反射光が第2反射部51bで反射して第2フォトダイオード22で受光されるようになっている。また、図3では、第2反射部53bを介して第2フォトダイオード22で受光し得る範囲(視野範囲)の境界を符号L23b,L23cの2つのラインによって示しており、このライン付近を境界としてこのラインL23b,L23c間の領域の反射光が第2反射部53bで反射して第2フォトダイオード22で受光されるようになっている。
レーザダイオード10からのレーザ光L1の光路付近には、ミラー12が設けられている。このミラー12は、レーザ光L1の光軸に対し所定角度(例えば45°)で傾斜してなる反射面を備えている。なお、本実施形態では、回動体50の回転中心となる中心軸Cの方向を上下方向とし、上下方向と直交する方向を水平方向としている。そして、ミラー12の反射面は、その上下方向に対して所定角度(例えば45°)で傾斜しており、レーザダイオード10から出射されて水平方向の所定の向きに通るレーザ光L1をこの反射面で反射させて上下方向に折り返し、その上下方向のレーザ光L1を回動体50に入射させている。
ミラー12からのレーザ光L1の光軸上には、回動反射装置40が設けられている。回動反射装置40は、「回動反射手段」の一例に相当するものであり、主に回動体50と、軸部42と、モータ43とによって構成されている。このうち、回動体50は、所定の中心軸Cを中心として回動可能に構成され、複数の反射領域構成部51,52,53,54が中心軸Cの周りにおいて周方向に複数配置された構成となっている。
このうち第1の反射領域構成部51は、図6(A)のような構成をなし、レーザダイオード10からのレーザ光を反射可能な第1反射部51aと当該第1反射部51aと対をなす第2反射部51bとが上下に配置された構成となっている。また、第2の反射領域構成部52は、図6(B)のような構成をなし、レーザダイオード10からのレーザ光を反射可能な第1反射部52aと当該第1反射部52aと対をなす第2反射部52bとが上下に配置された構成となっている。また、第3の反射領域構成部53は、図7(A)のような構成をなし、レーザダイオード10からのレーザ光を反射可能な第1反射部53aと当該第1反射部53aと対をなす第2反射部53bとが上下に配置された構成となっている。更に、第4の反射領域構成部54は、図7(B)のような構成をなし、レーザダイオード10からのレーザ光を反射可能な第1反射部54aと当該第1反射部54aと対をなす第2反射部54bとが上下に配置された構成となっている。
なお、図6、図7は、各第1反射部及び各第2反射部の反射面と直交する切断面における外形を示すものである。具体的には、第1の反射領域構成部51の第1反射部51a及び第2反射部51bは、いずれの反射面も、中心軸Cを通る所定第1方向の仮想平面(図2のF1の平面)と直交するように配されており、図6(A)は、この仮想平面の断面外形を概略的に示している。また、第2の反射領域構成部52の第1反射部52a及び第2反射部52bは、いずれの反射面も、中心軸Cを通る所定第2方向の仮想平面(図2のF2の平面であり、F1の平面と直交する平面)と直交するように配されており、図6(B)は、この仮想平面の断面外形を概略的に示している。更に、第3の反射領域構成部53の第1反射部53a及び第2反射部53bは、いずれの反射面も、中心軸Cを通る所定第1方向の仮想平面(図2のF1の平面)と直交するように配されており、図7(A)は、この仮想平面の断面外形を概略的に示している。また、第4の反射領域構成部54の第1反射部54a及び第2反射部54bは、いずれの反射面も、中心軸Cを通る所定第2方向の仮想平面(図2のF2の平面)と直交するように配されており、図7(B)は、この仮想平面の断面外形を概略的に示している。
図6、図7に示すように、中心軸Cと直交する平面(仮想水平面)と各第1反射部51a,52a,53a,54aの反射面とのなす角度(鋭角)は、それぞれ異なるように構成されている。具体的には、第1の第1反射部51aの反射面と上記仮想水平面とのなす角度(鋭角)γ1が最も小さく(例えば45°)、第2の第1反射部52aの反射面と上記仮想水平面とのなす角度(鋭角)γ2はr1よりも大きく、第3の第1反射部53aの反射面と上記仮想水平面とのなす角度(鋭角)γ3はr2よりも大きく、第3の第1反射部53aの反射面と上記仮想水平面とのなす角度(鋭角)γ4はr3よりも大きくなっている。
更に、各反射領域構成部51,52,53,54のいずれも、高さ方向のサイズが同一であり、且つ第1反射部の反射面と第2反射部の反射面とのなす角度が90°となるように構成されている。なお、図5は、反射領域構成部を一般化して示すものであり、いずれの反射領域構成部でも、第1反射部と上下方向とのなす角度αと、第2反射部と上下方向とのなす角度βとを加算した値(α+β)が90°となっている。各反射領域構成部から照射されるレーザ光の向き(レーザ光L1の照射方向と水平方向とのなす角度θは、上記αによって定まり、θ=90−2αとなるθの角度でレーザ光が照射されることになる。また、外部空間の物体から第1反射部に入り込む反射光については、所定方向の反射光が第1反射部によって上方に反射され、第1フォトダイオード21に導かれるようになっている。具体的には、上記仮想水平面とのなす角度がθの反射光(即ち、レーザ光L1の照射の向きと同じ向きの反射光)が第1反射部によって反射され、上方向きに変換される。その上方に導かれた光(入力光)はレンズ61によって第1フォトダイオード21の受光領域上に集光される。更に、外部空間の物体から第2反射部に入り込む反射光については、所定方向の反射光が第2反射部によって下方に反射され、第2フォトダイオード22に導かれるようになっている。具体的には、上記仮想水平面とのなす角度がθの反射光(即ち、レーザ光L1の照射の向きと同じ向きの反射光)が第2反射部によって反射され、下方向きに変換される。その下方に導かれた光(入力光)はレンズ62によって第2フォトダイオード22の受光領域上に集光される。
例えば、図6(A)の例において、第1反射部51aと上下方向とのなす角度αが45°である場合、βも45°であり、α+βは90°となる。このとき、第1の反射領域構成部51から照射されるレーザ光の向きは、θ=90−2α=0°となり、第1反射部51aから水平方向に照射される。また、図6(A)のように、物体からの反射光の方向と第1反射部51aとのなす角度θも0°であり、物体からの反射光の方向と第2反射部51bとのなす角度θも0°となる。なお、図1はこのような場合を示しており、図2は、そのときの回動体50の向きを平面図にて示している。
図6(B)の例において、第1反射部52aと上下方向とのなす角度αが35°である場合、βは55°であり、α+βは90°となる。このとき、第1の反射領域構成部52から照射されるレーザ光の向きは、θ=90−2α=20°となり、第1反射部52aからやや下向き(水平方向に対し20°傾いた下向き)に照射される。また、図6(B)のように、物体からの反射光の方向と第1反射部52aとのなす角度θも20°であり、物体からの反射光の方向と第2反射部52bとのなす角度θも20°となる。
図7(A)の例において、第1反射部53aと上下方向とのなす角度αが25°である場合、βは65°であり、α+βは90°となる。このとき、第1の反射領域構成部53から照射されるレーザ光の向きは、θ=90−2α=40°となり、第1反射部53aから下向き(水平方向に対し40°傾いた下向き)に照射される。また、図7(A)のように、物体からの反射光の方向と第1反射部53aとのなす角度θも40°であり、物体からの反射光の方向と第2反射部53bとのなす角度θも40°となる。
図7(B)の例において、第1反射部54aと上下方向とのなす角度αが15°である場合、βは75°であり、α+βは90°となる。このとき、第1の反射領域構成部54から照射されるレーザ光の向きは、θ=90−2α=60°となり、第1反射部56aからかなり下向き(水平方向に対し60°傾いた下向き)に照射される。また、図7(B)のように、物体からの反射光の方向と第1反射部54aとのなす角度θも60°であり、物体からの反射光の方向と第2反射部54bとのなす角度θも60°となる。
さらに、回動反射装置40には、モータ43が設けられている。このモータ43は、回動体50を回動させる「駆動手段」の一例に相当し、回動体50に連結された軸部42を駆動軸としてこの軸部42を回転させ、この軸部42と共に軸部42と連結された回動体50を一体的に回転駆動している。なお、モータ43の具体的構成としては、例えば直流モータ、交流モータ、ステップモータなど様々なモータを使用できる。
なお、図示はしていないが、モータ43の駆動軸(例えば軸部42)の回転角度位置(即ち回動体50の回転角度位置)を検出する回転角度センサも設けられている。この回転角度センサは、ロータリエンコーダなど、回動体50或いは軸部42の回転角度位置を検出しうるものであれば公知の様々なセンサを使用できる。
また、本実施形態に係るレーザレーダ装置1では、レーザダイオード10、第1フォトダイオード21、第2フォトダイオード22、ミラー12、レンズ61、61、回動反射装置40、モータ43等がケース3の内部に収容され、防塵や衝撃保護が図られている。このケース3は、主ケース部4と透過板5とを備えており、全体として箱状に構成されている。主ケース部4は、上壁部及び下壁部が上下に対向して配置され、周壁部が上方側の外周壁として構成されており、周壁部と下壁部の間が窓部として導光可能に開放されている。窓部は、主ケース部4において光の出入りを可能とするように開放した部分であり、回動体50の周囲において周方向所定領域に亘って形成され、且つ上下方向所定領域を開放する構成で設けられている。そして、この開放形態の窓部を閉塞するように透明の樹脂板、ガラス板などからなる透過板5が配置されている。
(検出動作)
レーザレーダ装置1では、回動反射装置40におけるモータ43による回動体50の回動に応じて、各反射領域構成部51,52,53,54の各第1反射部51a,52a,53a,54aがレーザダイオード10からのレーザ光の投光経路上に順次位置し、各第1反射部51a,52a,53a,54aに対応する上下方向の向きにレーザ光を反射することになる。例えば、図1、図2の例では、反射領域構成部51の第1反射部51aがレーザダイオード10からのレーザ光の投光経路上に位置しており、この回転角度では、第1反射部51aに対応する上下方向の向き(水平方向)にレーザ光を反射することになる。また、第1反射部51aに照射されている回転角度から回動体50が更に時計回りに回転すると、第1反射部52aがレーザ光L1の投光経路上に位置することになる。そして、第1反射部51aに対応する上下方向の向き(第1反射部51aの照射の向きよりも下向き)にレーザ光を反射することになる。そして、第1反射部52aに照射されている回転角度から回動体50が更に時計回りに回転すると、第1反射部53aがレーザ光L1の投光経路上に位置することになる。そして、第1反射部53aに対応する上下方向の向き(第2反射部52aの照射の向きよりも下向き)にレーザ光を反射することになる。更に、第1反射部53aに照射されている回転角度から回動体50が更に時計回りに回転すると、第1反射部54aがレーザ光L1の投光経路上に位置することになる。そして、第1反射部54aに対応する上下方向の向き(第1反射部53aの照射の向きよりも下向き)にレーザ光を反射することになる。
一方、各反射領域構成部51,52,53,54の各第1反射部51a,52a,53a,54aから照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部を照射元の第1反射部で上下方向一方側に反射させて第1入力光として第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として第2フォトダイオード22に導くことになる。例えば、第1反射部51aから照射されたレーザ光が外部空間に存在する物体で反射したときには、図1のように、物体からの反射光の一部を照射元の第1反射部51aで上側に反射させて第1入力光としてレンズ61を介して第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部51bで下側に反射させて第2入力光としてレンズ62を介して第2フォトダイオード22に導くことになる。同様に、第1反射部52aから照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部を照射元の第1反射部52aで上側に反射させて第1入力光としてレンズ61を介して第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部51bで下側に反射させて第2入力光としてレンズ62を介して第2フォトダイオード22に導くことになる。更に、第1反射部53aから照射されたレーザ光が外部空間に存在する物体で反射したときには、図3のように、物体からの反射光の一部を照射元の第1反射部53aで上側に反射させて第1入力光としてレンズ61を介して第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部53bで下側に反射させて第2入力光としてレンズ62を介して第2フォトダイオード22に導くことになる。また、第1反射部54aから照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部を照射元の第1反射部54aで上側に反射させて第1入力光としてレンズ61を介して第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部54bで下側に反射させて第2入力光としてレンズ62を介して第2フォトダイオード22に導くことになる。
このように構成されるレーザレーダ装置1では、回動体50の回転角度θa(所定の基準回転位置(例えば、ロータリエンコーダが原点を示す位置)からの回転角度)が定まれば装置からのレーザ光L1の投射方向が特定される。つまり、回動体50の回転角度が定まれば、どの第1反射部からどの向きにレーザ光が照射されるかを特定でき、水平方向及び高さ方向の照射の向きを特定できる。従って、第1フォトダイオード21及び第2フォトダイオード22が物体からの反射光を受光したときの回動体50の回転角度を回転角度センサ等によって検出することで、物体の方位を正確に検出できる。なお、第1フォトダイオード21及び第2フォトダイオード22が物体からの反射光を受光したか否かは、第1フォトダイオード21及び第2フォトダイオード22での総受光量(即ち、第1フォトダイオード21からの出力と第2フォトダイオード22からの出力の加算値)が閾値を超えたか否かによって判断することができ、このような加算値が所定の閾値を超えたときの回動体50の回転角度に基づいて物体の方位(水平方向及び垂直方向の方位)を算出することができる。
また、レーザダイオード10にてレーザ光L1(パルスレーザ光)が発生してから第1フォトダイオード21及び第2フォトダイオード22によって当該レーザ光L1に対応する反射光が検出されるまでの時間Tを検出すれば、この時間Tと光速とに基づいて、レーザ光L1の発生から反射光受光までの光経路の長さを算出することができ、レーザレーダ装置1の所定基準位置(例えばレーザダイオードの位置)から検出物体までの距離Lも正確に求めることができる。つまり、レーザレーダ装置1から検出物体までの距離及び方位をいずれも正確に検出することができる。
(本構成の主な効果)
本構成では、中心軸Cを中心として回動する回動体50において、複数の反射領域構成部51,52,53,54が中心軸Cの周りにおいて周方向に複数配置されている。そして、各反射領域構成部51,52,53,54は、レーザダイオード10からのレーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されており、それぞれの第1反射部51a,52a,53a,54aは、中心軸Cと直交する平面と各第1反射部51a,52a,53a,54aの反射面とのなす角度がそれぞれ異なるように構成されている。そして、駆動手段による回動体50の回動に応じて、各反射領域構成部51,52,53,54の各第1反射部51a,52a,53a,54aがレーザダイオード10からのレーザ光の投光経路上に順次位置する構成であるため、各第1反射部51a,52a,53a,54aの角度(中心軸Cと直交する平面とのなす角度)に対応する上下方向の向きにレーザ光を照射することができる。つまり、回転体を回転させることだけで第1反射部51a,52a,53a,54aの面数分だけレーザ光の向きを上下に切り替えて物体検出を行うことができるため、レーザ光を上下方向に変化させるための揺動機構等が必須とならず、走査の高速化も図りやすくなる。
更に、本構成では、各反射領域構成部51,52,53,54の各第1反射部51a,52a,53a,54aから照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部を照射元の第1反射部で上下方向一方側に反射させて第1入力光として第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該照射元と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として第2フォトダイオード22に導く構成となっている。この構成では、照射された各レーザ光に応じた反射光を照射元の各第1反射部だけで受けるのではなく、各第1反射部と対をなす第2反射部によっても受けることができ、両受光部での総受光量は第1反射部51a,52a,53a,54aからの入力光のみを受光する場合に比べて非常に大きくなる。
また、本構成では、水平面とのなす角度(鋭角)が大きい第1反射部ほど、対をなす第2反射部の水平面に対する角度が小さくなるように構成されている。具体的には、回動反射装置40の各反射領域構成部51,52,53,54は、第1反射部の反射面と第2反射部の反射面とのなす角度が90°となるように構成されている。対をなす反射面の角度関係をこのように構成することで、反射光の検出特性(検出し得る受光量の特性)が上下方向の照射の向き(スキャン角度)に依存しにくくなる。
例えば、図11、図12でも説明したように、第1反射部51a,52a,53a,54aに対してレーザ光が照射される側を上側とした場合、第1反射部51a,52a,53a,54aの高さサイズが同一であれば、照射の向きがより下側になる第1反射部51a,52a,53a,54aほど(即ち、入射光軸と直交する平面に対する傾斜が大きい第1反射部ほど)、上側(即ち第1フォトダイオード21側)に導ける受光量が低下するという特徴がある。逆に、斜め下側からの反射光を受光する場合、下側の第2反射部51b,52b,53b,54bは、水平面(第1反射部への入射光軸と直交する平面)に対する傾斜が小さくなるほど、より多くの反射光を下側(第2フォトダイオード22側)に導けるという特徴がある。従って、このような特徴を有する第1反射部51a,52a,53a,54aと第2反射部51b,52b,53b,54bを各反射領域構成部51,52,53,54に設け、対をなす第1反射部の反射面と第2反射部の反射面とのなす角度が90°となるように構成すれば、各反射領域構成部51,52,53,54の高さを大きく変えずとも回動体50の各回動角度において反射光の検出特性より一定に保ちやすくなり、反射光の検出特性(検出し得る受光量の特性)が上下方向の照射の向き(スキャン角度)に依存しにくくなる。
[第2実施形態]
次に、本発明の第2実施形態について説明する。
第2実施形態のレーザレーダ装置1は、図9、図10のような構成となっており、この装置は、各方向からのレーザ光を受光するための構成は第1実施形態と同様である。
このレーザレーダ装置1は、レーザ光を発生させるレーザダイオード10と、レーザダイオード10からのレーザ光の向きを変化させて走査する走査装置240とを有している。そして、走査装置240は、各反射領域構成部51,52,53,54がレーザ光照射側に配置される各角度範囲のときに、そのレーザ光照射側に配置される各反射領域構成部51,52,53,54の各第1反射部の移動に合わせて且つ各第1反射部の反射面の傾斜に対応する方向にレーザ光の走査を行うようになっている。例えば、第1反射部51aがレーザ光照射側に配置される場合には、第1反射部51aの移動に合わせて且つ図6(A)のθで特定される向き(水平方向)にレーザ光を照射する。また、第1反射部52aがレーザ光照射側に配置される場合には、第1反射部52aの移動に合わせて且つ図6(B)のθで特定される向き(水平方向)にレーザ光を照射する。更に、第1反射部53aがレーザ光照射側に配置される場合には、第1反射部53aの移動に合わせて且つ図7(A)のθで特定される向き(水平方向)にレーザ光を照射する。同様に、第1反射部54aがレーザ光照射側に配置される場合には、第1反射部54aの移動に合わせて且つ図7(B)のθで特定される向き(水平方向)にレーザ光を照射する。なお、水平方向の向きを合わせる制御はモータ243の回転制御によって行い、高さ方向の向きを合わせる制御はモータ214によって揺動ミラーの角度を変更することで行う。
一方、受光系の構成は第1実施形態と同様であり、この構成でも、回動反射装置40の各第1反射部51a,52a,53a,54aからの光を受光するための第1フォトダイオード21と、回動反射装置40の各第2反射部51b,52b,53b,54bからの光を受光するための第2フォトダイオード22とが設けられている。また、回動反射装置40は、第1実施形態と同様の構成となっており、同様の機能を有している。そして、この構成でも、回動体50は、所定の中心軸Cを中心として回動可能に構成され、反射領域構成部51,52,53,54が中心軸Cの周りにおいて周方向に複数配置されており、各反射領域構成部において、第1反射部と第2反射部とが対をなして設けられている。
そして、各反射領域構成部51,52,53,54の各第1反射部に合わせて照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部をその合わせられた第1反射部で上下方向一方側に反射させて第1入力光として第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該第1反射部と対をなす各第2反射部51b,52b,53b,54bで上下方向他方側に反射させて第2入力光として第2フォトダイオード22に導くようになっている。例えば図8のように、反射領域構成部51の第1反射部51aに合わせて走査装置240から照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部をその合わせられた第1反射部51aで上側に反射させて第1入力光として第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該第1反射部51aと対をなす各第2反射部51bで上下側に反射させて第2入力光として第2フォトダイオード22に導くようになっている。また、図9のように、反射領域構成部53の第1反射部53aに合わせて走査装置240から照射されたレーザ光が外部空間に存在する物体で反射したときに、物体からの反射光の一部をその合わせられた第1反射部53aで上側に反射させて第1入力光として第1フォトダイオード21に向けて導き、物体からの反射光の他の一部を当該第1反射部53aと対をなす各第2反射部53bで上下側に反射させて第2入力光として第2フォトダイオード22に導くようになっている。
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
例えば、図10のように構成し、例えば投光手段からレーザ光を拡散させて照射するように構成し、回動体50からレーザ光を上下方向(縦方向)に拡散させて照射するように構成してもよい。この場合でも、回動体50の各第1反射部51a,52a,53a,54aから照射されるレーザ光の上下方向の向き(上下方向の照射範囲の向き)はそれぞれ異なり、更に、それら第1反射部51a,52a,53a,54aから照射されるレーザ光は、少なくとも上下方向に拡散することになる。一方、第1フォトダイオード21及び第2フォトダイオード22は、複数の受光素子が配列されてなり、物体からの反射光の入射位置に配置される第1反射部の傾き及び当該第1反射部に対する反射光の入射の向きに応じて、第1フォトダイオード21での第1入力光の受光位置が定まる構成をなし、物体からの反射光の入射位置に配置される第2反射部の傾き及び当該第2反射部に対する反射光の入射の向きに応じて、第2フォトダイオード22での第2入力光の受光位置が定まる構成をなしている。例えば、図10の例では、各第1反射部から破線の角度範囲(2つの破線で境界が特定されるような広がった角度範囲)でレーザ光が照射されるようになっており、上側の境界付近の方向に照射されたレーザ光の成分が物体で反射して矢印Faの向きに返ってくる反射光は第1フォトダイオード21において横方向第1位置(例えば右寄り)に入射し、第1反射部から光軸付近に照射されたレーザ光の成分が物体で反射して矢印Fbの向きに返ってくる反射光は第1フォトダイオード21において横方向第2位置(例えば中央)に入射し、下側の境界付近の方向に照射されたレーザ光の成分が物体で反射して矢印Fcの向きに返ってくる反射光は第1フォトダイオード21において横方向第3位置(例えば左寄り)に入射するようになっている。なお、図10のような回転体の回転角度に限らず、どの第1反射部に入射する場合でも、上側の境界付近の方向に照射されたレーザ光の成分が物体で反射した光は、第1フォトダイオード21において横方向第1位置(例えば右寄り)に入射し、第1反射部から光軸付近に照射されたレーザ光の成分が物体で反射した光は横方向第2位置(例えば中央)に入射し、下側の境界付近の方向に照射されたレーザ光の成分が物体で反射した光は、横方向第3位置(例えば左寄り)に入射するようになっている。
従って、回転体の回転角度と第1フォトダイオード21での入射位置が特定できれば、拡散したレーザ光の範囲においてどの向きに物体が存在するかを具体的に特定することができる。
なお、矢印Faの向きに返ってくる反射光は第2フォトダイオード22において横方向第1位置(例えば左寄り)に入射し、矢印Fbの向きに返ってくる反射光は第2フォトダイオード22において横方向第2位置(例えば中央)に入射し、矢印Fcの向きに返ってくる反射光は第2フォトダイオード22において横方向第3位置(例えば右寄り)に入射するようになっている。従って、回転体の回転角度と第2フォトダイオード22での入射位置が特定できれば、拡散したレーザ光の範囲においてどの向きに物体が存在するかを具体的に特定することができる。
この構成では、各第1反射部51a,52a,53a,54aから1本のレーザ光を照射したときに、当該レーザ光の方向(当該レーザ光がカバーする範囲)における物体の具体的位置に応じて第1フォトダイオード21及び第2フォトダイオード22での入力光の検出位置が変化することになる。つまり、各第1反射部51a,52a,53a,54aからのレーザ光の方向(当該レーザ光がカバーする範囲)において、物体の方位が具体的にどの位置にあるか詳細に特定することができ、回転体における反射部の数以上の分解能を実現できる。
1…レーザレーダ装置
10…レーザダイオード(光源、投光手段)
21…第1フォトダイオード(第1受光部)
22…第2フォトダイオード(第2受光部)
40…回動反射装置(回動反射手段,走査手段)
50…回動体
51,52,53,54…反射領域構成部
51a,52a,53a,54a…第1反射部
51b,52b,53b,54b…第2反射部
240…走査装置(走査手段)
C…中心軸

Claims (4)

  1. レーザ光を発生させる光源を備えた投光手段と、
    所定の中心軸を中心として回動可能に構成され、前記中心軸の方向を上下方向としたとき、前記投光手段からの前記レーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されてなる反射領域構成部が前記中心軸の周りにおいて周方向に複数配置されてなり、前記中心軸と直交する平面と各第1反射部の反射面とのなす角度がそれぞれ異なるように構成された回動体と、前記回動体を回動させる駆動手段とを備えた回動反射手段と、
    前記回動反射手段の各第1反射部からの光を受光するための第1受光部と、
    前記回動反射手段の各第2反射部からの光を受光するための第2受光部と、
    を備え、
    前記回動反射手段は、
    前記駆動手段による前記回動体の回動に応じて、各反射領域構成部の各第1反射部が前記投光手段からの前記レーザ光の投光経路上に順次位置し、各第1反射部に対応する上下方向の向きに前記レーザ光を反射する構成をなし、
    各反射領域構成部の各第1反射部から照射された前記レーザ光が前記外部空間に存在する物体で反射したときに、前記物体からの反射光の一部を照射元の各第1反射部で上下方向一方側に反射させて第1入力光として前記第1受光部に向けて導き、前記物体からの前記反射光の他の一部を当該照射元と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として前記第2受光部に導くことを特徴とするレーザレーダ装置。
  2. 前記回動反射手段の各反射領域構成部は、前記第1反射部の反射面と前記第2反射部の反射面とのなす角度が90°となるように構成されていることを特徴とする請求項1に記載のレーザレーダ装置。
  3. 前記投光手段は、前記レーザ光を拡散させて照射する構成をなし、
    前記回動体の各第1反射部から照射される前記レーザ光の上下方向の向きがそれぞれ異なるように構成され、且つ各第1反射部から照射される前記レーザ光が少なくとも上下方向に拡散するように構成され、
    前記第1受光部及び前記第2受光部の少なくともいずれかは、複数の受光素子が配列されてなり、
    前記物体からの前記反射光の入射位置に配置される前記第1反射部の傾き及び当該第1反射部に対する前記反射光の入射の向きに応じて、前記第1受光部での前記第1入力光の受光位置が定まる構成、及び前記物体からの前記反射光の入射位置に配置される前記第2反射部の傾き及び当該第2反射部に対する前記反射光の入射の向きに応じて、前記第2受光部での前記第2入力光の受光位置が定まる構成の少なくともいずれかを有していることを特徴とする請求項1に記載のレーザレーダ装置。
  4. レーザ光を発生させる光源を備えた投光手段と、
    前記投光手段からの前記レーザ光の向きを変化させて走査する走査手段と、
    所定の中心軸を中心として回動可能に構成され、前記中心軸の方向を上下方向としたとき、前記投光手段からの前記レーザ光を反射可能な第1反射部と当該第1反射部と対をなす第2反射部とが上下に配置されてなる反射領域構成部が前記中心軸の周りにおいて周方向に複数配置されてなり、前記中心軸と直交する平面と各第1反射部の反射面とのなす角度がそれぞれ異なるように構成された回動体と、前記回動体を回動させる駆動手段とを備えた回動反射手段と、
    前記回動反射手段の各第1反射部からの光を受光するための第1受光部と、
    前記回動反射手段の各第2反射部からの光を受光するための第2受光部と、
    を備え、
    前記走査手段は、各反射領域構成部がレーザ光照射側に配置される各角度範囲のときに、そのレーザ光照射側に配置される各反射領域構成部の各第1反射部の移動に合わせて且つ各第1反射部の反射面の傾斜に対応する方向に前記レーザ光の走査を行い、
    前記回動反射手段は、各反射領域構成部の各第1反射部に合わせて照射された前記レーザ光が前記外部空間に存在する物体で反射したときに、前記物体からの反射光の一部をその合わせられた各第1反射部で上下方向一方側に反射させて第1入力光として前記第1受光部に向けて導き、前記物体からの前記反射光の他の一部を当該各第1反射部と対をなす各第2反射部で上下方向他方側に反射させて第2入力光として前記第2受光部に導くことを特徴とするレーザレーダ装置。
JP2012218488A 2012-09-28 2012-09-28 レーザレーダ装置 Pending JP2014071038A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012218488A JP2014071038A (ja) 2012-09-28 2012-09-28 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012218488A JP2014071038A (ja) 2012-09-28 2012-09-28 レーザレーダ装置

Publications (1)

Publication Number Publication Date
JP2014071038A true JP2014071038A (ja) 2014-04-21

Family

ID=50746365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012218488A Pending JP2014071038A (ja) 2012-09-28 2012-09-28 レーザレーダ装置

Country Status (1)

Country Link
JP (1) JP2014071038A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125007A (ja) * 2013-12-25 2015-07-06 株式会社デンソー ポリゴンミラー、レーザレーダ装置
JP2017090135A (ja) * 2015-11-06 2017-05-25 アイシン精機株式会社 測距装置
JP2018036065A (ja) * 2016-08-29 2018-03-08 株式会社デンソーウェーブ レーザレーダ装置
JP2018059846A (ja) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダシステム
KR101947404B1 (ko) * 2018-05-14 2019-02-13 주식회사 에스오에스랩 라이다 장치
KR20190066349A (ko) * 2017-12-05 2019-06-13 광주과학기술원 라이다 장치
JP2019518204A (ja) * 2016-12-31 2019-06-27 イノビュージョン アイルランド リミテッドInnovusion Ireland Limited 回転凹面鏡及びビームステアリング装置の組み合わせを用いた、2d走査型高精度ライダー
WO2019135493A1 (ko) * 2018-01-08 2019-07-11 주식회사 에스오에스랩 라이다 장치
KR20190106216A (ko) * 2018-03-08 2019-09-18 주식회사 에스오에스랩 전후방 측정이 가능한 라이다 스캐닝 장치
US10557924B1 (en) 2018-05-14 2020-02-11 SOS Lab co., Ltd Lidar device
KR20200057675A (ko) * 2020-05-07 2020-05-26 무리기술 주식회사 다중 스캐너
KR20210122155A (ko) * 2020-03-27 2021-10-08 우창정보기술(주) 통합 퓨전 센서 장치
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
US11953626B2 (en) 2018-01-08 2024-04-09 SOS Lab co., Ltd LiDAR device
US11988773B2 (en) 2018-02-23 2024-05-21 Innovusion, Inc. 2-dimensional steering system for lidar systems

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125007A (ja) * 2013-12-25 2015-07-06 株式会社デンソー ポリゴンミラー、レーザレーダ装置
JP2017090135A (ja) * 2015-11-06 2017-05-25 アイシン精機株式会社 測距装置
JP2018036065A (ja) * 2016-08-29 2018-03-08 株式会社デンソーウェーブ レーザレーダ装置
JP2018059846A (ja) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダシステム
US11782131B2 (en) 2016-12-31 2023-10-10 Innovusion, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11899134B2 (en) 2016-12-31 2024-02-13 Innovusion, Inc. 2D scanning high precision lidar using combination of rotating concave mirror and beam steering devices
JP2019518204A (ja) * 2016-12-31 2019-06-27 イノビュージョン アイルランド リミテッドInnovusion Ireland Limited 回転凹面鏡及びビームステアリング装置の組み合わせを用いた、2d走査型高精度ライダー
US11782132B2 (en) 2016-12-31 2023-10-10 Innovusion, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11977183B2 (en) 2016-12-31 2024-05-07 Seyond, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
KR20190066349A (ko) * 2017-12-05 2019-06-13 광주과학기술원 라이다 장치
KR102065640B1 (ko) * 2017-12-05 2020-01-13 광주과학기술원 라이다 장치
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
CN110018481B (zh) * 2018-01-08 2023-08-01 Sos实验株式会社 激光雷达装置
US11493630B2 (en) 2018-01-08 2022-11-08 SOS Lab co., Ltd LiDAR device
US10613224B2 (en) 2018-01-08 2020-04-07 SOS Lab co., Ltd LiDAR device
US11953626B2 (en) 2018-01-08 2024-04-09 SOS Lab co., Ltd LiDAR device
US11953596B2 (en) 2018-01-08 2024-04-09 Sos Lab Co., Ltd. LiDAR device
WO2019135493A1 (ko) * 2018-01-08 2019-07-11 주식회사 에스오에스랩 라이다 장치
CN110018481A (zh) * 2018-01-08 2019-07-16 Sos实验株式会社 激光雷达装置
US10591598B2 (en) 2018-01-08 2020-03-17 SOS Lab co., Ltd Lidar device
US11988773B2 (en) 2018-02-23 2024-05-21 Innovusion, Inc. 2-dimensional steering system for lidar systems
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
KR20190106216A (ko) * 2018-03-08 2019-09-18 주식회사 에스오에스랩 전후방 측정이 가능한 라이다 스캐닝 장치
KR102177333B1 (ko) * 2018-03-08 2020-11-10 주식회사 에스오에스랩 전후방 측정이 가능한 라이다 스캐닝 장치
US10557924B1 (en) 2018-05-14 2020-02-11 SOS Lab co., Ltd Lidar device
US10578721B2 (en) 2018-05-14 2020-03-03 SOS Lab co., Ltd LiDAR device
KR101977315B1 (ko) * 2018-05-14 2019-05-20 주식회사 에스오에스랩 라이다 장치
US10705190B2 (en) 2018-05-14 2020-07-07 SOS Lab co., Ltd LiDAR device
KR101947404B1 (ko) * 2018-05-14 2019-02-13 주식회사 에스오에스랩 라이다 장치
KR20210122155A (ko) * 2020-03-27 2021-10-08 우창정보기술(주) 통합 퓨전 센서 장치
KR102610855B1 (ko) * 2020-03-27 2023-12-08 우창정보기술 (주) 통합 퓨전 센서 장치
KR102158956B1 (ko) * 2020-05-07 2020-09-22 무리기술 주식회사 다중 스캐너
KR20200057675A (ko) * 2020-05-07 2020-05-26 무리기술 주식회사 다중 스캐너

Similar Documents

Publication Publication Date Title
JP2014071038A (ja) レーザレーダ装置
JP5056362B2 (ja) レーザレーダ装置
JP5532003B2 (ja) レーザレーダ装置
JP5861532B2 (ja) レーザレーダ装置
JP2014052366A (ja) 光計測装置、車両
JP5891893B2 (ja) レーザレーダ装置
JP5929675B2 (ja) レーザレーダ装置
JP2009236774A (ja) 三次元測距装置
JP6737296B2 (ja) 対象物検出装置
JP6907947B2 (ja) 光走査型の対象物検出装置
JP2010071725A (ja) レーザレーダ及びレーザレーダによる境界監視方法
JP6460445B2 (ja) レーザレンジファインダ
JP2013083624A (ja) レーザレーダ装置
JP2014071028A (ja) レーザレーダ装置
JP2014071029A (ja) レーザレーダ装置
JP5533759B2 (ja) レーザレーダ装置
JP6388383B2 (ja) レーザレンジファインダ
JP5459164B2 (ja) レーザレーダ装置
JP2015184026A (ja) レーザレーダ装置
JP2015184037A (ja) レーザレーダ装置
JP4579321B2 (ja) 位置検出装置
JP6036116B2 (ja) レーザレーダ装置
JP2013068582A (ja) レーザレーダ装置
JP4595618B2 (ja) 光走査装置及び光走査方法
JP2013072770A (ja) レーザレーダ装置