JP2013072770A - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
JP2013072770A
JP2013072770A JP2011212458A JP2011212458A JP2013072770A JP 2013072770 A JP2013072770 A JP 2013072770A JP 2011212458 A JP2011212458 A JP 2011212458A JP 2011212458 A JP2011212458 A JP 2011212458A JP 2013072770 A JP2013072770 A JP 2013072770A
Authority
JP
Japan
Prior art keywords
light
laser
light receiving
unit
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212458A
Other languages
English (en)
Inventor
Katsunori Kono
克紀 光野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2011212458A priority Critical patent/JP2013072770A/ja
Publication of JP2013072770A publication Critical patent/JP2013072770A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】装置の周囲において三次元的に物体を認識し得るレーザレーダ装置において、駆動制御の複雑化を抑え、三次元的な認識の高速化を図り得る構成を提供する。
【解決手段】レーザレーダ装置1には、複数の受光素子21が二次元的に配置されてなる受光センサ20が設けられ、この受光センサ20は、ミラー30の上方側において反射部31によって導かれた反射光を受光領域にて受光する構成をなしている。一方、レーザダイオード10から外部空間に照射されるまでのレーザ光L1の投光経路には、凸状鏡71が配置され、偏向部41から外部空間に向かうレーザ光L1を少なくとも中心軸42aの方向に拡がらせている。そして、外部空間からの反射光が偏向部41に入射するときの入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されている。
【選択図】図1

Description

本発明は、レーザレーダ装置に関するものである。
レーザレーダ装置の分野では、特許文献1のような水平スキャン方式の構成が広く提供されている。例えば、特許文献1の装置では、レーザ光発生手段からのレーザ光の光軸上に、レーザ光を透過させ、かつ検出物体からの反射光を検出手段に向けて反射する光アイソレータを設けている。さらに、光アイソレータを透過するレーザ光の光軸上において当該光軸方向の中心軸を中心として回動する凹面鏡を設け、この凹面鏡によってレーザ光を空間に向けて反射させると共に、検出物体からの反射光を光アイソレータに向けて反射させることで360°の水平走査を可能としている。しかしながら、このような一般的な水平スキャン方式のものでは、検出領域が平面に限定されてしまうという問題があり、走査平面から外れた物体は検出することができず、また、走査平面内に物体が存在する場合であってもその物体を立体的に把握することはできなかった。
特許2789741号公報 特開2008−134163公報 特開2004−157044公報
一方、三次元的な検出を行おうとする技術としては、特許文献2、3のようなものが提供されている。例えば、特許文献2の三次元測距装置では、所定の回転軸線(P1)を中心として回転する回転体(8)を備えた二次元測距装置(100)と、この二次元測距装置(100)を第一軸心(P1)と斜交する第二軸心(P2)周りに回転駆動する第二回転機構(20)とが設けられている。この第二回転機構20には、第二軸心(P2)と直交する第三軸心(P3)周りに揺動支持する第一ブラケット(22)と、第一軸心(P1)上の所定位置にフリージョイント機構(24)を介して連結された回転アーム(24)とが設けられ、回転アーム(24)を駆動機構(28)によって回転駆動することにより、第一軸心(P1)のロール角度(α)及びピッチ角度(β)を変化させており、これにより、二次元測距装置(100)全体を揺動させて三次元走査を行っている。
しかしながら、特許文献2のように二次元測距装置(100)をケースごと全体的に揺動させる構成では、三次元走査に必要となる動作機構(第二回転機構(20))や駆動源(第二のモータ(28))が大型化することが避けられないため、軽量化や小型化の面で極めて不利となる。また、二次元測距装置(100)全体を駆動するという構造上、動作機構や駆動源に生じる機械的或いは電気的な負担が大きくならざるを得ず、駆動に際しては多大なトルクや電力等を必要とするため、走査を高速に行うことが難しいという問題がある。
特に、特許文献2の構成は、水平走査用のモータ(第一のモータ(11))によって駆動される部分(回転体(8))に対し、三次元動作用のモータ(第二のモータ(28))によって駆動される部分(二次元測距装置(100))が格段に大きく且つ重い構造であり、更に、第二のモータ(28)による動作は、第一ブラケット(22)やフリージョイント機構(24)での揺動を伴うものとなっている。このような構成では、軽量な回転体(8)を単純回転させる第一のモータ(11)側と比較すると、第二のモータ(28)側は動作が相当遅くならざるを得ない。このため、第一のモータ(11)側を高速回転させて走査の高速化を図ろうとしても、第二のモータ(28)側がその速度に対応できず、結果として、走査の高速化が阻害されてしまうという問題があった。
一方、特許文献3には、レーザ光源(2)からのレーザ光を走査ミラー(4)で走査すると共に、走査領域からの反射光を、多数の受光素子がマトリックス状に配列された受光素子アレイ(8)によって受光するように構成された走査型レーザレーダが開示されている。この構成では、MEMS技術を用いて走査ミラー(4)を制御しており、特許文献2の構成と比較すると三次元的な認識に寄与する要素を小型化、軽量化し得る構成となっている。しかしながら、特許文献3で開示される走査型レーザレーダは、回転可能な偏向部を備えた構成ではなく、装置の周囲に亘ってレーザスキャンを行い得るものではない。そして、この構成では、三次元的な認識に際して走査ミラー(4)を機械的に且つ複雑に動作させなければならず、走査ミラー(4)の駆動動作を高速に行うことには限界があった。また、仮に、回転可能な偏向部を用いて装置周囲のレーザスキャンを行う構成のものにおいて、特許文献3のようなレーザ光の制御方式を適用したとしても、偏向部の回転に対して十分早い動作速度で走査ミラー(4)を制御することが難しいため、特許文献2と同様の問題を抱えることになり、偏向部の高速化を図ろうとする場合にはこの問題が一層顕著となってしまう。
本発明は、上述した課題を解決するためになされたものであり、装置の周囲において三次元的に物体を認識し得るレーザレーダ装置において、駆動制御の複雑化を抑え、三次元的な認識の高速化を図り得る構成を提供することを目的とする。
上記課題を解決するため、第1の発明は、
レーザ光を発生させるレーザ光源を備え、前記レーザ光源から出射されたレーザ光を所定の中心軸に沿って導く投光手段と、
前記中心軸を中心として回転可能に構成された偏向部と、前記偏向部を駆動する駆動手段とを備えると共に、前記駆動手段により前記偏向部を回転させつつ前記中心軸に沿って導かれたレーザ光を前記偏向部によって外部空間に向けて偏向させる回転偏向手段と、
前記偏向部によって構成される回転ミラー、又は前記偏向部と同期するように前記所定方向に沿った中心軸を中心として回転する回転ミラーを備え、前記レーザ光源にてレーザ光が発生したときに当該レーザ光が外部空間の物体にて反射して生じる反射光を受光経路に導く誘導手段と、
複数の受光素子が二次元的に配置された受光領域を備え、前記回転ミラーから前記受光経路に導かれた前記反射光を前記受光領域にて受光する光検出手段と、
前記レーザ光源から外部空間に照射されるまでのレーザ光の投光経路に配置され、前記偏向部から外部空間に向かうレーザ光を少なくとも前記中心軸の方向に拡がらせる拡散手段と、
を備え、
前記外部空間からの前記反射光が前記回転ミラーに入射するときの入射の向きに対応して前記受光領域での前記反射光の入射位置が定まるように構成されていることを特徴とする。
また、上記課題を解決するため、第2の発明は、
レーザ光を発生させるレーザ光源と、前記レーザ光源から出射されたレーザ光を反射して所定の中心軸に沿って導くミラーと、を備えた投光手段と、
前記中心軸を中心として回転可能に構成された偏向部と、前記偏向部を駆動する駆動手段とを備えると共に、前記駆動手段により前記偏向部を回転させつつ前記中心軸に沿って導かれたレーザ光を前記偏向部によって外部空間に向けて偏向させ、且つ当該レーザ光が外部空間の物体で反射して生じる反射光を前記偏向部によって当該偏向部へのレーザ光の入射側に偏向する回転偏向手段と、
複数の受光素子が二次元的に配置されると共に前記ミラーの上方側に構成される受光領域を備え、前記偏向部によって前記受光経路に導かれた前記反射光を前記受光領域にて受光する光検出手段と、
複数の受光素子が二次元的に配置された受光領域を備えると共に、前記中心軸と平行な方向を上下方向としたときの当該上下方向において前記ミラーよりも前記偏向部から離れた側に配置され、前記偏向部によって導かれた前記反射光を前記受光領域にて受光する光検出手段と、
前記レーザ光源から外部空間に照射されるまでのレーザ光の投光経路に配置され、前記偏向部から外部空間に向かうレーザ光を少なくとも前記中心軸の方向に拡がらせる拡散手段と、
を備え、
前記外部空間からの前記反射光が前記偏向部に入射するときの入射の向きに対応して前記受光領域での前記反射光の入射位置が定まるように構成されていることを特徴とする。
請求項1の発明では、偏向部の中心軸に沿ってレーザ光を入射させ、この中心軸を中心として偏向部を回転駆動することで偏向部の周囲においてレーザ光の走査を行う構成のものにおいて、レーザ光源から外部空間に照射されるまでのレーザ光の投光経路において拡散手段が配置されており、この拡散手段により、偏向部から外部空間に向かうレーザ光を少なくとも中心軸の方向に拡がらせている。そして、外部空間からの反射光については、偏向部からなる又は偏向部と同期して回転する回転ミラーによって受光センサ側に導いており、この回転ミラーに入射するときの入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されている。
この構成では、偏向部からのレーザ光が高さ方向(以下、中心軸と平行な方向を高さ方向ともいう)に拡がりながら外部空間に照射されることになるため、このようなレーザ光を外部空間に存在する様々な高さの物体に当てることができるようになり、様々な高さの物体からの反射光を装置内の偏向部で受けつつ光検出手段に導くことができる。また、この構成では、外部空間の物体にレーザ光が当ったときには、その物体からの反射光が回転ミラーに取り込まれるときの入射の向きが当該物体の仰角(高さ方向の方位)に対応する向きとなるが、この入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されているため、偏向部の回転位置(回転角度)に基づいて物体の水平方向の方位を特定できることは勿論のこと、受光領域での反射光の入射位置を検出することで物体の仰角(高さ方向の方位)或いは物体の高さを特定できるようになる。
特にこの構成では、複雑なモータ動作やMEMS技術を用いてレーザ光を変化させなくても、受光信号に基づく電気的な処理によって外部物体の高さ方向の方位を検出できるようになるため、機械的な動作に起因する動作負荷や検出の低速化を伴うことなく外部空間での三次元的な認識が可能となる。
請求項2の発明では、偏向部の中心軸に沿ってレーザ光を入射させ、この中心軸を中心として偏向部を回転駆動することで偏向部の周囲においてレーザ光の走査を行う構成のものにおいて、レーザ光源から外部空間に照射されるまでのレーザ光の投光経路において拡散手段が配置されており、この拡散手段により、偏向部から外部空間に向かうレーザ光を少なくとも中心軸の方向に拡がらせている。そして、外部空間からの反射光が偏向部に入射するときの入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されている。
この構成では、偏向部からのレーザ光が高さ方向(以下、中心軸と平行な方向を高さ方向ともいう)に拡がりながら外部空間に照射されることになるため、このようなレーザ光を外部空間に存在する様々な高さの物体に当てることができるようになり、様々な高さの物体からの反射光を装置内の偏向部で受けつつ光検出手段に導くことができる。また、この構成では、外部空間の物体にレーザ光が当ったときには、その物体からの反射光が回転ミラーに取り込まれるときの入射の向きが当該物体の仰角(高さ方向の方位)に対応する向きとなるが、この入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されているため、偏向部の回転位置(回転角度)に基づいて物体の水平方向の方位を特定できることは勿論のこと、受光領域での反射光の入射位置を検出することで物体の仰角(高さ方向の方位)或いは物体の高さを特定できるようになる。
特にこの構成では、複雑なモータ動作やMEMS技術を用いてレーザ光を変化させなくても、受光信号に基づく電気的な処理によって外部物体の高さ方向の方位を検出できるようになるため、機械的な動作に起因する動作負荷や検出の低速化を伴うことなく外部空間での三次元的な認識が可能となる。
更に、請求項2の発明では、光検出手段をミラーの上方側に配置する構成とすることで上方側のスペースを利用して比較的大きな受光領域を収め、ミラーの前後左右において多大な配置スペースを割かずに済む構成としている。従って、偏向部を投光用及び受光用として兼用して部品点数の削減及び装置構成の小型化を実現しつつ、装置全体を前後左右に嵩張らせることなくコンパクト化しやすくなる。また、レーザ光源からのレーザ光を反射するミラーは、レーザ光を反射できる大きさであれば足りるため、小サイズに構成しやすく、偏向部からの反射光(外部空間の物体からの反射光)を光検出手段に導く際に当該反射光を極力阻害しないようにミラーを構成しやすくなる。結果として、反射光をより効率的に光検出手段に導けるようになり、受光感度を良好に維持しやすくなる。
請求項3の発明では、偏向部において、ミラーで反射して中心軸の方向に導かれたレーザ光が入射する位置に凸状の反射面が配され、凸状の反射面によりその導かれたレーザ光を少なくとも中心軸の方向に拡がらせつつ外部空間に向けて反射する凸状鏡と、凸状鏡の周囲に配置される平面鏡又は凹面鏡とが設けられており、凸状鏡が拡散手段として構成されている。
この構成によれば、偏向部の一部によって拡散手段を構成することができるため、別途拡散手段を設ける構成と比較して部品点数の削減を図ることができ、装置内に各部品を配置する上でスペース的に有利となる。
また、凸状鏡による拡散とすれば、投光過程ではレーザ光が偏向部に入射するときの入射領域を小さくしやすいため、凸状鏡の領域を小さくしやすく、相対的に平面鏡又は凹面鏡の領域を大きく確保しやすくなる。つまり、反射光をより多く光検出手段側に取り込むことができ、受光感度を高めやすくなる。特に、本構成のような出力光(レーザ光源からのレーザ光)と入力光(外部物体からの反射光)が同じ偏向部を経由することになる同軸系の構成では、上述のように出力光ために必要とする面積を小さくできるようにすると、そうでない構成において同サイズの偏向部を用いた場合と比較して相対的に受光感度が高めることができ、非常に有用である。
図1は、第1実施形態に係るレーザレーダ装置の全体構成を概略的に例示する断面図である。 図2は、図1のレーザレーダ装置の要部を拡大して具体的に示す拡大図である。 図3は、図1のレーザレーダ装置で用いる偏向部を例示する斜視図である。 図1は、図1のレーザレーダ装置で用いる受光センサを例示する正面図である。 図5は、図1のレーザレーダ装置の検出原理を説明する説明図であり、外部空間の物体の向き(仰角)が第1レベル(第1範囲)にあるときの検出の様子を示すものである。 図6は、図1のレーザレーダ装置の検出原理を図5と比較して説明する説明図であり、外部空間の物体の向き(仰角)が第2レベル(第2範囲)にあるときの検出の様子を示すものである。 図7は、図1のレーザレーダ装置の検出原理を図5、図6と比較して説明する説明図であり、外部空間の物体の向き(仰角)が第3レベル(第3範囲)にあるときの検出の様子を示すものである。 図8は、家の周囲を検出エリアとしたときの検出対象を例示する説明図である。 図9は、図1のレーザレーダ装置の変更例1を説明する説明図である。 図10は、図1のレーザレーダ装置の変更例2を説明する説明図である。
[第1実施形態]
以下、本発明のレーザレーダ装置を具現化した第1実施形態について、図面を参照して説明する。
(全体構成)
まず、図1、図2を参照して第1実施形態に係るレーザレーダ装置の全体構成について説明する。図1は、第1実施形態に係るレーザレーダ装置の全体構成を概略的に例示する断面図であり、図2は、図1のレーザレーダ装置の要部を拡大して具体的に示す拡大図である。なお、図1では、受光センサ20の受光側の面の中心位置と中心軸42aとを通るようにレーザレーダ装置1を中心軸42aに沿って切断した切断面を概略的に示している。また、図2では、レーザレーダ装置1の一部の部品のみを示しており、レンズ60についても省略して示している。
図1に示すように、レーザレーダ装置1は、レーザダイオード10と、検出物体からの反射光L2を受光する受光センサ20とを備え、外部空間に存在する物体までの距離や方位を検出する装置として構成されている。
本明細書では、中心軸42aと平行な方向を上下方向(縦方向、高さ方向)としており、受光センサ20が配される側を上方側、偏向部41が配される側を下方側としている。また、レーザダイオード10からのレーザ光の照射方向(レンズ60からのレーザ光の照射方向)と平行な方向を前後方向とし、レーザダイオード10からレーザ光が照射される側を前側、それとは反対側を後側としている。更に、上記上下方向及び前後方向と直交する方向を左右方向(横方向)としている。なお、以下の説明では、前後方向をX軸方向、上下方向をY軸方向、左右方向をZ軸方向として説明する。
レーザダイオード10は、「レーザ光源」の一例に相当するものであり、制御回路90の制御により、図示しない駆動回路からパルス電流を受け、このパルス電流に応じたパルスレーザ光(レーザ光L1)を間欠的に出射している。なお、本実施形態では、レーザダイオード10から偏向部41に至るまでのレーザ光を符号L1にて概念的に示し、偏向部41からのレーザ光をL1’(図2等)で概念的に示している。また、外部空間の物体から後述する受光センサ20に入り込む反射光を符号L2にて概念的に示している。
受光センサ20は、レーザダイオード10からレーザ光L1が発生し、そのレーザ光L1が外部空間の物体(検出物体:図1、図2では図示略)にて反射したとき、その反射光L2を受光して電気信号に変換している。なお、外部空間(装置外の空間)の物体からの反射光については所定領域のものが偏向部41に取り込まれる構成となっており、例えば図5では、符号L2で示す2つのライン(二点鎖線)間の領域の反射光が取り込まれる例を示している。
レーザダイオード10から出射されるレーザ光L1の光軸上にはレンズ60が設けられている。このレンズ60は、コリメートレンズとして構成されるものであり、レーザダイオード10からのレーザ光L1を平行光に変換している。
レンズ60を通過したレーザ光L1の光路付近には、ミラー30が設けられている。このミラー30は、レンズ60を通過したレーザ光の経路(前後方向に沿った経路)の途中に配置され、その前後方向のレーザ光を中心軸42aに沿った方向に反射している。ミラー30の反射面30aは、入射するレーザ光L1(前後方向のレーザ光)とのなす角度が45°となるように構成されており、そのレーザ光L1の入射位置が中心軸42a上の位置となるように構成されている。そして、ミラー30の反射面30aは中心軸42aとのなす角度も45°となっており、レーザダイオード10からのレーザ光L1を反射して中心軸42aに沿って導いている。
なお、本実施形態では、レーザダイオード10、レンズ60、ミラー30が「投光手段」の一例に相当し、レーザダイオード10から出射されたレーザ光L1を所定の中心軸42aに沿って導くように機能している。
また、ミラー30で反射されたレーザ光L1の光軸上には、回転反射装置40が設けられている。回転反射装置40は、「回転偏向手段」の一例に相当するものであり、中心軸42aを中心として回転可能に構成された偏向部41と、この偏向部41に連結された軸部42と、この軸部42を回転可能に支持する図示しない軸受と、偏向部41を回転駆動するモータ50とを備え、モータ50により偏向部41を回転させつつ中心軸42aに沿って導かれたレーザ光L1を偏向部41により外部空間に向けて偏向(反射)させ、且つ当該レーザ光が外部空間の物体で反射して生じる反射光を偏向部41によって当該偏向部41へのレーザ光の入射側(即ち、上方側)に偏向(反射)するように機能している。
偏向部41は、ミラー30を通過したレーザ光L1の光軸上に配置される反射面41aを備えると共に、中心軸42a(所定の中心軸)を中心として回転可能とされており、この反射面41aにより(より詳しくは、後述する凸状鏡71の外面により)レーザダイオード10からのレーザ光L1をケース3外の空間に向けて偏向(反射)させ、且つケース3外の空間に存在する検出物体からの反射光L2を上記反射面41a(より詳しくは、後述する凹面鏡72の外面により)受光センサ20に向けて偏向(反射)させる構成をなしている。
また、偏向部41の回転中心となる中心軸42aの方向(即ち回転軸線の方向)は、ミラー30を通過して当該偏向部41に入射するレーザ光L1の方向と略一致しており、レーザ光L1が偏向部41に入射する入射位置P1が中心軸42a上の位置とされている。なお、偏向部41の具体的構成については、後に詳述する。
モータ50は、「駆動手段」の一例に相当するものであり、軸部42を回転させることで、軸部42と連結された偏向部41を回転駆動している。このモータ50は、例えば公知の直流モータ或いは公知の交流モータによって構成されており、制御回路90からの駆動指示があったときに、図示しないモータドライバによって駆動状態(例えば、回転タイミングや回転速度)が制御されるようになっており、このときに、予め定められた一定の回転速度で定常回転するようになっている。
また、本構成では、図1に示すように、モータ50の軸部42の回転角度位置(即ち偏向部41の回転角度位置)を検出する回転角度センサ52が設けられている。回転角度センサ52は、ロータリーエンコーダなど、軸部42の回転角度位置を検出しうるものであれば様々な種類のものを使用できる。
なお、本構成では、偏向部41が「回転ミラー」ーの一例に相当している。そして、回転反射装置40が「誘導手段」の一例に相当し、中心軸42aを中心として回転する偏向部41(回転ミラー)を備え、レーザダイオード10にてレーザ光L1が発生したときに当該レーザ光L1が外部空間の物体にて反射して生じる反射光を受光経路(偏向部41から受光センサ20までの経路)に導くように機能している。
また、レーザレーダ装置1では、レーザダイオード10、受光センサ20、ミラー30、レンズ60、回転反射装置40、モータ50等がケース3内に収容され、防塵や衝撃保護が図られている。このケース3は、主ケース部5と透過板80とを備えており、全体として箱状に構成されている。主ケース部5は、上壁部5a及び下壁部5bが上下に対向して配置され、前壁部5c及び後壁部5dが前後に対向して配置され、図示しない側壁部が左右に対向して配置されており、一部が導光可能に開放された箱状形態をなしている。
この主ケース部5は、偏向部41の周囲に、レーザ光L1及び外部物体からの反射光の通過を可能とする窓部4が形成されている。この窓部4は、主ケース部5において光の出入りを可能とするように開口した部分であり、主ケース部5の前壁部5cから両側壁部5e、5fに亘って溝状に形成されている。そしてこの開口形態の窓部を閉塞するように透過板80が設けられている。透過板80は、例えば、透明の樹脂板、ガラス板などによって構成されており、偏向部41の周囲の周方向所定領域に亘り、レーザ光L1の走査経路上に配される窓部4を閉塞する構成で配置されている。
次に、偏向部41について詳述する。
図3は、図1のレーザレーダ装置で用いる偏向部を例示する斜視図である。
偏向部41は、図3のような形状をなしており、ミラー30で反射されたレーザ光L1が入射する位置に配置される凸状鏡71と、この凸状鏡71の周囲に配置される凹面鏡72とを備えている。このうち、凸状鏡71は、斜め上方側に凸となるように外面(反射面71a)が湾曲して構成されており、凸状鏡71に入射するレーザ光L1をその湾曲した反射面71aによって少なくとも中心軸42aの方向に拡がらせつつ(即ち高さ方向に拡がらせつつ)外部空間に向けて反射するように機能している。
なお、この構成では、凸状鏡71が「拡散手段」の一例に相当し、レーザダイオード10から外部空間に照射されるまでのレーザ光L1の投光経路に配置され、偏向部41から外部空間に向かうレーザ光を少なくとも中心軸42aの方向に拡がらせるように機能する。
偏向部41は、所定方向(図3に示すV1の方向)を長手方向とし、他の所定方向(例えば、上記長手方向と直交する方向)を幅方向とするように長手状に構成されており、図3の例では、W1の方向が幅方向となっている。そして、凸状鏡71は、入射するレーザ光L1を、幅方向(W1の方向)と直交し且つ中心軸42aの方向を通る仮想平面(仮想的な垂直面)に沿うように、且つ中心軸42aと直交し且つ入射位置P1を通る仮想平面(仮想的な水平面)に沿うようにレーザ光を上下方向および幅方向に拡散させつつ照射している。この構成では、上記両仮想平面(仮想的な水平面及び仮想的な垂直面)が交差する交差線の方向が位置P1からの照射の中心方向となっており、この照射の中心方向から上下方向にやや拡がりながらレーザ光L1’が照射されるようになっている。図2の例では、矢印Fの方向が照射の中心方向となっている。なお、反射面71aを幅方向を中心として湾曲する円筒状面とすれば照射の中心方向からの幅方向の広がりを抑えることができ、反射面71aを球面として構成すれば照射の中心方向から幅方向にもやや広がることとなる。
また、上記偏向部41では、当該偏向部41を上記仮想的な垂直面(幅方向(W1の方向)と直交し且つ中心軸42aの方向を通る仮想平面)で切断したときの凸状鏡71の外面(反射面71a)の外形においてレーザ光入射位置P1での接線は中心軸42aとのなす角度θが一定角度(例えば45°)となるように配置されており、モータ50の駆動力を受けたときにこの角度θを一定角度で維持しつつ回転するようになっている。従って、偏向部41の回転に応じて、位置P1からの照射の中心方向は位置P1を通る水平面上を移動することとなり、位置P1から照射されるレーザ光L1’は、位置P1を基点としてこの水平面の上方及び下方に所定角度θ1で拡がるようになっている。
凸状鏡71の周囲に配置される凹面鏡72は、公知の凹面鏡として構成されており、上記照射の中心方向と平行に光が入射してくるときには(即ち、光が水平に入射してくるときには)その入射する光を中心軸42a上の所定の焦点位置に向けて集光するように構成されている。また、上記仮想的な垂直面に沿うように且つ水平方向に対して傾斜した方向の光が入射してくるときには、この入射する光を、上記仮想的な垂直面上における中心軸42aから外れた焦点位置に向けて集光するように構成されている。
次に、受光センサ20について詳述する。
図4は、図1のレーザレーダ装置で用いる受光センサを例示する正面図である。
受光センサ20は、「光検出手段」の一例に相当するものであり、下方側(ミラー30側)の外面が「受光側の外面」とされており、この外面側には、図4のように複数の受光素子21(受光素子21a〜21i)が二次元的に配置された受光領域が設けられている。この受光センサ20は、上下方向(中心軸42aと平行な方向)においてレーザダイオード10、レンズ60、ミラー30からなる投光手段の上方側の領域に配置され、偏向部41の真上に位置している。そして、偏向部41によって上方に導かれた反射光(外部空間の物体からの反射光)を受光領域にて受光するように構成されている。
受光素子21は、例えばアバランシェフォトダイオードによって構成されており、受光センサ20は、このような受光素子21を複数行且つ複数列に配置したマトリックス状とされている。図1の構成では、受光センサ20の受光側の面が、XZ平面に沿うように当該XZ平面と平行に配置されている。また、上記受光素子21は、中心軸42aと直交する所定平面上に並ぶように配列されている。
次に、検出原理について説明する。
レーザレーダ装置1では、外部空間からの反射光が偏向部41に入射するときの入射の向きに対応して受光センサ20の受光領域での当該反射光の入射位置が定まるように構成されている。例えば、図5のように、位置P1からの照射の中心方向Fが前方側となる場合、位置P1を通る水平面とのなす角度(位置P1を基点とする仰角)が非常に小さくなるような方位に存在する物体Mでレーザ光L1’が反射したときには、図5のように反射光L2が偏向部41に対して水平方向又はそれに近い方向に入り込み、この反射光が偏向部41で反射したときには中心軸42a上の焦点位置に向けて集光されつつ上方に導かれることになる。そして、偏向部41で上方に導かれた反射光L2は、受光領域において中心軸42aに近い位置で受光されることになる。なお、本構成では、中心軸42a上に受光領域の中心位置P2が位置している。このような構成では、偏向部41が前方を向いているときに中心位置P2の受光素子21eの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が小さい第1レベル(第1範囲)にあることがわかる。
また、位置P1からの照射の中心方向Fが前方側となる場合において、図6のように、位置P1を通る水平面とのなす角度(位置P1を基点とする仰角)が図5よりも大きくなるような方位にある物体Mでレーザ光L1’が反射したときには、図6のように反射光L2は偏向部41に対して傾斜した上方側から入り込み、この反射光が偏向部41で反射したときには中心軸42aから後方側に外れた焦点位置に向けて集光されつつ上方に導かれることになる。また、従って、受光センサ20での受光位置は、図5のときよりも後方側にシフトし、中心位置P2よりも後方の受光素子21b付近で受光されることになる。従って、偏向部41が前方を向いているときに上方の受光素子21bの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が図5のときよりも大きい第2レベル(第2範囲)にあることがわかる。なお、受光素子21b、21eのいずれでも受光レベルが高い場合には、物体が第1範囲と第2範囲に続いていることがわかる。
また、位置P1からの照射の中心方向Fが前方側となる場合において、図7のように、位置P1を通る水平面とのなす角度(位置P1を基点とする仰角)が図5よりも小さい所定範囲にある物体Mでレーザ光L1’が反射したときには、図7のように反射光L2は偏向部41に対して傾斜した下方側から入り込み、この反射光が偏向部41で反射したときには中心軸42aから前方側に外れた焦点位置に向けて集光されつつ上方に導かれることになる。この場合、受光センサ20での受光位置は、図5のときよりも前方にシフトし、中心位置P2よりも前方の受光素子21h付近で受光されることになる。従って、偏向部41が前方を向いているときに前方の受光素子21hの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が図5のときよりも小さい第3レベル(第3範囲)にあることがわかる。なお、上記説明では、水平面とのなす角度については、水平面よりも上方側の方向とのなす角度を正の角度とし、水平面よりも下方側の方向とのなす角度を負の角度として説明している。
また、図5〜図7では、照射の中心方向Fが前方側である場合について説明したが、照射の中心方向Fが前方側ではない場合(即ち、偏向部41の回転角度が図5〜図7の場合と異なる場合)であっても、各回転角度において、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))に対応して受光領域での受光位置が定まるようになっている。例えば、偏向部41が図5〜図7の状態から時計回りに90°回転したときには、偏向部41が横方向(紙面表側)を向き、照射の中心方向Fが左右方向となる。このような場合、外部物体からの反射光が、偏向部41に対して水平に入射するときには、この反射光からの反射光は中心軸42a上の焦点位置に向けて集光されつつ上方に導かれることになる。この場合、図5の場合と同様、当該反射光は特に中心位置P2付近で受光されることになる。従って、このような回転角度のときでも、中心位置P2の受光素子21eの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が小さい第1レベル(第1範囲)にあることがわかる。また、この回転角度において、反射光が偏向部41に対して傾斜した上方側から入り込むようなときには、この反射光が偏向部41で反射したときに中心軸42aから一方の側方に外れた焦点位置に向けて集光されつつ上方に導かれることになるため、受光領域での受光位置は水平のときよりも一方の側方にシフトし、位置P2から横に離れた受光素子21fで特に受光されることになる。従って、このような回転角度のときに受光素子21fの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が第1レベルよりの大きい第2レベル(第2範囲)にあることがわかる。また、この回転角度において、反射光が偏向部41に対して傾斜した下方側から入り込むようなときには、この反射光が偏向部41で反射したときに中心軸42aから他方の側方に外れた焦点位置に向けて集光されつつ上方に導かれることになるため、受光領域での受光位置は水平のときよりも他方の側方にシフトし、位置P2から横に離れた受光素子21dで特に受光されることになる。従って、このような回転角度のときに受光素子21dの受光量が最も大きいときには、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))が第1レベルよりも小さい第3レベル(第3範囲)にあることがわかる。
上記のような構成では、各回転角度毎に、受光位置と検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))とを対応付けておき、その対応関係を図示しない記憶部に記憶しておけばよい。例えば、図5〜図7のように照射の中心方向が前方となる第1の回転角度のときに中央の受光素子21eで受光された場合には、仰角が第1レベル(第1範囲)であると特定するようにし、同様に、後方の受光素子21bで受光された場合には、仰角が第1レベルよりも大きい第2レベル(第2範囲)であると特定するようにし、前方の受光素子21hで受光された場合には、仰角が第1レベルよりも小さい第3レベル(第3範囲)であると特定するようにし、このような対応関係を定めたデータを各回転角度毎に生成し、記憶部に記憶しておけばよい。なお、図4では、受光素子数を少なくしてシンプルな構成としているが、受光素子数を多くして多数行×多数列の配列とすれば、各回転角度において、検出物体の高さ方向の方位(位置P1から見たときの水平面とのなす角度(位置P1を基点とする仰角))をより正確に且つ精密に検出することができる。
(第1実施形態の主な効果)
上記構成では、偏向部41の中心軸42aに沿ってレーザ光を入射させ、この中心軸を中心として偏向部41を回転駆動することで偏向部41の周囲においてレーザ光の走査を行う構成のものにおいて、レーザダイオード10から外部空間に照射されるまでのレーザ光の投光経路において拡散手段が配置されており、この拡散手段により、偏向部41から外部空間に向かうレーザ光を少なくとも中心軸42aの方向(高さ方向)に拡がらせている。そして、外部空間からの反射光が偏向部41に入射するときの入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されている。
この構成では、偏向部41からのレーザ光が高さ方向に拡がりながら外部空間に照射されることになるため、このようなレーザ光を外部空間に存在する様々な高さの物体(例えば、家の周囲を検出エリアとするような場合には、図8のような各物体)に当てることができるようになり、様々な高さの物体からの反射光を装置内の偏向部41で受けつつ受光センサ20に導くことができる。また、この構成では、外部空間の物体にレーザ光が当ったときには、その物体からの反射光が偏向部41に取り込まれるときの入射の向きが当該物体の高さ方向の方位に対応する向き(所定の基準点からの仰角に対応する向き)となるが、この入射の向きに対応して受光領域での反射光の入射位置が定まるように構成されているため、受光領域での反射光の入射位置を検出することで、物体の高さ方向の方位を特定できるようになる。
特にこの構成では、複雑なモータ動作やMEMS技術を用いてレーザ光を変化させなくても、受光信号に基づく電気的な処理によって外部物体の高さ方向の方位を検出できるようになるため、機械的な動作に起因する動作負荷や検出の低速化を伴うことなく外部空間での三次元的な認識が可能となる。
また、上記構成では、投光手段の上方側の領域に受光センサ20を配置しているため、単一の素子と比べて比較的大きい受光センサ20を、ミラー30の上方スペースを利用して効率的に配置できるようになっている。また、ミラー30は、レーザ光L1を反射できるサイズであれば足りるため、ミラー30を比較的小さく形成すれば、偏向部41で導かれる反射光が受光経路で損失してしまう問題を最小限にとどめることができる。
また、上記構成では、偏向部41において、ミラー30で反射されたレーザ光L1が入射する位置に凸状の反射面30aを備えた凸状鏡71が配されており、この凸状鏡71を「拡散手段」として機能させ、凸状の反射面30aによりレーザ光L1を少なくとも中心軸の方向(高さ方向)に拡がらせつつ外部空間に向けて反射している。そして、凸状鏡71の周囲の領域には凹面鏡72が設けられている。この構成によれば、偏向部41の一部によって拡散手段を構成することができるため、別途拡散手段を設ける構成と比較して部品点数の削減を図ることができ、装置内に各部品を配置する上でスペース的に有利となる。
また、投光過程ではレーザ光L1が偏向部41に入射するときの入射領域を小さくしやすいため、凸状鏡71の領域を小さくしやすく、相対的に凹面鏡72の領域を大きく確保しやすくなる。つまり、反射光をより多く受光センサ20側に取り込むことができ、受光感度を高めやすくなる。例えば、凸状鏡71を平面視したときの当該凸状鏡71の外形の径が、レーザ光が偏向部41に入射するときのスポット径と同程度又はスポット径よりもわずかに大きい程度とすれば、凹面鏡72の領域をより大きく確保することができる。
また、上記構成では、受光センサ20は、アバランシェフォトダイオードを複数行且つ複数列に配置したマトリックス状とされている。拡散手段によって拡散させたレーザ光が物体で反射したときの反射光については、指向性の高いレーザ光が物体で反射したときと比較して強度が弱くなることが懸念されるが、従来では単一の素子として利用されているアバランシェフォトダイオードをマトリックス状に配置するという特徴的な構成を採用することで、受光領域の各位置で感度良く受光できるようになり、比較的弱い反射光を検出する場合であっても受光領域での反射光の入射位置をより正確に把握しやすくなる。
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
上記実施形態では、受光素子の一例として、アバランシェフォトダイオードを例示したが、これ以外のフォトダイオード等、他の公知の光電変換素子でもよい。また、受光素子の配列も上記構成に限られるものではなく、公知の面受光器(エリアセンサ、画像センサ等)のような構成であってもよい。また、マトリックス構成とする場合、列数、行数は限定されない。
上記構成では、回転反射装置40が「誘導手段」として構成されていたが、回転反射装置40の偏向部41と同期して回転する回転ミラーを別途設けるようにしてもよい。例えば、図9(B)のように、偏向部41の下方側において中心軸42aを中心として偏向部41と同期して回転する回転ミラー141を設けるようにし、偏向部41からのレーザ光L1’が外部空間の物体で反射して生じる反射光をこの回転ミラー141で下方側に反射するようにしてもよい。例えば、回転ミラー141は、図示しない動力伝達機構(歯車、プーリ、ベルト等)によって偏向部41の回転駆動力が伝達されて偏向部41と同期して回転するようになっており、偏向部41からのレーザ光の照射方向を向き、且つ下方側に向くように設定された状態として偏向部41と同期して回転するようになっている。
そして、このように構成された回転ミラー141の下方側において受光面を上方に向けるように受光センサ20を配置し、回転ミラー141によって下方側に反射される反射光を受光センサ20の各受光素子21で受光するようにしてもよい。この構成でも、中心軸42aと直交する所定平面上に受光素子21を配列して配置すればよく、外部空間からの反射光が回転ミラー141に入射するときの入射の向きに対応して受光領域での反射光の入射位置が定まることとなる。
また、上記のように投光側と受光側とを別々とする他軸系で構成する場合などにおいて、拡散手段として、図9(A)のような構成を用いてもよい。この図9(A)の例では、レーザダイオード10からのレーザ光を平行光に変換する第1レンズ60aの前に、縦方向(上下方向)に揺動可能な第2のレンズ60bを配置し、レーザダイオード10で照射され、第1のレンズ60aで平行に変換された光を縦方向に変化させるようにしている。
上記実施形態では、凸状鏡71の周囲に凹面鏡72が配置された例を示したが、凹面鏡72に代えて平面鏡が配置されていてもよい。即ち、凸状鏡71の周囲の部分が平坦な鏡として構成され、反射面が中心軸42aに対して傾斜(例えば45°の角度で傾斜)するように配置されていてもよい。
上記構成では、拡散手段の一例として凸状鏡71を例示したが、拡散手段はこのような構成に限られるものではない。例えば、図10のように拡散手段を構成してもよい。図10(A)は、レンズ60を左右から見た図(側方から見た図)であり、図10(B)は、レンズ60を前後から見た図である。この構成では、レンズ60から光が、前後にやや拡がりなら照射され、且つ左右方向は拡がらずに平行光とされる例を示している。このレンズ60では、一枚目のレンズ60aによって前後方向の広がりを抑えてコリメートしており、二枚目のレンズ60bでは、左右方向の広がりを抑えてコリメートしている。また、二枚目のレンズ60bでは、前後方向の広がりを抑えずにやや拡散している。
1…レーザレーダ装置
10…レーザダイオード(レーザ光源、投光手段)
20…受光センサ(光検出手段)
21…受光素子
30…ミラー(投光手段)
40…回転反射装置(回転偏向手段、誘導手段
41…偏向部(回転ミラー)
42a…中心軸
50…モータ(駆動手段)
71…凸状鏡(拡散手段)
72…凹面鏡

Claims (3)

  1. レーザ光を発生させるレーザ光源を備え、前記レーザ光源から出射されたレーザ光を所定の中心軸に沿って導く投光手段と、
    前記中心軸を中心として回転可能に構成された偏向部と、前記偏向部を駆動する駆動手段とを備えると共に、前記駆動手段により前記偏向部を回転させつつ前記中心軸に沿って導かれたレーザ光を前記偏向部によって外部空間に向けて偏向させる回転偏向手段と、
    前記偏向部によって構成される回転ミラー、又は前記偏向部と同期するように前記所定方向に沿った中心軸を中心として回転する回転ミラーを備え、前記レーザ光源にてレーザ光が発生したときに当該レーザ光が外部空間の物体にて反射して生じる反射光を受光経路に導く誘導手段と、
    複数の受光素子が二次元的に配置された受光領域を備え、前記回転ミラーから前記受光経路に導かれた前記反射光を前記受光領域にて受光する光検出手段と、
    前記レーザ光源から外部空間に照射されるまでのレーザ光の投光経路に配置され、前記偏向部から外部空間に向かうレーザ光を少なくとも前記中心軸の方向に拡がらせる拡散手段と、
    を備え、
    前記外部空間からの前記反射光が前記回転ミラーに入射するときの入射の向きに対応して前記受光領域での前記反射光の入射位置が定まるように構成されていることを特徴とするレーザレーダ装置。
  2. レーザ光を発生させるレーザ光源と、前記レーザ光源から出射されたレーザ光を反射して所定の中心軸に沿って導くミラーと、を備えた投光手段と、
    前記中心軸を中心として回転可能に構成された偏向部と、前記偏向部を駆動する駆動手段とを備えると共に、前記駆動手段により前記偏向部を回転させつつ前記中心軸に沿って導かれたレーザ光を前記偏向部によって外部空間に向けて偏向させ、且つ当該レーザ光が外部空間の物体で反射して生じる反射光を前記偏向部によって当該偏向部へのレーザ光の入射側に偏向する回転偏向手段と、
    複数の受光素子が二次元的に配置されると共に前記ミラーの上方側に構成される受光領域を備え、前記偏向部によって前記受光経路に導かれた前記反射光を前記受光領域にて受光する光検出手段と
    複数の受光素子が二次元的に配置された受光領域を備えると共に、前記中心軸と平行な方向を上下方向としたときの当該上下方向において前記ミラーよりも前記偏向部から離れた側に配置され、前記偏向部によって導かれた前記反射光を前記受光領域にて受光する光検出手段と、
    前記レーザ光源から外部空間に照射されるまでのレーザ光の投光経路に配置され、前記偏向部から外部空間に向かうレーザ光を少なくとも前記中心軸の方向に拡がらせる拡散手段と、
    を備え、
    前記外部空間からの前記反射光が前記偏向部に入射するときの入射の向きに対応して前記受光領域での前記反射光の入射位置が定まるように構成されていることを特徴とするレーザレーダ装置。
  3. 前記偏向部は、
    前記ミラーで反射して前記中心軸の方向に導かれたレーザ光が入射する位置に凸状の反射面が配され、前記凸状の反射面によりその導かれたレーザ光を少なくとも前記中心軸の方向に拡がらせつつ外部空間に向けて反射する凸状鏡と、
    前記凸状鏡の周囲に配置される平面鏡又は凹面鏡と、
    を有し、
    前記凸状鏡が前記拡散手段として構成されていることを特徴とする請求項2に記載のレーザレーダ装置。
JP2011212458A 2011-09-28 2011-09-28 レーザレーダ装置 Withdrawn JP2013072770A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212458A JP2013072770A (ja) 2011-09-28 2011-09-28 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212458A JP2013072770A (ja) 2011-09-28 2011-09-28 レーザレーダ装置

Publications (1)

Publication Number Publication Date
JP2013072770A true JP2013072770A (ja) 2013-04-22

Family

ID=48477388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212458A Withdrawn JP2013072770A (ja) 2011-09-28 2011-09-28 レーザレーダ装置

Country Status (1)

Country Link
JP (1) JP2013072770A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156008A (ja) * 2017-03-21 2018-10-04 ナルックス株式会社 受光光学系
CN109633607A (zh) * 2019-01-14 2019-04-16 山东省科学院海洋仪器仪表研究所 一种激光雷达大口径双轴光学扫描转镜系统
KR20200055655A (ko) * 2018-11-12 2020-05-21 인피니온 테크놀로지스 아게 Lidar 센서들 및 lidar 센서들을 위한 방법들
US11428783B2 (en) 2019-07-10 2022-08-30 Canon Kabushiki Kaisha Optical apparatus, on-board system, and moving apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156008A (ja) * 2017-03-21 2018-10-04 ナルックス株式会社 受光光学系
KR20200055655A (ko) * 2018-11-12 2020-05-21 인피니온 테크놀로지스 아게 Lidar 센서들 및 lidar 센서들을 위한 방법들
KR102323317B1 (ko) * 2018-11-12 2021-11-09 인피니온 테크놀로지스 아게 Lidar 센서들 및 lidar 센서들을 위한 방법들
CN109633607A (zh) * 2019-01-14 2019-04-16 山东省科学院海洋仪器仪表研究所 一种激光雷达大口径双轴光学扫描转镜系统
CN109633607B (zh) * 2019-01-14 2023-12-22 山东省科学院海洋仪器仪表研究所 一种激光雷达大口径双轴光学扫描转镜系统
US11428783B2 (en) 2019-07-10 2022-08-30 Canon Kabushiki Kaisha Optical apparatus, on-board system, and moving apparatus

Similar Documents

Publication Publication Date Title
JP2013083624A (ja) レーザレーダ装置
US6759649B2 (en) Optoelectronic detection device
JP6175835B2 (ja) レーザレーダ装置
CN108828611A (zh) Lidar系统和方法
KR102020037B1 (ko) 하이브리드 라이다 스캐너
KR102210101B1 (ko) 광학계 모듈 및 그를 갖는 스캐닝 라이다
JP2013210378A (ja) レーザレーダ装置
JP2017138301A (ja) レーザレーダ装置
JP5806764B2 (ja) 光電センサ及び物体検出方法
JP5891893B2 (ja) レーザレーダ装置
JP2009121836A (ja) レーザレーダ装置
CN102176023A (zh) 测量物体方向和距离的激光雷达设备
JP2014052366A (ja) 光計測装置、車両
JP5861532B2 (ja) レーザレーダ装置
JP6737296B2 (ja) 対象物検出装置
JP5929675B2 (ja) レーザレーダ装置
JP2015143620A (ja) レーザレーダ装置
JP6575596B2 (ja) 投受光装置及びこれを備えるレーザーレーダー装置
CN211236225U (zh) 一种大视场激光雷达光机系统
JP2005121638A (ja) 光電子検出装置
JP2013072770A (ja) レーザレーダ装置
KR20180126927A (ko) 8채널형 라이다
JP2018005183A (ja) 光走査装置、物体検知装置および距離検知装置
JP2012225821A (ja) レーザセンサ装置
JP5533759B2 (ja) レーザレーダ装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202