KR102514143B1 - 아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극 - Google Patents

아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극 Download PDF

Info

Publication number
KR102514143B1
KR102514143B1 KR1020177011451A KR20177011451A KR102514143B1 KR 102514143 B1 KR102514143 B1 KR 102514143B1 KR 1020177011451 A KR1020177011451 A KR 1020177011451A KR 20177011451 A KR20177011451 A KR 20177011451A KR 102514143 B1 KR102514143 B1 KR 102514143B1
Authority
KR
South Korea
Prior art keywords
bipolar electrode
electrochemical cell
bipolar
bromide
rechargeable
Prior art date
Application number
KR1020177011451A
Other languages
English (en)
Other versions
KR20170057440A (ko
Inventor
조지 더블유. 애덤슨
사라 에스. 보워스
Original Assignee
이오에스 에너지 테크놀로지 홀딩스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이오에스 에너지 테크놀로지 홀딩스, 엘엘씨 filed Critical 이오에스 에너지 테크놀로지 홀딩스, 엘엘씨
Publication of KR20170057440A publication Critical patent/KR20170057440A/ko
Application granted granted Critical
Publication of KR102514143B1 publication Critical patent/KR102514143B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0473Filling tube-or pockets type electrodes; Applying active mass in cup-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Inert Electrodes (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Fuel Cell (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아연-할로겐화물 전기화학 셀 또는 배터리 스택에서 유용한 쌍극성 전극을 제공한다. 상기 쌍극성 전극은 캐소드 조립체가 상기 전극판의 전면 상에 배치되어 있는 티탄 쌍극성 전극 판을 포함한다. 상기 캐소드 조립체는 티탄 캐소드 케이지, 분리막, 및 탄소 재료를 포함하며, 이때 상기 캐소드 케이지는 상기 전극판의 전면과 전기 통신하여 상기 탄소 재료를 고정시킨다.

Description

아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극 {ELECTOLYTE COMPOSITION FOR A ZINC-HALIDE BATTERY AND BIPOLAR ELECTRODE COMPRISING A TITANIUM CARBIDE COATED CATHODE BOX}
관련 출원의 상호 참조
본 PCT 출원은 2014년 10월 6일자로 출원된 미국 가특허원 제62/060,273호; 2015년 6월 3일자로 출원된 미국 가특허원 제62/170,200호; 및 2015년 6월 10일자로 출원된 미국 가특허원 제62/173,415호의 이익을 주장한다. 이들 문헌은 각각 전문이 본원에 참조로 인용된다.
기술분야
본 발명은 재충전 가능한 쌍극성 전기화학 셀(bipolar electrochemical cell) 또는 재충전 가능한 쌍극성 배터리 스택(bipolar battery stack)을 위한 조립체(assembly)에 관한 것이다. 더욱 구체적으로는, 본 발명은 배터리 충전 및 방전 동안 축전지(storage battery)를 향해 그리고 축전지로부터 실질적으로 균일한 전류를 생성시키는, 재충전 가능한 쌍극성 전기화학 셀 또는 재충전 가능한 쌍극성 배터리 스택(예를 들면, 아연-할로겐화물 배터리)을 위한 단자 조립체(terminal assembly)에 관한 것이다.
아연-할로겐화물 배터리는 전기 에너지 저장 장치로서 개발되었다. 전통적인 아연-할로겐화물 배터리(예를 들면, 아연-브롬 배터리)는 고정된, 즉, 유동하지 않는 아연-브롬화물 수용액 내에 배치된 쌍극성 전극(bipolar electrode)을 사용하였다. 아연-할로겐화물 배터리 내에 전류를 충전 및 방전하는 공정은 일반적으로 아연 할로겐화물 전해질 내의 Zn2+/Zn(s) 및 X-/X2와 같은 산화환원 쌍(redox couple)들의 반응을 통해 달성된다. 상기 배터리가 전류로 충전되면 다음의 화학 반응이 발생한다:
Zn2+ + 2e- → Zn
2X- → X2 + 2e-
여기서, X는 할로겐(예를 들면, Cl, Br, 또는 I)이다. 반면, 상기 배터리가 전류를 방전하면 다음의 화학 반응이 발생한다:
Zn → Zn2+ + 2e-
X2 + 2e- → 2X-
이들 아연-할로겐화물 축전지는 쌍극성 전기화학 셀 스택(cell stack)에서 형성되었으며, 이때 각각의 전극은 2개의 극(pole)들을 포함하여, 애노드 반응이 상기 전극의 한쪽 면에서 발생하고 캐소드 반응이 동일한 전극의 대향하는 면에서 발생한다. 이러한 맥락에서, 쌍극성 전극은 종종 판(plate)으로서 배열되었고, 셀 스택은 조립되어 각기둥형 기하구조(prismatic geometry)를 형성하였다. 쌍극성 배터리의 충전 및 방전 동안, 상기 전극판(electrode plate)은 인접 셀에 대한 도체로서 기능하며, 즉, 각각의 전극판은 하나의 셀에 대한 애노드 역할을 하고 인접한 셀에 대한 캐소드 역할을 한다. 이러한 각기둥형 배터리 기하구조(prismatic battery geometry)에서, 인접한 전기화학 셀을 분리하는 전극판의 전체 표면적은 전류를 셀로부터 셀로 전달한다.
따라서, 전통적인 쌍극성 아연-할로겐화물 배터리를 충전하면, 아연 금속은 쌍극성 전극판의 애노드 면 위에 전해 도금되고 한편 분자 할로겐 화학종은 전극판의 캐소드 면에 형성된다. 또한, 상기 배터리를 방전하면, 상기 도금된 아연 금속은 자유 전자로 산화되며 이는 전극판을 통해 전도되고 분자 할로겐 화학종을 환원시켜 할라이드 음이온을 생성시킨다.
그러나, 전통적인 아연-할로겐화물 배터리의 배터리 성능은 충전 동안 쌍극성 전극 상의 평평하지 않은 아연 도금으로 인해 심각하게 제한된다. 쌍극성 전극 상의 평평하지 않은 또는 고르지 않은 아연 도금은 배터리 내에 아연 덴드라이트(dendrite)를 생성시키며 배터리 용량 및 수명(cycle life)을 감소시킨다. 게다가, 평평하지 않은 아연 도금은 배터리 방전 전류에 불균질성(heterogeneity)을 생성시키며 이는 전기 에너지용 저장 장치로서의 배터리의 성능에 부정적인 영향을 끼친다.
본 발명은 고정된(유동하지 않는) 아연-할로겐화물 전기화학 셀 또는 배터리 스택을 위한 쌍극성 전극을 제공한다. 쌍극성 전극은, 전기화학 셀 또는 배터리 스택의 충전 동안 전기화학 셀 또는 배터리 스택 내의 애노드 표면 상의 아연 금속의 도금을 중재하도록 작동한다. 또한, 쌍극성 전극은, 상기 셀 또는 배터리 스택의 방전 동안 할라이드 음이온 화학종(예를 들면, Br-, Cl-, 이들의 임의의 배합물 등)을 할로겐 화학종(예를 들면, Br2, Cl2, 이들의 임의의 배합물 등)으로 전환시키는 것을 중재하도록 작동한다.
하나의 측면에서, 본 발명은 전면(front surface)과 배면(back surface)을 포함하는 쌍극성 전극판; 및 탄소 재료, 분리막, 및 캐소드 케이지를 포함하는 캐소드 조립체를 포함하는 쌍극성 전극을 제공하며, 이때 상기 캐소드 케이지는 상기 쌍극성 전극판의 전면의 적어도 일부와 전기 통신하여 상기 탄소 재료를 고정(hold)시키고, 상기 쌍극성 전극판과 상기 캐소드 케이지는 티탄 재료를 포함한다.
몇몇 양태에서, 상기 쌍극성 전극판의 배면의 적어도 일부는 거친 표면이다. 몇몇 양태에서, 상기 쌍극성 전극판의 적어도 일부 및 상기 캐소드 케이지의 적어도 일부는 탄화티탄 코팅을 포함한다.
몇몇 양태에서, 상기 쌍극성 전극판의 전면은 매입부(recessed portion)를 추가로 포함한다. 몇몇 양태에서, 상기 쌍극성 전극판의 전면의 매입부는 상기 탄소 재료의 적어도 일부를 수용하도록 구성된다. 몇몇 양태에서, 상기 캐소드 케이지는, 상기 탄소 재료가 상기 매입부와 상기 캐소드 케이지 사이에 배치되도록, 상기 탄소 재료 상에 배치된다.
몇몇 양태에서, 상기 분리막은 상기 탄소 재료와 상기 캐소드 케이지 사이에 배치된다.
몇몇 양태에서, 상기 캐소드 케이지 포켓 영역(pocket region)을 포함하고, 상기 포켓 영역은 복수의 쓰루 홀(thru hole)을 포함한다. 몇몇 양태에서, 상기 복수의 쓰루 홀은 열(row)을 따라 교차 반복 패턴으로 균등하게 이격되어 분포되어 있다. 몇몇 양태에서, 각각의 쓰루 홀은, 복수의 홀들의 위치에 대응하는 복수의 위치들 각각에서, 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격을 기준으로 하여 계산된 직경을 포함한다. 몇몇 양태에서, 각각의 홀의 계산된 직경은 추가로 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 공칭(nominal) 최소 간격 및 공칭 홀 면적을 기준으로 한다. 몇몇 양태에서, 각각의 위치에서 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격은, 각각의 복수의 위치에서의 상기 인접한 쌍극성 전극판의 배면과 상기 캐소드 조립체의 각각에 있어서의 평평한 면으로부터 측정된 델타(delta)를 기준으로 하는 적합 방정식(fit equation)을 사용하여 계산된다.
몇몇 양태에서, 상기 분리막은 카본 클로쓰(carbon cloth) 또는 카본 펠트(carbon felt)를 포함한다. 예를 들면, 상기 분리막은 카본 클로쓰 또는 카본 펠트를 포함한다.
몇몇 양태에서, 상기 쌍극성 전극의 탄소 재료는 카본 블랙 재료를 포함한다. 몇몇 양태에서, 상기 탄소 재료는 PTFE 결합제를 추가로 포함한다. 몇몇 양태에서, 상기 쌍극성 전극은 1 내지 5개 블럭의 탄소 재료를 포함한다.
본 발명의 또 다른 측면은, 수성 아연-할로겐화물 전해질; 및 제1 티탄 재료를 포함하는 쌍극성 전극판; 탄소 재료; 상기 쌍극성 전극판의 전면과 전기 통신하여 상기 탄소 재료를 고정시키는 캐소드 케이지로서, 제2 티탄 재료를 포함하는 캐소드 케이지; 상기 캐소드 케이지의 적어도 일부와 상기 탄소 재료 사이에 개재된 분리막을 포함하는 쌍극성 전극; 및 상기 제1 쌍극성 전극판과 평행이고 당해 전극판에 인접하며 제2 티탄 재료를 포함하는 단자 종판(terminal endplate)으로서, 상기 제1 쌍극성 전극의 전면과 대향하는 내부 표면을 갖고 상기 내부 표면의 적어도 일부는 거친 표면인, 단자 종판을 포함하는, 재충전 가능한 쌍극성 전기화학 셀을 제공하며, 이때 상기 쌍극성 전극과 단자 종판은 적어도 부분적으로 상기 전해질 내에 배치된다.
몇몇 양태에서, 상기 분리막은 카본 클로쓰 또는 카본 펠트를 포함한다.
몇몇 양태에서, 상기 쌍극성 전극판은 탄화티탄으로 적어도 부분적으로 코팅된 티탄 재료이다.
몇몇 양태에서, 상기 쌍극성 전극의 탄소 재료는 카본 블랙 재료를 포함한다. 몇몇 양태에서, 상기 탄소 재료는 PTFE 결합제를 추가로 포함한다. 몇몇 양태에서, 상기 전기화학 셀의 쌍극성 전극은 1 내지 5개 블럭의 탄소 재료를 포함한다.
몇몇 양태에서, 상기 단자 종판은 탄화티탄으로 적어도 부분적으로 코팅된 티탄 재료를 포함한다.
몇몇 양태에서, 상기 쌍극성 전극판은 매입부를 추가로 포함한다. 몇몇 양태에서, 상기 쌍극성 전극판의 전면의 매입부는 상기 탄소 재료의 적어도 일부를 수용하도록 구성된다.
몇몇 양태에서, 상기 캐소드 케이지는, 상기 탄소 재료가 상기 매입부와 상기 캐소드 케이지 사이에 배치되도록, 상기 탄소 재료에 걸쳐 배치된다.
몇몇 양태에서, 상기 수성 아연-할로겐화물 전해질은 브롬화아연, 염화아연, 또는 이들의 임의의 배합물을 포함한다. 몇몇 양태에서, 상기 수성 아연-할로겐화물 전해질은 인듐-함유 화합물, 주석-함유 화합물, 납-함유 화합물, 또는 이들의 임의의 배합물을 포함한다.
몇몇 양태에서, 상기 캐소드 케이지 포켓 영역을 포함하고, 상기 포켓 영역은 복수의 쓰루 홀을 포함한다. 몇몇 양태에서, 상기 복수의 쓰루 홀은 열을 따라 교차 반복 패턴으로 균등하게 이격되어 분포되어 있다. 몇몇 양태에서, 각각의 쓰루 홀은, 복수의 홀들의 위치에 대응하는 복수의 위치들 각각에서, 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격을 기준으로 하여 계산된 직경을 포함한다. 몇몇 양태에서, 각각의 홀의 계산된 직경은 추가로 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 공칭 최소 간격 및 공칭 홀 면적을 기준으로 한다. 몇몇 양태에서, 각각의 위치에서 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격은, 각각의 위치에서의 인접한 쌍극성 전극판의 배면과 캐소드 조립체의 각각에 있어서의 평평한 면으로부터 측정된 델타를 기준으로 하는 적합 방정식을 사용하여 계산된다.
본 발명의 또 다른 측면은, 복수의 쌍극성 전극; 단자 캐소드 조립체(terminal cathode assembly); 단자 애노드 조립체(terminal anode assembly); 및 수성 아연-할로겐화물 전해질을 포함하는, 재충전 가능한 쌍극성 아연-할로겐화물 배터리 스택을 제공하며, 이때 각각의 쌍극성 전극은 캐소드 케이지, 탄소 재료, 분리막, 및 쌍극성 전극판을 포함하고, 상기 단자 캐소드 조립체는 제1 단자 종판을 포함하고, 상기 단자 애노드 조립체는 제2 단자 종판을 포함하고, 상기 쌍극성 전극판, 상기 캐소드 케이지, 상기 제1 단자 종판, 및 상기 제2 단자 종판 각각은 티탄 재료를 포함하고 탄화티탄으로 적어도 부분적으로 코팅된다.
몇몇 양태에서, 상기 분리막은 카본 클로쓰 또는 카본 펠트를 포함한다.
몇몇 양태에서, 상기 탄소 재료는 카본 블랙 재료를 포함한다. 몇몇 양태에서, 상기 탄소 재료는 PTFE 결합제를 추가로 포함한다.
몇몇 양태에서, 각각의 쌍극성 전극은 1 내지 5개 블럭의 상기 탄소 재료를 추가로 포함한다.
몇몇 양태에서, 상기 수성 아연-할로겐화물 전해질은 브롬화아연, 염화아연, 또는 이들의 임의의 배합물을 포함한다.
몇몇 양태에서, 상기 수성 아연-할로겐화물 전해질은 인듐-함유 화합물, 주석-함유 화합물, 납-함유 화합물, 또는 이들의 임의의 배합물을 포함한다.
몇몇 양태에서, 각각의 쌍극성 전극판의 전면은 매입부를 추가로 포함한다. 몇몇 양태에서, 각각의 쌍극성 전극판의 전면의 매입부는 상기 탄소 재료의 적어도 일부를 수용하도록 구성된다. 몇몇 양태에서, 상기 캐소드 케이지는, 상기 탄소 재료가 상기 매입부와 상기 캐소드 케이지 사이에 배치되도록, 상기 탄소 재료에 걸쳐 배치된다.
몇몇 양태에서, 상기 분리막은 상기 탄소 재료와 상기 캐소드 케이지 사이에 배치된다.
몇몇 양태에서, 상기 캐소드 케이지 포켓 영역을 포함하고, 상기 포켓 영역은 복수의 쓰루 홀을 포함한다. 몇몇 양태에서, 상기 복수의 쓰루 홀은 열을 따라 교차 반복 패턴으로 균등하게 이격되어 분포되어 있다. 몇몇 양태에서, 각각의 쓰루 홀은, 복수의 홀들의 위치에 대응하는 복수의 위치들 각각에서, 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격을 기준으로 하여 계산된 직경을 포함한다. 몇몇 양태에서, 각각의 홀의 계산된 직경은 추가로 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 공칭 최소 간격 및 공칭 홀 면적을 기준으로 한다. 몇몇 양태에서, 각각의 위치에서 상기 캐소드 조립체 및 인접한 쌍극성 전극판의 배면 간의 간격은, 각각의 위치에서의 인접한 쌍극성 전극판의 배면과 캐소드 조립체의 각각에 있어서의 평평한 면으로부터 측정된 델타를 기준으로 하는 적합 방정식을 사용하여 계산된다.
몇몇 양태에서, 각각의 쌍극성 전극판의 배면의 적어도 일부는 거친 표면이다.
첨부된 도면을 참조하여 다음의 상세한 설명을 숙지하면 본 발명의 이들 및 기타 특징, 측면, 및 이점은 더 잘 이해될 것이다.
도 1은 본 발명의 하나의 양태에 따르는 전기화학 셀의 분해도를 도시한다.
도 2a 및 도 2b는 본 발명의 하나의 양태에 따르는 쌍극성 전극의 정면도와 측면도를 각각 도시한다.
도 3은 본 발명의 하나의 양태에 따르는 쌍극성 전극의 분해도를 도시한다.
도 4a는 본 발명의 하나의 양태에 따르는 쌍극성 전극의 정면도를 도시한다.
도 4b는 본 발명의 하나의 양태에 따르는 쌍극성 전극의 분해도를 도시한다.
도 5는 본 발명의 하나의 양태에 따르는 샌드블라스트된(sandblasted) 구역을 갖는 전극판의 배면의 도면을 도시한다.
도 6a 및 도 6b는 본 발명의 하나의 양태에 따르는 캐소드 케이지의 정면도와 측면도를 각각 도시한다.
도 7a 및 도 7b는, 본 발명의 하나의 양태에 따르는, 캐소드 케이지의 정면도, 및 이를 관통하는 홀을 갖는 캐소드 케이지 재료의 확대도를 각각 도시한다.
도 8은, 본 발명의 하나의 양태에 따르는, (위에 장착된 캐소드 조립체를 포함하는) 쌍극성 전극판의 전면 및 제2 전극판의 배면 또는 단자 종판의 내부 표면 사이의 인터페이스(interface)를 포함하는 전기화학 셀의 부분의 횡단면도를 도시한다.
도 9는 본 발명의 하나의 양태에 따라 캐소드로서 사용하기 위한 탄소 재료의 정면도, 측면도, 및 상부 사시도를 도시한다.
도 10은 본 발명의 하나의 양태에 따라 Z-축 및 X-축에 대해 쌍극성 전극판 및 캐소드 케이지의 3차원 형상 프로파일 사이의 간격의 실험 데이터를 도시한다.
도 11는 본 발명의 하나의 양태에 따라 Z-축 및 Y-축에 대해 쌍극성 전극판 및 캐소드의 3차원 형상 프로파일 사이의 간격의 실험 데이터를 도시한다.
도 12는 본 발명의 하나의 양태에 따르는 단자 조립체의 사시도를 도시한다.
도 13은 본 발명의 하나의 양태에 따라 종판에 연결된 실질적으로 타원형인 림을 갖는 전도성 컵모양 부재 및 단자 종판을 포함하는 쌍극성 배터리를 위한 단자 조립체의 상부 사시도를 도시한다.
도 14는, 본 발명의 하나의 양태에 따라, 전도성 컵모양 부재의 림으로 둘러싸인 제1 표면 영역, 및 림의 외부 주변부(outer periphery) 및 상기 전기화학적 활성 영역의 주변 엣지에 의해 한정되는 나머지 제2 표면을 포함하는 전기화학적 활성 영역을 갖는 도 13의 단자 조립체의 종판의 상면도를 도시한다.
도 15는 본 발명의 하나의 양태에 따르는, 전도성 컵모양 부재, 및 상기 전기화학적 활성 영역의 주변 엣지와 림의 외부 주변부로 한정된 남아있는 제2 표면을 나타내는, 도 13의 라인 17-17을 따라 취한 횡단면도이다.
도 16은 본 발명의 하나의 양태에 따르는, 실질적으로 원형인 림을 포함하는 전도성 컵모양 부재 및 쌍극성 종판을 나타내는, 도 13의 단자 조립체의 상부 사시도이다.
도 17은 본 발명의 하나의 양태에 따르는, 단자 종판의 제2 표면에 대향하고 이를 수용하는 프레임 부재(frame member)를 추가로 포함하는 단자 조립체를 나타내는, 도 13의 라인 15-15를 따라 취한 횡단면도이다.
도 18은 압축판(compression plate)들 사이에 프레임 부재 및 쌍극성 전극을 갖는 캐소드 단자 및 애노드 단자를 포함하는, 본 발명의 하나의 양태에 따르는 배터리 스택의 측면도이다.
도 19는 본 발명의 하나의 양태에 따르는 배터리 모듈의 대응하는 원위 말단(proximal end) 및 근위 말단(distal end)에 한 쌍의 단자 조립체를 포함하는 배터리 스택의 상부 사시도이다.
도 20은 본 발명의 하나의 양태에 따르는 도 18의 배터리 스택의 분해도이다.
도 21은 도 20의 배터리 모듈에서 사용하기 위한 씰의 정면도 및 상기 씰의 횡단면도를 보여준다.
도 22는 본 발명의 하나의 양태에 따르는 도 18의 배터리 스택의 캐소드 단자 및 애노드 단자를 위한 압축판의 상부 사시도를 보여준다.
도 23은 본 발명의 하나의 양태에 따르는 도 18의 배터리 스택에서 사용하기 위한 프레임의 정면도 및 측면도를 보여준다.
도 24는 여러 충전 사이클에 걸친 방전 에너지 측면에서의 본 발명의 하나의 양태에 따르는 배터리 스택의 대표적인 거동을 보여준다.
도 25a 및 도 25b는 본 발명의 하나의 양태에 따르는 배터리 모듈의 대표적인 거동을 보여준다. 도 25a는 배터리의 구동 시간 대 평균 방전 전력을 보여준다. 도 25b는 배터리의 에너지 효율 대 평균 방전 전력을 보여준다.
도 26는 방전 에너지 대 평균 방전 전력 측면에서의 본 발명의 하나의 양태에 따르는 배터리 모듈의 대표적인 거동을 보여준다.
도 27a 및 도 27b는 본 발명의 하나의 양태에 따르는 배터리 모듈의 대표적인 거동을 보여준다. 도 27a는 여러 충전 사이클에 걸친 배터리의 에너지 효율을 보여준다. 도 27b 여러 충전 사이클에 걸친 배터리의 방전 구동 시간을 보여준다.
도 28은 본 발명의 전해질 및 공개 문헌에 보고된 전해질을 사용하는 시험용 셀에서의 충전 사이클의 함수로서의 에너지의 플롯(plot) 측면에서 본 발명의 하나의 양태에 따르는 전해질의 대표적인 거동을 보여준다.
도 29a는 본 발명의 전해질 및 공개 문헌에 보고된 전해질을 사용하는 시험용 셀에서의 충전 사이클의 함수로서의 용량 측면에서 본 발명의 하나의 양태에 따르는 전해질의 대표적인 거동을 보여준다.
도 29b는 본 발명의 전해질 및 공개 문헌에 보고된 전해질을 사용하는 시험용 셀에서의 충전 사이클의 함수로서의 전위(electric potential) 측면에서 본 발명의 하나의 양태에 따르는 전해질의 대표적인 거동을 보여준다.
도 30a 및 도 30b는 전극판의 배면 상에 도금된 아연 금속의 사진이며, 여기서, 대응하는 캐소드 케이지는 홀의 조절되지 않은 패턴(un-modulated pattern)을 갖는다.
도 31a, 도 31b 및 도 31c는 전극판의 배면 상에 도금된 아연 금속의 사진이며, 여기서, 대응하는 캐소드 케이지는 홀의 조절된 패턴(modulated pattern)을 갖는다.
도 32는 다양한 브롬 착화제(complexing agent)의 대표적인 거동을, 전력(Br2 환원에 대한 한계 전류(limiting current)에서의 최대 전력) 측면에서 안정성의 함수로서(60℃에서 7일 후의 pH 변화) 보여준다.
도 33은 로그 전류(logarithmic current) 측면에서 전압의 함수로서 다양한 에틸 메틸 피리디늄의 브롬 활성의 비교를 보여준다.
도 34는 브롬 착화제로서의 상이한 폴리에테르들의 비교를, 전력(Br2 환원에 대한 한계 전류에서의 최대 전력) 측면에서 안정성의 함수로서(60℃에서 7일 후의 pH 변화) 보여준다.
도 35는 실시예 1로부터의 전해질 제형을 포함하도록 조립된 본 발명의 전기화학 셀에 대한 방전 용량(mAh) 대 충전 사이클 수의 플롯이다.
도 36은 실시예 1로부터의 전해질 제형을 포함하도록 조립된 본 발명의 전기화학 셀에 대한 쿨롱 효율(coulombic efficiency)(%) 대 충전 사이클 수의 플롯이다.
도 37은 실시예 1로부터의 전해질 제형을 포함하도록 조립된 본 발명의 전기화학 셀에 대한 구동 시간(시간) 대 충전 사이클 수의 플롯이다.
도 38은 실시예 1로부터의 전해질 제형을 포함하도록 조립된 본 발명의 전기화학 셀에 대한 에너지 효율(%) 대 충전 사이클 수의 플롯이다.
이들 도면은 예시를 위해 제공되는 것으로 본 발명의 범주를 한정하고자 하는 것은 아니다.
본 발명은 2차, 즉, 재충전 가능한 아연 할로겐화물 축전지(예를 들면, 유동 또는 비유동성의 쌍극성 배터리)에서 사용하기 위한 전해질을 제공한다.
I. 정의
본원에서 사용된 용어 "전기화학 셀" 또는 "셀"은 화학 반응으로부터 전기 에너지를 생성시키거나 전기 에너지를 도입함으로써 화학 반응을 가능하게 할 수 있는 장치를 지칭하기 위해 상호교환적으로 사용된다.
본원에서 사용된 용어 "배터리"는 적어도 하나의 전기화학 셀을 포함하는 전기 저장 장치를 포함한다. "2차 배터리"는 재충전 가능한 반면 "1차 배터리"는 재충전 불가능하다. 본 발명의 2차 배터리에 있어서, 배터리 애노드는 방전 동안 양극(positive electrode)으로 지정되고 충전 동안 음극(negative electrode)으로 지정된다.
본원에서 사용된 "전해질"은 전기전도성 매질로서 작용하는 물질을 지칭한다. 예를 들면, 전해질은 상기 셀 내에서의 전자와 양이온의 이동을 가능하게 한다. 전해질은 재료들의 혼합물, 예를 들면 금속 할로겐화물 염(예를 들면, ZnBr2, ZnCl2 등)의 수용액을 포함한다.
본원에서 사용된 용어 "전극"은 회로의 비금속성 부분(예를 들면, 반도체, 전해질, 또는 진공)과 접촉시키는데 사용되는 전기 전도체를 지칭한다. 또한 전극은 애노드 또는 캐소드를 지칭할 수 있다.
본원에서 사용된 용어 "애노드"는 배터리의 방전 상(discharging phase) 동안 전자가 유동하는 음극을 지칭한다. 또한 애노드는 방전 상 동안 화학적 산화가 발생하는 전극이다. 그러나, 2차 또는 재충전 가능한 셀에서, 애노드는 셀의 충전 상(charging phase) 동안 화학적 환원이 발생하는 전극이다. 애노드는 전기전도성 또는 반전도성 재료, 예를 들면, 금속(예를 들면, 티탄 또는 TiC 코팅된 티탄), 금속 산화물, 금속 합금, 금속 복합체, 반도체 등으로부터 형성된다.
본원에서 사용된 용어 "캐소드"는 배터리의 방전 상 동안 전자가 유동하는 양극을 지칭한다. 또한 캐소드는 방전 상 동안 화학적 환원이 발생하는 전극이다. 그러나, 2차 또는 재충전 가능한 셀에서, 캐소드는 셀의 충전 상 동안 화학적 산화가 발생하는 전극이다. 캐소드는 전기전도성 또는 반전도성 재료, 예를 들면, 금속, 금속 산화물, 금속 합금, 금속 복합체, 반도체 등으로부터 형성된다.
본원에서 사용된 용어 "쌍극성 전극"은 하나의 셀의 애노드로서 기능하고 또 다른 셀의 캐소드로서 기능하는 전극을 지칭한다. 예를 들면, 배터리 스택에서, 쌍극성 전극은 하나의 셀에서 애노드로서 기능하고 바로 인접한 셀에서 캐소드로서 기능한다. 몇몇 예에서, 쌍극성 전극은 캐소드 표면 및 애노드 표면의 2개 표면을 포함하며, 이들 2개 표면은 전도성 재료에 의해 접속되어 있다. 예를 들면, 쌍극성 전극판은 하나의 표면이 애노드 표면이고 나머지 표면이 캐소드 표면인 대향하는 표면들(opposing surfaces)을 가질 수 있으며, 전도성 재료는 상기 대향하는 표면들 사이의 판의 두께이다.
본원에서 사용된 용어 "할라이드"는, 플루오르화물, 염화물, 브롬화물, 요오드화물, 또는 아스타티드(astatide) 화합물을 생성시키기 위한, 할로겐보다 덜 음전기적인(electronegative)(또는 더 양전기적인(electropositive)) 다른 원소 또는 라디칼과의 할로겐의 2원 화합물(binary compound)을 지칭한다.
본원에서 사용된 용어 "할로겐"은 주기율표 VIIA(17)족을 점유하는 플루오르, 염소, 브롬, 요오드 및 아스타틴(astatine) 원소 중 임의의 원소를 지칭한다. 할로겐은 수소에 의해 강산 화합물을 형성하는 반응성 비금속 원소이며, 이로부터 간단한 염이 형성될 수 있다.
본원에서 사용된 용어 "음이온"은 하나 이상의 영구 음전하를 갖는 임의의 화학 물질(chemical entity)을 지칭한다. 음이온의 예는 플루오라이드, 클로라이드, 브로마이드, 요오다이드, 아르세네이트, 포스페이트, 아르세나이트, 하이드로겐 포스페이트, 디하이드로겐 포스페이트, 설페이트, 니트레이트, 하이드로겐 설페이트, 니트라이트, 티오설페이트, 설파이트, 퍼클로레이트, 요오데이트, 클로레이트, 브로메이트, 클로라이트, 하이포클로라이트, 하이포브로마이트, 카보네이트, 클로메이트, 하이드로겐 카보네이트 (비카보네이트), 디클로메이트, 아세테이트, 포르메이트, 시아나이드, 아미드, 시아네이트, 퍼옥사이드, 티오시아네이트, 옥살레이트, 하이드록사이드, 및 퍼망가네이트를 포함하지만 이에 제한되지 않는다.
본원에서 사용된 "글림(glyme)"은 에테르(예를 들면, 글리콜 에테르)를 지칭한다. 이의 예는 모노글림(즉, 1,2-디메톡시에탄), 디글림(즉, 비스(2-메톡시에틸)에테르, 테트라글림(즉, 테트라에틸렌 글리콜 디메틸 에테르), 펜타글림, 헥사글림, 헵타글림, 또는 이들의 임의의 배합물을 포함하지만 이에 제한되지 않는다.
본원에서 사용된 "티탄 재료"는 (임의의 산화 상태의) 티탄, TiC, TiC의 합금, 예를 들면 TiCxM(여기서, x는 0, 1, 2, 3, 또는 4이고 M은 금속이다), 티탄 카보하이드라이드, 화학양론적이지 않은 티탄-탄소 화합물, 및 이들의 배합물을 포함하지만 이에 제한되지 않는다.
본원에서 사용된 "탄화티탄"은 "탄화티탄 재료"와 상호교환적으로 사용되며, TiC, TiC의 합금, 예를 들면 TiCxM(여기서, x는 0, 1, 2, 3, 또는 4이고 M은 금속이다), 티탄 카보하이드라이드, 화학양론적이지 않은 티탄-탄소 화합물, 및 이들의 배합물을 포함하지만 이에 제한되지 않는다.
본원에서 사용된 용어 "아연 금속"은 아연 원소를 지칭하며, Zn(O) 또는 ZnO로도 일반적으로 알려져 있다.
본원에서 사용된 용어 "디메틸 에테르 폴리(에틸렌 글리콜)" 및 이의 약어 "DME-PEG"는 구조
Figure 112017040984232-pct00001
(여기서, n은 정수이다)를 갖는 중합체를 지칭하기 위해 상호교환적으로 사용된다. DME-PEG 1000은 수평균 분자량(Mn) 약 1000의 DME-PEG 중합체를 지칭하고, DME-PEG 2000은 수평균 분자량(Mn) 약 2000의 DME-PEG 중합체를 지칭한다.
본원에서 사용된 용어 "디메틸 에테르"는 화학식 CH3OCH3의 유기 화합물을 지칭한다.
본원에서 사용된 용어 "알코올"은, 탄소 원자에 부착된 하나 이상의 하이드록실 그룹을 함유하는 임의의 유기 화합물을 지칭한다. 알코올의 예는 메탄올, 에탄올, 1-프로판올(즉, n-프로판올), 2-프로판올(즉, 이소-프로판올), 1-부탄올 (즉, n-부탄올), sec-부탄올, 이소-부탄올, tert-부탄올, 1-펜탄올, 또는 이들의 임의의 배합물을 포함한다.
본원에서 사용된 용어 "하이드록실 그룹"은 -OH 그룹을 지칭한다.
본원에서 사용된 용어 "글리콜"은 알코올 패밀리에 속한 유기 화합물들의 임의의 부류를 지칭한다. 글리콜의 분자에서, 2개의 하이드록실(-OH) 그룹은 상이한 탄소 원자들에 부착된다. 글리콜의 예는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-부틸렌 글리콜, 1,4-부틸렌 글리콜, 네오펜틸 글리콜, 헥살렌(hexalene) 글리콜, 또는 이들의 임의의 배합물을 포함하는 C1-10글리콜을 포함한다. 글리콜의 다른 예는 치환된 에틸렌 및 치환된 프로필렌 글리콜을 포함한다.
본원에서 사용된 용어 "중량 퍼센트" 및 이의 약어 "중량%"는, 하나 이상의 구성성분의 질량을 상기 구성성분을 함유하는 혼합물 또는 생성물의 총 질량으로 나눈 몫의 100배의 곱을 지칭하기 위해 상호교환적으로 사용된다:
Figure 112017040984232-pct00002
본원에 기재된 바와 같은 전해질용 구성성분 또는 성분의 농도와 관련하여, 중량%는 전해질의 총 중량을 기준으로 한다.
본원에서 사용된 용어 "4급 암모늄 제제"는 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 예를 들면, 4급 암모늄 제제는 암모늄 할라이드(예를 들면, NH4Br, NH4Cl, 또는 이들의 임의의 배합물), 테트라-알킬암모늄 할라이드(예를 들면, 테트라메틸암모늄 브로마이드, 테트라메틸암모늄 클로라이드, 테트라에틸암모늄 브로마이드, 테트라에틸암모늄 클로라이드, 이들의 배합물 등), 헤테로사이클릭 암모늄 할라이드(예를 들면, N-메틸-N-에틸피롤리디늄 할라이드, N-에틸-N-메틸피롤리디늄 할라이드, 이들의 배합물 등), 또는 이들의 임의의 배합물을 포함한다. 테트라-알킬암모늄 할라이드는 4급 질소 원자의 치환체에 대해 대칭적으로 치환되거나 비대칭적으로 치환될 수 있다.
본원에서 사용된 용어 "암모늄 브로마이드 착화제"는 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭하며, 여기서 4급 질소 원자는 이미다졸륨, 피리디늄, 피롤리디늄, 모르폴리늄, 또는 포스포늄 모이어티(moiety)의 일부가 아니다. 암모늄 브로마이드 착화제의 예는 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, 도데실트리메틸암모늄 브로마이드, 세틸트리에틸암모늄 브로마이드, 및 헥실트리메틸암모늄 브로마이드를 포함한다.
본원에서 사용된 용어 "이미다졸륨 브로마이드 착화제"는 이미다졸륨 모이어티의 일부인 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 이미다졸륨 브로마이드 착화제의 예는 1-에틸-3-메틸이미다졸륨 브로마이드, 1-부틸-3-메틸이미다졸륨 브로마이드, 1-에틸-2,3-디메틸이미다졸륨 브로마이드, 1-데실-3-메틸이미다졸륨 브로마이드, 1-부틸-2,3-디메틸이미다졸륨 브로마이드, 1-메틸-3-옥틸이미다졸륨 브로마이드, 및 1-메틸-3-헥실이미다졸륨 브로마이드를 포함한다.
본원에서 사용된 용어 "피리디늄 브로마이드 착화제"는 피리디늄 모이어티의 일부인 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 피리디늄 브로마이드 착화제의 예는 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-부틸-4-메틸피리디늄 브로마이드, 및 1-헥실피리디늄 브로마이드를 포함한다.
본원에서 사용된 용어 "피롤리디늄 브로마이드 착화제"는 피롤리디늄 모이어티의 일부인 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 피롤리디늄 브로마이드 착화제의 예는 1-부틸-1-메틸피롤리디늄 브로마이드이다.
본원에서 사용된 용어 "모르폴리늄 브로마이드 착화제"는 모르폴리늄 모이어티의 일부인 4급 질소 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 모르폴리늄 브로마이드 착화제의 예는 N-에틸-N-메틸모르폴리늄 브로마이드이다.
본원에서 사용된 용어 "포스포늄 브로마이드 착화제"는 4급 포스포늄 원자를 포함하는 임의의 화합물, 염, 또는 재료를 지칭한다. 포스포늄 브로마이드 착화제의 예는 테트라에틸포스포늄 브로마이드이다.
본원에서 사용된 용어 "크라운 에테르"는 적어도 3개의 에테르 그룹을 함유하는 환으로 구성된 사이클릭 화학 화합물을 지칭한다. 크라운 에테르의 예는 12-크라운-4, 15-크라운-5, 18-크라운-6, 디벤조-18-크라운-6, 및 디아자-18-크라운-6을 포함한다.
본원에서 사용된 "알킬" 그룹은 1 내지 20개(예를 들면, 1 내지 16개, 1 내지 12개, 1 내지 8개, 1 내지 6개, 또는 1 내지 4개)의 탄소 원자를 함유하는 포화 지방족 탄화수소 그룹을 지칭한다. 알킬 그룹은 직쇄 또는 분지쇄일 수 있다. 알킬 그룹의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 2-에틸헥실, 옥틸, 노닐, 데실, 도데실, 및 세틸을 포함하지만 이에 제한되지 않는다.
단독으로 사용되거나 "아르알킬", "아르알콕시", 또는 "아릴옥시알킬" 중의 더 큰 모이어티의 일부로서 본원에서 사용되는 "아릴" 그룹은 모노사이클릭(예를 들면, 페닐); 비사이클릭(예를 들면, 인데닐, 나프탈레닐, 테트라하이드로나프틸, 테트라하이드로인데닐); 트리사이클릭(예를 들면, 플루오레닐, 테트라하이드로플루오레닐, 안트라세닐, 또는 테트라하이드로안트라세닐); 또는 3개의 환을 갖는 벤조융합된(benzofused) 그룹을 지칭한다. 예를 들면, 벤조융합된 그룹은 2개 이상의 C4-8카보사이클릭 모이어티로 융합된(fused) 페닐을 포함한다. 아릴은, 지방족(예를 들면, 알킬, 알케닐, 또는 알키닐); 사이클로알킬(사이클로알킬)알킬 헤테로사이클로알킬(헤테로사이클로알킬)알킬; 아릴; 헤테로아릴; 알콕시; 사이클로알킬옥시; 헤테로사이클로알킬옥시; 아릴옥시; 헤테로아릴옥시; 아르알킬옥시; 헤테로아르알킬옥시; 아로일; 헤테로아로일; 아미노; 아미노알킬; 니트로; 카복시; 카보닐(예를 들면, 알콕시카보닐, 알킬카보닐, 아미노카보닐, (알킬아미노)알킬아미노카보닐, 아릴아미노카보닐, 헤테로아릴아미노카보닐 또는 설포닐카보닐); 아르알킬카보닐옥시; 설포닐(예를 들면, 알킬설포닐 또는 아미노설포닐); 설피닐(예를 들면, 알킬설피닐); 설파닐(예를 들면, 알킬설파닐); 시아노; 할로; 하이드록실; 아실; 머캅토; 설폭시; 우레아; 티오우레아; 설파모일; 설파미드; 옥소; 또는 카바모일을 포함하는 하나 이상의 치환체로 임의로 치환된다. 또는, 아릴은 치환되지 않을 수 있다.
치환된 아릴의 예는 할로아릴, 알콕시카보닐아릴, 알킬아미노알킬아미노카보닐아릴, p,m-디할로아릴, p-아미노-p-알콕시카보닐아릴, m-아미노-m-시아노아릴, 아미노아릴, 알킬카보닐아미노아릴, 시아노알킬아릴, 알콕시아릴, 아미노설포닐아릴, 알킬설포닐아릴, 아미노아릴, p-할로-m-아미노아릴, 시아노아릴, 하이드록시알킬아릴, 알콕시알킬아릴, 하이드록시아릴, 카복시알킬아릴, 디알킬아미노알킬아릴, m-헤테로사이클로지방족-o-알킬아릴, 헤테로아릴아미노카보닐아릴, 니트로알킬아릴, 알킬설포닐아미노알킬아릴, 헤테로사이클로지방족카보닐아릴, 알킬설포닐알킬아릴, 시아노알킬아릴, 헤테로사이클로지방족카보닐아릴, 알킬카보닐아미노아릴, 하이드록시알킬아릴, 알킬카보닐아릴, 아미노카보닐아릴, 알킬설포닐아미노아릴, 디알킬아미노아릴, 알킬아릴, 및 트리할로알킬아릴을 포함한다.
본원에서 사용된 "아르알킬" 그룹은 아릴 그룹으로 치환된 알킬 그룹(예를 들면, C1-4알킬 그룹)을 지칭한다. "알킬" 및 "아릴"은 둘 다 본원에서 정의된다. 아르알킬 그룹의 예는 벤질이다. "헤테로아르알킬" 그룹은 헤테로아릴로 치환된 알킬 그룹을 지칭한다.
본원에서 사용된 "사이클로알킬" 그룹은 3 내지 10개(예를 들면, 5 내지 10개)의 탄소 원자로 이루어진 포화 카보사이클릭 모노-, 비-, 또는 트리-, 또는 멀티사이클릭 (융합된 또는 브릿지된(bridged)) 환을 지칭한다. 비제한적으로, 모노사이클릭 사이클로알킬 그룹의 예는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸 등을 포함한다. 비제한적으로, 비사이클릭 사이클로알킬 그룹의 예는 옥타하이드로-인데닐, 데카하이드로-나프틸, 비사이클로[3.2.1]옥틸, 비사이클로[2.2.2]옥틸, 비사이클로[3.3.1]노닐, 비사이클로[3.3.2.]데실, 비사이클로[2.2.2]옥틸, 비사이클[2.2.1]헵타닐, 비사이클[3.1.1]헵타닐 등을 포함한다. 비제한적으로, 멀티사이클릭 그룹은 아다만틸, 쿠밀, 노보닐 등을 포함한다. 사이클로알킬 환은 임의의 화학적으로 실행가능한 환 위치에서 임의로 치환될 수 있다.
본원에서 사용된 "헤테로사이클로알킬" 그룹은 3 내지 10원 모노 또는 비사이클릭 (융합된 또는 브릿지된) (예를 들면, 5 내지 10원 모노 또는 비사이클릭) 포화된 환 구조물을 지칭하며, 여기서 상기 환 원자들 중의 하나 이상은 헤테로원자(예를 들면, N, O, S, 또는 이들의 배합물)이다. 헤테로사이클로알킬 그룹의 예는 임의로 치환된 피페리딜, 피페라질, 테트라하이드로피라닐, 테트라하이드로푸릴, 1,4-디옥솔라닐, 1,4-디티아닐, 1,3-디옥솔라닐, 옥사졸리딜, 이속사졸리딜, 모르폴리닐, 티오모르폴릴(thiomorpholyl), 옥타하이드로-벤조푸릴, 옥타하이드로-크로메닐(chromenyl), 옥타하이드로-티오크로메닐, 옥타하이드로-인돌릴, 옥타하이드로-피린디닐(pyrindinyl), 데카하이드로-퀴놀리닐, 옥타하이드로-벤조[b]티오페네일(thiopheneyl), 2-옥사-비사이클로[2.2.2]옥틸, 1-아자-비사이클로[2.2.2]옥틸, 3-아자-비사이클로[3.2.1]옥타닐, 2,6-디옥사-트리사이클로[3.3.1.03,7]노닐, 프로판을 포함한다. 모노사이클릭 헤테로사이클로알킬 그룹은 테트라하이드로이소퀴놀린과 같은 페닐 모이어티로 융합될 수 있다. 헤테로사이클로알킬 환 구조물은 환 또는 환들 상에서 임의의 화학적으로 실행가능한 위치에서 임의로 치환될 수 있다.
본원에서 사용된 "헤테로아릴" 그룹은 4 내지 15개의 환 원자를 갖는 모노사이클릭, 비사이클릭, 또는 트리사이클릭 환 구조물을 지칭하며, 여기서 환 원자들 중의 하나 이상은 헤테로원자(예를 들면, N, O, S, 또는 이들의 배합물)이고 비사이클릭 또는 트리사이클릭 환 구조물의 하나 이상의 환은 방향족이다. 헤테로아릴 그룹은 2 내지 3개의 환을 갖는 벤조융합된 환 시스템을 포함한다. 예를 들면, 벤조융합된 그룹은 1 또는 2개의 C4-8헤테로사이클릭 모이어티로 융합된 벤조(예를 들면, 인돌리질(indolizyl), 인돌릴, 이소인돌릴, 3H-인돌릴, 인돌리닐, 벤조[b]푸릴, 벤조[b]티오페닐, 퀴놀리닐, 또는 이소퀴놀리닐)을 포함한다. 헤테로아릴의 몇 가지 예는 아제티디닐, 피리딜, 1H-인다졸릴, 푸릴, 피롤릴, 티에닐, 티아졸릴, 옥사졸릴, 이미다졸릴, 테트라졸릴, 벤조푸릴, 이소퀴놀리닐, 벤즈티아졸릴, 크산텐, 티오크산텐, 페노티아진, 디하이드로인돌, 벤조[1,3]디옥솔, 벤조[b]푸릴, 벤조[b]티오페닐, 인다졸릴, 벤즈이미다졸릴, 벤즈티아졸릴, 푸릴, 신놀릴, 퀴놀릴, 퀴나졸릴, 신놀릴, 프탈라질(phthalazyl), 퀴나졸릴, 퀴녹살릴, 이소퀴놀릴, 4H-퀴놀리질, 벤조-1,2,5-티아디아졸릴, 또는 1,8-나프티리딜이다.
II. 전기화학 셀 및 배터리 스택
도 1 내지 도 23을 참조하여, 하나의 측면에서 본 발명은 고정된(유동하지 않는) 쌍극성 아연-할로겐화물 재충전 가능한 전기화학 셀(100) 및 당해 셀의 배터리 스택(1000)을 제공한다.
A. 쌍극성 전기화학 셀
본 발명의 쌍극성 전기화학 셀(100)은 쌍극성 전극(102), 단자 조립체(104), 및 아연-할로겐화물 전해질을 포함한다.
1. 쌍극성 전극
본 발명의 쌍극성 전극(102, 102')은 전면(212)과 배면(214)를 갖는 쌍극성 전극판(208)을 포함하며, 이때 캐소드 조립체(202)는 상기 쌍극성 전극판의 전면에 부착되어 상기 캐소드 조립체는 쌍극성 전극판(208)의 적어도 전면과 전기 통신한다. 본 발명의 쌍극성 전극(102)은, 전기화학 셀의 충전 동안, 애노드 전극 표면(예를 들면, 인접한 쌍극성 전극의 배면, 또는 단자 애노드 조립체의 종판의 내부 표면) 상에 아연 금속을 도금하고 할라이드 또는 혼합된 할라이드를 생성시키도록 구성되며, 이는 캐소드 조립체에서 가역적으로 격리된다. 반면, 이들 전극은, 전기화학 셀의 방전 동안, 도금된 아연 금속을 산화시켜 Zn2+ 양이온을 생성시키고 할라이드 또는 혼합된 할라이드 화학종을 이의 대응하는 음이온으로 환원시키도록 배열된다.
a. 쌍극성 전극판
본 발명의 쌍극성 전극판(208, 208')은 전면(212)과 배면(214)를 포함한다. 상기 캐소드 조립체는 쌍극성 전극판(208)의 전면(212)(예를 들면, 캐소드 표면) 상에 놓인다. 몇몇 양태에서, 상기 쌍극성 전극판은 전기화학 셀 또는 배터리 스택에서 사용되는 아연 할로겐화물 전해질에 비교적 불활성인 전도성 재료를 포함한다. 몇몇 양태에서, 쌍극성 전극판(208)은 티탄 재료(예를 들면, 티탄 또는 산화티탄)를 포함한다. 몇몇 경우, 쌍극성 전극판(208)은 전면(212)의 적어도 일부, 배면(214)의 적어도 일부, 또는 이들 2개 표면의 적어도 일부를 커버하는 코팅 또는 필름을 추가로 포함한다. 기타 양태에서, 상기 쌍극성 전극판은 탄화티탄 재료로 코팅된 티탄 재료를 포함한다. 이들 양태에서, 전면(212)의 적어도 일부, 배면(214)의 적어도 일부, 또는 이들 2개 표면의 적어도 일부는 탄화티탄 재료로 코팅된다. 몇몇 양태에서, 상기 쌍극성 전극판은 전기전도성 탄소 재료(예를 들면, 흑연판)를 포함한다. 몇몇 경우, 상기 쌍극성 전극판은 탄화티탄 재료로 코팅된 흑연판을 포함한다. 이들 양태에서, 전면(212)의 적어도 일부, 배면(214), 또는 이들 표면 중 하나의 적어도 일부는 탄화티탄 재료로 코팅된다.
본 발명의 쌍극성 전극판은 임의로 쌍극성 전극판의 전면(212) 상에 매입부(215)를 포함한다. 몇몇 양태에서, 상기 쌍극성 전극판은 쌍극성 전극판의 전면(212) 상에 매입부(215)를 포함한다. 이들 양태 중 일부에서, 매입부(215)의 주변 엣지(peripheral edge)는 캐소드 조립체(202)의 캐소드 케이지(216)의 플랜지(flange)(220)의 최외곽 엣지(outermost edge)에 의해 실질적으로 한정되어, 쌍극성 전극이 조립되는 경우 상기 캐소드 조립체는 적어도 부분적으로 매입부(215) 내에 들어맞는다. 기타 양태에서, 매입부의 주변 엣지는 적어도 부분적으로 캐소드 조립체(202)의 캐소드 케이지(216)의 플랜지(220)의 최외곽 엣지 내에 존재한다. 이들 양태 중 일부에서, 상기 매입부는 캐소드 조립체(202)의 캐소드 케이지(216) 내에 맞춰진 탄소 재료(224)의 최외곽 엣지에 의해 한정될 수 있어, 쌍극성 전극(102)이 조립되는 경우 탄소 재료(224)는 쌍극성 전극판의 매입부(215) 내에 적어도 부분적으로 들어맞는다. 또한, 몇몇 또 다른 양태에서, 상기 쌍극성 전극판의 전면(212)은 매입부가 적어서, 당해 표면은 적어도 실질적으로 평평하다.
본 발명의 쌍극성 전극판은 상기 전극판의 주변부(204)에 또는 가까이에 하나 이상의 쓰루 홀을 임의로 포함할 수 있다. 도 2a 내지 도 4를 참조하여, 몇몇 양태에서, 상기 쌍극성 전극판은 하나 이상의 쓰루 홀(206, 210)을 상기 전극판의 주변부(204)에 또는 가까이에 포함하며 이는 전기화학 셀을 액체 전해질로 충전하는데 유용할 수 있거나 전극판을 배터리 스택 내에 배열하는데 유용할 수 있다.
상기 쌍극성 전극판은 스탬핑(stamping) 또는 기타 적합한 공정에 의해 형성될 수 있다. 전면(212)의 일부, 배면(214)의 일부, 또는 상기 2개 표면의 일부를 임의로 표면 처리(예를 들면, 코팅 등)하여 상기 셀 또는 배터리 스택의 전기화학적 성질을 향상시킬 수 있다. 상기 쌍극성 전극판의 배면은, 셀 또는 배터리 스택 충전하의 아연 금속 층의 형성과 연관되거나 당해 형성에 의해 한정되는 전기화학적 활성 영역을 포함할 수 있다. 몇몇 양태에서, 상기 전극판의 배면은 전기화학적 활성 영역 내에서 샌드블라스트되거나 그 외로 처리될 수 있다. 기타 양태에서, 전면은 상기 캐소드 조립체로 둘러싸인 구역과 연관된 전기화학적 활성 영역 내에서 샌드블라스트될 수도 있다.
예를 들면, 몇몇 양태에서, 배면의 적어도 일부, 전면의 적어도 일부, 또는 상기 2개 표면의 일부가 처리되어(예를 들면, 샌드블라스트되어) 거친 표면을 제공한다. 몇몇 경우, 상기 쌍극성 전극판의 배면의 적어도 일부가 처리되어(예를 들면, 샌드블라스트되어) 거친 표면을 제공한다. 몇몇 경우, 처리하여 거친 표면을 제공한 배면의 영역은, 상기 전극판의 전면에 부착된 캐소드 조립체의 주변부에 의해 실질적으로 한정된다.
b. 캐소드 조립체
본 발명의 전기화학 셀 및 배터리 스택은 적어도 하나의 캐소드 조립체(202)를 포함하며, 이때 상기 캐소드 조립체는 캐소드 케이지(216), 탄소 재료(224), 및 분리막(222)으로부터 형성된다.
i. 캐소드 케이지
캐소드 케이지(216)는 포켓 부분(pocket portion)(218)과 플랜지(220)를 포함하며 이는 상기 쌍극성 전극판의 전면(212, 212') 상에 또는 플랜지(220)의 단자 종판의 내부 표면(316) 상에 배치된다. 도 6a 및 도 6b를 참조하여, 캐소드 케이지(216)의 정면도(도 6a) 및 측면도(도 6b)를 도시한다. 캐소드 케이지(216)는 플랜지(220)를 포함하는 길이 X1 및 폭 Y1에 의해 한정된 전체 구역을 포함한다. 상기 플랜지를 형성하기 위해, 평평한 금속 시트를 성형기에 설치하여 평평한 시트의 4개 엣지 각각 위에서 상기 플랜지를 가압한다. 몇몇 구현예에서, 평평한 금속 시트는 티탄 또는 탄화티탄 재료를 포함한다. 몇몇 양태에서, 상기 캐소드 케이지는 상기 케이지의 코너(corner)에 슬롯(slot)을 추가로 포함한다. 이들 슬롯은 레이저 절단에 의해 형성될 수 있다. 캐소드 케이지(216)는 길이 X2 및 폭 Y2로 한정된 포켓 부분(218)에 대응하는 감소된 구역을 포함한다. 따라서, X1은 X2보다 크고 Y1은 Y2보다 크다. 제시된 예에서, 플랜지(220)는 포켓 부분(218)에 대해 평평하게 굴곡져서 X1/X2 및 Y1/Y2 치수 및 상기 포켓 부분의 깊이를 지칭한다. 몇몇 양태에서, X2 및 Y2에 의해 한정된 구역은 복수의 홀(227)들이 형성되어 있는 에칭 구역을 보여준다. 길이 X1/X2 및 폭 Y1/Y2는 전기화학 셀(100) 또는 배터리 스택(1000)의 작업 요구사항에 따라 달라질 수 있다.
몇몇 양태에서, 플랜지(220)는 쌍극성 전극판의 전면(212)에 인접하고 접촉하는 표면을 포함하며 포켓 부분(218)의 깊이는 플랜지로부터 상기 전극판의 전면으로부터 멀어지는 방향으로 연장된다. 상기 캐소드 케이지의 포켓 부분(218)은 상기 전극판의 전면과 협력하여 작동하여, 분리막(222)과 탄소 재료(224)가 놓여있는 챔버를 형성한다. 이들 양태 중 일부에서, 상기 캐소드 케이지는 용접(welding)에 의해, 접착제, 기계적 패스너(mechanical fastener), 또는 이들의 임의의 조합을 사용하여, 이의 플랜지에서 상기 전극판의 전면 상에 배치된다.
상기 캐소드 케이지는 상기 전기화학 셀 또는 배터리 스택의 전해질에 실질적으로 불활성인 금속 또는 금속 합금으로 형성된다. 몇몇 양태에서, 상기 캐소드 케이지는 티탄 재료(예를 들면, 티탄 또는 산화티탄)로부터 스탬핑된다. 기타 양태에서, 상기 캐소드 케이지는 탄화티탄 재료로 코팅된 티탄 재료를 포함한다.
몇몇 양태에서, 상기 캐소드 케이지의 포켓 부분은 화학적으로 에칭되어 복수의 이격된 홀(227)들을 형성한다. 몇몇 양태에서, 상기 홀을 사이징(sizing)하고 이격하여 홀 패턴(예를 들면, 조절된 홀 패턴)을 형성하며, 이는 전기화학 셀의 작동(예를 들면, 충전 또는 방전) 동안 발생하는 캐소드 케이지의 포켓 부분의 변형 또는 굴곡을 보상함으로써 캐소드 케이지에 걸쳐 분포된 전류 및/또는 전하의 균일성을 증가시킨다.
도 7a는 도 6a에 도시된 캐소드 케이지(216)의 정면도를 예시하며, 이는 화학적 에칭에 의한, 포켓 부분(218)의 화학적으로 에칭된 표면을 통해 형성된 복수의 홀(227)들을 포함한다. 도 7b는 도 7a에 도시된 부분의 상세도이며 이는 복수의 홀(227)들의 분포를 보여준다. 화학적 에칭 공정은 복수의 홀(227)들의 제조를 위해 제거되어야 하는 고체 재료를 없애는 공제형(subtractive) 제조 공정이다. 화학적 에칭 공정의 제1 단계 동안, 캐소드 케이지(216)는 X1 및 Y1에 해당하는 치수를 얻기 위해 전단을 사용하여 절단된 평평한 금속 시트로 시작한다. 그 다음, 상기 금속 시트를 세척하고 열 롤 라미네이터(hot roll laminator)에서 건식 필름 솔더 마스크(dry film solder mask)로 코팅하고 이어서 어두운 환경에서 냉각시킬 수 있다. 이어서, 보호막을, 당해 금속 시트를 노광시키기 위한 진공 노광 유닛 내에 적용할 수 있다. 몇몇 예에서, 노광의 크기는 단계 지시기(step indicator)를 사용하여 측정될 수 있으며, 노광은 원하는 노광량이 달성될 때 결정된다. 후속적으로, 상기 금속 시트가 현상제를 통과하여 보호 필름을 제거하는 한편 현상액 중의 용해 세제(resolve detergent)가 금속 시트에 도포되어 원치않는 비노광 레지스트를 제거한다. 이어서, 금속 시트를 퍼니스 랙(furnace rack)에 넣고 소정의 온도에서 소정 시간 동안 베이킹할 수 있다. 예를 들면, 베이킹은 약 250℉에서 약 60분 동안 수행할 수 있다. 베이킹 주기 후, 각각의 금속 시트는 공냉되고, 화학적 에칭 장치는 원하는 에칭 구역, 예를 들면, X2 및 Y2에 의해 한정된 구역의 규격에 대해 프로그래밍되고, 베이킹되고 냉각된 금속 시트는 화학적 에칭 장치를 통해 불필요한 물질을 제거하며 이로써 홀(227)들을 형성한다.
이제 도 7b를 참조하면, 복수의 홀(227)들은 이격되어 열을 따라 패턴으로 분포되어 있다. 몇몇 양태에서, 상기 패턴은 교차 반복 패턴이다. 몇몇 양태에서, 상기 패턴은, 전기화학 셀 또는 배터리 스택의 충전 동안 상기 캐소드 케이지가 굴곡되어 평평한 것으로부터 변형될 때 캐소드 케이지(216)를 가로질러 전류가 균일하게 분포되도록 선택된다. 또한, 도 30a 내지 도 31c를 참조하면, 본 발명에 따른 홀 패턴을 갖는 캐소드 케이지를 제공함으로써, 전하 및/또는 전류의 균일한 분포가 향상되어, 충전 주기 동안 쌍극성 전극판의 애노드 표면(예를 들면, 쌍극성 전극판의 배면(214), 또는 종판의 내부 표면(318), 또는 둘 다)에서 아연 금속의 더욱 균일한 도금을 생성한다. 마찬가지로, 캐소드 케이지(216)에서 또는 상기 케이지 가까이에 브롬과 브로마이드 음이온 사이의 전환이 또한 향상될 수 있다. 몇몇 양태에서, x-방향의 열(row)을 따르는 복수의 홀(227)들의 각각의 홀 사이의 간격, y-방향의 교차 열들 사이의 간격, 및 홀의 직경
Figure 112017040984232-pct00003
은, 전기화학 셀 또는 배터리 스택이 충전 및 방전되는 경우 캐소드 케이지와 쌍극성 전극에서 발생하는 굴곡 또는 변형량에 기초하여 캐소드 케이지(216)를 가로지르는 전하 및/또는 전류의 실질적으로 균일한 분포를 달성하기 위해 선택될 수 있다. 몇몇 구현예에서, 각각 x 및 y 방향의 x 및 y 홀 위치(예를 들면, 간격)의 분포는 캐소드 케이지(216)의 공칭 홀 면적 및 권고된 웹 길이를 기준으로 한다. 포켓 부분(218)의 표면의 두께는 공칭 홀 면적 및 권고된 웹 길이의 치수를 지칭할 수 있다. 몇몇 예에서, 열을 따르는 인접한 복수의 홀(227)들의 중심은 행을 따르는 다수의 홀 (227)의 중심은 x-방향에서 약 0.067cm만큼 이격되고 모든 다른 열들은 y-방향에서 약 0.152cm만큼 이격된다. 아래에서 보다 상세히 설명되는 바와 같이, 캐소드 케이지(216), 및 쌍극성 전극판(208, 208'), 또는 단자 종판(302)은 각각의 부분에서 추가로 둘레(perimeter)로부터의 영역에서 평평한 것으로부터 더 먼 거리로 구부러져서, 애노드 전극과 캐소드 전극 사이의 간격은 당해 둘레 가까이의 외부 영역에 대해 중심 영역에서 더 짧아질 것이다. 일반적으로, 애노드 전극과 캐소드 전극 사이의 간격이 감소함에 따라, 대응하는 x 및 y 홀 위치에서 계산된 홀 직경은 증가할 것이다.
몇몇 양태에서, 전극들 사이(예를 들면, 쌍극성 전극판(208, 208', 302)의 캐소드 케이지(216)와 배면(214) 또는 내부 표면(318) 사이)의 간격은, 캐소드 케이지의 에칭 구역(예를 들면, X2 및 Y2에 의해 한정된 구역)을 따라 균등하게 분배된 복수의 x 및 y 홀 위치 각각에서 계산된다. x-y 기원(origin)은 도 7b에 도시된 x-축과 y-축이 교차하는 포켓 부분(218)의 하부 좌측 경계를 포함할 수 있다. 이후, 복수의 홀(227)들 각각의 홀 면적은 x 및 y 위치 각각에서 캐소드 전극과 애노드 전극 사이의 계산된 간격, 전극들 사이의 소정의 최소 간격, 및 공칭 홀 면적을 기준으로 하여 계산될 수 있다. 몇몇 양태에서, 복수의 홀(227)들의 개수는 추가로 포켓 캐소드 케이지(216)의 포켓 부분(218)의 표면의 두께를 기준으로 할 수 있다. 몇몇 예에서, 소정의 최소 간격은 약 7.45㎜이고 공칭 홀 면적은 약 1.08㎟이다. 몇몇 구현예에서, 에칭 구역을 따라 복수의 x 및 y 위치 각각에서 애노드 전극과 캐소드 전극 사이의 간격을 계산하는 것은 다음의 적합한 방정식을 사용하여 계산된다:
수학식 1
Figure 112017040984232-pct00004
수학식 1의 적합한 방정식에 대한 계수는 각각의 캐소드 케이지(216), 및 쌍극성 전극 각각에 대한 전극판(208') 또는 단자 종판(302)에 대한 평평한 면으로부터 델타를 측정함으로써 결정될 수 있다. 당해 측정은 각각의 캐소드 케이지(216)를 가로지르는 위치 및 전극판(208')에서 대응하는 위치에서 복수의 x 및 y 홀 위치로부터 수행된다. 각각의 위치에서, 캐소드 케이지(216) 및 전극판(208') 또는 말단 종판(302) 모두에 대해 복수의 쌍극성 전극(102) 각각에 대해 평균이 계산된다. 계산된 평균에 대응하는 데이터는 캐소드 케이지 및 전극판 각각에 대한 계수 y0, a, b, c 및 d를 결정하는데 사용된다. 몇몇 양태에서, 2개 전극들 각각에 대한 델타의 방향은 상기 2개 전극 사이의 편평한 거리가 원하는 간격, 예를 들면, 약 10.0mm가 되도록 조정되고, 전극판에 대한 델타는 약 0mm로부터 상향 연장되고, 캐소드 케이지에 대한 델타는 약 10.0mm로부터 하향 연장된다. 따라서, 전극판 및 캐소드 케이지 각각에 대해 결정된 계수는 다음과 같다:
전극판/단자 종판
y0 = -1.5787
a = 0.8948
b = 2.4920
c = -0.1268
d = -0.9132
캐소드 케이지
y0 = 10.8602
a = -0.5295
b = -1.5860
c = 0.0814
d = 0.6857
수학식 1의 적합 방정식에 입력한 새로운 계수들은 캐소드 계수로부터 애노드 계수를 뺀 값으로 결정할 수 있다. 따라서, 수학식 1에 입력하기 위한 새로운 계수들은 다음과 같다:
y0 = 12.4389
a = -1.4243
b = -4.078
c = 0.2082
d = 1.5989
x 및 y 홀 위치는, 복수의 홀(227)들의 간격을 계산하기 위해 수학식 1에 넣기 전에 에칭 구역에 의해 정규화되어야(normalized) 한다. 예를 들면, 각각의 x 위치를 포켓 부분(218)의 길이 X2로 나누고 각각의 y 위치를 상기 포켓 부분의 폭 Y2로 나눈다. 이후, 각각의 정규화된 x 및 y 홀 위치를, 위에서 결정된 새로운 계수들과 함께, 수학식 1에 입력하여 각각의 x 및 y 홀 위치에서의 애노드 전극과 캐소드 전극 사이의 간격을 결정한다. 수학식 1의 적합 방정식은 비선형 3차원 포물면(paraboloid) 방정식이다. 몇몇 구현예에서, 수학식 1은 시스탈 소프크웨어, 인코포레이티드(Systal Software, Inc.)에서 허가한 SigmaPlot™ 소프트웨어를 사용하여 실행된다.
몇몇 구현예에서, 각각의 x 및 y 홀 위치에서의 복수의 홀(227)들의 각각의 홀의 면적은 다음과 같이 계산할 수 있다:
수학식 2
Figure 112017040984232-pct00005
상기 수학식 2에서,
Figure 112017040984232-pct00006
은 각각의 홀 위치에서 계산된 직경이고,
f는 수학식 1에서 계산된 각각의 홀 위치에서의 전극들 사이의 간격이고,
A공칭은 공칭 홀 면적이고,
S공칭_최소는 공칭 최소 홀 간격이다.
몇몇 예에서, 공칭 홀 면적은 약 1.08㎟이고 공칭 최소 간격은 약 7.45㎟이다. 홀 직경을 계산하기 위한 예는 혼합된 단위를 사용하는데, 이때 각각의 x 및 y 홀 위치 및 X2 및 Y2로 정의된 에칭 면적에 인치 단위를 사용하는 한편 전극들 사이의 간격을 계산할 때에는 밀리미터를 사용한다. 수학식 2는, 애노드 전극과 캐소드 전극 사이의 간격이 증가함에 따라 홀 직경이 커짐을 입증한다. 각각의 쌍극성 전극(102, 102')에 대해 수학식 2를 사용하여 각각의 홀 위치에서 계산된 평균 홀 직경의 평균을 계산한다. 구현예는, 복수의 쌍극성 전극(102, 102') 각각에 대해 캐소드 케이지(216) 내에 형성된 복수의 홀(227)들의 평균 홀 직경을 사용함을 포함한다.
도 10 및 도 11은 x-축에 대한(도 10) 그리고 y-축에 대한(도 11) 쌍극성 전극판(208')과 캐소드 케이지(216)의 3차원 형상 프로파일들 간의 평균 간격에 대한 실험 데이터를 도시한다. 상기 실험 데이터는 배터리 모듈(1000)의 20개의 쌍극성 전극(102, 102')로부터 취한 평균을 예시한다. 전극판(208') 및 캐소드 케이지(216)는 충전시 평평한 상태로부터 굴곡된다. 제시된 예에서, 상기 캐소드 케이지와 전극판은 평탄부로부터 상기 캐소드 케이지와 전극판 사이의 간격이 z-축에 대해 약 10mm가 되도록 배열된다. 전극판은 최중심(direct center)(예를 들면, x-축에 대해 약 3.5mm)에서 z-축을 따라 평탄부로부터의 약 1.566mm의 최대 델타를 갖고 상기 캐소드 케이지는 우측-중심(right-center)(예를 들면, x-축에 대해 약 2.0mm)에서 x-축을 따라 평탄부로부터의 약 0.565mm의 최대 델타를 갖는다. 복수의 쌍극성 전극의 좌측-중심(left-center)으로부터 우측-중심까지의 평균 전극 간격은 약 7.78mm이다.
ii. 탄소 재료
탄소 재료(224)는 쌍극성 전극판(208, 208')의 전면(212, 212')과 전기 통신하며 상기 쌍극성 전극판의 캐소드 케이지(216, 216'), 분리막(222), 및 전면(212, 212')에 의해 한정된다. 본 발명의 전기화학 셀에 적합한 탄소 재료는, 수성 브롬 화학종(예를 들면, 수성 브롬 또는 수성 브로마이드)(집합적으로 702)을 가역적으로 흡수할 수 있으며 전해질의 존재하에 실질적으로 화학적 불활성인 임의의 탄소 재료를 포함할 수 있다. 몇몇 양태에서, 상기 탄소 재료는 카본 블랙 또는 기타 퍼니스 공정 카본(furnace process carbon)을 포함한다. 적합한 카본 블랙 재료는 Cabot Vulcan® XC72R, Akzo-Nobel Ketjenblack EC600JD, 및 전도성 퍼니스 공정 카본 블랙들의 기타 매트 블랙(matte black) 혼합물을 포함하지만 이에 제한되지 않는다. 몇몇 양태에서, 상기 탄소 재료는 PTFE 결합제 및 탈이온수를 포함하지만 이에 제한되지 않는 기타 구성성분을 또한 포함한다. 예를 들면, 상기 탄소 재료의 함수량은 상기 탄소 재료의 50중량% 미만(예를 들면, 약 0.01중량% 내지 약 30중량%)이다. 몇몇 양태에서, 상기 탄소 재료는 PTFE를 (예를 들면, 상기 탄소 재료의 약 0.5중량% 내지 약 5중량%로) 포함한다.
몇몇 양태에서, 상기 탄소 재료는, 상기 탄소 재료가 상기 캐소드 케이지에 적어도 부분적으로 맞춰질 수 있는 특정 크기와 형상으로 성형된다. 몇몇 예에서, 상기 탄소 재료는 하나 이상의 얇은 장방형 블럭의 형태일 수 있다. 예를 들면, 상기 탄소 재료는, 상기 캐소드 조립체가 조립될 때 코너가 분리막을 관통하지 않도록 둥근 코너를 갖는 하나 이상의 얇은 장방형 블록으로 형성된다. 몇몇 양태에서, 상기 탄소 재료는 단일의 고체 블록을 포함할 수 있다. 기타 양태에서, 상기 탄소 재료는 카본 블랙으로 이루어진 1 내지 5개, 1 내지 3개, 또는 1 또는 2개의 고체 블록을 포함할 수 있다.
iii. 분리막
본 발명의 전기화학 셀 또는 배터리 스택에 유용한 분리막(222)은 케이지의 포켓 부분의 감소된 표면과 탄소 재료 사이에 다공성 격벽(barrier)을 형성할 수 있다. 몇몇 양태에서, 상기 분리막은 습윤 가능한 직포 또는 습윤 가능한 부직포로 형성된다. 또한, 몇몇 예에서, 직포 또는 부직포는, 전해질의 통과를 허용하면서도 탄소 재료의 입자의 통과를 적어도 실질적으로 억제하는 크기의 복수의 기공들을 포함한다. 기타 양태에서, 상기 분리막은 매우 큰 표면적(예를 들면, 1000 내지 2000㎡/g)을 갖는 Zorflex® FM10 ACC 100% 활성화되고/되거나 신속한 반응 및 흡착 속도를 나타내는 직조 카본 클로쓰를 포함하는 카본 클로쓰로부터 형성된다.
몇몇 양태에서, 분리막(222)은 캐소드 케이지의 적어도 일부와 탄소 재료 사이에 개재한다. 또한, 기타 양태에서, 상기 분리막은 탄소 재료를 실질적으로 둘러싸서, 상기 분리막은 캐소드 케이지의 포켓 부분의 실질적으로 전부 및 탄소 재료 사이에 개재하며, 상기 분리막은 탄소 재료의 적어도 일부와 쌍극성 전극판의 적어도 일부 사이에 개재한다. 예를 들면, 상기 분리막은, 홀 패턴(예를 들면, 복수의 홀(227)들)을 보유한 캐소드 캐이지의 포켓 부분의 적어도 감소된 표면 및 탄소 재료 사이에 개재한다.
2. 단자 조립체
본 발명의 또 다른 측면은 쌍극성 전기화학 셀 또는 배터리용 단자 조립체를 제공한다. 도 12 내지 도 17을 참조하여, 본 발명의 단자 조립체(104)는, 말단 벽(terminal wall)(312), 측벽(sidewall)(304), 및 측벽에 의해 말단 벽으로부터 분리되어 있는 림(rim)(306)을 포함하는 전도성 컵모양 부재(310)를 포함한다. 쌍극성 전기화학 셀 또는 배터리 스택의 단자(308)는 전도성 컵모양 부재(310)의 말단 벽(312)과 전기 통신하도록 접속된다. 몇몇 양태에서, 상기 단자(308)는 황동(brass)을 포함한다(예를 들면, 단자는 말단 벽과 전기 통신하거나 말단 벽과 접촉하는 황동 플러그(brass plug)이다). 몇몇 양태에서, 상기 단자(308)과 접촉하는 말단 벽(312)의 일부는 구리를 포함한다. 이들 양태에서, 말단 벽은 티탄으로부터 형성될 수 있으며, 구리로부터 형성된 단자를 전도성 컵모양 부재의 말단 벽에 접촉시켜 전기 접속하도록 작동하는 구리판을 포함할 수 있다.
단자 조립체는, 말단 벽과 적어도 실질적으로 동일한 평면에 있고 외부 표면(316)에서 림에 연결되는 내부 및 외부 표면(318, 316)을 갖는, 단자 종판(302)을 추가로 포함한다. 단자 종판(302)은, 탄화티탄 재료로 코팅된 티탄 재료, 쓰루 홀, 거친 내부 표면 등을 비제한적으로 포함하는 쌍극성 전극판에 존재하는 특징들 중의 임의의 것을 포함하도록 형성될 수 있다. 상기 컵모양 부재의 림은, 림이 단자 종판의 전기화학적 활성 영역(322)에 대해 대략 중심에 있도록 단자 종판(302)에 연결된다. 몇몇 양태에서, 전기화학적 활성 영역(322)은, 전기화학 셀 또는 배터리 스택의 충전 및 방전 사이클 동안 인접한 쌍극성 전극과의 화학적 또는 전기적 통신시에 단자 종판의 내부 및 외부 표면 사이에서 연장되는 영역에 상응한다. 이들 양태에서, 배터리의 음의 캐소드 단자(negative cathode terminal)와 연관된 단자 종판에 대한 전기화학적 활성 영역은 단자 종판의 내부 표면(예를 들면, 단자 캐소드 종판) 상에 배치돤 캐소드 조립체에 의해 둘러싸인 영역에 대응하거나 당해 영역에 의해 한정된다. 배터리의 양의 애노드 단자(positive anode terminal)와 연관된 단자 종판에 대한 전기화학적 활성 영역은, 인접한 쌍극성 전극판의 전면에 배치된 캐소드 조립체에 대향하며 배터리 충전시 아연 금속 층을 형성하는 이의 내부 표면 상의 구역에 대응할 수 있다(단자 애노드 조립체). 몇몇 양태에서, 상기 단자 애노드 조립체의 단자 종판의 내부 표면의 적어도 일부(예를 들면, 적어도 화학적 활성 영역)는 거친 표면이다.
도 14는 림의 외부 주변부에 대응하는 파선 타원형(306) 내에 둘러싸인 제1 표면 영역(326), 및 및 림(306)의 외부 주변부에 의해 한정된 나머지 제2 표면 영역(324), 및 전기화학적 활성 영역(322)의 주변 엣지를 포함하는, 단자 종판의 전기화학적 활성 영역을 도시한 단자 종판의 상면도를 제공한다. 전도성 컵모양 부재(310)는 명료성(clarity)을 위해 도 14에서 제거되어, 제1 표면적이 도시될 수 있다. 따라서, 전도성 컵모양 부재가 단자 종판의 외부 표면에 연결되는 경우 제1 표면 영역은 림에 의해 둘러싸이게 된다. 상기 제1 표면 영역(326) 및 제2 표면 영역(324)은 실질적으로 동일하다.
몇몇 양태에서, 상기 림은 실질적으로 타원형이며 장축(major axis) AMAJ 및 장축에 수직인 단축(minor axis) AMIN에 의해 한정되며 상기 장축 및 단축은 림의 중심에서 교차하고 또한 전기화학적 활성 영역의 중심에서 교차한다. 본원에 사용된 바와 같이, 실질적으로 타원형인 림은 구부러지거나 만곡되거나 둥그스름한 코너를 갖는 실질적으로 장방형 형상인 림을 지칭한다. 몇몇 양태에서, 상기 림은 실질적으로 장방형이다. 도 15는 도 13의 라인 15-15를 따라 취한 횡단면도를 제공하며, 이는 림의 장반경(major radius) RMAJ이, 림의 외부 주변부로부터, 단축에 평행한 전기화학적 활성 영역의 주변 엣지로 장축을 따라 연장되는 제1 거리(D1)와 실질적으로 동일함을 보여주고; 도 13은 림의 단반경(minor radius) RMIN이, 림의 외부 주변부로부터, 장축에 평행한 전기화학적 활성 영역의 주변 엣지로 단축을 따라 연장되는 제2 거리(D2)와 실질적으로 동일함을 보여준다.
몇몇 양태에서, 상기 림은 말단 벽과 측벽의 내부 표면에 의해 한정된 내부 영역(330)의 개구를 한정하며, 말단 종판의 외부 표면은 림에 연결될 때 내부 영역의 개구를 둘러싼다.
몇몇 양태에서, 상기 림은 상기 종판의 전기화학적 활성 영역 내의 중심에 있다. 몇몇 양태에서, 상기 림은 실질적으로 원형이거나 실질적으로 타원형이다.
몇몇 양태에서, 측벽은 말단 벽 및 림에 수직이거나 실질적으로 수직이다. 기타 양태에서, 측벽은 말단 벽으로부터 림으로 방사상 외측으로 연장된다.
몇몇 양태에서, 상기 림은 실질적으로 원형이다. 예를 들면, 도 16은 말단 벽, 측벽, 및 측벽에 의해 말단 벽으로부터 분리되는 실질적으로 원형인 림(306')을 포함하는 전도성 컵모양 부재를 포함하는 단자 조립체의 상부 사시도를 제공한다. 이들 양태에서, 상기 림의 반경 R1은, 전기화학적 활성 영역(322)의 주변 엣지와 림의 외부 주변부 사이의 거리 D3과 실질적으로 동일하다.
도 17을 참조하여, 도 13의 17-17을 따라 취한 횡단면도는 전도성 컵모양 부재, 단자 종판, 임의의 프레임 부재(114), 및 쌍극성 전극(여기서 당해 쌍극성 전극은 단자 조립체와 바로 인접하며, 캐소드 조립체(202)와 쌍극성 전극판(208)을 포함한다)을 포함하는 단자 조립체를 보여준다. 도 17 및 도 23을 참조하여, 몇몇 양태에서, 프레임 부재(114)는 제1 면(614) 및 제2 면(616)을 포함하며, 상기 제1 면은 전도성 컵모양 부재(312)와 대향하는 면 위에서 단자 종판(302)의 내부 표면(318)과 대향하며 상기 내부 표면을 수용한다. 이들 양태 중 일부에서, 상기 프레임의 제2 면은 쌍극성 전극의 캐소드 조립체(202)에 대향하며, 쌍극성 전극은 상기 프레임의 제2 면(616)에 고정된(fastened) 전면(212), 및 상기 쌍극성 전극판의 전면에 놓인 캐소드 조립체(202)를 포함하는 쌍극성 전극판(208)을 포함하며, 상기 캐소드 조립체는 상기 쌍극성 전극판의 전면과 단자 종판의 내부 표면 사이에 개재된다. 몇몇 양태에서, 상기 단자 종판의 내부 표면에 놓인 전기화학적 활성 영역(322)은 상기 쌍극성 전극판의 전면에 놓인 캐소드 조립체에 대향하며, 상기 캐소드 조립체의 크기 및 형상과 실질적으로 동일한 크기 및 형상을 포함한다. 도 3 및 도 4b를 참조하여 더 상세하게 설명된 바와 같이, 캐소드 조립체(202)는 캐소드 케이지(216), 분리막(222), 및 쌍극성 전극판의 전면(212, 212')에 놓인 탄소 재료(224)를 포함한다.
몇몇 양태에서, 상기 단자 조립체는 단자 캐소드 조립체이며, 이때 상기 단자 캐소드 조립체는, 전기화학적 활성 영역을 갖는 단자 종판(302), 단자 종판의 외부 표면 상에 그리고 전기화학적 활성 영역의 대략 중심에 배치되고 본원에 기재된 컵모양 부재들 중의 임의의 것과 같은 전도성 컵모양 부재, 및 단자 종판의 내부 표면에 배치되고 본원에 기재된 캐소드 조립체 중의 임의의 것과 같은 캐소드 조립체를 포함한다.
몇몇 양태에서, 상기 단자 조립체는 단자 애노드 조립체를 포함하며, 이때 상기 단자 애노드 조립체는 전기화학적 활성 영역을 갖는 단자 종판, 단자 종판의 외부 표면 상에 그리고 전기화학적 활성 영역의 대략 중심에 배치되고 본원에 기재된 컵모양 부재들 중의 임의의 것과 같은 전도성 컵모양 부재를 포함하고, 이때 상기 단자 애노드 조립체는 캐소드 조립체가 없다.
몇몇 양태에서, 상기 전도성 컵모양 부재의 림은 용접 또는 접착제에 의해 단자 종판의 외부 표면에 연결된다. 몇몇 경우, 상기 접착제는 전기전도성이다. 적합한 전기전도성 접착제의 예는 흑연(graphite) 충전된 접착제(예를 들면, 흑연 충전된 에폭시, 흑연 충전된 실리콘, 흑연 충전된 엘라스토머, 또는 이들의 임의의 배합물), 니켈 충전된 접착제(예를 들면, 니켈 충전된 에폭시), 은 충전된 접착제(예를 들면, 은 충전된 에폭시), 구리 충전된 접착제(예를 들면, 구리 충전된 에폭시), 이들의 임의의 배합물 등을 포함한다.
몇몇 양태에서, 상기 전도성 컵모양 부재는 구리 합금, 구리/티탄 클래드(clad), 알루미늄, 및 전기전도성 세라믹 중의 적어도 하나로 구성된다. 예를 들면, 말단 벽 및 측벽의 내부 표면은 구리를 포함한다. 다른 경우, 말단 벽 및 측벽의 외부 표면은 구리, 티탄, 및 전기전도성 세라믹 중의 적어도 하나를 포함한다.
몇몇 양태에서, 상기 전도성 컵모양 부재 또는 단자 종판 중의 적어도 하나는 티탄을 포함한다. 몇몇 양태에서, 상기 전도성 컵모양 부재 또는 단자 종판 중의 적어도 하나는 탄화티탄 재료로 코팅된 티탄 재료를 포함한다.
몇몇 양태에서, 상기 전도성 컵모양 부재는 제1 금속을 포함하고 상기 종판은 제2 금속을 포함한다.
몇몇 양태에서, 상기 림은 측벽으로부터 방사상 외측으로 연장되는 플랜지(328)(도 15)를 포함한다.
도 15를 다시 참조하여, 이의 작동(예를 들면, 충전 또는 방전) 동안 아연-할로겐화물 전기화학 셀 또는 배터리 스택에 대한 예시적인 단자 조립체의 전기적 성질은 다음의 표현에 따라 일반화된다:
Figure 112017040984232-pct00007
B 및 D는 컵모양 부재의 림과 쌍극성 종판의 제1 표면 사이의 2개의 전기점(electrical point)을 나타낸다. H는 전도성 컵모양 부재에 대한 대칭의 반전의 중심을 나타내고, C는 쌍극성 종판의 제1 표면 상의 H의 중첩(superposition)을 나타내어 단축 AMIN을 따라 연장되고 C와 H를 연결하는 라인 CH는 종판의 제1 표면에 대한 법선이다. F 및 G는 말단 벽(312)과 측벽(304)이 만나는 접점을 나타내고, A 및 E는 전기화학적 활성 영역(322)의 대향하는 주변 엣지를 나타낸다.
A에서의 전하량 VA는 E에서의 전하량 VE 및 C에서의 전하량 VC와 대략 동일하다. D에서의 전하량 VD는 B에서의 전하량 VB와 대략 동일하다. F에서의 전하량 VF는 G에서의 전하량 VG와 대략 동일하다. 전위차, 또는 G로부터 D까지의 전압 △VG-D는 F로부터 B까지의 전압 △VF-B와 대략 동일하고, H로부터 G까지의 전압 △VH-G은 F로부터 H까지의 전압 △VF-H와 대략 동일하고, △VG-D 및 △VF-B는 △VH-G 및 △VF-H보다 실질적으로 더 크다. 또한, 전압 △VG-D 및 △VF-B는 B로부터 C까지의 전압 △VB-C 및 D로부터 C까지의 전압 △VD-C보다 실질적으로 더 크다.
G로부터 D까지의 전압 및 F로부터 B까지의 전압, 즉, △VG-D 및 △VF-B는 H로부터 G까지의 전압 및 F로부터 H까지의 전압, 즉, △VH-G 및 △VF-H보다 실질적으로 더 크기 때문에, 본 발명의 단자 조립체의 단자로부터 방전되는 전류는, 종판에 직접 부착된 단자를 갖는 전통적인 쌍극성 배터리로부터 방전되는 전류보다 실질적으로 더욱 균일하다.
3. 아연-할로겐화물 전해질
본 발명의 전기화학 셀 및 배터리 스택에서, 수성 전해질, 즉, 아연-할로겐화물 전해질은 단자 종판의 내부 표면, 캐소드 조립체, 쌍극성 전극의 전면, 및 존재하는 경우 프레임의 내부 표면 사이에 개재된다. 이들 양태에서, 전해질에 노출된 캐소드 조립체의 캐소드 케이지의 표면의 브로마이드 음이온은, 전기화학 셀 또는 배터리 스택이 충전되는 경우 브롬으로 산화된다. 반면, 방전 동안, 브롬은 브로마이드 음이온으로 환원된다. 캐소드 조립체의 캐소드 케이지에서 또는 상기 케이지의 부근에서 브롬과 브로마이드 음이온 간의 변환(232)은 다음과 같이 표현 될 수 있다:
Br2 + 2e- → 2Br-
본 발명은 유동하거나 유동하지 않는 (즉, 고정된) 재충전 가능한 아연 할로겐화물 전기화학 셀 또는 배터리 스택에 유용한 수성 전해질을 제공한다. 이들 셀 또는 배터리 스택에서, 브롬화아연, 염화아연, 또는 상기 2개 물질의 임의의 배합물은 전해질에 존재하며, 전기화학적 활성 재료로서 역할을 한다.
본 발명의 하나의 측면은 약 30중량% 내지 약 40중량%의 ZnBr2, 약 5중량% 내지 약 15중량%의 KBr, 약 5중량% 내지 약 15중량%의 KCl, 및 하나 이상의 4급 암모늄 제제를 포함하는, 2차 아연 브롬 전기화학 셀에서 사용하기 위한 전해질을 제공하며, 이때 상기 전해질은 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제를 포함한다.
몇몇 양태에서, 전해질은 약 4중량% 내지 약 12중량%(예를 들면, 약 6중량% 내지 약 10중량%)의 브롬화칼륨(KBr)을 포함한다. 몇몇 양태에서, 전해질은 약 8중량% 내지 약 12중량%의 브롬화칼륨(KBr)을 포함한다.
몇몇 양태에서, 전해질은 약 4중량% 내지 약 12중량%(예를 들면, 약 6중량% 내지 약 10중량%)의 염화칼륨(KCl)을 포함한다. 몇몇 양태에서, 전해질은 약 8중량% 내지 약 14중량%의 염화칼륨(KCl)을 포함한다. 몇몇 양태에서, 전해질은 약 11중량% 내지 약 14중량%의 염화칼륨(KCl)을 포함한다.
몇몇 양태에서, 전해질은 약 0.5중량% 내지 약 10중량%(예를 들면, 약 1중량% 내지 약 7.5중량%)의 글림을 추가로 포함한다. 몇몇 예에서, 글림은 모노글림, 디글림, 트리글림, 테트라글림, 펜타글림, 헥사글림, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 글림은 테트라글림을 포함한다. 다른 예에서, 전해질은 약 1중량% 내지 약 5중량%의 테트라글림을 포함한다.
몇몇 양태에서, 전해질은 약 0.05중량% 내지 약 4중량%(예를 들면, 약 0.1중량% 내지 약 1중량%)의 에테르를 추가로 포함한다. 몇몇 양태에서, 에테르는 크라운 에테르, DME-PEG, 디메틸 에테르, 또는 이들의 임의의 배합물이다. 추가의 양태에서, 에테르는 크라운 에테르이다.
몇몇 양태에서, 전해질은 약 0.5중량% 내지 약 2.5중량%(예를 들면, 약 1중량% 내지 약 2.25중량%)의 DME-PEG 또는 디메틸 에테르를 추가로 포함한다. 몇몇 예에서, DME-PEG는 약 350amu내지 약 3000amu의 평균 분자량(예를 들면, 수평균 분자량 Mn)을 갖는다. 다른 예에서, DME-PEG는 약 1200amu 내지 약 3000amu의 평균 분자량을 갖는다. 또한, 몇몇 예에서, 전해질은 약 5중량% 내지 약 10중량%의 DME-PEG를 추가로 포함하며, 이때 DME-PEG는 약 1500amu 내지 약 2500amu(예를 들면, 약 2000amu)의 평균 분자량(예를 들면, 수평균 분자량 Mn)을 갖는다.
몇몇 양태에서, 에테르는 크라운 에테르이다. 예를 들면, 크라운 에테르는 18-크라운-6이다. 예를 들면, 크라운 에테르는 15-크라운-5이다. 예를 들면, 크라운 에테르는 12-크라운-4이다.
몇몇 양태에서, 전해질은 약 0.1중량% 내지 약 1.0중량%의 알코올을 추가로 포함하며, 이때 상기 알코올은 물에 실질적으로 혼화성이다. 예를 들면, 알코올은 C1-4알코올을 포함한다. 다른 예에서, 알코올은 메탄올, 에탄올, 1-프로판올(즉, n-프로판올), 2-프로판올(즉, 이소-프로판올), 1-부탄올(즉, n-부탄올), sec-부탄올, 이소-부탄올, tert-부탄올, 1-펜탄올, 또는 이들의 임의의 배합물을 포함한다. 또한, 몇몇 예에서, 전해질은 약 0.25중량% 내지 약 0.75중량%의 tert-부탄올을 추가로 포함한다.
몇몇 양태에서, 전해질은 약 0.25중량% 내지 약 5중량%(예를 들면, 약 0.5중량% 내지 약 4중량%)의 C1-10글리콜을 추가로 포함한다. 몇몇 예에서, 전해질은 약 0.25중량% 내지 약 5중량%(예를 들면, 약 0.5중량% 내지 약 4중량%)의 치환된 에틸렌 글리콜 또는 치환된 프로필렌 글리콜을 추가로 포함한다. 몇몇 예에서, 글리콜은 에틸렌 글리콜, 프로필렌 글리콜, 1,3-부틸렌 글리콜, 1,4-부틸렌 글리콜, 네오펜틸 글리콜, 헥살렌 글리콜, 또는 이들의 임의의 배합물을 포함한다. 또한, 몇몇 예에서, 전해질은 약 0.25중량% 내지 약 2.5중량%의 네오펜틸 글리콜을 추가로 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 화학식 I의 염이다.
화학식 I
Figure 112017040984232-pct00008
상기 화학식 I에서,
Figure 112017040984232-pct00009
은 포화되거나, 부분적으로 불포화되거나, 완전히 불포화되고;
X1, X2, X3, X4, 및 X5는 각각 독립적으로 탄소, 산소, 및 질소로부터 선택되고, X1, X2, X3, X4, 및 X5 중의 적어도 하나는 질소이고;
각각의 R은 독립적으로 수소, 알킬, 사이클로알킬, 아릴, 아릴알킬, 헤테로사이클로알킬, 또는 헤테로아릴이며, 이때 각각의 R은, 독립적으로 그리고 임의로, 할로, -CN, -NO2, -OQ2, -S(O)zQ2, -S(O)zN(Q2)2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, -C(O)N(Q2)2, -C(O)N(Q2)(OQ2), -N(Q2)C(O)Q2, -N(Q2)C(O)N(Q2)2, -N(Q2)C(O)OQ2, -N(Q2)S(O)zQ2, 또는 임의로 1 내지 3개의 Q3 치환체로 치환된 헤테로사이클로알킬 또는 알킬로 치환되고;
각각의 Q2는 독립적으로, 각각 임의로 1 내지 3개의 Q3 치환체로 치환된, 수소, 알킬, 사이클로알킬, 아릴, 아릴알킬, 헤테로사이클로알킬, 또는 헤테로아릴이고;
각각의 Q3은 독립적으로 할로, 옥소, CN, NO2, CF3, OCF3, OH, -S(O)z(C1-6알킬), -N(C1-6알킬)2, -COO(C1-6알킬), -C(O)(C1-6알킬), -O(C1-6알킬)이거나, 또는 할로, 옥소, -CN, -NO2, -CF3, -OCF3, -OH, -SH, -S(O)zH, -NH2, 또는 -COOH로부터 선택된 1 내지 3개의 치환체로 임의로 치환된 C1-6알킬이고;
m은 0, 1, 2, 3, 4, 또는 5이고;
n은 0, 1, 또는 2이고;
Y는 음이온이다.
하나의 양태에서, X1, X2, X3, X4, 및 X5 중의 하나 또는 2개는 질소이고, 나머지는 탄소이다. 추가의 양태에서, X1, X2, X3, X4, 및 X5 중의 하나는 질소이고, 나머지는 탄소이다. 또 다른 추가의 양태에서, X1, X2, X3, X4, 및 X5 중의 2개는 질소이고, 나머지는 탄소이다. 추가의 양태에서,
Figure 112017040984232-pct00010
은 피리딘, 피리미딘, 피라진, 피페라진, 피페리딘, 모르폴린, 1,3-옥사지난, 1,2-옥사지난, 피롤리딘, 피롤, 피라졸, 이미다졸, 옥사졸, 이속사졸, 1,2,3-옥사디아졸, 1,3,4-옥사디아졸, 1,2,3-트리아졸, 1,2,4-트리아졸, 1,2,3,4-옥사트리아졸, 1,2,3,5-옥사트리아졸, 1,2,4,5-옥사트리아졸, 및 테트라졸로부터 선택된다.
하나의 양태에서,
Figure 112017040984232-pct00011
은 피리딘, 피리미딘, 피라진, 피페라진, 피페리딘, 모르폴린, 1,3-옥사지난, 및 1,2-옥사지난으로부터 선택된다. 하나의 양태에서,
Figure 112017040984232-pct00012
은 피리딘, 피리미딘, 및 피라진으로부터 선택된다. 추가의 양태에서,
Figure 112017040984232-pct00013
은 피리딘이다.
하나의 양태에서,
Figure 112017040984232-pct00014
은 피페리딘, 모르폴린, 1,3-옥사지난, 및 1,2-옥사지난으로부터 선택된다. 추가의 양태에서,
Figure 112017040984232-pct00015
은 피페리딘 및 모르폴린으로부터 선택된다. 하나의 양태에서,
Figure 112017040984232-pct00016
은 피페리딘이다. 하나의 양태에서,
Figure 112017040984232-pct00017
은 모르폴린이다.
하나의 양태에서,
Figure 112017040984232-pct00018
은 피롤리딘, 피롤, 피라졸, 이미다졸, 옥사졸, 이속사졸, 1,2,3-옥사디아졸, 1,3,4-옥사디아졸, 1,2,3-트리아졸, 1,2,4-트리아졸, 1,2,3,4-옥사트리아졸, 1,2,3,5-옥사트리아졸, 1,2,4,5-옥사트리아졸, 및 테트라졸로부터 선택된다. 또 다른 양태에서,
Figure 112017040984232-pct00019
은 피롤, 피라졸, 및 이미다졸로부터 선택된다. 하나의 양태에서,
Figure 112017040984232-pct00020
은 피롤이다. 하나의 양태에서,
Figure 112017040984232-pct00021
은 피라졸이다. 하나의 양태에서,
Figure 112017040984232-pct00022
은 이미다졸이다. 하나의 양태에서,
Figure 112017040984232-pct00023
은 피롤리딘이다.
하나의 양태에서, n은 1이다. 또 다른 양태에서, n은 0이다.
하나의 양태에서, 각각의 R은 독립적으로 알킬 또는 사이클로알킬이며, 이때 각각의 R은, 독립적으로 그리고 임의로, 할로, -CN, -NO2, -OQ2, -S(O)zQ2, -S(O)zN(Q2)2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, -C(O)N(Q2)2, -C(O)N(Q2)(OQ2), -N(Q2)C(O)Q2, -N(Q2)C(O)N(Q2)2, -N(Q2)C(O)OQ2, -N(Q2)S(O)zQ2, 또는 임의로 1 내지 3개의 Q3 치환체로 치환된 헤테로사이클로알킬 또는 알킬로 치환된다. 또 다른 양태에서, 각각의 R은 독립적으로 알킬 또는 사이클로알킬이며, 이때 각각의 R은, 독립적으로 그리고 임의로, 할로, 헤테로사이클로알킬, -CN, -NO2, -OQ2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, 또는 -C(O)N(Q2)2로 치환된다. 추가의 양태에서, 각각의 R은 알킬이며, 이는, 독립적으로 그리고 임의로, 할로, 헤테로사이클로알킬, -CN, -NO2, -OQ2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, 또는 -C(O)N(Q2)2로 치환된다. 추가의 양태에서, 각각의 R은 알킬이며, 이는, 독립적으로 그리고 임의로, 할로, 헤테로사이클로알킬, -CN, -NO2, -N(Q2)2, 또는 -C(O)N(Q2)2로 치환된다. 추가의 양태에서, 각각의 R은 알킬이며, 이는, 독립적으로 그리고 임의로, 할로 또는 헤테로사이클로알킬로 치환된다.
또 다른 양태에서, 각각의 R은 헤테로사이클로알킬로 치환된 알킬이다. 추가의 양태에서, R은 피롤리딘으로 치환된 알킬이다. 추가의 양태에서, R은 헤테로사이클로알킬로 치환된 프로필이다. 추가의 양태에서, R은 피롤리딘으로 치환된 프로필이다.
하나의 양태에서, 각각의 R은 치환되지 않은 알킬이다. 또 다른 양태에서, R은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 2-에틸헥실, 옥틸, 노닐, 데실, 도데실, 및 세틸로부터 선택된다. 하나의 양태에서, R은 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, 도데실, 및 세틸로부터 선택된다. 하나의 양태에서, R은 메틸이다. 하나의 양태에서, R은 에틸이다. 하나의 양태에서, R은 프로필이다. 하나의 양태에서, R은 부틸이다. 하나의 양태에서, R은 펜틸이다. 하나의 양태에서, R은 헥실이다. 하나의 양태에서, R은 헵틸이다. 하나의 양태에서, R은 옥틸이다. 하나의 양태에서, R은 도데실이다. 하나의 양태에서, R은 노닐이다. 하나의 양태에서, R은 데실이다. 하나의 양태에서, R은 도데실이다. 하나의 양태에서, R은 세틸이다.
하나의 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드, 요오다이드, 아르세네이트, 포스페이트, 아르세나이트, 하이드로겐 포스페이트, 디하이드로겐 포스페이트, 설페이트, 니트레이트, 하이드로겐 설페이트, 니트라이트, 티오설페이트, 설파이트, 퍼클로레이트, 요오데이트, 클로레이트, 브로메이트, 클로라이트, 하이포클로라이트, 하이포브로마이트, 카보네이트, 클로메이트, 하이드로겐 카보네이트 (비카보네이트), 디클로메이트, 아세테이트, 포르메이트, 시아나이드, 아미드, 시아네이트, 퍼옥사이드, 티오시아네이트, 옥살레이트, 하이드록사이드, 및 퍼망가네이트로부터 선택된 음이온이다. 추가의 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드, 요오다이드, 디하이드로겐 포스페이트, 니트레이트, 퍼클로레이트, 하이포클로라이트, 하이드로겐 카보네이트 (비카보네이트), 아세테이트, 포르메이트, 시아나이드, 및 하이드록사이드로부터 선택된 1가 음이온이다. 또 다른 추가의 양태에서, Y는 하이드로겐 포스페이트, 설페이트, 및 카보네이트로부터 선택된 2가 음이온이다. 추가의 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드 및 요오다이드로부터 선택된다. 하나의 양태에서, Y는 클로라이드이다. 하나의 양태에서, Y는 브로마이드이다. 하나의 양태에서, Y는 요오다이드이다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 화학식 Ia, 화학식 Ib, 화학식 Ic, 화학식 Id, 또는 화학식 Ie의 염이다.
Figure 112017040984232-pct00024
상기 화학식에서,
각각의 R, R', 및 R"는 독립적으로 수소, 알킬, 사이클로알킬, 아릴, 아릴알킬, 헤테로사이클로알킬, 또는 헤테로아릴이고, 여기서 각각의 R, R', 및 R"는, 독립적으로 그리고 임의로, 할로, -CN, -NO2, -OQ2, -S(O)zQ2, -S(O)zN(Q2)2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, -C(O)N(Q2)2, -C(O)N(Q2)(OQ2), -N(Q2)C(O)Q2, -N(Q2)C(O)N(Q2)2, -N(Q2)C(O)OQ2, -N(Q2)S(O)zQ2, 또는 임의로 1 내지 3개의 Q3 치환체로 치환된 헤테로사이클로알킬 또는 알킬로 치환되고;
각각의 Q2는 독립적으로 수소, 알킬, 사이클로알킬, 아릴, 아릴알킬, 헤테로사이클로알킬, 또는 헤테로아릴이고, 이들은 각각 임의로 1 내지 3개의 Q3 치환체로 치환되고;
각각의 Q3은 독립적으로 할로, 옥소, CN, NO2, CF3, OCF3, OH이고, -S(O)z(C1-6알킬), -N(C1-6알킬)2, -COO(C1-6알킬), -C(O)(C1-6알킬)을 추가로 포함하고, -O(C1-6알킬), 또는 할로, 옥소, -CN, -NO2, -CF3, -OCF3, -OH, -SH, -S(O)zH, -NH2, 또는 -COOH로부터 선택된 1 내지 3개의 치환체로 임의로 치환된 C1-6알킬을 추가로 포함하고;
k는 0, 1, 또는 2이고;
Y는 음이온이다.
화학식 Ia 내지 Ie의 몇몇 양태에서, 각각의 R, R', 및 R"는 독립적으로 알킬 또는 사이클로알킬이고, 여기서 각각의 R, R', 및 R"는, 독립적으로 그리고 임의로, 할로, -CN, -NO2, -OQ2, -S(O)zQ2, -S(O)zN(Q2)2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, -C(O)N(Q2)2, -C(O)N(Q2)(OQ2), -N(Q2)C(O)Q2, -N(Q2)C(O)N(Q2)2, -N(Q2)C(O)OQ2, -N(Q2)S(O)zQ2, 또는 임의로 1 내지 3개의 Q3 치환체로 치환된 헤테로사이클로알킬 또는 알킬로 치환된다. 또 다른 양태에서, 각각의 R, R', 및 R"는 독립적으로 알킬 또는 사이클로알킬이고, 여기서 각각의 R, R', 및 R"는, 독립적으로 그리고 임의로, 할로, 헤테로사이클로알킬, -CN, -NO2, -OQ2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, 또는 -C(O)N(Q2)2로 치환된다. 추가의 양태에서, 각각의 R, R', 및 R"는 독립적으로 알킬이고, 이는 독립적으로 그리고 임의로 할로, 헤테로사이클로알킬, -CN, -NO2, -OQ2, -N(Q2)2, -C(O)OQ2, -C(O)Q2, 또는 -C(O)N(Q2)2로 치환된다. 추가의 양태에서, 각각의 R, R', 및 R"는 독립적으로 알킬이고, 이는 독립적으로 그리고 임의로 할로, 헤테로사이클로알킬, -CN, -NO2, -N(Q2)2, 또는 -C(O)N(Q2)2로 치환된다.
하나의 양태에서, 각각의 R, R', 및 R"는 독립적으로 치환되지 않은 알킬이다. 또 다른 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 2-에틸헥실, 옥틸, 노닐, 데실, 도데실, 및 세틸로부터 선택된다. 하나의 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, 도데실, 및 세틸로부터 선택된다.
화학식 Ia 내지 Ie의 몇몇 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드, 요오다이드, 아르세네이트, 포스페이트, 아르세나이트, 하이드로겐 포스페이트, 디하이드로겐 포스페이트, 설페이트, 니트레이트, 하이드로겐 설페이트, 니트라이트, 티오설페이트, 설파이트, 퍼클로레이트, 요오데이트, 클로레이트, 브로메이트, 클로라이트, 하이포클로라이트, 하이포브로마이트, 카보네이트, 클로메이트, 하이드로겐 카보네이트 (비카보네이트), 디클로메이트, 아세테이트, 포르메이트, 시아나이드, 아미드, 시아네이트, 퍼옥사이드, 티오시아네이트, 옥살레이트, 하이드록사이드, 및 퍼망가네이트로부터 선택된다. 추가의 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드, 요오다이드, 디하이드로겐 포스페이트, 니트레이트, 퍼클로레이트, 하이포클로라이트, 하이드로겐 카보네이트 (비카보네이트), 아세테이트, 포르메이트, 시아나이드, 및 하이드록사이드로부터 선택된 1가 음이온이다. 또 다른 추가의 양태에서, Y는 하이드로겐 포스페이트, 설페이트, 및 카보네이트로부터 선택된 2가 음이온으로부터 선택된다. 추가의 양태에서, Y는 플루오라이드, 클로라이드, 브로마이드 및 요오다이드로부터 선택된다. 하나의 양태에서, Y는 클로라이드이다. 하나의 양태에서, Y는 브로마이드이다. 하나의 양태에서, Y는 요오다이드이다.
화학식 Ia 내지 Ie의 몇몇 양태에서, k는 0 또는 1이다. 추가의 양태에서, k는 0이다. 또 다른 추가의 양태에서, k는 1이다.
화학식 Ia의 몇몇 양태에서, 각각의 R 및 R'는 독립적으로 메틸, 에틸, 부틸, 및 헥실로부터 선택된다. 추가의 양태에서, k는 1이고, R'는 에틸, 부틸, 및 헥실로부터 선택되고, R은 메틸이다. 또 다른 추가의 양태에서, k는 0이고 R'는 에틸, 부틸, 및 헥실로부터 선택된다.
하나의 양태에서, 화학식 Ia의 염은 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-부틸-4-메틸피리디늄 브로마이드, 및 1-헥실피리디늄 브로마이드로부터 선택된다.
화학식 Ib의 몇몇 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸 및 프로필로부터 선택된다.
하나의 양태에서, 화학식 Ib의 염은 1-메틸-1-프로필피페리디늄 브로마이드이다.
화학식 Ic의 몇몇 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸, 에틸, 및 부틸로부터 선택된다. 추가의 양태에서, k는 0이다.
하나의 양태에서, 화학식 Ic의 염은 N-메틸-N-에틸모르폴리늄 브로마이드 및 N-메틸-N-부틸모르폴리늄 브로마이드로부터 선택된다.
화학식 Id의 몇몇 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸, 에틸, 부틸, 헥실, 옥틸, 및 데실로부터 선택된다. 추가의 양태에서, k는 1이고 R은 메틸이다.
하나의 양태에서, 화학식 Id의 염은 1-에틸-3-메틸이미다졸륨 브로마이드, 1-부틸-3-메틸이미다졸륨 브로마이드, 1-에틸-2,3-디메틸이미다졸륨 브로마이드, 1-데실-3-메틸이미다졸륨 브로마이드, 1-부틸-2,3-디메틸이미다졸륨 브로마이드, 1-메틸-3-옥틸이미다졸륨 브로마이드, 및 1-메틸-3-헥실이미다졸륨 브로마이드로부터 선택된다.
화학식 Ie의 몇몇 양태에서, 각각의 R, R', 및 R"는 독립적으로 메틸, 에틸, 프로필, 부틸, 펜틸, 및 헥실로부터 선택된다. 또 다른 양태에서, k는 0이고 각각의 R' 및 R"는 독립적으로 알킬이고, 이는 임의로 헤테로사이클로알킬 또는 할로에 의해 치환된다. 추가의 양태에서, k는 0이고 각각의 R' 및 R"는 독립적으로 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 2-클로로에틸, 또는 3-(N-메틸피롤리디늄)프로필로부터 선택된다.
하나의 양태에서, 화학식 Ie의 염은 N-메틸-N-에틸피롤리디늄 브로마이드, N-에틸-N-프로필피롤리디늄 브로마이드, N-프로필-N-부틸피롤리디늄 브로마이드, N-메틸-N-부틸피롤리디늄 브로마이드, N-에틸-N-(2-클로로에틸)피롤리디늄 브로마이드, N-메틸-N-헥실피롤리디늄 브로마이드, N-메틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-부틸피롤리디늄 브로마이드, N-부틸-N-펜틸피롤리디늄 브로마이드, N-메틸-N-프로필피롤리디늄 브로마이드, 트리메틸렌-비스(N-메틸피롤리디늄) 디브로마이드, 및 N-프로필-N-펜틸피롤리디늄 브로마이드로부터 선택된다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 화학식
Figure 112017040984232-pct00025
의 제제를 포함하며, 여기서, R1, R2, R3, 및 R4는 각각 독립적으로 수소 또는 알킬 그룹이고, Y는 본원에 정의된 바와 같은 음이온이다. 몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 암모늄 할라이드(예를 들면, NH4Br, NH4Cl, 또는 이들의 임의의 배합물); 테트라-알킬암모늄 할라이드(예를 들면, 테트라메틸암모늄 브로마이드, 테트라메틸암모늄 클로라이드, 테트라에틸암모늄 브로마이드, 테트라에틸암모늄 클로라이드, 이들의 배합물 등); 헤테로사이클릭 암모늄 할라이드(예를 들면, N-메틸-N-에틸피롤리디늄 할라이드, N-에틸-N-메틸피롤리디늄 할라이드, 이들의 배합물 등); 또는 이들의 임의의 배합물을 포함한다. 몇몇 양태에서, 하나 이상의 4급 암모늄 제제는, 암모늄 클로라이드, 암모늄 브로마이드, 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, N-메틸-N-에틸모르폴리늄 브로마이드, N-에틸-N-메틸모르폴리늄 브로마이드, N-메틸-N-부틸모르폴리늄 브로마이드, N-메틸-N-에틸피롤리디늄 브로마이드, N,N,N-트리에틸-N-프로필암모늄 브로마이드, N-에틸-N-프로필피롤리디늄 브로마이드, N-프로필-N-부틸피롤리디늄 브로마이드, N-메틸-N-부틸피롤리디늄 브로마이드, N-에틸-N-(2-클로로에틸)피롤리디늄 브로마이드, N-메틸-N-헥실피롤리디늄 브로마이드, N-메틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-부틸피롤리디늄 브로마이드, 트리메틸렌-비스(N-메틸피롤리디늄) 디브로마이드, N-부틸-N-펜틸피롤리디늄 브로마이드, N-메틸-N-프로필피롤리디늄 브로마이드, N-프로필-N-펜틸피롤리디늄 브로마이드, 및 이들의 임의의 배합물로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다. 몇몇 예에서, 전해질은 약 1중량% 내지 약 5중량%의 하나 이상의 4급 암모늄 제제를 포함한다. 몇몇 예에서, 전해질은 약 3중량% 내지 약 7중량%의 하나 이상의 4급 암모늄 제제를 포함한다. 또한, 몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 N-메틸-N-에틸모르폴리늄 브로마이드를 포함한다. 다른 예에서, 전해질은 약 0.25중량% 내지 약 1.25중량%의 N-메틸-N-에틸모르폴리늄 브로마이드를 포함한다. 또한, 몇몇 예에서, 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%의 테트라에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 암모늄 브롬 착화제, 이미다졸륨 브롬 착화제, 피롤리디늄 브롬 착화제, 피리디늄 브롬 착화제, 포스포늄 브롬 착화제, 및 모르폴리늄 브롬 착화제로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는, 테트라에틸암모늄 브로마이드(TEA), N-에틸-N-메틸모르폴리늄 브로마이드(MEM), 트리메틸프로필암모늄 브로마이드, 1-에틸-3-메틸이미다졸륨 브로마이드, 1-부틸-3-메틸이미다졸륨 브로마이드, 1-부틸-1-메틸피롤리디늄 브로마이드, 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-메틸-1-프로필피페리디늄 브로마이드, 도데실트리메틸암모늄 브로마이드, 1-에틸-2,3-디메틸이미다졸륨 브로마이드, 1-데실-3-메틸이미다졸륨 브로마이드, 1-부틸-2,3-디메틸이미다졸륨 브로마이드, 1-메틸-3-옥틸이미다졸륨 브로마이드, 1-메틸-3-헥실이미다졸륨 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-부틸-4-메틸피리디늄 브로마이드, 1-헥실피리디늄 브로마이드, 테트라에틸포스포늄 브로마이드, 1-메틸-1-프로필피롤리디늄 브로마이드, 헥실트리메틸암모늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 또는 1-부틸-1-메틸피롤리디늄 브로마이드를 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%(예를 들면, 약 1.5중량% 내지 약 4중량%)의 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-에틸-1-메틸모르폴리늄 브로마이드, 또는 1-부틸-1-메틸피롤리디늄 브로마이드를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 세틸트리에틸암모늄 브로마이드(CTAB)를 포함한다. 예를 들면, 전해질은 약 0.01중량% 내지 약 1중량%(예를 들면, 약 0.05중량% 내지 약 0.5중량%)의 세틸트리에틸암모늄 브로마이드(CTAB)를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 6중량%(예를 들면, 약 1.5중량% 내지 약 5중량%)의 테트라에틸암모늄 브로마이드를 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%(예를 들면, 약 1.5중량% 내지 약 3.5중량%)의 트리메틸프로필암모늄 브로마이드를 포함한다.
이론에 구애되지 않고, 4급 암모늄 제제로 형성된 브롬 착물에 의해 부력 효과를 생성시킴으로써, 4급 암모늄 제제가 전기화학을 향상시키는 것으로 사료된다. 전해질 중의 브로마이드 이온이 유사중합(pseudo-polymerization)됨에 따라, 이들 이온은 무거워져서 전해질 용적의 바닥으로 가라앉아 상기 셀의 동역학을 감소시킨다. 부력 효과를 생성시키는 4급 암모늄 제제는 이러한 문제를 완화하는 것을 도우며, 상기 유사중합된 브로마이드 이온을 전해질 용적의 맨 아래로 가져오며, 상기 셀의 동역학을 증가시킨다.
몇몇 양태에서, 전해질은 Sn, In, Ga, Al, Tl, Bi, Pb, Sb, Ag, Mn, Fe, 또는 이들의 임의의 배합물로부터 선택되는 1중량% 미만의 하나 이상의 첨가제를 추가로 포함한다. 예를 들면, 전해질은 1중량% 미만의 Sn 및 In을 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 50중량%의 물을 추가로 포함한다. 몇몇 양태에서, 전해질은 약 35중량% 내지 약 45중량%의 물을 추가로 포함한다. 몇몇 예에서, 물은 이의 저항이 약 8MΩㆍcm 이상(예를 들면, 약 10MΩㆍcm 또는 그 이상, 또는 약 10MΩㆍcm 이상)이 될 때까지 탈이온된다.
몇몇 양태에서, 전해질은 전해질의 pH가 약 2 내지 약 4(약 2.5 내지 약 3.5)이 되기에 충분한 HBr를 추가로 포함한다.
몇몇 양태에서, 전해질은 약 0.1중량% 내지 약 2중량%(예를 들면, 약 0.3중량% 내지 약 1중량%)의 아세트산을 추가로 포함한다. 또 다른 양태에서, 전해질은 약 0.1중량% 내지 약 2중량%의 아세트산, 나트륨 아세테이트, 칼륨 아세테이트, 또는 이들의 임의의 배합물을 포함한다.
몇몇 양태에서, 전해질은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 시트르산 일수화물을 추가로 포함한다. 몇몇 양태에서, 전해질은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 시트르산이수소칼륨 일수화물을 추가로 포함한다.
몇몇 양태에서, 전해질은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 옥살산을 추가로 포함한다. 몇몇 양태에서, 전해질은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 옥살산을 추가로 포함한다.
몇몇 양태에서 전해질은 안정한 첨가제를 추가로 포함한다. 예를 들면, 안정한 첨가제는 아세트산, 나트륨 아세테이트, 옥살산, 나트륨 옥살레이트, 시트르산, 칼륨 시트레이트, 18-크라운-6, 디시안디아미드, 석신산, 나트륨 메탄 설포네이트, 나트륨 프로피오네이트, 나트륨말로네이트, 나트륨 헥사노에이트, 나트륨 헥사플루오로알루미네이트, 세박산(sebacic acid), 칼륨 트리플루오로메탄설포네이트, 아세토니트릴, 프로피오니트릴, 아퀴비온 아이오노머(acquivion ionomer), 나트륨 부티레이트, 멜라민, 세바산(sebaic acid), 2,2 비피리딘, 도데칸디오산, 나트륨 트리클로로아세테이트, 도데칸산, 나트륨 도데카노에이트, 15-크라운-5, 또는 트리클로로아세트산이다. 몇몇 양태에서 첨가제는 전기화학을 향상시킨다. 기타 양태에서 첨가제는 전기화학을 변화시키지 않는다.
본 발명의 또 다른 측면은 약 30중량% 내지 약 40중량%의 ZnBr2, ZnCl2, 또는 이들의 임의의 배합물; 약 4중량% 내지 약 12중량%의 KBr; 약 4중량% 내지 약 12중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 글림; 및 약 1중량% 내지 약 5중량%의 하나 이상의 4급 암모늄 제제를 포함하는, 2차 아연 할로겐화물 전기화학 셀에서 사용하기 위한 전해질을 제공한다.
본 발명의 또 다른 측면은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 4중량% 내지 약 12중량%의 KBr; 약 4중량% 내지 약 12중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 글림; 및 약 1중량% 내지 약 5중량%의 하나 이상의 4급 암모늄 제제를 포함하는, 2차 아연 할로겐화물 전기화학 셀에서 사용하기 위한 전해질을 제공한다.
본 발명의 또 다른 측면은 약 30중량% 내지 약 40중량%의 ZnBr2; 및 Sn, In, Ga, Al, Tl, Bi, Pb, Sb, Ag, Mn, Fe, 또는 이들의 임의의 배합물로부터 선택된 약 0.01중량% 내지 약 0.9중량%의 하나 이상의 첨가제를 포함하는, 2차 아연 할로겐화물 전기화학 셀에서 사용하기 위한 전해질을 제공한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 및 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 트리메틸프로필암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 메틸에틸피리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다. 추가의 양태에서, 메틸에틸피리디늄 브로마이드는 1-에틸-2-메틸피리디늄 브로마이드이다. 추가의 양태에서, 메틸에틸피리디늄 브로마이드는 1-에틸-3-메틸피리디늄 브로마이드이다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 트리에틸프로필암모늄 브로마이드, 메틸에틸피리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다. 추가의 양태에서, 메틸에틸피리디늄 브로마이드는 1-에틸-2-메틸피리디늄 브로마이드이다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 트리에틸프로필암모늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 1-에틸-1-메틸모르폴리늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 약 0.1중량% 내지 약 2중량%의 아세트산; 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 트리메틸프로필암모늄 브로마이드, 1-부틸-1-메틸피롤리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 메틸에틸피리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
몇몇 양태에서, 전해질은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 5중량% 내지 약 15중량%의 KBr; 약 5중량% 내지 약 15중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제를 포함하고, 이때 상기 하나 이상의 4급 암모늄 제제는 트리메틸프로필암모늄 브로마이드, 1-부틸-1-메틸피롤리디늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드를 포함한다.
전해질의 제조 방법
본 발명의 또 다른 측면은 ZnBr2, KBr, KCl, 물, 및 하나 이상의 4급 암모늄 제제를 혼합하여 혼합물을 생성시킴을 포함하는, 2차 아연 할로겐화물 전기화학 셀에서 사용하기 위한 전해질의 제조 방법을 제공하며, 이때 상기 혼합물은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 4중량% 내지 약 12중량%의 KBr; 약 4중량% 내지 약 12중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 및 약 25중량% 내지 약 45중량%의 물을 포함한다.
또는, 상기 혼합물은 약 30중량% 내지 약 40중량%의 ZnBr2; 약 8중량% 내지 약 12중량%의 KBr; 약 8중량% 내지 약 14중량%의 KCl; 약 0.5중량% 내지 약 10중량%의 하나 이상의 4급 암모늄 제제; 및 약 25중량% 내지 약 45중량%의 물을 포함한다.
몇몇 구현예에서, 상기 혼합물은 약 32중량% 내지 약 36중량%의 ZnBr2를 포함한다.
몇몇 구현예에서, 상기 혼합물은 약 4중량% 내지 약 12중량%(예를 들면, 약 6중량% 내지 약 10중량%)의 브롬화칼륨(KBr)을 포함한다. 몇몇 구현예에서, 상기 혼합물은 약 8중량% 내지 약 12중량%의 브롬화칼륨(KBr)을 포함한다.
몇몇 구현예에서, 상기 혼합물은 약 4중량% 내지 약 12중량%(예를 들면, 약 6중량% 내지 약 10중량%)의 염화칼륨(KCl)을 포함한다. 몇몇 구현예에서, 상기 혼합물은 약 8중량% 내지 약 14중량%의 염화칼륨(KCl)을 포함한다. 몇몇 구현예에서, 상기 혼합물은 약 11중량% 내지 약 14중량%의 염화칼륨(KCl)을 포함한다.
몇몇 구현예에서, 상기 혼합물은 약 27중량% 내지 약 43중량%(예를 들면, 약 30중량% 내지 약 40중량% 또는 약 35중량% 내지 약 41중량%)의 물을 포함한다.
몇몇 구현예에서, 하나 이상의 4급 암모늄 제제는 위에 기재된 바와 같은 화학식 I의 염이다.
화학식 I
Figure 112017040984232-pct00026
몇몇 구현예에서, 하나 이상의 4급 암모늄은 암모늄 할라이드(예를 들면, NH4Br, NH4Cl, 또는 이들의 임의의 배합물); 테트라-알킬암모늄 할라이드(예를 들면, 테트라메틸암모늄 브로마이드, 테트라메틸암모늄 클로라이드, 테트라에틸암모늄 브로마이드, 테트라에틸암모늄 클로라이드, 이들의 배합물 등); 헤테로사이클릭 암모늄 할라이드(예를 들면, N-메틸-N-에틸피롤리디늄 할라이드, N-에틸-N-메틸피롤리디늄 할라이드, 이들의 배합물 등); 또는 이들의 임의의 배합물로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다. 기타 구현예에서, 하나 이상의 4급 암모늄 제제는 염화암모늄, 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, N-메틸-N-에틸모르폴리늄 브로마이드, N-에틸-N-메틸모르폴리늄 브로마이드, N-메틸-N-부틸모르폴리늄 브로마이드, N-메틸-N-에틸피롤리디늄 브로마이드, N,N,N-트리에틸-N-프로필암모늄 브로마이드, N-에틸-N-프로필피롤리디늄 브로마이드, N-프로필-N-부틸피롤리디늄 브로마이드, N-메틸-N-부틸피롤리디늄 브로마이드, N-에틸-N-(2-클로로에틸)피롤리디늄 브로마이드, N-메틸-N-헥실피롤리디늄 브로마이드, N-메틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-펜틸피롤리디늄 브로마이드, N-에틸-N-부틸피롤리디늄 브로마이드, 트리메틸렌-비스(N-메틸피롤리디늄) 디브로마이드, N-부틸-N-펜틸피롤리디늄 브로마이드, N-메틸-N-프로필피롤리디늄 브로마이드, N-프로필-N-펜틸피롤리디늄 브로마이드, 및 이들의 임의의 배합물로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다. 몇몇 예에서, 상기 혼합물은 약 1중량% 내지 약 5중량%의 하나 이상의 4급 암모늄 제제를 포함한다. 또한, 몇몇 구현예에서, 하나 이상의 4급 암모늄 제제는 N-메틸-N-에틸모르폴리늄 브로마이드를 포함한다. 다른 예에서, 상기 혼합물은 약 0.25중량% 내지 약 1.25중량%의 N-메틸-N-에틸모르폴리늄 브로마이드를 포함한다. 또한, 몇몇 예에서, 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%의 테트라에틸암모늄 브로마이드를 포함한다.
몇몇 구현예에서, 하나 이상의 4급 암모늄 제제는 암모늄 브롬 착화제, 이미다졸륨 브롬 착화제, 피롤리디늄 브롬 착화제, 피리디늄 브롬 착화제, 포스포늄 브롬 착화제, 및 모르폴리늄 브롬 착화제로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다.
몇몇 구현예에서, 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드(TEA), N-에틸-N-메틸모르폴리늄 브로마이드(MEM), 트리메틸프로필암모늄 브로마이드, 1-에틸-3-메틸이미다졸륨 브로마이드, 1-부틸-3-메틸이미다졸륨 브로마이드, 1-부틸-1-메틸피롤리디늄 브로마이드, 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-메틸-1-프로필피페리디늄 브로마이드, 도데실트리메틸암모늄 브로마이드, 1-에틸-2,3-디메틸이미다졸륨 브로마이드, 1-데실-3-메틸이미다졸륨 브로마이드, 1-부틸-2,3-디메틸이미다졸륨 브로마이드, 1-메틸-3-옥틸이미다졸륨 브로마이드, 1-메틸-3-헥실이미다졸륨 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 1-부틸-4-메틸피리디늄 브로마이드, 1-헥실피리디늄 브로마이드, 테트라에틸포스포늄 브로마이드, 1-메틸-1-프로필피롤리디늄 브로마이드, 헥실트리메틸암모늄 브로마이드, 및 세틸트리에틸암모늄 브로마이드로 이루어진 그룹으로부터 선택된 4급 암모늄 제제를 포함한다. 예를 들면, 하나 이상의 4급 암모늄 제제는 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 또는 1-부틸-1-메틸피롤리디늄 브로마이드를 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 4중량%(예를 들면, 약 1.5중량% 내지 약 3중량%)의 1-에틸-3-메틸피리디늄 브로마이드, 1-에틸-2-메틸피리디늄 브로마이드, 1-부틸-3-메틸피리디늄 브로마이드, 또는 1-부틸-1-메틸피롤리디늄 브로마이드를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 세틸트리에틸암모늄 브로마이드(CTAB)를 포함한다. 예를 들면, 전해질은 약 0.05중량% 내지 약 1중량%(예를 들면, 약 0.1중량% 내지 약 0.5중량%)의 세틸트리에틸암모늄 브로마이드(CTAB)를 포함한다.
몇몇 양태에서, 하나 이상의 4급 암모늄 제제는 테트라에틸암모늄 브로마이드, 트리메틸프로필암모늄 브로마이드, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%(예를 들면, 약 1.5중량% 내지 약 3.5중량%)의 테트라에틸암모늄 브로마이드를 포함한다. 예를 들면, 전해질은 약 1중량% 내지 약 5중량%(예를 들면, 약 1.5중량% 내지 약 3.5중량%)의 트리메틸프로필암모늄 브로마이드를 포함한다.
몇몇 구현예는 글림을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 및 물)과 혼합함을 추가로 포함하며, 이때 상기 혼합물은 약 0.5중량% 내지 약 10중량%(예를 들면, 약 1중량% 내지 약 7.5중량%)의 글림을 포함한다. 몇몇 예에서, 글림은 모노글림, 디글림, 트리글림, 테트라글림, 또는 이들의 임의의 배합물을 포함한다. 예를 들면, 글림은 테트라글림을 포함한다. 다른 예에서, 상기 혼합물은 약 1중량% 내지 약 5중량%의 테트라글림을 포함한다.
몇몇 구현예는 DME-PEG를 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물, 및/또는 글림)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 0.5중량% 내지 약 2.5중량%(예를 들면, 약 1중량% 내지 약 2.25중량%)의 mPEG를 포함한다. 몇몇 예에서, DME-PEG는 약 350amu 내지 약 3000amu의 평균 분자량(예를 들면, 수평균 분자량 Mn)을 갖는다. 다른 예에서, DME-PEG는 약 1200amu 내지 약 3000amu의 평균 분자량(예를 들면, 수평균 분자량 Mn)을 갖는다. 또한, 몇몇 예에서, 상기 혼합물은 약 5중량% 내지 약 10중량%의 DME-PEG를 추가로 포함하며, 이때 DME-PEG는 약 1500amu 내지 약 2500amu(예를 들면, 약 2000amu)의 평균 분자량(예를 들면, 수평균 분자량 Mn)을 갖는다.
몇몇 구현예는 크라운에테르를 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물 등)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 0.05중량% 내지 약 4중량%의 크라운 에테르를 포함한다. 몇몇 예에서 크라운 에테르는 18-크라운-6 또는 15-크라운-5이다. 몇몇 예에서 당해 혼합물을 약 0.1중량% 내지 약 1중량%의 크라운 에테르를 포함한다.
몇몇 구현예는 물에 실질적으로 혼화성인 알코올을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물, 글림, 및/또는 DME-PEG)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 0.1중량% 내지 약 1.0중량%의 알코올을 포함한다. 예를 들면, 알코올은 C1-4알코올을 포함한다. 다른 예에서, 알코올은 메탄올, 에탄올, 1-프로판올, 이소-프로판올, 1-부탄올, sec-부탄올, 이소-부탄올, tert-부탄올, 또는 이들의 임의의 배합물을 포함한다. 또한, 몇몇 예에서, 상기 혼합물은 약 0.25중량% 내지 약 0.75중량%의 tert-부탄올을 추가로 포함한다.
몇몇 구현예는 C1-10글리콜을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물, 글림, DME-PEG, 및/또는 알코올)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 0.25중량% 내지 약 5중량%(예를 들면, 약 0.5중량% 내지 약 4중량%)의 C1-10글리콜을 포함한다. 몇몇 예에서, 글리콜은 에틸렌 글리콜, 프로필렌 글리콜, 1,3-부틸렌 글리콜, 1,4-부틸렌 글리콜, 네오펜틸 글리콜, 헥살렌 글리콜, 또는 이들의 임의의 배합물을 포함한다. 또한, 몇몇 예에서, 상기 혼합물은 약 0.25중량% 내지 약 2.5중량%의 네오펜틸 글리콜을 추가로 포함한다.
몇몇 구현예는 Sn, In, Ga, Al, Tl, Bi, Pb, Sb, Ag, Mn, 또는 Fe로부터 선택된 하나 이상의 첨가제를 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물, 글림, DME-PEG, 알코올, 및/또는 C1-10글리콜)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 여기서 상기 혼합물은 Sn, In, Ga, Al, Tl, Bi, Pb, Sb, Ag, Mn, 또는 Fe로부터 선택된 1중량% 미만의 하나 이상의 첨가제를 포함한다. 예를 들면, 상기 혼합물은 1중량% 미만의 Sn 및 In를 포함한다.
몇몇 구현예는, 혼합물의 pH가 약 2 내지 약 4(약 2.5 내지 약 3.5)가 되기에 충분한 양의 HBr를 당해 혼합물에 첨가함을 추가로 포함한다.
몇몇 구현예는 아세트산을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물 등)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 0.1중량% 내지 약 2중량%(예를 들면, 약 0.3중량% 내지 약 1중량%)의 아세트산을 포함한다.
몇몇 구현예는 시트르산 일수화물을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물 등)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 시트르산 일수화물을 포함한다.
몇몇 구현예는 시트르산이수소칼륨 일수화물을 ZnBr2 및 기타 성분(예를 들면, KBr, KCl, 4급 암모늄 제제, 물 등)과 혼합하여 혼합물을 생성시킴을 추가로 포함하며, 이때 상기 혼합물은 약 2중량% 내지 약 8중량%(예를 들면, 약 3중량% 내지 약 5중량%)의 시트르산이수소칼륨 일수화물을 포함한다.
몇몇 구현예에서, ZnBr2, KBr, KCl, 물, 및 하나 이상의 4급 암모늄 제제는 약 15℃ 내지 약 30℃의 온도(예를 들면, 실온)에서 혼합된다.
몇몇 구현예에서, ZnBr2, KBr, KCl, 물, 및 하나 이상의 4급 암모늄 제제는 진탕(agitation)하에 혼합된다(예를 들면, 상기 혼합물은 교반된다).
몇몇 구현예에서, 본원에 기재된 혼합물은 임의로 여과된다. 몇몇 구현예에서, 본원에 기재된 혼합물은 여과된다. 몇몇 구현예에서, 본원에 기재된 혼합물은 여과되지 않는다.
B. 배터리 스택
도 18 내지 도 20을 참조하여, 본 발명의 또 다른 측면은 아연-할로겐화물 전해질에 적어도 부분적으로 배치되고 캐소드 단자 조립체와 애노드 단자 조립체 사이에 개재된 복수의 쌍극성 전극을 포함하는 배터리 스택을 포함한다. 캐소드 단자 조립체, 애노드 단자 조립체, 아연-할로겐화물 전해질, 및 쌍극성 전극은 본원에 기재된 임의의 양태들을 포함한다.
1. 프레임 부재
몇몇 양태에서, 본 발명의 배터리 스택 또는 전기화학 셀은 2개의 인접한 쌍극성 전극 사이에 개재되거나 쌍극성 전극과 단자 조립체(예를 들면, 단자 애노드 조립체 또는 단자 캐소드 조립체) 사이에 개재된 프레임 부재(114)를 포함한다.
도 23에 예시된 하나의 양태에서, 상기 프레임 부재는 외부 주변부 엣지(604), 및 개방된 내부 영역(606)을 한정하는 내부 주변 엣지(608)를 갖는다. 내부 주변 엣지(608)는, 상기 프레임 부재로부터의 차단 또는 방해 없이도 쌍극성 전극의 캐소드 조립체가 단자 종판의 내부 표면 또는 인접한 쌍극성 전극판의 배면에 바로 인접하도록, 개방된 내부 영역을 한정한다. 따라서, 상기 개방된 내부 영역은 적어도 단자 종판의 전기화학적 활성 구역만큼 크며 적어도 캐소드 조립체의 캐소드 케이지의 포켓 부분의 감소된 표면만큼 크다. 몇몇 양태에서, 상기 프레임 부재는, 상기 프레임 부재에 의해 수용(receive)되는 개방된 내부 영역이, 단자 종판의 전기화학적 활성 영역의 중심부 및/또는 쌍극성 전극의 쌍극성 전극판 상에 배치된 캐소드 조립체의 중심부 둘레에서 대략 중심에 존재하도록 구성된다. 몇몇 양태에서, 상기 프레임 부재의 외부 주변부는 배터리 스택 또는 전기화학 셀의 외부 표면을 한정한다.
몇몇 양태에서, 상기 프레임 부재는, 상기 제1 쌍극성 전극판 또는 단자 종판에 대향하고 이를 보유하는 제1 면(614), 및 상기 제1 면에 대해 상기 프레임 부재의 대향하는 면에 배치되고 제2 쌍극성 전극판을 보유하는 제2 면(616)을 포함한다. 제1 전극판과 제2 전극판 및 단자 종판(들)은 실질적으로 동일한 크기 및 형상을 갖도록 구성될 수 있다.
몇몇 양태에서, 상기 프레임 부재의 각각의 면은 내부 주변 엣지 둘레에서 연장되는 씰링 그루브(sealing groove)(612)를 포함한다. 몇몇 예에서, 각각의 씰링 그루브는, 상기 프레임 부재가 보유하는 대응하는 쌍극성 전극판 또는 단자 종판의 주변 엣지의 윤곽(contour)에 맞추어지도록 사이징되고 성형된다. 또한, 몇몇 양태에서, 각각의 씰링 그루브는 내부에 씰링된 씰(seal)(116)(도 21)(예를 들면, 오링(o-ring) 또는 개스킷(gasket))을 수용하도록 구성되며, 이는 상기 전기화학 셀 또는 배터리 스택이 조립되어 상기 전극판 또는 종판 및 상기 프레임 부재 사이에 씰링 인터페이스(sealing interface)를 제공하는 경우 상기 씰이 대응하는 전극판 또는 종판 및 상기 프레임 부재 사이에 압축되는 경우에 실질적으로 누출 방지 씰(leak-free seal)을 형성한다. 상기 씰은, 대향하는 전극판 및 프레임 부재 사이에 또는 전극판과 종판 및 프레임 부재 사이에 상기 전해질을 보유하도록 협력한다.
몇몇 양태에서, 상기 프레임 부재는 개방된 내부 영역으로 돌출되고 배터리가 조립되는 때에 압축판(105) 또는 전극판이 움직이는 것을 막는 하나 이상의 보유 펜스(retaining fence)(610)를 갖는다. 기타 양태에서, 하나 이상의 보유 펜스는 내부 주변부 엣지(inner periphery edge)로부터 내부 영역으로 연장할 수 있다. 몇몇 예에서, 상기 보유 펜스는 캐소드 캐이지의 실질적으로 평평한 표면(예를 들면, 상기 캐소드 케이지의 포켓 부분)을 접촉하도록 작동하며, 이는 전극판의 전면으로부터 상기 프레임 부재를 향한 방향으로 돌출된다. 상기 보유 펜스는 배터리 모듈의 충전 동안 케소드 케이지가 평평한 상태로부터 굴곡 또는 변형되는 것을 줄이거나 방지할 수 있다. 상기 프레임 부재의 총 중량을 줄이기 위해 상기 보유 펜스는 개구부(opening) 또는 절개부(cut out)를 포함할 수 있다.
각각의 프레임 부재는 난연성 폴리프로필렌 섬유로 제조될 수 있다. 각각의 프레임 부재는 2개의 인접한 전극판들을 또는 전극판과 단자 종판을 수용할 수 있다. 또한, 상기 전극판들 중의 하나는, 탄소 재료와 분리막을 갖고 층상 구성으로 배열되는 캐소드 조립체, 및 탄소 재료와 분리막으로 둘러싸인 캐소드 케이지에 연결된 표면을 포함할 수 있다. 또한 각각의 프레임은 전해질 수용액(예를 들면, 아연-할로겐화물 전해질 또는 아연-브롬화물 전해질)을 수용할 수 있다. 도 19에 도시된 바와 같이, 압축판에 인접하게 배치된 프레임 부재는 전기화학 셀 또는 배터리 스택으로부터 과잉 압력을 방출하기 위한 하나 이상의 압력 릴리프 밸브(pressure relief valve)를 임의로 포함할 수 있다. 몇몇 양태에서, 상기 압력 릴리프 밸브는 상기 프레임 및 압력 릴리프 엄브렐러(pressure relief umbrella)를 통해 연장되도록 배열된 성형된 캐리어(molded carrier)를 포함한다.
2. 압축판
몇몇 양태에서, 상기 전기화학 셀 또는 배터리 스택은 상기 전기화학 셀 또는 배터리 스택의 말단에 위치한 한 쌍의 압축판(105, 105a, 105b)을 포함한다. 몇몇 양태에서, 각각의 압축판은, 외부 표면(512), 및 외부 표면에 대해 압축판의 대향하는 면 상에 배치되고 또한 인접한 프레임 부재에 대향하는 내부 표면(504)을 포함한다. 도 22는 상기 전기화학 셀 또는 배터리 스택의 양의(+) 애노드 단자와 연관된 압축판의 외부 표면, 및 상기 전기화학 셀 또는 배터리 스택의 음의(-) 캐소드와 연관된 압축판의 내부 표면을 도시한다. 몇몇 양태에서, 상기 압축판은 6061-T6 알루미늄으로부터 형성되며 스탬핑에 의해 제조될 수 있다. 기타 양태에서, 상기 압축판은 스테인리스 스틸로부터 형성되며 기계가공에 의해 제조될 수 있다.
몇몇 양태에서, 상기 단자 홀(terminal hole)(502a, 502b)은 각각의 압축판에 걸쳐 연장되어, 연결/전력 케이블과의 전기 접속을 위한 대응하는 단자를 노출시킨다. 몇몇 양태에서, 상기 압축판은 압축판에 걸쳐 형성된 쓰루 홀을 갖고, 이는 하나 이상의 프레임 볼트(frame bolt) 또는 타이 로드(tie rod)(120)를 수용하도록 작동한다. 예를 들면, 제1 열의 4개의 쓰루 홀은 각각의 압축판의 상단 엣지(top edge)를 따라 (예를 들면, 균등하게) 떨어져 있을 수 있고 제2 열의 4개의 쓰루 홀은 각각의 압축판의 하단 엣지(bottom edge)를 따라 (예를 들면, 균등하게) 떨어져 있을 수 있다.
상기 압축판의 중량을 줄이기 위해 그리고 상기 압축판이 인접한 단자 프레임 부재를 접촉하는 경우에 응력 집중(stress concentration)을 감소시키는 보강 부재(reinforcement member)를 한정하기 위해, 각각의 압축판의 외부 표면은 절개부(cut-out)(508)를 포함할 수 있다. 게다가, 상기 절개부는 상기 전기화학 셀 또는 배터리 스택이 생성시키는 열을 소멸시킬 수 있다. 상기 외부 표면 및 절개부는, 노출된 단자와 전기 접속하는 연결/전력 케이블 및/또는 조립된 배터리 모듈용 와이어링 하니스(wiring harness)를 수용 및 전송하도록 작동하는 하나 이상의 채널(510)을 한정할 수 있다. 또한, 몇몇 양태에서, 상기 압축판의 각각의 내부 표면은 하나 이상의 절개부를 갖는다.
몇몇 양태에서, 각각의 압축판의 내부 표면은 인접한 프레임 부재의 외부 표면을 연결하도록 작동하는 실질적으로 평평한 표면을 포함할 수 있다. 몇몇 양태에서, 각각의 압축판의 내부 표면은, 대응하는 인접한 압축판과 연관된 단자 종판과 연결되고 당해 단자 종판으로부터 돌출된 전도성 컵모양 부재의 적어도 일부를 수용하도록 구성된, 특정 크기 및 형상을 갖는 매입 구역을 또한 한정한다. 몇몇 양태에서, 개방부(aperture)가, 전도성 컵모양 부재 및 단자의 적어도 일부를 노출시키기 위해, 매입 구역 대신 상기 압축판 종판의 내부 표면 및 외부 표면에 걸쳐 연장할 수 있다.
본 발명의 전기화학 셀 또는 배터리 스택의 몇몇 양태에서, 각각의 프레임 부재 및 각각의 한 쌍의 압축판은 이에 걸쳐 볼트 또는 타이 로드를 수용하기 위한 대응하는 쓰루 홀을 가지며, 패스너(fastener)(예를 들면, 너트(nut)(108) 및/또는 워셔(washer)(106, 110))를 사용하여 이들 구성성분을 압축하도록 작동하여 실질적으로 씰링된 전기화학 셀 또는 배터리 스택을 조립한다.
몇몇 양태에서, 각각의 프레임 부재, 각각의 압축판, 각각의 단자 종판, 및 각각의 쌍극성 전극판은 상기 구성성분을 배열하도록 작동하는 하나 이상의 대응하는 쓰루 홀을 가져서, 상기 단자, 전도성 컵모양 부재, 캐소드 조립체, 및 전기화학적 활성 영역은 도웰(dowel)(112)이 이에 걸쳐 놓이는 경우 동일하게 대략 중심을 공유한다.
몇몇 양태에서, 상기 배터리 스택은 제1 쌍극성 전극, 제2 쌍극성 전극, 및 프레임 부재(114)를 포함하며, 이때 상기 프레임 부재는 상기 제1 쌍극성 전극 사이에 개재되고, 상기 프레임 부재는 제1 면과 제2 면을 갖고, 상기 제1 쌍극성 전극은 제1 전극판을 갖고, 제2 쌍극성 전극은 제2 쌍극성 판을 갖고; 이때 상기 프레임 부재의 제1 면은 상기 제1 전극판의 전면의 적어도 일부를 수용하도록 구성되고, 상기 프레임 부재의 제2 면은 상기 제2 전극판의 배면의 적어도 일부를 수용하도록 구성된다.
도 19 및 도 20을 참조하여, 본 발명의 또 다른 측면은 종축 L을 한정하는 쌍극성 배터리 스택을 제공하며, 쌍극성 배터리(1000)는 상기 배터리의 대응하는 근위 말단 및 원위 말단에 한 쌍의 단자 조립체(104)를 포함하고, 각각의 단자 조립체는, 말단 벽(312), 측벽(304), 및 측벽에 의해 말단 벽으로부터 떨어져 있는 림(306)을 포함하는 전도성 컵모양 부재(310)를 포함하고; 단자 종판(302)은 말단 벽과 동일평면 상에 있는 외부 및 내부 표면(316, 318)을 갖고 외측 표면에서 대응하는 림에 연결되며, 상기 연결은, 대응하는 말단 벽이 대응하는 단자와 전기 접촉하는 경우에 대응하는 단자(308)와 종판 사이에서 컵모양 부재에 걸쳐 양방향(bi-directional)의 균일한 전류 유동을 가능하게 한다. 몇몇 양태에서, 상기 단자 조립체는 도 12 내지 도 17을 참조하여 상기 기재된 단자 조립체(104)에 대응한다. 몇몇 양태에서, 배터리 스택(1000)은 한 쌍의 단자 조립체들 사이에 평행 방향으로 배열된 적어도 한 쌍의 중간 쌍극성 전극(102,102')을 추가로 포함한다. 이들 양태에서, 상기 중간 셀은 단자 조립체들 사이에 전류를 분포시키기 위한 쌍극성 전극을 포함한다. 각각의 중간 셀은 상기 셀의 구성성분을 수용하는 프레임 부재(114)를 포함한다.
도 20은 도 19의 배터리 스택의 분해도를 제공한다. 몇몇 양태에서, 각각의 배터리 스택 또는 전기화학 셀은, 종판(302)의 외부 표면에 대향하고 당해 외부 표면과 접촉하여 탈착 가능하게 고정된(fastened) 대응하는 압축판(105a, 105b)을 추가로 포함하며, 각각의 압축판은 대응하는 단자(308)를 수용하도록 배열된 개방부(502a, 502b)를 포함한다. 이들 양태 중 일부에서, 전도성 컵모양 부재의 말단 벽의 적어도 일부는 상기 압축판의 개방부에 걸쳐 노출된다. 기타 양태에서, 상기 측벽의 적어도 일부 및 상기 말단 벽은 상기 압축판의 개방부에 걸쳐 노출된다. 도 7은 압축판에 걸쳐 형성된 대응하는 개방부를 갖는 압축판을 도시한다. 기타 양태에서, 매입 구역은 대응하는 컵모양 부재를 수용하도록 배열된 각각의 압축판의 내측 표면에 배치될 수 있다. 이들 양태에서, 단자 홀이 각각의 압축판의 매입 구역에 걸쳐 형성되어, 단자를 노출시킬 수 있다. 몇몇 양태에서, 압축판의 외측/외부 표면은, 압축판의 전체 중량을 줄이고 배터리에 의해 생성된 열의 소멸을 돕는 절개부를 포함한다.
몇몇 양태에서, 상기 압축판은, 배터리 스택이 조립될 때, 종축 L을 따라 2개의 압축판 및 개재된 프레임 부재를 함께 압축하기 위해 패스너에 의해 고정된 타이 로드 및/또는 볼트를 수용하도록 작동하는 개구부를 포함한다(도 19).
몇몇 양태에서, 각각의 대응하는 단자 종판의 전기화학적 활성 영역은 대응하는 림에 의해 둘러싸인 제1 표면 영역 및 대응하는 림의 외부 주변부 바깥쪽의 나머지 제2 표면 영역을 포함하며, 상기 제1 및 제2 표면 영역은 실질적으로 동일하다.
몇몇 양태에서, 각각의 말단 벽은 대응하는 단자 종판의 외측 표면으로부터 멀리 돌출한다.
몇몇 양태에서, 말단 벽들 중의 하나는 종축을 따라 근위 방향으로 대응하는 단자 종판의 외측 표면으로부터 멀리 돌출하고, 나머지 말단 벽은 종축을 따라 대향하는 원위 방향으로 대응하는 단자 종판의 외측 표면으로부터 멀리 돌출한다.
몇몇 양태에서, 상기 전도성 컵모양 부재의 말단 벽은 상기 전기화학 셀 조립체의 근위 말단 및 원위 말단 중의 대응하는 하나에서 노출된다.
몇몇 양태에서, 배터리 스택 또는 전기화학 셀 내의 단자 조립체들 중의 하나는, 대응하는 전도성 컵모양 부재의 대향하는 면 상에서 대응하는 단자 종판의 내부 표면에 배치된 캐소드 조립체(202)를 추가로 포함하며, 상기 캐소드 조립체는 종판의 내부 표면과 인접한 쌍극성 전극판의 배면 사이에 개재된다.
몇몇 양태에서, 각각의 림은 대응하는 단자 종판의 전기화학적 활성 영역 내의 중심에 있다.
몇몇 양태에서, 상기 전도성 컵모양 부재의 각각의 림은, 용접 또는 접착제에 의해, 대응하는 단자 종판의 외측 표면에 연결된다. 몇몇 경우, 접착제는 전기전도성이다.
몇몇 양태에서, 상기 전도성 컵모양 부재 중의 적어도 하나는 구리/티탄 클래드를 포함한다.
몇몇 양태에서, 상기 전도성 컵모양 부재들 중의 적어도 하나의 내부 표면은 구리를 포함한다. 기타 양태에서, 상기 전도성 컵모양 부재들 중의 적어도 하나의 외부 표면은 티탄을 포함한다.
몇몇 양태에서, 각각의 대응하는 단자는 대응하는 말단 벽의 중심 위치를 접촉한다.
몇몇 양태에서, 상기 림은 측벽으로부터 방사상 외측으로 연장되는 플랜지를 포함한다.
III. 실시예
실시예 1 - 전해질 제형
아래에 기재된 전해질 제형에 사용되는 성분들은 시약 등급이었다.
Figure 112017040984232-pct00027
Figure 112017040984232-pct00028
본 발명의 전해질은 다음과 같이 제형화하였다:
Figure 112017040984232-pct00029
전해질 1-1번은 탁한 혼합물을 생성시켰으며 이는 여과하지 않았다.
전해질 1-2번은 동일한 양의 동일한 성분들로 제형화되었지만, 당해 전해질은 시험 전에 여과하였다.
Figure 112017040984232-pct00030
Figure 112017040984232-pct00031
시험용 전해질 제형 3번을 여과된 혼합물 및 여과되지 않은 혼합물로 제조하였다.
Figure 112017040984232-pct00032
Figure 112017040984232-pct00033
Figure 112017040984232-pct00034
Figure 112017040984232-pct00035
Figure 112017040984232-pct00036
Figure 112017040984232-pct00037
Figure 112017040984232-pct00038
Figure 112017040984232-pct00039
Figure 112017040984232-pct00040
Figure 112017040984232-pct00041
Figure 112017040984232-pct00042
Figure 112017040984232-pct00043
Figure 112017040984232-pct00044
Figure 112017040984232-pct00045
Figure 112017040984232-pct00046
Figure 112017040984232-pct00047
Figure 112017040984232-pct00048
Figure 112017040984232-pct00049
Figure 112017040984232-pct00050
Figure 112017040984232-pct00051
Figure 112017040984232-pct00052
Figure 112017040984232-pct00053
Figure 112017040984232-pct00054
Figure 112017040984232-pct00055
Figure 112017040984232-pct00056
Figure 112017040984232-pct00057
Figure 112017040984232-pct00058
실시예 1에서, 브롬화아연 전기화학 셀의 전력 및 안정성에 대한 4급 암모늄 제제의 효과를 평가하기 위해, 본 발명의 다양한 4급 암모늄 제제를 함유한 전해질을 시험하였다. 도 32는 시험되어 암모늄 착화제, 피리디늄 또는 피롤리디늄 착화제, 또는 이미다졸륨 착화제로서 분류된 대부분의 4급 암모늄 제제에서 관찰되는 통상의 범위의 전력 및 안정성을 도시한다. 안정한 전해질, 즉, 60℃에서 7일 동안 Br2에 노출된 후 pH의 변화가 적은 전해질이 바람직하다. 더 빠른 Br2 동력학을 갖는, 즉, Br 환원을 위한 타펠(Tafel) 한계 전류에서 더 큰 최대 전력을 갖는 전해질은 더 큰 전력을 소유한 셀을 초래할 것이며 이 또한 바람직하다.
pH 안정성 실험
실시예 1에서, 전해질 제형 중의 성분들이 60℃에서 7일 동안 Br2에 노출되는 경우 안정한지 또는 pH의 상당한 변화를 겪는지를 측정하기 위해, 상기 전해질 각각에 대한 안정성 실험을 수행하였다.
상기 제형에서, ZnBr2, 탈이온수, KBr, 및 KCl를 500mL 플라스크에 첨가하고 모든 염들이 용해될 때까지 교반하였다(약 30분). 이어서 아세트산을 첨가하고, ~5분 동안 교반하고, 크라운 에테르(존재하는 경우), DME-PEG(존재하는 경우) 및 임의의 기타 유기 성분들을 첨가하였다. 이어서 4급 암모늄 제제를 첨가하고, 염화주석 이수화물(존재하는 경우) 및 인듐-질산 용액(존재하는 경우)을 상기 제형에서 혼합하였다. 마지막으로, 농축 HBr 산을 상기 제형 각각에 첨가하여 pH를 약 3으로 조정하였다.
200그램의 전해질을 엠버 병(amber bottle)에 넣었다. 감광성 브롬을 광으로부터 차단하기 위해 엠버 병을 사용하였다. 상기 전해질의 pH를 측정하였다. 3.75그램의 브롬을 상기 전해질에 첨가하고 생성된 혼합물을 적어도 20초 동안 조심스럽게 진탕하였다.
이어서 상기 병을 진탕한 후 브롬-스파이크된(spiked) 전해질의 pH를 취하였다. 그 다음, 파라필름(Parafilm) 한 조각을 상기 엠버 병의 상단부/마개 둘레로 포장하여 기밀 밀봉하고, 상기 스파이크된 전해질을 60℃ 오븐에 7일 동안 두었다. 7일의 기간 후, (실온으로 냉각시킨 후) 상기 스파이크된 전해질의 pH를 측정하여 상기 전해질의 성분들에 있어서의 브롬의 효과를 평가하였다. 1주일된 용액의 pH를 측정 및 기록한 후, 이를 파라필름으로 재포장하여 다시 오븐에 두어야 한다. 전해질 제형이 브롬으로 스파이크된되고 7일의 기간 동안 승온 하에 유지된 후에도 전해질 제형의 최초 pH가 ~1.0의 값 이상으로 변하지 않는 경우, 당해 전해질 제형은 안정한 것으로 특징지워진다.
전력 실험
브롬 스파이크된 전해질 각각을 3-구 환저 플라스크에 첨가하였다. 유리질 탄소 작업 전극(glassy carbon working electrode)을 상기 플라스크의 제1 구에 첨가하고, Zn 금속 상대 전극(counter electrode)을 상기 플라스크의 제2 구에 첨가하고, 포화 카로멜 표준 전극(calomel reference electrode)을 상기 플라스크의 제3 구에 첨가하였다. 모든 전극들을 상기 플라스크 중의 스파이크된 전해질에 침지시켰다. 선형 주사 전위법(linear sweep voltammetry)(LSV) 실험을 수행하였으며 이때 포화 카로멜 전극에 대해 전위가 1.3V로부터 0.4V로 스윕(sweep)하였다. 전압은 1mV/s의 속도로 스윕하였다. Br- 산화 및 Br2 환원을 위해 생성된 전극을 전압의 함수로서 측정하였다.
Br2 환원 동안 달성되는 최대 전력은 Br2 환원을 위한 한계 전류를 상기 한계 전류에서 달성된 최대 전압과 곱하여 계산하였다. Br2 환원을 위한 최대 전력은 일반적으로 포화 카로멜 전극에서 대략 0.4V로 달성되었다.
안정성 실험 및 전력 실험의 결과는 도 32 내지 도 34에 제공된다.
실시예 1B - 실시예 1A의 전해질 제형을 포함하는 전기화학 셀
도 35 내지 도 38을 참조하여, 상기 실시예 1A에 기재된 바와 같이 제형화된 선택된 전해질을 무수의 전기화학 시험용 셀에 첨가하여, 방전 용량, 쿨롱 효율, 구동 시간, 및 에너지 효율을 충전 사이클 수의 함수로서 평가하였다. 당해 실시예에서 사용된 무수 셀을 도 1에 도시된 바와 같이 형성하였다. 각각의 시험용 셀은, 하기와 동일한 장방형의 ZrN로 코팅된 스틸 룰드 다이(steel ruled die)를 사용하여 장방형(폭 ~5.31cm, 길이 ~12.076cm)으로 절단된 Calgon Carbon Zorflex ACC FM-10 카본 클로쓰 분리막을 포함하였다. 상기 탄소 재료는 20kg의 PTFE 분산액(60중량%)(DuPont DISP30 PTFE 분산액), 10kg의 Cabot PBX52 카본 블랙, 1kg의 카본 섬유(3mm), 10kg의 Akzo-Nobel Ketjenblack EC600JD 카본 블랙 및 10kg의 탈이온수로 제형화되었다. 상기 무수 성분들을 대전방지 드럼 라이너(anti-static drum liner)가 장착된 55갤런의 드럼에서 예비혼합하여 비교적 균질한 혼합물을 형성시키고 여기에 PTFE 분산액 및 탈이온수를 첨가하고, 상기 생성된 혼합물을 교반하여 도우(dough) 재료를 생성시켰다. 상기 도우 재료를 블럭(길이 ~5.24cm, 폭 ~3.94cm, 두께 ~3.7mm)로 성형하고 퍼니스(furnace) 건조시켜 수분을 제거하여 탄소 재료 블럭을 생성시켰다. 이들 블럭 중 3개를 시험용 셀 내의 캐소드 케이지에 첨가하였다. 상기 전극판 및 단자판(terminal plate)을 TiC로 코팅된 티탄 금속(미국 펜실베니아주 엑스턴에 소재한 티타늄 메탈스 코포레이션(Titanium Metals Corporation)에서 시판중임)으로 성형하고 45°챔퍼드 코너(chamfered corner)를 갖는 판(plate)(길이 ~13.5cm, 폭 ~8.375cm, 두께 ~0.005cm)으로 성형하였다. 상기 포켓 부분의 감소된 표면 영역(길이 ~5.187cm, 폭 ~11.952cm)을 갖도록 상기 캐소드 케이지를 스탬핑하여, 하나의 플랜지의 주변 엣지로부터, 대향하는 플랜지의 주변 엣지로의 상기 캐소드 케이지의 폭은, ~5.73cm의 전체 길이 및 ~12.495cm의 전체 폭, 및 ~0.157cm의 포켓 깊이를 수득하였다. 상기 캐소드 케이지의 포켓 부분의 감소된 표면 영역에서, 조절된 홀 패턴을 산으로 화학적 에칭하였으며, 이때 열을 따라 상기 인접한 홀들의 중심은 x-방향에서 약 0.065cm 이격되어 있고 모든 다른 열들은 y-방향에서 약 0.152cm 이격되어 있었다. 상기 캐소드 케이지는 분리막과 3개 블럭의 탄소 재료로 부하되어 캐소드 조립체를 형성하였으며, 이는 상기 전극판의 바닥부 엣지로부터 ~0.694cm의 오프셋(offset) 및 상기 전극판의 측부 엣지 각각으로부터 ~0.502cm의 오프셋으로 상기 전극판 상에 레이저 용접하였다. 상기 캐소드 케이지의 플렌지를 따라 상기 캐소드 조립체를 상기 전극판에 레이저 용접하였다. 상기 캐소드 조립체에 대향하는 쌍극성 전극판의 표면 위에, 전도성 컵모양 부재를 레이저 용접하여, 상기 컵모양 부재의 중심이 상기 캐소드 케이지의 감소된 표면의 중심에 대략 배열되거나 당해 중심에 존재하게 되었다. 따라서, 당해 구성성분은 상기 시험용 셀을 위한 단자 캐소드 조립체 및 쌍극성 전극으로서 역할을 하였다. 또한 상기 단자 애노드 조립체는 타원형 컵모양 부재를 갖는 상기 쌍극성 전극판의 크기와 실질적으로 동일한 크기를 갖는 단자 종판을 형성하였으며, 이때 상기 컵모양 부재는 단자 애노드 종판의 외부 표면에 레이저 용접되어 상기 컵모양 부재의 중심이 상기 단자 캐소드 조립체의 컵모양 부재의 중심과 대략 동일선상에 있게 된다. 전도성 컵모양 부재는 스탬핑된 탄화티탄 재료로부터 형성되었다. 최종적으로, 단자 애노드 조립체와 단자 캐소드 조립체 사이에 놓인 씰링 링(sealing ring)을 갖고 2개의 대향하는 6061-T6 알루미늄 압축판들 사이에서 구성성분을 압착시키는 단일 고밀도 폴리에틸렌 프레임 부재가 개재하는 시험용 셀이 조립되었다. 무수 시험용 셀을 위에 기재된 선택된 전해질과 함께 용량을 구성하고 부하하였다. 이들 실험을 위해, 실시예 2에 기재된 대조용 전해질 1번을 대조용 전기화학 셀에서 사용하였다.
셀 사이클링 동안, 상기 셀은 750mAh의 용량으로 충전되고 20mA/㎠에서 방전되었다. 당해 시험의 결과를 도 35 내지 도 38에 제공한다.
실시예 2 - 전해질 2-1번
쌍극성 고정(유동하지 않는) 셀 시험:
다음의 전해질 제형들을 배터리 스택에서 시험하였으며, 이는 도 18 내지 도 20에 도시하였다.
상기 배터리 스택의 각각의 28개 쌍극성 전극은 하기와 동일한 장방형의 ZrN로 코팅된 스틸 룰드 다이를 사용하여 장방형(폭 ~5.31cm, 길이 ~12.076cm)으로 절단된 Calgon Carbon Zorflex ACC FM-10 카본 클로쓰 분리막을 포함하였다. 상기 탄소 재료는 20kg의 PTFE 분산액(60중량%)(DuPont DISP30 PTFE 분산액), 10kg의 Cabot PBX52 카본 블랙, 1kg의 카본 섬유(3mm), 10kg의 Akzo-Nobel Ketjenblack EC600JD 카본 블랙 및 10kg의 탈이온수로 제형화되었다. 상기 무수 성분들을 대전방지 드럼 라이너가 장착된 55갤런의 드럼에서 예비혼합하여 비교적 균질한 혼합물을 형성시키고 여기에 PTFE 분산액 및 탈이온수를 첨가하고, 상기 생성된 혼합물을 교반하여 도우 재료를 생성시켰다. 상기 도우 재료를 블럭(길이 ~5.24cm, 폭 ~3.94cm, 두께 ~3.7mm)로 성형하고 퍼니스 건조시켜 수분을 제거하여 탄소 재료 블럭을 생성시켰다. 이들 블럭 중 3개를 시험용 셀 내의 캐소드 케이지에 첨가하였다. 상기 쌍극성 전극판을 TiC로 코팅된 티탄 금속(미국 펜실베니아주 엑스턴에 소재한 티타늄 메탈스 코포레이션에서 시판중임)으로 성형하고 45°챔퍼드 코너를 갖는 판(길이 ~13.5cm, 폭 ~8.375cm, 두께 ~0.005cm)으로 성형하였다. 상기 포켓 부분의 감소된 표면 영역(길이 ~5.187cm, 폭 ~11.952cm)을 갖도록 상기 캐소드 케이지를 스탬핑하여, 하나의 플랜지의 주변 엣지로부터, 대향하는 플랜지의 주변 엣지로의 상기 캐소드 케이지의 폭은, ~5.73cm의 전체 길이 및 ~12.495cm의 전체 폭, 및 ~0.157cm의 포켓 깊이를 수득하였다. 상기 캐소드 케이지의 포켓 부분의 감소된 표면 영역에서, 조절된 홀 패턴을 산으로 화학적 에칭하였으며, 이때 열을 따라 상기 인접한 홀들의 중심은 x-방향에서 약 0.065cm 이격되어 있고 모든 다른 열들은 y-방향에서 약 0.152cm 이격되어 있었다. 상기 캐소드 케이지는 분리막과 3개 블럭의 탄소 재료로 부하되어 캐소드 조립체를 형성하였으며, 이는 상기 전극판의 바닥부 엣지로부터 ~0.694cm의 오프셋 및 상기 전극판의 측부 엣지 각각으로부터 ~0.502cm의 오프셋으로 상기 전극판 상에 레이저 용접하였다. 상기 캐소드 케이지의 플렌지를 따라 상기 캐소드 조립체를 상기 전극판에 레이저 용접하였다.
단자 캐소드 조립체는 위에 기재된 바와 같이 쌍극성 전극 상의 전도성 컵모양 부재를, 상기 컵모양 부재의 중심이 상기 캐소드 조립체의 감소된 표면의 중심에 대략 배열되거나 중심에 있도록, 대향하는 상기 캐소드 조립체 면 상에서 레이저 용접하여 형성하였다. 또한 상기 단자 애노드 조립체는 타원형 컵모양 부재를 갖는 상기 쌍극성 전극판의 크기와 실질적으로 동일한 크기를 갖는 단자 종판을 형성하였으며, 이때 상기 컵모양 부재는 단자 애노드 종판의 외부 표면에 레이저 용접되어 상기 컵모양 부재의 중심이 상기 단자 캐소드 조립체의 컵모양 부재의 중심과 대략 동일선상에 있게 된다. 전도성 컵모양 부재는 스탬핑된 탄화티탄 재료로부터 형성되었다. 상기 단자 캐소드 조립체의 대향하는 캐소드 조립체의 감소된 표면에 대응하는 단자 애노드의 내부 표면의 일부는 샌드블라스트되어 굴곡 표면을 제공하였다. 1) 캐소드 단자 종판과 쌍극성 전극 사이에, 2) 각각의 쌍극성 전극 사이에, 그리고 3) 단자 애노드와 쌍극성 전극 사이에 고밀도 폴리에틸렌 프레임 부재가 개재하여 총 30개의 프레임 부재를 요구하는 시험용 배터리 스택이 조립되었다. 30개의 프레임 부재들 각각은 이의 제1 표면 상에 놓인 씰링 링 및 이의 제2 표면 상에 놓인 씰링 링을 가졌다. 도 18 내지 도 20에 도시된 바와 같이, 2개의 대향하는 6061-T6 알루미늄 압축판은, 타이 로드 및 패스너를 사용하여, 인접한 구성성분에 대해 상기 30개의 프레임 부재를 압축하였다. 무수 배터리 스택을, 아래 기재된 전해질과 함께 용량을 구성하고 부하하였다
대조용 전해질 1번:
대조용 전해질 1번의 제형화는 미국 특허 제4,482,614호에 기재된 방식을 기준으로 하였다. 대조용 전해질 1번은 다음과 같이 제형화하였다:
Figure 112017040984232-pct00059
대조용 전해질 2번:
대조용 전해질 2번의 제형화는 문헌에 기재된 방식을 기준으로 하였다[Yan, Jung Hoon, Yan, Hyeon Sun, Ra, Ho Won, et al. Effect of surface active agent on performance of zing/bromine redox flow battery: Improvement in current efficiency and system stability, Journal of Power Sources 275 (2015) 294-297]. 대조용 전해질 2번은 다음과 같이 제형화하였다:
Figure 112017040984232-pct00060
전해질 제형 2-1번:
본 발명의 전해질은 다음과 같이 제형화하였다:
Figure 112017040984232-pct00061
당해 전해질의 pH는 농축 HBr에 의해 3으로 조정되었다.
이들 시험을 위해, 각각의 전해질을 2개의 시험용 스택(test stack)에 부하하여 2중 시험 데이터(즉, n = 2)를 제공하였다. 각각의 시험용 스택을 우선 38.0V의 정전압으로 충전하고, 15분에 또는 100mA 미만에서 종료하였다. +7.16Amps 정전류에서 계속 충전하고, 58.5V 또는 30Ah 총 누적 전하량에서 종료하였다. 상기 셀을 -8.0A 정전류에서 방전하여, 33V에서 종료하였다.
결과:
도 28, 도 29a, 및 도 29b를 참조하여, 충전 사이클 수의 함수로서의 배터리 스택 에너지(Wh)의 플롯은, 시험용 전해질을 사용한 시험용 스택이 대조용 전해질보다 더 많은 충전 사이클에 걸쳐 더 큰 충전 및 방전 에너지를 유지함을 입증한다. 또한, 충전 사이클 수의 함수로서의 배터리 용량(Ah)의 플롯은, 전해질 2-1 제형을 사용한 시험용 스택이 대조용 전해질보다 더 많은 충전 사이클에 걸쳐 더 큰 충전 용량을 유지함을 입증한다.
실시예 3: 캐소드 케이지 홀 패턴
음성 대조용 - 2개의 무수 시험용 셀을, 이들 2개 셀 내의 캐소드 케이지가 캐소드 케이지의 포켓 부분 상에 조절되지 않은 일련의 홀을 보유함을 제외하고는, 실시예 1B에 기재된 바와 같이 형성하였다. 상기 무수 시험용 셀을, 대조용 전해질 1번과 함께 용량을 구성하고 부하하고, 충전하였다.
시험용 셀 - 캐소드 케이지의 포켓 부분의 감소된 표면 상에 조절된 홀 패턴을 포함하는 3개의 무수 시험용 셀을 실시예 1B에 기재된 바와 같이 형성하였다. 상기 무수 시험용 셀을, 대조용 전해질 1번과 함께 용량을 구성하고 부하하고, 충전하였다.
도 30a 내지 도 31c를 참조하여, 충전 후, 상기 시험용 셀을 해체하여 상기 셀의 애노드 표면의 아연 도금을 평가하였다. 도 30a 및 도 30b는 음성 대조용 시험용 셀 상의 아연 도금을 도시하고 도 31a 내지 도 31c는 시험용 셀 상의 아연 도금을 도시한다. 도 30a 내지 도 31c는, 각각의 포켓 영역 상에 조절된 홀 패턴을 갖는 캐소드 케이지로부터 형성된 시험용 셀에서 관찰된, 증대된 아연 도금을 도시한다. 도 30a 및 도 30b에 도시된 바와 같이, 대응하는 캐소드 케이지가 조절되지 않은 일련의 홀을 갖는 경우 아연 금속은 불규칙적인 패턴으로 침착된다. 반면, 도 31a, 도 31b, 및 도 31c에 도시된 바와 같이, 대응하는 캐소드 케이지가 조절된 일련의 홀을 갖는 경우 아연 금속은 더욱 규칙적이고 온전한 패턴으로 침착된다.
실시예 3: 배터리 스택 성능
도 24, 도 25a, 도 25b, 도 26, 도 27a, 및 도 27b을 참조하여, 실시예 2에 기재된 시험용 스택을 충전/방전 사이클링하여 상기 시험용 스택의 성능 특성을 평가하였다. 당해 시험으로부터의 데이터를 실시예 3을 참조로 하여 플롯하였다.
기타 양태
상기 내용은 단지 본 발명의 바람직한 양태에 관한 것이며 하기 청구범위 및 이의 등가물에 의해 규정된 본 발명의 정신 및 범주를 벗어나지 않으면서 다수의 변경 및 수정이 이뤄질 수 있음이 명백하다.

Claims (50)

  1. 전면(front surface)과 배면(back surface)을 포함하는 쌍극성 전극 판(bipolar electrode plate); 및
    탄소 재료; 분리막(separator); 및 캐소드 케이지(cathode cage)를 포함하는 캐소드 조립체(cathode assembly)
    를 포함하는 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극(rechargeable zinc-halide electrochemical cell bipolar electrode)으로서,
    상기 캐소드 케이지는 상기 쌍극성 전극 판의 전면과 전기 통신(electrical communication)하여 상기 탄소 재료를 고정(hold)시키고, 상기 쌍극성 전극 판과 상기 캐소드 케이지가 티탄 재료를 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  2. 제1항에 있어서, 상기 쌍극성 전극 판의 배면의 적어도 일부가 거친 표면(rough surface)인, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  3. 제1항 또는 제2항에 있어서, 상기 쌍극성 전극 판의 적어도 일부 및 상기 캐소드 케이지의 적어도 일부가 탄화티탄 코팅을 추가로 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  4. 제1항 또는 제2항에 있어서, 상기 쌍극성 전극 판의 전면이 매입부(recessed portion)를 추가로 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  5. 제4항에 있어서, 상기 쌍극성 전극 판의 전면의 매입부가 상기 탄소 재료의 적어도 일부를 수용(accommodate)하도록 구성되는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  6. 제5항에 있어서, 상기 캐소드 케이지가, 상기 탄소 재료가 상기 매입부와 상기 캐소드 케이지 사이에 배치되도록 상기 탄소 재료 상에 배치되는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  7. 제1항 또는 제2항에 있어서, 상기 분리막이 상기 탄소 재료와 상기 캐소드 케이지 사이에 배치되는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  8. 제1항 또는 제2항에 있어서, 상기 캐소드 케이지가 포켓 영역을 포함하고, 상기 포켓 영역이 복수의 쓰루 홀(thru hole)을 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  9. 제8항에 있어서, 상기 복수의 쓰루 홀이 열을 따라 교차 반복 패턴으로 균등하게 이격되어 분포되는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  10. 제1항 또는 제2항에 있어서, 상기 분리막이 카본 클로쓰(carbon cloth) 또는 카본 펠트(carbon felt)를 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  11. 제1항 또는 제2항에 있어서, 상기 쌍극성 전극의 탄소 재료가 카본 블랙 재료를 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  12. 제1항 또는 제2항에 있어서, 상기 탄소 재료가 PTFE를 추가로 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  13. 제1항 또는 제2항에 있어서, 1 내지 5개 블럭의 탄소 재료를 추가로 포함하는, 재충전 가능한 아연-할로겐화물 전기화학 셀 쌍극성 전극.
  14. 재충전 가능한 쌍극성 전기화학 셀(rechargeable bipolar electrochemical cell)로서,
    상기 전기화학 셀은
    수성 아연-할로겐화물 전해질;
    쌍극성 전극으로서, 상기 쌍극성 전극은
    제1 티탄 재료를 포함하는 쌍극성 전극 판; 및
    캐소드 조립체로서, 상기 캐소드 조립체는 탄소 재료; 상기 쌍극성 전극 판의 전면과 전기 통신하여 상기 탄소 재료를 고정시키는 캐소드 케이지로서, 제2 티탄 재료를 포함하는 캐소드 케이지; 및 상기 캐소드 케이지의 적어도 일부와 상기 탄소 재료 사이에 개재된 분리막을 포함하는, 캐소드 조립체
    를 포함하는 쌍극성 전극; 및
    상기 쌍극성 전극 판과 평행이고 당해 전극 판에 인접하며 제3 티탄 재료를 포함하는 단자 종판(terminal endplate)으로서, 상기 쌍극성 전극 판의 전면과 대향하는 내부 표면을 갖고 상기 내부 표면의 적어도 일부는 거친 표면인, 단자 종판
    을 포함하며,
    이때 상기 쌍극성 전극과 단자 종판은 적어도 부분적으로 상기 전해질 내에 배치되는, 재충전 가능한 쌍극성 전기화학 셀.
  15. 제14항에 있어서, 상기 분리막이 카본 클로쓰 또는 카본 펠트를 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  16. 제14항 또는 제15항에 있어서, 상기 제1 티탄 재료가 탄화티탄으로 적어도 부분적으로 코팅되어 있는, 재충전 가능한 쌍극성 전기화학 셀.
  17. 제14항 또는 제15항에 있어서, 상기 쌍극성 전극의 탄소 재료가 카본 블랙 재료를 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  18. 제14항 또는 제15항에 있어서, 상기 탄소 재료가 PTFE를 추가로 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  19. 제14항 또는 제15항에 있어서, 1 내지 5개 블럭의 탄소 재료를 추가로 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  20. 제14항 또는 제15항에 있어서, 상기 제3 티탄 재료가 탄화티탄으로 적어도 부분적으로 코팅되어 있는, 재충전 가능한 쌍극성 전기화학 셀.
  21. 제14항 또는 제15항에 있어서, 상기 쌍극성 전극 판이 매입부를 추가로 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  22. 제21항에 있어서, 상기 쌍극성 전극 판의 전면의 매입부가 상기 탄소 재료의 적어도 일부를 수용하도록 구성되는, 재충전 가능한 쌍극성 전기화학 셀.
  23. 제22항에 있어서, 상기 캐소드 케이지가, 상기 탄소 재료가 상기 매입부와 상기 캐소드 케이지 사이에 배치되도록 상기 탄소 재료 상에 배치되는, 재충전 가능한 쌍극성 전기화학 셀.
  24. 제14항 또는 제15항에 있어서, 상기 수성 아연-할로겐화물 전해질이 브롬화아연, 염화아연, 또는 이들의 배합물을 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  25. 제14항 또는 제15항에 있어서, 상기 수성 아연-할로겐화물 전해질이 인듐-함유 화합물, 주석-함유 화합물, 납-함유 화합물, 또는 이들의 임의의 배합물을 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  26. 제14항 또는 제15항에 있어서, 상기 캐소드 케이지가 포켓 영역을 포함하고, 상기 포켓 영역이 복수의 쓰루 홀을 포함하는, 재충전 가능한 쌍극성 전기화학 셀.
  27. 제26항에 있어서, 상기 복수의 쓰루 홀이 열을 따라 교차 반복 패턴으로 균등하게 이격되어 분포되는, 재충전 가능한 쌍극성 전기화학 셀.
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
KR1020177011451A 2014-10-06 2015-10-06 아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극 KR102514143B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462060273P 2014-10-06 2014-10-06
US62/060,273 2014-10-06
US201562170200P 2015-06-03 2015-06-03
US62/170,200 2015-06-03
US201562173415P 2015-06-10 2015-06-10
US62/173,415 2015-06-10
PCT/US2015/054142 WO2016057457A2 (en) 2014-10-06 2015-10-06 Zinc-halide electrochemical cell

Publications (2)

Publication Number Publication Date
KR20170057440A KR20170057440A (ko) 2017-05-24
KR102514143B1 true KR102514143B1 (ko) 2023-03-27

Family

ID=54330089

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020177011462A KR20170066488A (ko) 2014-10-06 2015-10-06 쌍극성 전기화학 셀 또는 배터리를 위한 단자 조립체
KR1020177011451A KR102514143B1 (ko) 2014-10-06 2015-10-06 아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극
KR1020177011459A KR102497877B1 (ko) 2014-10-06 2015-10-06 재충전 가능한 전기화학 셀을 위한 전해질
KR1020187031202A KR102337929B1 (ko) 2014-10-06 2017-03-29 재충전 가능한 전기화학 셀을 위한 전해질

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020177011462A KR20170066488A (ko) 2014-10-06 2015-10-06 쌍극성 전기화학 셀 또는 배터리를 위한 단자 조립체

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020177011459A KR102497877B1 (ko) 2014-10-06 2015-10-06 재충전 가능한 전기화학 셀을 위한 전해질
KR1020187031202A KR102337929B1 (ko) 2014-10-06 2017-03-29 재충전 가능한 전기화학 셀을 위한 전해질

Country Status (22)

Country Link
US (5) US20180013185A1 (ko)
EP (4) EP3204970B1 (ko)
JP (7) JP6825783B2 (ko)
KR (4) KR20170066488A (ko)
CN (5) CN107112491A (ko)
AU (4) AU2015328274A1 (ko)
BR (4) BR112017006915A2 (ko)
CA (4) CA2963083A1 (ko)
CL (4) CL2017000843A1 (ko)
CO (3) CO2017003309A2 (ko)
DK (2) DK3204977T3 (ko)
EA (4) EA201790554A1 (ko)
ES (2) ES2809574T3 (ko)
IL (4) IL251502B (ko)
MX (4) MX2017004380A (ko)
PE (4) PE20171033A1 (ko)
PH (4) PH12017500550A1 (ko)
SG (5) SG11201702669VA (ko)
TW (3) TW201628233A (ko)
UA (4) UA121975C2 (ko)
WO (4) WO2016057457A2 (ko)
ZA (1) ZA201702170B (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017006915A2 (pt) * 2014-10-06 2017-12-12 Eos Energy Storage Llc célula eletroquímica de haleto de zinco
EP3295504B1 (en) * 2015-05-11 2018-12-26 Bromine Compounds Ltd. An additive for a flow battery
US10892524B2 (en) 2016-03-29 2021-01-12 Eos Energy Storage, Llc Electrolyte for rechargeable electrochemical cell
USD874394S1 (en) * 2016-04-04 2020-02-04 The Raymond Corporation Battery enclosure
JP2019517106A (ja) 2016-05-17 2019-06-20 エオス エナジー ストレージ, エルエルシー 深共晶溶媒をベースにした電解質を使用するハロゲン化亜鉛バッテリー
US20200036046A1 (en) * 2016-10-11 2020-01-30 Princeton University Membrane-free non-flowing single cell zinc bromine battery with bromine-trapping composite carbon foam electrode
EP3459129B1 (en) * 2016-11-16 2023-11-08 Pacesetter, Inc. Battery with enhanced resistance to dendrite formation
US10797284B2 (en) 2017-02-14 2020-10-06 Volkswagen Ag Electric vehicle battery cell with polymer frame for battery cell components
US11362338B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Electric vehicle battery cell with solid state electrolyte
US11362371B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Method for manufacturing electric vehicle battery cells with polymer frame support
US11870028B2 (en) 2017-02-14 2024-01-09 Volkswagen Ag Electric vehicle battery cell with internal series connection stacking
WO2019040683A1 (en) * 2017-08-24 2019-02-28 Eos Energy Storage, Llc BATTERY FRAME ELEMENT AND RECHARGEABLE BATTERIES MADE THEREFROM
WO2019067392A1 (en) 2017-09-26 2019-04-04 Eos Energy Storage, Llc CHAMBRIDGE INSERTION
US10634330B1 (en) 2017-10-31 2020-04-28 Riverpoint Medical, Llc Headband assembly
CN109755618B (zh) * 2017-11-01 2021-10-29 中国科学院大连化学物理研究所 一种锌溴液流电池正极电解液在电池中的应用
US11211607B2 (en) 2017-12-01 2021-12-28 Eos Energy Storage Llc Bipolar electrode comprising a loaded carbon felt
CN108172878A (zh) * 2018-02-13 2018-06-15 青海百能汇通新能源科技有限公司 电解质添加剂、电解液及电解液的制备方法
EP3787093A4 (en) * 2018-04-27 2022-04-06 Kyocera Corporation FLOW CELL, FLOW CELL SYSTEM AND CONTROL METHOD
CN108711633B (zh) * 2018-05-28 2021-09-10 安徽鹰龙工业设计有限公司 用于锌溴液流电池的电解液
CN108808053B (zh) * 2018-06-22 2021-10-15 浙江裕源储能科技有限公司 一种锌镍液流储能电池
WO2020076985A1 (en) * 2018-10-10 2020-04-16 Oregon State University Aqueous zinc-metal batteries comprising "water-in-salt" electrolyte
CN111261954B (zh) * 2018-11-30 2021-07-16 中国科学院物理研究所 一种高盐水系电解液、电池及其用途
JP7219462B2 (ja) * 2019-03-26 2023-02-08 国立研究開発法人産業技術総合研究所 亜鉛二次電池
CN109962242A (zh) * 2019-04-15 2019-07-02 北京航空航天大学 一种锌基电池用的添加剂
KR102255426B1 (ko) 2019-08-30 2021-05-24 한국과학기술원 아연-브롬 전지용 양극 및 이의 제조방법
JPWO2021059725A1 (ko) * 2019-09-27 2021-04-01
WO2021062465A1 (en) * 2019-10-04 2021-04-08 Redflow R&D Pty Ltd Welded flowing electrolyte battery cell stack
CN112687930B (zh) * 2019-10-17 2022-08-30 中国科学院大连化学物理研究所 一种添加剂在锌溴液流电池电解液中的应用
CN111364081B (zh) * 2020-04-02 2021-11-23 南京理工大学 孔径和厚度呈梯度变化的多孔氧化铝模板的制备方法
CN111370783B (zh) * 2020-04-08 2021-04-20 大连理工大学 一种高性能水系氯离子电池及其制备方法
CN111446508B (zh) * 2020-05-01 2021-07-06 浙江大学 一种高浓度溶液及其应用与制备方法
WO2021217684A1 (zh) * 2020-05-01 2021-11-04 浙江大学 一种高浓度溶液及其应用与制备方法
WO2021217682A1 (zh) * 2020-05-01 2021-11-04 杭州高烯科技有限公司 一种纯无机胶状体的制备方法及其应用
MX2023001847A (es) 2020-08-28 2023-04-27 Eos Energy Tech Holdings Llc Conjunto de terminales y elemento de bastidor de bateria para bateria recargable.
CN114497661A (zh) * 2020-11-12 2022-05-13 中国科学院大连化学物理研究所 一种锌溴液流电池电解液及其应用
KR102459671B1 (ko) * 2020-12-01 2022-10-27 비나텍주식회사 전기에너지 저장방출모듈
CN114614038A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种锌溴液流电池电解液及其在锌溴液流电池中的应用
US20220238906A1 (en) * 2021-01-28 2022-07-28 Benan Energy Bipolar aqueous intercalation battery devices and associated systems and methods
KR20230108580A (ko) * 2022-01-11 2023-07-18 주식회사 엘지에너지솔루션 전기화학소자
CN114725538A (zh) * 2022-05-18 2022-07-08 安徽工业大学 一种用于锌溴电池的电解液
KR20240008505A (ko) 2022-07-12 2024-01-19 에스케이온 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
GB2616988B (en) * 2023-03-01 2024-05-08 Offgrid Energy Labs Private Ltd Electrolyte for ultra efficient static zinc-based battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025754A1 (en) * 2000-09-22 2002-03-28 Powercell Corporation Rib spacing with registration point
WO2013090680A2 (en) * 2011-12-14 2013-06-20 Eos Energy Storage, Llc Electrically rechargeable, metal anode cell and battery systems and methods

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740822A (en) * 1952-10-25 1956-04-03 Carrol G Sexe Primary battery
US3408232A (en) 1965-07-06 1968-10-29 Dow Chemical Co Bromine-zinc secondary cell
GB1258502A (ko) 1969-02-21 1971-12-30
US3640771A (en) 1969-10-20 1972-02-08 Zito Co Metal bromide battery
US3640770A (en) 1969-10-20 1972-02-08 Zito Co Rechargeable metal halide battery
US3642538A (en) 1969-10-31 1972-02-15 Zito Co Metal halide battery
US3682703A (en) 1971-02-02 1972-08-08 Zito Co Metal bromide system
US3806368A (en) 1972-11-14 1974-04-23 Zito Co Zinc bromide battery
US3912999A (en) 1973-07-11 1975-10-14 California Inst Of Techn Zinc-halide battery with molten electrolyte
US4096318A (en) * 1974-10-26 1978-06-20 Basf Aktiengesellschaft Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
US4038459A (en) * 1976-03-17 1977-07-26 Eco-Control, Inc. Halogen complexing alcohols and nitriles
US4065601A (en) 1976-09-14 1977-12-27 Eco-Control, Inc. Two phase electrolytes used as halogen traps in metal halogen secondary cells and batteries
US4058651A (en) * 1976-10-04 1977-11-15 General Electric Company Rechargeable aqueous metal-halogen cell
US4104447A (en) * 1977-09-26 1978-08-01 Eco-Control, Inc. Halogen complexing alkyl salts for use in halogen cells
CA1129945A (en) * 1977-09-30 1982-08-17 Henry F. Gibbard Complexing agents for zinc bromine storage systems
US4147840A (en) * 1978-03-24 1979-04-03 Eco-Control, Inc. Halogen complexing homotetra-alkyl salts for use in halogen cells
US4592971A (en) 1978-12-13 1986-06-03 Tracer Technologies, Inc. Metal halogen electrochemical cell
US4246324A (en) * 1979-04-09 1981-01-20 Diamond Shamrock Technologies S.A. Consumable replaceable anodes for batteries
US4306003A (en) 1980-03-28 1981-12-15 Energy Development Associates, Inc. Zinc halogen battery electrolyte composition with lead additive
US4292380A (en) * 1980-10-23 1981-09-29 Catalyst Research Corporation Two-cell battery structure
JPS57119461A (en) * 1981-01-19 1982-07-24 Meidensha Electric Mfg Co Ltd Electrode for metal-halogen battery and its manufacture
DE3274602D1 (en) * 1982-04-14 1987-01-15 Meidensha Electric Mfg Co Ltd Metal-bromine secondary battery
JPH0636376B2 (ja) 1982-08-09 1994-05-11 東洋紡績株式会社 金属−ハロゲン二次電池
JPS5928588A (ja) * 1982-08-09 1984-02-15 Meidensha Electric Mfg Co Ltd 亜鉛―臭素二次電池
JPS59111277A (ja) * 1982-12-17 1984-06-27 Meidensha Electric Mfg Co Ltd 亜鉛―臭素二次電池
DE3372683D1 (en) * 1982-11-04 1987-08-27 Meidensha Electric Mfg Co Ltd Electrolyte for zinc-bromine storage batteries
US4482614A (en) * 1982-11-15 1984-11-13 Gel, Inc. Zinc-bromine battery with long term stability
US4525439A (en) * 1983-10-07 1985-06-25 Simonton Robert D Connector aperture seal for a galvanic cell
US4491625A (en) 1984-03-26 1985-01-01 Exxon Research & Engineering Co. Zinc-bromine batteries with improved electrolyte
JPS6120847A (ja) * 1984-07-10 1986-01-29 Meidensha Electric Mfg Co Ltd 臭化亜鉛電解液中のアンモニウム塩濃度測定法
JPS61101959A (ja) * 1984-10-25 1986-05-20 Meidensha Electric Mfg Co Ltd 亜鉛/臭素電池の電極
JPS61206180A (ja) * 1985-03-08 1986-09-12 Meidensha Electric Mfg Co Ltd 亜鉛‐臭素電池の電解液
US4637968A (en) * 1986-03-07 1987-01-20 Exxon Research And Engineering Company Solid bromine complexers
US4693946A (en) * 1986-03-11 1987-09-15 Eltech Systems Corporation Battery with modular air cathode and anode cage
JPH0367461A (ja) * 1989-08-07 1991-03-22 Meidensha Corp 積層電池の電極の製造方法
JPH07120537B2 (ja) * 1991-01-31 1995-12-20 トヨタ自動車株式会社 亜鉛ハロゲン電池
US5173362A (en) * 1991-02-01 1992-12-22 Globe-Union, Inc. Composite substrate for bipolar electrodes
AT399246B (de) 1992-12-23 1995-04-25 Elin Energieanwendung Verfahren zum laden und entladen von zink/brom-batterien
US5308718A (en) * 1993-01-15 1994-05-03 Globe-Union Inc. End block constructions for batteries
DE4413808B4 (de) * 1993-04-27 2007-06-06 Medtronic, Inc., Minneapolis Verfahren zur Herstellung einer Baugruppe für eine elektrochemische Zelle, Verfahren zum Zusammenbauen einer elektrochemischen Zelle und Knopfzelle
JPH06333611A (ja) * 1993-05-21 1994-12-02 Meidensha Corp 亜鉛−臭素電池の集電電極取出構造
JPH0765842A (ja) * 1993-08-27 1995-03-10 Shigeyuki Yasuda バッテリー
EP0729648B1 (en) * 1993-11-17 2003-04-02 Pinnacle VRB Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions
JPH07254400A (ja) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd 無汞化アルカリボタン形電池
JPH07282795A (ja) * 1994-04-12 1995-10-27 Meidensha Corp 亜鉛−臭素電池の集電電極取出構造
US5591538A (en) * 1995-07-07 1997-01-07 Zbb Technologies, Inc. Zinc-bromine battery with non-flowing electrolyte
US5821009A (en) * 1997-03-03 1998-10-13 Space Systems/Loral, Inc. Fault tolerant bipolar gas electrode design for a rechargeable battery
TW369737B (en) * 1997-06-05 1999-09-11 Toyo Kohan Co Ltd A closing plate of a battery covered with a protection film and a battery using same
EP1037290B1 (en) * 1997-11-07 2010-03-03 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
US6159631A (en) * 1998-08-27 2000-12-12 Polystor Corporation Overcharge safety vents on prismatic cells
EP1057869B1 (en) 1998-12-17 2004-06-02 Nisshinbo Industries, Inc. Composition for ionically conductive polyelectrolyte and ionically conductive solid polyelectrolyte
US6929880B1 (en) * 1999-05-07 2005-08-16 Matsushita Electric Industrial Co., Ltd. Square cell container and method of manufacturing the cell container
JP2001110461A (ja) * 1999-10-07 2001-04-20 Meidensha Corp 亜鉛−臭素電池
JP2001110460A (ja) * 1999-10-07 2001-04-20 Meidensha Corp 亜鉛−臭素電池
JP3580213B2 (ja) 2000-02-28 2004-10-20 松下電器産業株式会社 円筒形電池用封口板
TW521449B (en) * 2000-07-04 2003-02-21 Matsushita Electric Ind Co Ltd A battery, a process for producing the battery, a process for producing a battery case, and a battery pack
US7550230B2 (en) * 2001-03-15 2009-06-23 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
US7008723B2 (en) * 2001-08-21 2006-03-07 Ecosol Solar Technologies Inc. Method of manufacture of an anode composition for use in a rechargeable electrochemical cell
KR20040082422A (ko) * 2002-02-12 2004-09-24 에버레디 배터리 컴퍼니, 인크. 가요성의 얇은 인쇄 전지 및 장치와 그것의 제조 방법
US7081319B2 (en) * 2002-03-04 2006-07-25 The Gillette Company Preparation of nickel oxyhydroxide
US7491464B2 (en) * 2003-01-03 2009-02-17 The Gillette Company Alkaline cell with flat housing
US7435395B2 (en) * 2003-01-03 2008-10-14 The Gillette Company Alkaline cell with flat housing and nickel oxyhydroxide cathode
US20050074667A1 (en) * 2003-10-07 2005-04-07 Iuan-Jou Yang Lithium battery
CN1627554A (zh) 2003-12-11 2005-06-15 北京瑞源通动力电池技术有限公司 一种非循环电解液锌-溴电池的电解液
US7960057B2 (en) * 2004-05-17 2011-06-14 Toyota Motor Engineering & Manufacturing North America, Inc. Battery with molten salt electrolyte and phosphorus-containing cathode
JP2007194074A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 燃料電池
WO2007083838A1 (ja) * 2006-01-19 2007-07-26 Toyota Jidosha Kabushiki Kaisha 燃料電池
US8048557B2 (en) * 2007-02-01 2011-11-01 Eaglepicher Energy Products Corporation Electrochemical device
JP5473615B2 (ja) * 2007-03-02 2014-04-16 アルベマール・コーポレーシヨン 亜鉛−臭素電池に使用する、超高純度臭化亜鉛および四級アンモニウムブロミド
CN101647138B (zh) * 2007-03-28 2012-11-14 红流私人有限公司 用于流动电解质电池的电池组
JP5420315B2 (ja) 2009-05-27 2014-02-19 三洋電機株式会社 密閉型電池及びその製造方法
US8911612B2 (en) * 2010-03-22 2014-12-16 Bromine Compounds Ltd. Method of operating metal-bromine cells
US20130095413A1 (en) * 2010-06-24 2013-04-18 Hyundai Hysco Bipolar plate for a fuel cell and method of manufacturing the same
US8802304B2 (en) * 2010-08-10 2014-08-12 Eos Energy Storage, Llc Bifunctional (rechargeable) air electrodes comprising a corrosion-resistant outer layer and conductive inner layer
WO2012067977A2 (en) * 2010-11-15 2012-05-24 Zpower, Llc Polymer plasticizers for separators
CN102479968B (zh) * 2010-11-29 2014-06-11 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
KR101351903B1 (ko) * 2011-08-19 2014-01-17 주식회사 엘지화학 케이블형 이차전지
CN103947012B (zh) * 2011-09-21 2016-07-06 溴化合物有限公司 运行金属-溴电池的方法
ES2628312T3 (es) * 2011-09-22 2017-08-02 Bromine Compounds Ltd. Procesos para preparar bromuro de N-etil-2-metilpiridinio y bromuro de N-etil-3-metilpiridinio
WO2013112660A1 (en) 2012-01-27 2013-08-01 Eos Energy Storage, Llc Electrochemical cell with divalent cation electrolyte and at least one intercalation electrode
US9722272B2 (en) * 2012-05-10 2017-08-01 Bromine Compounds Ltd. Additives for zinc-bromine membraneless flow cells
WO2014121276A2 (en) * 2013-02-04 2014-08-07 Massachusetts Institute Of Technology Metal sulfide electrodes and energy storage devices thereof
EP2953930B1 (en) * 2013-02-07 2016-12-07 Bromine Compounds Ltd. Processes for preparing 1-alkyl-3-alkyl-pyridinium bromide and uses thereof as additives in electrochemical cells
CN104600338A (zh) * 2013-11-01 2015-05-06 上海空间电源研究所 一种锌溴液流电池电解液添加剂及其制作方法
CN104716304B (zh) * 2013-12-15 2017-02-15 中国科学院大连化学物理研究所 一种锌镍双液液流电池
US9381369B2 (en) * 2014-02-06 2016-07-05 Cardiac Pacemakers, Inc. Battery for use with medical devices
JP6296542B2 (ja) * 2014-03-28 2018-03-20 日産自動車株式会社 亜鉛二次電池用電解質及び亜鉛二次電池
BR112017006915A2 (pt) 2014-10-06 2017-12-12 Eos Energy Storage Llc célula eletroquímica de haleto de zinco
CN105336971B (zh) * 2015-09-25 2018-08-17 中国人民解放军63971部队 一种水系锌锰单液流电池
JP2019517106A (ja) 2016-05-17 2019-06-20 エオス エナジー ストレージ, エルエルシー 深共晶溶媒をベースにした電解質を使用するハロゲン化亜鉛バッテリー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025754A1 (en) * 2000-09-22 2002-03-28 Powercell Corporation Rib spacing with registration point
WO2013090680A2 (en) * 2011-12-14 2013-06-20 Eos Energy Storage, Llc Electrically rechargeable, metal anode cell and battery systems and methods

Also Published As

Publication number Publication date
EP3437153A1 (en) 2019-02-06
MX2017004381A (es) 2017-07-04
JP2018206784A (ja) 2018-12-27
US20170301906A1 (en) 2017-10-19
CN107004823A (zh) 2017-08-01
EA201790554A1 (ru) 2017-10-31
TW201628248A (zh) 2016-08-01
BR112017006915A2 (pt) 2017-12-12
MX2018011726A (es) 2018-12-19
IL251608A0 (en) 2017-06-29
KR20170063849A (ko) 2017-06-08
KR102497877B1 (ko) 2023-02-10
BR112018069696A2 (pt) 2019-02-05
IL261910A (en) 2018-10-31
EA201790555A1 (ru) 2017-10-31
JP2017535045A (ja) 2017-11-24
KR20170066488A (ko) 2017-06-14
US20180019475A1 (en) 2018-01-18
IL251502B (en) 2020-06-30
UA123574C2 (uk) 2021-04-28
WO2016057477A9 (en) 2016-05-12
SG11201808415WA (en) 2018-10-30
EA201790557A1 (ru) 2017-10-31
KR102337929B1 (ko) 2021-12-13
IL251608B (en) 2021-09-30
EP3204968A1 (en) 2017-08-16
KR20170057440A (ko) 2017-05-24
CO2017003319A2 (es) 2017-07-28
CN109155444B (zh) 2022-03-25
CO2017003314A2 (es) 2017-08-18
IL251609A0 (en) 2017-06-29
CL2017000846A1 (es) 2018-02-16
PH12017500582A1 (en) 2017-08-30
WO2016057457A9 (en) 2016-09-09
AU2015328274A1 (en) 2017-04-13
CL2018002723A1 (es) 2019-02-15
CN107112491A (zh) 2017-08-29
CN114566723A (zh) 2022-05-31
WO2016057489A9 (en) 2016-06-02
JP6825783B2 (ja) 2021-02-03
CA2963083A1 (en) 2016-04-14
WO2016057489A1 (en) 2016-04-14
WO2017172878A1 (en) 2017-10-05
SG11201702665XA (en) 2017-04-27
EP3204970B1 (en) 2020-06-10
SG11201702669VA (en) 2017-04-27
PE20170830A1 (es) 2017-07-04
US20190198881A1 (en) 2019-06-27
TW201628235A (zh) 2016-08-01
US10276872B2 (en) 2019-04-30
AU2015328339A1 (en) 2017-04-13
MX2017004379A (es) 2017-07-04
EP3204977B1 (en) 2023-12-20
UA121975C2 (uk) 2020-08-25
PE20171033A1 (es) 2017-07-17
IL251502A0 (en) 2017-05-29
JP6929222B2 (ja) 2021-09-01
DK3204977T3 (da) 2024-02-05
BR112017006914A2 (pt) 2017-12-12
CA2963078A1 (en) 2016-04-14
KR20180124994A (ko) 2018-11-21
AU2015328359A1 (en) 2017-04-13
EP3204977A1 (en) 2017-08-16
ES2968784T3 (es) 2024-05-14
JP2020119902A (ja) 2020-08-06
UA125279C2 (uk) 2022-02-16
WO2016057457A2 (en) 2016-04-14
JP2021061242A (ja) 2021-04-15
CN107112576A (zh) 2017-08-29
PH12018502096A1 (en) 2019-07-15
US10305111B2 (en) 2019-05-28
CA2963081A1 (en) 2016-04-14
JP2019511097A (ja) 2019-04-18
WO2016057477A1 (en) 2016-04-14
AU2017242009B2 (en) 2022-10-20
SG11201702673SA (en) 2017-04-27
US20180013185A1 (en) 2018-01-11
US20170194666A1 (en) 2017-07-06
ES2809574T3 (es) 2021-03-04
TW201628233A (zh) 2016-08-01
EA201891958A1 (ru) 2019-04-30
CL2017000842A1 (es) 2018-01-19
ZA201702170B (en) 2020-07-29
CA2963078C (en) 2022-03-22
PE20170794A1 (es) 2017-07-04
IL251609B (en) 2021-10-31
JP6917389B2 (ja) 2021-08-11
SG10201902585QA (en) 2019-04-29
JP7084975B2 (ja) 2022-06-15
IL261910B (en) 2020-07-30
JP2017535932A (ja) 2017-11-30
BR112017006815A2 (pt) 2017-12-26
AU2015328359B2 (en) 2021-10-14
JP2017535044A (ja) 2017-11-24
CO2017003309A2 (es) 2017-08-31
PH12017500568A1 (en) 2017-08-30
WO2016057477A8 (en) 2017-03-30
PH12017500550A1 (en) 2017-08-30
CA3018956A1 (en) 2017-10-05
WO2016057457A3 (en) 2016-10-13
AU2017242009A1 (en) 2018-10-11
MX2017004380A (es) 2017-07-04
CN109155444A (zh) 2019-01-04
PE20181881A1 (es) 2018-12-06
CL2017000843A1 (es) 2018-02-09
DK3204970T3 (da) 2020-08-10
EP3204970A2 (en) 2017-08-16
UA125932C2 (uk) 2022-07-13

Similar Documents

Publication Publication Date Title
KR102514143B1 (ko) 아연-할로겐화물 배터리용 전해질 조성물, 및 탄화티탄 코팅된 캐소드 박스를 포함하는 쌍극성 전극
US11942606B2 (en) Electrolyte for rechargeable electrochemical cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant