JPH0636376B2 - 金属−ハロゲン二次電池 - Google Patents

金属−ハロゲン二次電池

Info

Publication number
JPH0636376B2
JPH0636376B2 JP57138699A JP13869982A JPH0636376B2 JP H0636376 B2 JPH0636376 B2 JP H0636376B2 JP 57138699 A JP57138699 A JP 57138699A JP 13869982 A JP13869982 A JP 13869982A JP H0636376 B2 JPH0636376 B2 JP H0636376B2
Authority
JP
Japan
Prior art keywords
electrode
fiber
positive electrode
cloth
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57138699A
Other languages
English (en)
Other versions
JPS5929385A (ja
Inventor
将慶 島田
秀樹 駒形
康広 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Toyobo Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Toyobo Co Ltd filed Critical Meidensha Corp
Priority to JP57138699A priority Critical patent/JPH0636376B2/ja
Priority to US06/521,594 priority patent/US4505994A/en
Publication of JPS5929385A publication Critical patent/JPS5929385A/ja
Publication of JPH0636376B2 publication Critical patent/JPH0636376B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 本発明は金属−ハロゲン2次電池に関するものであり、
さらに詳しくは特定の多孔質炭素繊維織布あるいは編地
状物布帛を正極に適用した2次電池に関するものであ
る。
1973年のエネルギー危機以来エネルギー問題が広く
各層で認識される様になつて来た。新しいエネルギー源
の開発と同時に発生したエネルギーを有効に利用するエ
ネルギーの変換,貯蔵,輸送,利用を含めたシステムの
開発も重要となつて来ている。貯蔵を例にとれば、将来
電源構成で大きな比重を占めると予想されている原子
力,石炭火力等の大型発電では一定の出力を保つて定常
発電することが高い効率を保つ上で必要であり、夜間の
余剰電力を適切に貯蔵して昼間の需要増大時にこれを放
出し、需要の変動に対応させる(ロードレベリング)こ
とのできる電力貯蔵技術への要求が強くなつて来てい
る。現在でも主要発電設備の年間稼動率は60%を切つ
ており低下が続いている。電力貯蔵の方法には、実用化
されてはいるが送電によるロスがあり、立地に制約の加
わつて来ている揚水発電の他に、新型2次電池,フライ
ホイール,圧縮空気,超電導等の各種の方法が検討され
ている。
就中、新型電池による電気化学操作が有力であり、ここ
当分の間輸送を含めた解決システムとして揚水発電に替
る最も実現性の高い方式と考えられている。又新型2次
電池は、太陽光,風力,波力等の自然エネルギーを利用
した発電のバツクアツプ装置、或いは電気自動車用電池
として期待が寄せられている。上記目的に適用できる2
次電池として、鉛蓄電池,ナトリウム−硫黄電池,リチ
ウム−硫化鉄電池,金属−ハロゲン電池,レドツクスフ
ロー形電池等が開発されている。この中でも亜鉛−ハロ
ゲン電池は、液循環型であり、電池出力を調整しやすい
こと、低温作動水溶液系電池で保守管理が容易なこと、
電池容量を液槽容量にて簡単に調整できること、両極活
物質は資源的に豊富であり、かつ安価であること、理論
エネルギー密度が高いこと、電池反応が簡単なため電池
構成が単純で安価な材料を用いて作れること等の秀れた
特徴をもつため近年急速に開発が進められている。しか
し金属−ハロゲン電池を実用化するためには、いくつか
の解決しなければならない問題点も存在し、その中でも
放電時正極におけるハロゲンの還元反応をいかにして、
じん速かつ有効に反応させるがが、直接電池のエネルギ
ー効率に影響するため、重要な技術的課題となつてい
る。従来正極電極として用いられているPt板にかわる
安価な例としては、導電性粉末カーボンと粉末樹脂との
混合物を加熱プレス成形した薄板状カーボンプラスチツ
ク電極板や炭素焼結板があるが、これらの電極では放電
が進み正極活物質の濃度が下つてくると、電位の落ち込
みが著るしく、充放電のエネルギー効率は低い値にとど
まつていた。特に高電流密度放電で著るしい電位の低下
が認められた。
本発明者等はかかる在来のカーボンプラスチツク電極や
炭素焼結板に付随する種々の欠点を改善すべく鋭意研究
の結果本発明に到達した。
即ち、本発明は正極として直径30〜1000Åの範囲
の細孔容積を0.1c.c./g以上有する多孔質炭素繊維か
らなり、繊維密度0.1g/c.c.以上の織布又は編地状物
の布帛を前記のカーボンプラスチツク電極板や炭素焼結
板等の如き電極基材の表面に接合したものを用いること
を特徴とする金属−ハロゲン2次電池である。
前記カーボンプラスチツク電極や炭素焼結板におけるハ
ロゲンの還元反応が進まないのは、電極表面が平滑で実
反応表面積が小さいためハロゲン濃度が低下するとハロ
ゲンの電極表面への拡散量、吸着量が減少し、いわゆる
分極が生じるためと考えられる。そこで本発明者らは、
例えば各種方法でカーボンプラスチツク電極の表面をエ
ツチングして表面積を上げたり、粉状カーボンに替えて
粉末活性炭を用いた電極を試作したが効果は少なかつ
た。ところが本発明の様に、多孔質炭素繊維より成る織
布或いは、編地状物の布帛を例えば前記粉末カーボンプ
ラスチツク板あるいは炭素焼結板よりなる電極基材の表
面に接合した電極を作製し、金属−ハロゲン2次電池に
使用し充放電を行つたところ、ハロゲン濃度が低下して
も正極電位は極めて高く、又充放電エネルギー効率も著
るしく向上した。しかも細孔直径30〜1000Åの細
孔容積を0.1c.c./g以上有する多孔質又は活性炭素繊
維からなり、かつ繊維密度0.1g/c.c.以上の織布或い
は編地状物の布帛を用いたとき、電圧,電流効率とも秀
れた値が得られ、高価な白金板に劣らない電極性能を示
すことが分かつた。即ち、直径30Åに満たないいわゆ
るミクロポアの分布が主体となると細孔径が小さいので
ハロゲン化金属塩の水溶液に溶解しているハロゲンの細
孔内拡散係数が小さく、電極反応に有効に働かない。又
細孔径が1000Åを越す分布が主体となると、多孔質
炭素繊維全体の表面積が小さくなつてしまうので好まし
くない。さらに直径30〜1000Åの範囲の細孔容積
が0.1c.c./gに満たない多孔質炭素繊維からなる布帛
特に不織布の場合は、単位体積当りの表面積が小さく本
発明の効果が得られない。又繊維密度が0.1g/c.c.
に満たない場合は繊維間の接触が少なく、電気抵抗が増
し、電池の内部抵抗の増加につながり、電圧効果が低下
するので好ましくない。さらに繊維密度が0.1g/c.c.
に満たない場合には、電極作製時に繊維の脱落が生じ易
く加工上も問題が生じる。
本発明で使用する原料繊維としては、炭化可能なもので
あればよいが、炭化のし易さ、多孔性の発達のさせ易
さ、多孔質炭素繊維の強伸度等の点からセルロース系,
アクリル系,フエノール系,石油及び石炭ピツチ系の繊
維が有利に使用できる。
多孔質炭素繊維から成る織布とは、多孔質炭素単繊維を
複数本集束した多孔質炭素糸が縦・横に交錯してなる布
状物のことである。例えば炭化可能な原料有機物からな
る紡績糸或いは、フイラメント糸を縦・横に交錯して作
つた布状物を出発材料としてこれに耐炎化,炭化,多孔
質化を行つて多孔質炭素繊維からなる織布を作ることも
できるし、炭化或いは多孔質化した段階の糸を布状に織
つて作ることもできる。織り組織は通像用いられている
ものであれば何れでもよく、例えば平織,綾織,梨地,
朱子織等を選ぶことができる。
又多孔質炭素繊維からなる編地状の布帛とは、炭化可能
な原料有機物から成る紡績糸或いはフイラメント糸を丸
編地,経編地とし例えばダブルデンビー,ダブルコー
ド,ハーフ,ハーフバツク,インターロツク,ジヤガー
ド,モツクローデイング,リブ等の組織をもつ布帛を耐
炎化,炭化,多孔質化を行つて得られる原組織を保つた
多孔質炭素繊維布帛を意味する。
前記有機質繊維又は布状物を耐炎化,炭化する方法は夫
々の繊維を構成する有機物に応じて適切な方法を選択し
なければならない。特に耐炎化は公知の様に注意が必要
である。多孔性をもたせる方法としては、最終的に繊維
が細孔直径30〜1000Åの範囲の細孔容積を0.1
c.c./g 以上有するものとする方法であればいずれでも
よい。多孔質有機単繊維から成る糸又は布帛を耐炎化,
炭化して多孔質炭素繊維布帛を得てもよい。又活性炭素
繊維を得る方法として作われる水蒸気、炭酸ガス,酸素
による400〜1100℃の温度での賦活法は最も簡単
な方法として有効である。又特願昭56−114648号に記載
されている金属触媒を用いた賦活法もこの目的には特に
有利に使用できる。
炭素繊維のエツチングとして前述の様な酸化性ガスによ
る方法を上げたが、他の方法も湿式,乾式を問わず使用
できるのは勿論である。
又必要とあれば導電性及び正極での臭素の酸化還元反応
速度を上げることを目的として1100℃以上3000
℃以下の高温処理を行つた後、多孔質化を行つてもよい
し、逆に多孔質化を行つた後高温処理を行つてもよい。
本発明における多孔質炭素繊維の細孔直径及び細孔容積
は、直径30〜300Åの範囲は常圧下の液体窒素の沸
点における吸着側の窒素ガス吸着等温線を用いてクラン
ストン−インクレ−(Cranston−InKIey)の計算法によ
り求め、直径300〜1000Åの範囲は水銀圧入ポロ
シメーターによって測定したものを用い、30〜100
0Åの細孔容積(以下TPV1000 30と略す)は両者の和
によつて算出したものである。なお窒素吸着における多
分子吸着層厚(t)と相対圧(P/Ps)との関係は t(Å)=4.3〔5/ln(Ps/P)〕1/3 なるフレンケル−ハルシ−(FrenkeI−Halsey)の式を
採用した。
以下実施例について本発明をさらに詳しく説明するが、
本発明は実施例に限定されるものではない。
比較例1 導電性カーボン粉末を30重量%となる様に、ポリオレ
フイン系樹脂粉末と均一に混合したものを、樹脂の軟化
点より10℃高めに設定した金型の底に一定厚みによる
様にしいた後、熱プレスして厚さ1.0mm大きさ10cm
のカーボンプラスチツクプレートを作製した。このプ
レートを陽イオン交換樹脂膜をセパレーターとする流通
型電解槽の一室に設置し正極とし、一方他室には99.99
%圧延亜鉛板を設置して負極とした。この電解槽負極室
に臭化亜鉛濃度3.0mol/、塩化カリウム濃度4.
0mol/の一定量の電解液を循環し、一方正極室には
臭化亜鉛と塩化カリウムは負極液と同濃度だが、臭素
3.0mol/を含む電解液を循環させ、40mA/cm2
電流密度で定電流放電を常温にて行ない、正極電解液中
の質素濃度と正極の単極電位をルギン毛管を有する飽和
カロメル電極にて観測した。結果を第1表に示す。正極
に白金板を使用したときの結果も合せて載せる。
臭素濃度が2.0〜3.0M/の値は放電初、中期に
相当し、0.4〜0.8M/は放電末期に相当する。
カーボンプラスチツク電極は放電末期における電位の落
ち込みが大きいことが分かる。
実施例 単繊維2.0dの再生セルロース繊維より成る番手の異
なる紡績糸を使つた目付の異なる綾織物を数種用意し
た。又単糸2.0dの再生セルロース繊維より成る番手
の異なる紡績糸を使い両面編地を編成し、目付の異なる
数種の編地状布帛を用意した。
これら織布及び編地を、第二リン酸アンモンの水溶液に
浸漬、絞り後、乾燥することによつて、第二リン酸アン
モンを繊維重量に対して10%含浸させた後270℃の
不活性ガス気流中で30分加熱し続いて270℃から8
50℃まで約90分を要して昇温し、さらに水蒸気を4
0容量%含むガス流中で30分処理を行ない、目付45〜
50g/m2となつた多孔質炭素繊維織布をA、編地をMとし
た。又水蒸気賦活時間を60分として、A、Mと同程度
の目付となつた。織布をB、編地をNとした。さらに布
帛A、Mを得たと同一処理を、B、Nを得た原料布帛に
施し、得られた多孔質炭素繊維布帛を塩化鉄水溶液に浸
漬し、夫々Feとして4.3、4.7重量%に相当する塩
化鉄を含浸させ乾燥后、水蒸気を40容量%含む窒素ガ
ス気流中で、100℃より850℃までもたらし、15
分保持後、不活性ガス中で冷却し、 INHCL液で洗浄后水
洗乾燥して得た目付45〜50g/m2の多孔質炭素繊維織
布をC、編地をPとした。以上得られた各種の多孔質炭
素繊維布帛を、前記比較例1で述べた金型の底に敷き、
この上に同じく比較例1で使用したカーボンプラスチツ
ク粉末混合品を均一厚みにしてのせ、熱プレスして厚さ
1mm10cmをカーボンプラスチツク板の表面に多孔質炭
素繊維布帛が接合された電極(正極)を作製した。
これら本発明になる電極を正極として用いた亜鉛−臭素
電池の放電実験を比較例1と同様に行ない第2表の如き
結果を得た。
第2表より本発明に係る正極を用いた場合、放電初期
(Br22.0〜3.0Mol/濃度)はいうに及ばず放
電末期(Br20.4〜0.8Mol/濃度)においても
正極電位の落ち込みがなくエネルギー効率が安定に維持
されていることがわかる。
比較例4 実施例1で用いたと同種の単繊維太さ2.0d、長さ7
6mmの再生セルロース繊維を原料とし130g/m2の目付の
不織布をニードルパンチ法で製造し、実施例1と同じ方
法で耐炎剤処理及び耐炎化処理を行つた後、850℃で
水蒸気賦活を時間を変えて行つて、目付60g/m2、43
g/m2の二種の活性炭素繊維不織布S、Tを得た。不織布
Sについて酢酸マグネシウムの溶液に浸漬し、絞り後乾
燥してマグネシウムとして3.2重量%に相当する酢酸
マグネシウムを添着させ、水蒸気を40容量%含む窒素
ガス中で100℃より850℃までもたらし、10分間
保持した後窒素気流中で冷却して、酸洗浄、水洗を行つ
て活性炭素繊維不織布Uを得た。活性炭素繊維不織布
T、Uについて、実施例1と同じ方法で電極板を作製
し、放電実験を行つた。
第3表に結果を載せる。カーボンプラスチツク電極に比
べて性能は改良されてはいるが電位は低い。又電極作製
時に繊維の脱落が特に多かつた。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】直径30〜1000Åの範囲の細孔容積を
    0.1c.c./g 以上有する多孔質炭素繊維からなり、繊
    維密度0.1g/c.c.以上の織布又は編地状物の布帛を
    電極基材表面に接合したものを正極に用いることを特徴
    とする金属-ハロゲン二次電池。
JP57138699A 1982-08-09 1982-08-09 金属−ハロゲン二次電池 Expired - Lifetime JPH0636376B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57138699A JPH0636376B2 (ja) 1982-08-09 1982-08-09 金属−ハロゲン二次電池
US06/521,594 US4505994A (en) 1982-08-09 1983-08-09 Metal-halogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138699A JPH0636376B2 (ja) 1982-08-09 1982-08-09 金属−ハロゲン二次電池

Publications (2)

Publication Number Publication Date
JPS5929385A JPS5929385A (ja) 1984-02-16
JPH0636376B2 true JPH0636376B2 (ja) 1994-05-11

Family

ID=15228052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138699A Expired - Lifetime JPH0636376B2 (ja) 1982-08-09 1982-08-09 金属−ハロゲン二次電池

Country Status (2)

Country Link
US (1) US4505994A (ja)
JP (1) JPH0636376B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0165047B1 (en) * 1984-06-12 1997-10-15 Mitsubishi Chemical Corporation Secondary batteries containing electrode material obtained by pyrolysis
JPS6263053A (ja) * 1985-09-17 1987-03-19 Takeuchi Tsutae 立体cnc工作装置
US4740434A (en) * 1985-11-29 1988-04-26 Kabushiki Kaisha Meidensha Surface treated electrodes applicable to zinc-halogen secondary batteries
US5242765A (en) * 1992-06-23 1993-09-07 Luz Electric Fuel Israel Limited Gas diffusion electrodes
JP3560181B2 (ja) * 1995-04-13 2004-09-02 東洋紡績株式会社 液流通型電解槽用電極材
KR101094566B1 (ko) * 2003-03-26 2011-12-19 도레이 카부시키가이샤 다공질 탄소 기재, 가스 확산체, 막-전극 접합체, 및 연료 전지
AU2015328274A1 (en) 2014-10-06 2017-04-13 Eos Energy Storage, Llc Terminal assembly for bipolar electrochemical cell or battery
US10892524B2 (en) 2016-03-29 2021-01-12 Eos Energy Storage, Llc Electrolyte for rechargeable electrochemical cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113924A (en) * 1977-05-26 1978-09-12 Exxon Research & Engineering Co. Zinc-halogen compound electrochemical cell having an auxiliary electrode and method
US4352866A (en) * 1978-12-20 1982-10-05 Gte Laboratories Incorporated Electrochemical cell with improved cathode current collector and method
US4367266A (en) * 1979-06-28 1983-01-04 Union Carbide Corporation Cathode collectors for nonaqueous cell having a metal oxide catalyst
JPS5626958A (en) * 1979-08-08 1981-03-16 Shiraishi Kogyo Kk Pigment composition
US4296187A (en) * 1980-06-13 1981-10-20 Gte Products Corporation Integrated carbon/insulator structure and method for fabricating same
JPS57118376A (en) * 1981-01-13 1982-07-23 Furukawa Electric Co Ltd:The Zinc-halogen battery
US4443522A (en) * 1981-04-06 1984-04-17 Struthers Ralph C Metal/acid ion permeable membrane fuel cell
US4403020A (en) * 1982-03-03 1983-09-06 Gte Laboratories Incorporated Electrochemical cell

Also Published As

Publication number Publication date
US4505994A (en) 1985-03-19
JPS5929385A (ja) 1984-02-16

Similar Documents

Publication Publication Date Title
US11728489B2 (en) Three-dimensional current collector for metal secondary battery anode, its preparation and application
Yang et al. Development and application of carbon fiber in batteries
US4496637A (en) Electrode for flowcell
WO2022142155A1 (zh) 宽pH范围氧还原电催化用氮磷掺杂多孔碳的制备方法
CN111785978B (zh) 一种液流电池用多孔电极及其制备方法
JP6669784B2 (ja) レドックスフロー電池のための炭素フェルト電極の準備のためのプロセス
Zhang et al. Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries
CN105977470A (zh) 二氧化硅活性炭复合材料、其制备方法及铅炭电池
JP2018186013A (ja) フロー電池、フロー電池システム及び発電システム
JPH0636376B2 (ja) 金属−ハロゲン二次電池
CN110729438B (zh) 杂原子掺杂多孔石墨烯修饰碳纤维纸及其制备方法和应用
JPS6023963A (ja) 金属−ハロゲン二次電池
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JPH0711969B2 (ja) 金属―ハロゲン二次電池
CN109273698B (zh) 一种锂硫电池正极材料及其制备方法和应用
CN115332507B (zh) 一种碳包覆磷酸铁钠复合电极材料及其制备和应用
JPH0690933B2 (ja) 積層型電解槽
CN109216709A (zh) 一种高比表面碳纤维毡的挖坑效应构建方法及其应用
JPH0624121B2 (ja) 金属―ハロゲン二次電池
CN107785587B (zh) 提高功能性的钒液流电池用电极及采用它的钒液流电池
JPH0711963B2 (ja) 流通型電解槽用炭素系電極材
CN111261881B (zh) 一种纸基全钒液流电池电极材料及其制备和应用
CN106784660A (zh) 泡沫镍作为夹层的Se‑TiO2/NFF锂硒二次电池及其制备方法
JP2003308851A (ja) 電極材及びその製造方法
CN117913290A (zh) 水系有机液流电池用三元复合异质结构电极及其制备方法