KR101831576B1 - 플라즈마 처리 장치 - Google Patents
플라즈마 처리 장치 Download PDFInfo
- Publication number
- KR101831576B1 KR101831576B1 KR1020177028538A KR20177028538A KR101831576B1 KR 101831576 B1 KR101831576 B1 KR 101831576B1 KR 1020177028538 A KR1020177028538 A KR 1020177028538A KR 20177028538 A KR20177028538 A KR 20177028538A KR 101831576 B1 KR101831576 B1 KR 101831576B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- receiving member
- plasma
- shower plate
- microwave
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/3222—Antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/005—Nozzles or other outlets specially adapted for discharging one or more gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
처리 용기 내에 제1 가스와 제2 가스를 공급하는 샤워 플레이트를 구비한 플라즈마 발생용 안테나를 갖고, 마이크로파의 공급에 의해 그 샤워 플레이트 표면에 형성된 표면파에 의해 플라즈마를 형성해서 기판을 처리하는 플라즈마 처리 장치로서, 샤워 플레이트의 하단면으로부터 하방으로 돌출되는 도전체의 수하 부재를 갖고, 상기 수하 부재의 외측면은, 상단부로부터 하단부를 향해서 외측으로 퍼지고, 샤워 플레이트는, 복수의 제1 가스 공급구와 복수의 제2 가스 공급구를 구비하고, 제1 가스 공급구는 수하 부재의 외측면보다 내측에 배치되고, 제2 가스 공급구는 수하 부재의 외측면보다 외측에 배치되어 있다.
Description
본 발명은 처리 용기 내에 소정의 가스를 공급하는 샤워 플레이트를 구비한 플라즈마 처리 장치에 관한 것이다.
본원은, 2013년 9월 11일에 일본에 출원된 일본 특허 출원 제2013-188665호 및 2014년 6월 9일에 일본에 출원된 일본 특허 출원 제2014-118531호에 기초하여, 우선권을 주장하고, 그 내용을 여기에 원용한다.
플라즈마 처리는, 반도체 디바이스의 제조에 불가결한 기술이다. 최근 들어, LSI의 고집적화 및 고속화의 요청으로부터, LSI를 구성하는 반도체 소자의 한층 더한 미세 가공이 요구되고 있다.
그런데, 용량 결합형 플라즈마 처리 장치나 유도 결합형 플라즈마 처리 장치에서는, 생성되는 플라즈마의 전자 온도가 높고, 또한 플라즈마 밀도가 높은 영역이 한정된다. 이 때문에, 반도체 소자의 한층 더한 미세 가공의 요청에 따른 플라즈마 처리를 실현하는 것은 어려웠다.
따라서, 이러한 미세 가공을 실현하기 위해서는, 저전자 온도이면서 고플라즈마 밀도의 플라즈마를 생성하는 것이 필요해진다. 이에 부응하기 위해서, 마이크로파에 의해 처리 용기 내에서 표면파 플라즈마를 생성하고, 이에 의해 반도체 웨이퍼(이하, 「웨이퍼」라고 함)를 플라즈마 처리하는 장치가 제안되어 있다(예를 들어, 특허문헌 1).
특허문헌 1에서는, 마이크로파를 동축 관으로 전송시켜서 처리 용기 내에 방사하고, 마이크로파의 표면파가 갖는 전계 에너지에 의해 플라즈마 발생용 가스를 여기시킴으로써, 저전자 온도에서 고플라즈마 밀도의 표면파 플라즈마를 발생시키는 플라즈마 처리 장치가 제안되어 있다.
그러나, 특허문헌 1의 플라즈마 처리 장치에서는, 마이크로파를 동축 관으로부터 처리 용기 내에 방사하기 위해서, 그 천장부는, 표면파 플라즈마와 안테나 사이를 석영 등의 유전체판으로 끼운 구조로 되어 있고, 처리 가스는 처리 용기의 측벽으로부터 처리 용기 내에 공급되는 구조로 되어 있었다. 이와 같이, 가스를 천장부 이외로부터 공급하고 있었기 때문에, 가스의 흐름을 제어할 수 없어, 양호한 플라즈마 제어가 어려웠다.
따라서, 인용 문헌 2에서는, 안테나 아래에 다수의 가스 방출 구멍을 갖는 유전체로 이루어지는 샤워 플레이트를 설치하고, 이 샤워 플레이트를 통해서 처리 가스를 연직 하방으로 처리 용기 안으로 도입하는 기술이 제안되어 있다. 이에 의해, 처리 용기 안에 연직 방향의 가스류를 형성하여 처리 가스를 균일하게 공급하여, 균일한 플라즈마가 형성된다.
그런데, 본 발명자들에 의하면, 예를 들어 인용 문헌 2와 같은 안테나 및 샤워 플레이트를 갖는 플라즈마 처리 장치에 의해, 예를 들어 웨이퍼에 성막 처리를 행하면, 샤워 플레이트의 구멍의 내부에도 성막되어 버리는 것이 확인되었다. 그렇게 하면, 구멍의 내부에의 성막에 의해 샤워 플레이트의 구멍을 막을 우려가 있다.
이것은, 표면파 플라즈마에 의해, 샤워 플레이트 근방의 영역에서의 플라즈마의 전자 온도가, 샤워 플레이트의 표면으로부터 이격된 위치의 전자 온도보다 높아지는 것이 원인이라고 추정된다. 그 때문에, 성막 처리에 있어서, 예를 들어 모노실란 가스(SiH4) 등의 원료 가스가 샤워 플레이트 근방에서 과잉으로 분해된다. 그 결과, 샤워 플레이트의 구멍 부분에 성막 퇴적하거나, 기상 반응하거나 해서 티끌의 원인으로 된다.
이 점에 대해서 본 발명자들이 조사한 바, 샤워 플레이트에 형성된 마이크로파의 방사 구멍(슬롯)의 근방에 있어서 특히 전자 온도가 높아지고 있는 것이 확인되었다. 그 때문에, 원료 가스의 과잉의 분해는, 그 대다수가 샤워 플레이트에 형성된 슬롯의 근방에 있어서 발생하고 있는 것이라 추정된다.
원료 가스의 과잉의 분해를 방지하기 위해서는, 안테나에 공급하는 마이크로파의 출력을 저하시키면 된다. 그러나, 마이크로파의 출력을 저하시키면 플라즈마 발생용 가스의 여기가 불충분하게 되어, 안정된 플라즈마를 형성할 수 없다고 하는 문제가 있다. 또한, 생산성의 관점에서도, 플라즈마 발생용 가스를 효율적으로 여기하여, 예를 들어 성막 처리에 있어서의 성막 레이트를 향상시키는 것이 요망된다.
본 발명은 이러한 점을 감안하여 이루어진 것으로, 처리 용기 내에 가스를 도입하는 샤워 플레이트를 갖고, 마이크로파에 의해 표면파 플라즈마를 발생시키는 플라즈마 처리 장치에 있어서, 샤워 플레이트의 가스 구멍에 성막하는 것을 억제하고 또한 효율적으로 플라즈마를 발생시키는 것을 목적으로 하고 있다.
상기 목적을 달성하기 위해서, 본 발명은 처리 용기 내에 제1 가스와 제2 가스를 공급하는 샤워 플레이트를 구비한 플라즈마 발생용 안테나를 갖고, 마이크로파의 공급에 의해 상기 샤워 플레이트 표면에 형성된 표면파에 의해 플라즈마를 형성하여 기판을 처리하는 플라즈마 처리 장치로서, 상기 샤워 플레이트의 하단면으로부터 하방으로 돌출되고, 도전체에 의해 구성된 수하 부재를 갖고, 상기 수하 부재의 외측면은, 상단부로부터 하단부를 향해서 외측으로 퍼지고, 상기 샤워 플레이트는, 상기 처리 용기 안으로 제1 가스를 공급하는 복수의 제1 가스 공급구와 제2 가스를 공급하는 복수의 제2 가스 공급구를 구비하고, 상기 제1 가스 공급구는, 상기 수하 부재의 외측면보다 내측에 배치되고, 상기 제2 가스 공급구는, 상기 수하 부재의 외측면보다 외측에 배치되어 있다.
본 발명에 따르면, 수하 부재의 외측면보다 내측에 제1 가스 공급구가 형성되어 있기 때문에, 제1 가스가, 샤워 플레이트 외주부의 전자 온도가 높은 영역을 통과하는 일이 없다. 따라서, 예를 들어 제2 가스로서 원료 가스를 사용하더라도, 그 원료 가스가 표면파 플라즈마에 의해 과잉으로 분해되는 것을 피할 수 있다. 그 결과, 샤워 플레이트의 가스 구멍에의 반응 생성과 기상 반응에 의한 퇴적물을 억제할 수 있다. 또한, 수하 부재의 외측면이 상단부로부터 하단부를 향해서 외측으로 퍼지고 있으므로, 그 수하 부재의 외측면에서 마이크로파가 가로 방향이나 비스듬한 상 방향으로 반사된다. 그 결과, 수하 부재의 외측면 근방에 있어서의 전계 강도가 높아져서, 제2 가스 공급구로부터 공급되는 제2 가스를 효율적으로 여기하여 플라즈마를 발생시킬 수 있다.
본 발명에 따르면, 처리 용기 안에 가스를 도입하는 샤워 플레이트를 갖고, 마이크로파에 의해 표면파 플라즈마를 발생시키는 플라즈마 처리 장치에 있어서, 샤워 플레이트의 가스 구멍에의 반응 생성과 기상 반응에 의한 퇴적물을 억제함과 함께, 효율적으로 플라즈마를 발생시킬 수 있다.
도 1은 본 실시 형태에 따른 플라즈마 처리 장치의 구성 개략을 도시하는 종단면도이다.
도 2는 마이크로파의 출력측의 기구를 도시한 도면이다.
도 3은 마이크로파 전송 기구의 구성을 모식적으로 도시하는 평면도이다.
도 4는 마이크로파 도입 기구 근방의 구성 개략을 나타내는 확대 종단면도이다.
도 5는 수하 부재 근방의 구성 개략을 도시하는 사시도이다.
도 6은 종래의 샤워 플레이트 근방에 있어서의 전자 온도의 분포를 도시하는 설명도이다.
도 7은 종래의 샤워 플레이트의 근방에 있어서의 전계 강도의 분포를 도시하는 설명도이다.
도 8은 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전계 강도의 분포를 도시하는 설명도이다.
도 9는 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전자 온도의 분포를 도시하는 설명도이다.
도 10은 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전자 밀도의 분포를 도시하는 설명도이다.
도 11은 다른 실시 형태에 따른 플라즈마 처리 장치의 구성의 개략을 도시하는 종단면도이다.
도 12는 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 측면도이다.
도 13은 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 측면도이다.
도 14는 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 종단면도이다.
도 15는 수하 부재의 하면에 있어서의 전계 강도 분포의 실측값이다.
도 16은 수하 부재의 하면에 있어서의 표면파의 전파 모델이다.
도 17은 수하 부재의 하면에 있어서의 표면파를 나타내는 베셀 방정식이다.
도 18은 베셀 방정식의 해로서 얻어지는 베셀 함수이다.
도 19는 수하 부재의 하면에 있어서의 전계 강도 분포의 이론값 및 실측값이다.
도 20은 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 설명도이다.
도 2는 마이크로파의 출력측의 기구를 도시한 도면이다.
도 3은 마이크로파 전송 기구의 구성을 모식적으로 도시하는 평면도이다.
도 4는 마이크로파 도입 기구 근방의 구성 개략을 나타내는 확대 종단면도이다.
도 5는 수하 부재 근방의 구성 개략을 도시하는 사시도이다.
도 6은 종래의 샤워 플레이트 근방에 있어서의 전자 온도의 분포를 도시하는 설명도이다.
도 7은 종래의 샤워 플레이트의 근방에 있어서의 전계 강도의 분포를 도시하는 설명도이다.
도 8은 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전계 강도의 분포를 도시하는 설명도이다.
도 9는 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전자 온도의 분포를 도시하는 설명도이다.
도 10은 수하 부재를 구비한 샤워 플레이트의 근방에 있어서의 전자 밀도의 분포를 도시하는 설명도이다.
도 11은 다른 실시 형태에 따른 플라즈마 처리 장치의 구성의 개략을 도시하는 종단면도이다.
도 12는 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 측면도이다.
도 13은 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 측면도이다.
도 14는 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 종단면도이다.
도 15는 수하 부재의 하면에 있어서의 전계 강도 분포의 실측값이다.
도 16은 수하 부재의 하면에 있어서의 표면파의 전파 모델이다.
도 17은 수하 부재의 하면에 있어서의 표면파를 나타내는 베셀 방정식이다.
도 18은 베셀 방정식의 해로서 얻어지는 베셀 함수이다.
도 19는 수하 부재의 하면에 있어서의 전계 강도 분포의 이론값 및 실측값이다.
도 20은 다른 실시 형태에 따른 수하 부재의 구성 개략을 도시하는 설명도이다.
이하에 첨부 도면을 참조하면서, 본 발명의 실시 형태에 대해서 상세하게 설명한다. 또한, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는, 동일한 번호를 붙임으로써 중복 설명을 생략한다.
우선, 본 실시 형태에 따른 플라즈마 처리 장치의 전체 구성에 대해서, 도 1을 참조하면서 설명한다. 도 1은 플라즈마 처리 장치(1)를 개략적으로 나타낸 종단면도이다.
본 실시 형태에서는, 반도체 웨이퍼(W)(이하, 웨이퍼(W)라 칭함)에 플라즈마 처리로서 성막 처리를 실시하는 CVD 장치를 예로 들어 플라즈마 처리 장치(1)를 설명한다. 플라즈마 처리 장치(1)는, 기밀하게 유지된 내부에서 웨이퍼(W)를 플라즈마 처리하는 처리 용기(10)를 갖고 있다. 처리 용기(10)는, 상면이 개구된 대략 원통 형상이며, 예를 들어 알루미늄 등의 금속으로 형성되어 있다. 이 처리 용기(10)는 접지되어 있다.
처리 용기(10)의 저부에는, 웨이퍼(W)를 적재하는 서셉터(11)가 설치되어 있다. 서셉터(11)는, 절연체(12a)를 통해서 지지 부재(12)에 의해 지지되고, 처리 용기(10)의 저부에 설치되어 있다. 이에 의해, 서셉터(11)는, 전기적으로 처리 용기(10)는 절연된 상태로 되어 있다. 서셉터(11) 및 지지 부재(12)의 재료로서는, 표면을 알루마이트 처리(양극 산화 처리)한 알루미늄 등을 들 수 있다.
서셉터(11)에는, 정합기(13)를 통해서 바이어스용 고주파 전원(14)이 접속되어 있다. 고주파 전원(14)은, 서셉터(11)에 바이어스용 고주파 전력을 인가한다. 이에 의해, 웨이퍼(W)측에 플라즈마 중의 이온이 인입된다. 또한, 도시하지 않았지만, 서셉터(11)에는, 웨이퍼(W)를 정전 흡착하기 위한 정전 척, 온도 제어 기구, 웨이퍼(W)의 이면에 열전달용 가스를 공급하기 위한 가스 유로, 웨이퍼(W)를 반송할 때 승강하는 승강 핀 등이 설치되어도 된다.
처리 용기(10)의 저부에는 배기구(15)가 형성되고, 배기구(15)에는 진공 펌프를 포함하는 배기 장치(16)가 접속되어 있다. 배기 장치(16)를 작동시키면, 처리 용기(10)의 내부가 배기되어, 처리 용기(10) 내가 원하는 진공도까지 감압된다. 또한, 처리 용기(10)의 측벽에는, 반입출구(17)가 형성되고, 반입출구(17)를 개폐 가능한 게이트 밸브(18)의 개폐에 의해, 웨이퍼(W)가 반입출된다.
서셉터(11)의 상방에는, 처리 용기(10) 내에 가스를 공급하면서, 마이크로파의 공급이 가능한 플라즈마 발생용 안테나(20)(이하, 「안테나(20)」라고 함)가 장착되어 있다. 안테나(20)는 처리 용기(10) 상부의 개구를 막도록 설치되어 있다. 이에 의해, 서셉터(11)와 안테나(20) 사이에 플라즈마 공간 U가 형성된다. 안테나(20)의 상부에는, 마이크로파를 전송하는 마이크로파 전송 기구(30)가 연결되어, 마이크로파 출력부(40)로부터 출력된 마이크로파를 안테나(20)에 전달하도록 되어 있다.
플라즈마 처리 장치(1)에는, 도 1에 도시한 바와 같이 제어부(500)가 설치되어 있다. 제어부(500)는, 예를 들어 컴퓨터이며, 프로그램 저장부(도시하지 않음)를 갖고 있다. 프로그램 저장부에는, 플라즈마 처리 장치(1)에 있어서의 웨이퍼(W)의 처리를 제어하는 프로그램이 저장되어 있다. 또한, 상기 프로그램은, 예를 들어 컴퓨터 판독 가능한 하드 디스크(HD), 플렉시블 디스크(FD), 콤팩트 디스크(CD), 마그네트 옵티컬 디스크(MO), 메모리 카드 등의 컴퓨터에 판독 가능한 기억 매체에 기록되어 있던 것으로서, 그 기억 매체로부터 제어부(500)에 인스톨된 것이어도 된다.
이어서, 도 2를 참조하면서, 마이크로파 출력부(40) 및 마이크로파 전송 기구(30)의 구성에 대해서 설명한다.
마이크로파 출력부(40)는, 마이크로파용 전원(41), 마이크로파 발진기(42), 증폭기(43) 및 증폭된 마이크로파를 복수로 분배하는 분배기(44)를 갖고 있다. 마이크로파용 전원(41)은, 마이크로파 발진기(42)에 대하여 전력을 공급한다. 마이크로파 발진기(42)는, 예를 들어 860㎒의 소정 주파수의 마이크로파를 PLL 발진시킨다. 증폭기(43)는, 발진된 마이크로파를 증폭한다. 분배기(44)는 마이크로파의 손실이 가능한 한 일어나지 않도록, 입력측과 출력측의 임피던스 정합을 취하면서, 증폭기(43)에서 증폭된 마이크로파를 분배한다.
마이크로파 전송 기구(30)는, 분배기(44)에서 분배된 마이크로파를 처리 용기 안으로 유도하는 복수의 안테나 모듈(50)과 마이크로파 도입 기구(51)를 갖고 있다. 또한, 도 2에서는, 마이크로파 전송 기구(30)가 2개의 안테나 모듈(50)과 2개의 마이크로파 도입 기구(51)를 구비하고 있는 상태를 모식적으로 묘사하여 도시하고 있지만, 본 실시 형태에서는, 예를 들어 도 3에 도시한 바와 같이, 마이크로파 전송 기구(30)는 안테나 모듈(50)을 예를 들어 7개 갖고 있으며, 6개의 안테나 모듈(50)이 동일 원주 형상으로, 그 중심에 1개의 안테나 모듈(50)이 안테나(20)의 상부에 배치되어 있다.
안테나 모듈(50)은, 위상기(52), 가변 게인 앰프(53), 메인 증폭기(54) 및 아이솔레이터(55)를 갖고 있고, 마이크로파 출력부(40)로부터 출력된 마이크로파를 마이크로파 도입 기구(51)로 전송한다.
위상기(52)는, 마이크로파의 위상을 변화시키도록 구성되고, 이것을 조정함으로써 마이크로파의 방사 특성을 변조시킬 수 있다. 이에 의하면, 지향성을 제어해서 플라즈마 분포를 변화시킬 수 있다. 또한, 이러한 방사 특성의 변조가 불필요한 경우에는 위상기(52)는 설치할 필요는 없다.
가변 게인 앰프(53)는, 메인 증폭기(54)에 입력하는 마이크로파의 전력 레벨을 조정하여, 플라즈마 강도의 조정을 행한다. 메인 증폭기(54)는, 솔리드 스테이트 앰프를 구성한다. 솔리드 스테이트 앰프는, 도시하지 않은 입력 정합 회로, 반도체 증폭 소자, 출력 정합 회로 및 고Q 공진 회로를 갖는 구성으로 할 수 있다.
아이솔레이터(55)는, 안테나(20)에서 반사해서 메인 증폭기(54)로 되돌아오는 마이크로파의 반사파를 분리하는 것이며, 써큐레이터와 더미 로드(동축 종단기)를 갖고 있다. 써큐레이터는, 안테나(20)에서 반사한 마이크로파를 더미 로드로 유도하고, 더미 로드는, 써큐레이터에 의해 유도된 마이크로파의 반사파를 열로 변환한다.
이어서, 마이크로파 도입 기구(51) 및 플라즈마 발생용 안테나(20)의 구성에 대해서 도 4를 참조하면서 설명한다. 도 4는, 본 실시 형태에 따른 마이크로파 도입 기구(51) 및 안테나(20)의 예를 들어 좌측 절반의 구성의 개략을 확대해서 나타낸 종단면도이다.
마이크로파 도입 기구(51)는, 동축 관(60) 및 지파판(70)을 갖고 있다. 동축 관(60)은, 통형상의 외부 도체(60a) 및 그 중심에 설치된 막대 형상의 내부 도체(60b)로 이루어지는 동축형의 도파관을 갖고 있다. 동축 관(60)의 하단에는, 지파판(70)을 개재하여 안테나(20)가 설치되어 있다. 동축 관(60)은, 내부 도체(60b)가 급전측, 외부 도체(60a)가 접지측으로 되어 있다. 동축 관(60)에는, 튜너(80)가 설치되어 있다. 튜너(80)는, 예를 들어 2개의 슬래그(80a)를 갖고, 슬래그 튜너를 구성하고 있다. 슬래그(80a)는 유전 부재의 판상체로서 구성되어 있고, 동축 관(60)의 내부 도체(60b)와 외부 도체(60a) 사이에 원환상으로 설치되어 있다. 튜너(80)는, 후술하는 제어부(500)로부터의 명령에 기초하여, 도시하지 않은 구동 기구에 의해 슬래그(80a)를 상하 이동시킴으로써, 동축 관(60)의 임피던스를 조정하도록 되어 있다.
지파판(70)은, 동축 관(60)의 하면에 인접해서 설치되어 있다. 지파판(70)은, 원판 형상의 유전체 부재로 형성되어 있다. 지파판(70)은, 동축 관(60)을 따라 전송한 마이크로파를 투과하여, 안테나(20)로 유도한다.
안테나(20)는, 샤워 플레이트(100)를 갖고 있다. 샤워 플레이트(100)는, 지파판(70)의 하면에 인접해서 설치되어 있다. 샤워 플레이트(100)는, 지파판(70)보다 직경이 큰 대략 원반 형상이며, 알루미늄이나 구리 등의 전기 전도율이 높은 도전체에 의해 형성되어 있다. 샤워 플레이트(100)는, 처리 용기(10)의 플라즈마 공간 U측으로 노출되고, 노출된 하면에 표면파를 전파시킨다. 여기에서는, 샤워 플레이트(100)의 금속면이 플라즈마 공간 U측으로 노출되어 있다. 이와 같이 노출된 하면에 전파하는 표면파를 이하, 금속 표면파라고 한다.
샤워 플레이트(100)의 하면이며, 동축 관(60)의 하방에 대응하는 위치에는, 하방, 즉 플라즈마 공간 U측으로 돌출된 수하 부재(101)가 설치되어 있다. 수하 부재(101)는, 원형의 저면 형상을 갖는 대략 원뿔대 형상이며, 샤워 플레이트(100)와 마찬가지로, 알루미늄이나 구리 등의 전기 전도율이 높은 도전체에 의해 형성되어 있다. 수하 부재(101)의 외측면은, 예를 들어 그 상단면부터 하단면을 향해서 점차 외측으로 퍼지는, 예를 들어 샤워 플레이트(100)와 수하 부재(101)의 외측면의 접점을 원점으로 하는 포물선 형상을 갖고 있다.
샤워 플레이트(100)는, 대략 원반 형상의 상부 플레이트(110)와, 마찬가지로 대략 원반 형상의 하부 플레이트(120)를 상하로 겹친 구성으로 되어 있다. 상부 플레이트(110)에는, 그 상면을 관통하고, 그 상부 플레이트(110)의 직경 방향으로 가스를 유통시키는 가스 유로(130)가 형성되어 있다. 가스 유로(130)에는, 제1 가스를 공급하는 제1 가스 공급원(131)이 공급관(132)을 통해서 접속되어 있다. 또한, 제1 가스는, 복수의 종류의 가스여도 되고, 또한 그들의 혼합 가스여도 된다. 제1 가스로서는, 원료 가스로서의 예를 들어 모노실란 가스(SiH4) 등이 사용된다. 상부 플레이트(110)의 하면이며 수하 부재(101)의 외측면보다 내측의 위치에는, 가스 유로(130)에 연통하는 복수의 제1 가스 공급구(133)가 연직 상방으로 연신해서 형성되어 있다. 또한, 상부 플레이트(110)의 제1 가스 공급구(133)와는 다른 위치에는, 마이크로파를 통과시키는 마이크로파 방사 구멍으로서의 슬롯(220)이 복수 형성되어 있다. 또한, 상기 슬롯(220)의 중심으로부터 연직 하방을 향해서 그은 가상선이, 수하 부재(101)의 외측면과 교차하도록, 수하 부재(101)의 형상과 슬롯(220)의 배치가 설정되어 있는 것이 바람직하다. 바꾸어 말하면, 평면에서 볼 때, 슬롯(220)의 중심이, 수하 부재(101) 하면의 외주 단부보다 내측에 위치하도록, 슬롯(220)이 배치되어 있는 것이 바람직하다.
하부 플레이트(120)에 있어서의, 상부 플레이트(110)의 각 제1 가스 공급구(133)에 대응하는 위치에는, 그 하부 플레이트(120)를 상하 방향으로 관통하는 관통 구멍(150)이 각각 형성되어 있다. 이에 의해, 제1 가스 공급구(133)로부터 공급되는 제1 가스는 관통 구멍(150)을 지나서 하부 플레이트(120)의 하단면에 도달할 수 있다. 또한, 하부 플레이트(120)에 있어서의, 상부 플레이트(110)의 슬롯(220)에 대응하는 위치에는, 상부 플레이트(110)와 마찬가지로, 슬롯(220)이 형성되어 있다.
수하 부재(101)의 내부이며 각 관통 구멍(150)의 하단에 대응하는 위치에는, 그 수하 부재(101)의 상단면부터 하단면으로 연통하는 관통 구멍(160)이 각각 형성되어 있다. 또한, 수하 부재(101)는, 하부 플레이트(120)의 하단으로부터 연직 하방으로 소정의 길이 L만큼 돌출되어 설치되어 있다. 따라서, 제1 가스 공급원(131)으로부터 가스 유로(130)에 공급된 제1 가스는, 이 복수의 관통 구멍(160)을 지나서, 하부 플레이트(120)보다 소정의 길이 L만큼 낮은 위치로부터 처리 용기(10)의 플라즈마 공간 U에 도입된다.
또한, 하부 플레이트(120)에는, 그 측면을 관통하고, 그 하부 플레이트(120)의 직경 방향으로 가스를 유통시키는 가스 유로(140)가 형성되어 있다. 가스 유로(140)에는, 제2 가스를 공급하는 제2 가스 공급원(141)이 공급관(142)을 통해서 접속되어 있다. 제2 가스로서는, 플라즈마 발생용의 예를 들어 질소 가스, 아르곤 가스, 수소 가스, 또는 이들 가스를 혼합한 가스 등이 사용된다. 또한, 가스 유로(140)를 유통하는 가스와 가스 유로(130)를 유통하는 가스가 샤워 플레이트(100) 내에서 혼합하는 일이 없도록, 가스 유로(140)는 가스 유로(130)와는 완전히 독립해서 설치되어 있다.
하부 플레이트(120)의 하면이며 수하 부재(101)의 외측면보다 외측의 위치이고 또한 슬롯(220)과는 다른 위치에는, 가스 유로(140)에 연통하는 복수의 제2 가스 공급구(151)가 연직 상방으로 연신해서 형성되어 있다. 제2 가스 공급원(141)으로부터 가스 유로(140)에 공급된 제2 가스는 각 제2 가스 공급구(151)를 지나서, 하부 플레이트(120)의 하면으로부터 처리 용기(10)의 플라즈마 공간 U에 도입된다.
상술한 복수의 슬롯(220)은, 가스의 공급 경로인 가스 유로(130, 140), 복수의 제1 가스 공급구(133), 제2 가스 공급구(151) 및 관통 구멍(150, 160)과는 다른 위치에 설치되고, 샤워 플레이트(100)의 직경 방향에 대하여 수직인 방향으로 관통하고 있다. 슬롯(220)의 일단은 지파판(70)에 인접하고, 타단은 처리 용기(10)의 플라즈마 공간 U측에 개구되어 있다. 마이크로파는, 동축 관(60)을 전파하고, 지파판(70)을 투과한 후, 복수의 슬롯(220)으로 인도되어 처리 용기(10) 내에 방사된다. 또한, 슬롯(220)의 내부를 석영 등의 유전체로 채우는 구조로 해도 된다.
관통 구멍(160) 및 제2 가스 공급구(151)의 직경은, 처리 용기(10) 안으로 방사된 마이크로파가 그 관통 구멍(160) 및 제2 가스 공급구(151)의 내부로 인입하지 않는 크기로 되어 있다. 본 실시 형태에서는, 예를 들어 0.6㎜이다. 또한, 슬롯(220)과 제1 가스 공급구(133), 제2 가스 공급구(151) 및 관통 구멍(150, 160)는 샤워 플레이트(100) 내에서 완전히 분리되어 있다. 이에 의해, 제1 가스 공급구(133), 제2 가스 공급구(151)나 관통 구멍(150, 160)에서의 이상 방전을 방지할 수 있다.
또한, 지파판(70), 상부 플레이트(110) 및 하부 플레이트(120)의 접촉면은, 각각 도시하지 않은 O링에 의해 시일되어 있다. 이에 의해, 처리 용기(10)나 슬롯(220)의 내부를 진공 상태로 함과 함께, 샤워 플레이트(100) 내에서 제1 가스와 제2 가스가 혼합하는 것을 피할 수 있다.
또한, 샤워 플레이트(100)의 플라즈마측에 노출된 면, 즉 하부 플레이트(120)의 하면 및 수하 부재(101)의 표면은, 용사에 의해 예를 들어 알루미나(Al2O3)나 이트리아(Y2O3)의 피막(도시하지 않음)으로 덮여 있어도 된다. 그에 의해, 도체면이 플라즈마 공간측에 노출되지 않도록 해도 된다.
도 5는 수하 부재(101), 하부 플레이트(120)와, 제2 가스 공급구(151) 및 수하 부재(101)에 형성된 관통 구멍(160)의 개략적인 위치 관계의 일례를 나타내는 것으로, 수하 부재(101) 근방을 비스듬히 하방에서 본 상태를 나타낸 사시도이다. 또한, 도 5에서는, 슬롯(220)에 대해서는, 그 기재를 생략하고 있다. 예를 들어 도 5에 도시한 바와 같이, 수하 부재(101)에 형성된 관통 구멍(160)은, 그 수하 부재(101)의 중앙부 근방에 동심원 형상으로 복수 배치되어 있다. 또한, 상술한 바와 같이, 제1 가스 공급구(133) 및 관통 구멍(150)은, 관통 구멍(160)에 대응하는 위치에 형성되어 있다. 그 때문에, 본 실시 형태에 있어서는, 제1 가스 공급구(133) 및 관통 구멍(150)도, 예를 들어 도 5에 도시한 바와 같이 수하 부재(101)과 동심원 형상의 배치로 되어 있다. 제2 가스 공급구(151)는, 수하 부재(101)의 상단부와 예를 들어 동심원 형상으로 복수 배치되어 있다. 또한, 도 5에서는, 제2 가스 공급구(151)는, 수하 부재(101)를 하방에서 본 경우, 수하 부재(101)에 덮여서 시인할 수 없는 위치에 배치되어 있지만, 반드시 수하 부재(101)에 의해 시인할 수 없는 위치에 배치할 필요는 없다.
이어서, 샤워 플레이트(100) 및 수하 부재(101) 근방의 구성에 대해서, 본 발명의 원리와 더불어 설명한다. 마이크로파를 사용한 플라즈마 처리에 있어서, 웨이퍼(W)에 성막할 때에 원료 가스로서 사용되는, 예를 들어 모노실란(SiH4)을 SiH3으로 분해하기 위해서는, 약 8.75eV 이상의 에너지가 필요하게 된다. 그 한편으로, 플라즈마 발생용 가스로서 사용되는, 예를 들어 질소 가스는, 그 결합 에너지가 약 9.91eV이다. 즉, 질소 가스를 여기해서 질소 플라즈마나 질소 라디칼을 생성하기 위해서는, 약 9.91eV 이상의 에너지를 부여할 필요가 있다. 따라서, 이러한 경우의 마이크로파 플라즈마 처리에 있어서 안테나(20)로 공급하는 마이크로파의 출력은, 보다 높은 에너지, 즉 플라즈마 발생용 가스를 여기하기 위한 에너지를 기준으로 해서 결정된다. 여기서, 금속 표면파를 사용한 마이크로파 플라즈마 처리(특히 에바네센트파를 응용한 표면파에 의한 플라즈마 처리)에 있어서는, 통상 안테나(20)의 하단면 근방, 예를 들어 안테나 하면으로부터 대략 5㎜ 이내의 영역은, 안테나 하면으로부터 대략 5㎜ 이상 이격된 영역과 비교해서 전자 온도가 높아진다.
또한, 본 발명자들이 조사한 바, 전자 온도는, 샤워 플레이트(100)에 형성된 슬롯(220)의 근방에서 특히 높아지는 것이 확인되었다. 도 6에 슬롯(220)이 외주부에 형성된 샤워 플레이트(100) 근방에 있어서의 전자 온도의 분포를 나타낸다. 도 6의 종축은, 처리 용기(10) 내에 있어서의 높이, 횡축은 동축 관(60)의 중심축으로부터의 수평 방향의 거리이다. 또한, 도 6에서는, 슬롯(220)의 중심이 동축 관(60)의 중심축으로부터 대략 35㎜인 경우의 전자 온도 분포에 대해서 묘사하여 도시하고 있다. 또한, 도 6에 나타내는 파선은, 전자 온도가 1eV로 되는 경계선이다. 도 6에서는, 상기 파선보다 슬롯(220)에 치우친 영역 X(슬롯(220)을 중심으로 해서, 대략 반경 35mm 정도의 영역)에서는 전자 온도가 1eV보다 높게 되어 있어, 슬롯(220)의 근방이 고전자 온도의 영역이 되어 있는 것을 나타내고 있다. 즉, 상기 영역 X에 있어서는 플라즈마 발생용 가스 및 원료 가스가 활발하게 전리한다. 그 때문에, 종래와 같이, 샤워 플레이트로부터 플라즈마 발생용 가스로서 질소 가스와, 원료 가스로서 모노실란 가스의 양쪽을 공급하면, 질소 가스는 전자 온도가 높은 영역 X에 있어서는 분해되어 질소 이온, 질소 원자 라디칼, 질소 원자로 되지만, 전자 온도가 낮은 영역에서는 에너지가 충분하지 않기 때문에, 반응성이 높은 원자 형상 질소는 거의 생성되지 않는다. 그 한편, 모노실란 가스는, 영역 X의 외측에 있어서도 SiH3으로 분해되지만, 전자 온도가 높아지는 영역 X에 있어서 SiH2, SiH가 많이 생성되기 때문에, 이 영역 X에서 SiH2, SiH가 과잉으로 생성되어 실리콘이 성막되어, 샤워 플레이트의 가스 공급구에 퇴적되어 버렸다.
반응 생성과 기상 반응에 의한 퇴적물을 억제하기 위해서는 안테나(20)에 공급하는 마이크로파의 출력을 낮추고, 그에 의해 영역 X에 있어서의 전자 온도를 저하시키면 된다. 그러나, SiH2, SiH의 과잉 생성을 방지하는 것을 목적으로 해서 마이크로파의 출력을 낮추면, 플라즈마 발생용 가스를 분해하기 위한 소정의 전자 온도를 얻지 못하게 된다. 그 때문에, 마이크로파의 출력을 낮추는 것에도 한계가 있다.
따라서, 본 발명자들은, 가스 공급구에 퇴적되는 불필요한 반응 생성과 기상 반응에 의한 퇴적물을 억제하기 위해서, 샤워 플레이트(100)로부터 공급되는 원료 가스를, 전자 온도가 높은 영역 X를 통과시키지 않고 처리 용기(10) 내에 도입하는 방법에 대해서 예의 검토하였다. 단, 종래와 같이 처리 용기(10)의 측벽으로부터 처리 용기(10) 내에 원료 가스를 공급하면, 처리 용기(10) 내의 가스 흐름을 제어하는 것이 곤란해져서, 균일한 플라즈마를 얻지 못한다.
따라서 본 발명자들은, 샤워 플레이트(100)의 내부에서 플라즈마 발생용 가스와 원료 가스가 혼합되지 않도록 각각 개별로 가스 유로(130, 140)를 설치하고, 또한 플라즈마 발생용 가스를 영역 X 또는 영역 X의 근방에 공급하고, 그 한편으로 원료 가스를 영역 X로부터 이격된 장소에 각각 공급하면, 원료 가스의 과잉의 분해를 피할 수 있고 또한 플라즈마 발생용 가스를 효율적으로 여기할 수 있는 점에 착상하였다. 그리고 이 착상에 기초하여, 예를 들어 도 4에 도시한 바와 같은 수하 부재(101)를, 샤워 플레이트(100)의 하단에 설치하는 것에 상도하였다.
수하 부재(101)를, 샤워 플레이트(100)의 하단에 설치함에 있어서, 본 발명자들은 우선, 샤워 플레이트(100) 근방의 전계 강도에 대해서 조사하였다. 도 7 및 도 8에, 슬롯(220)이 외주부에 형성된 샤워 플레이트(100) 근방의 전계 강도의 분포 및 그 방향에 대해서 나타낸다. 도 7은 샤워 플레이트(100)만인 경우, 도 8은 샤워 플레이트(100)의 하단에 수하 부재(101)를 설치한 경우의 전계 강도 분포를 나타내고 있다. 도 7, 도 8의 삼각형의 크기는 전계 강도의 강도, 삼각형의 방향은 전계의 방향을 각각 나타내고 있다. 도 7에 도시한 바와 같이 수하 부재(101)를 설치하지 않은 샤워 플레이트(100)에 있어서는, 전계는 주로 하방으로 향하고 있지만, 수하 부재(101)를 설치함으로써, 도 8에 도시한 바와 같이, 수하 부재(101)의 외측면 근방에서 가로 방향의 전계 강도가 높아지는 것이 확인되었다. 이러한 점에서, 수하 부재(101)의 외측면 근방에서 고전자 온도가 얻어지는 것으로 추정된다. 이것은, 수하 부재(101)의 외측면이 상단부로부터 하단부를 향해서 외측으로 퍼지고 있으므로, 그 수하 부재(101)의 외측면에서 마이크로파가 가로 방향이나 비스듬한 상 방향으로 반사되어, 수하 부재(101)의 외측면 근방에 있어서 고에너지의 상태가 형성되어 있는 것이 원인이라고 생각된다.
이어서, 샤워 플레이트(100)에 수하 부재(101)를 설치한 경우의, 샤워 플레이트(100) 근방의 전자 온도의 분포를 도 9에 나타낸다. 또한, 도 9에 있어서도 동축 관(60)의 중심축과 슬롯(220)의 중심까지의 거리는, 도 6의 경우와 마찬가지로 대략 35㎜이며, 수하 부재(101)의 하면의 반경은 대략 45㎜이다. 수하 부재(101)를 설치함으로써, 전자 온도가 1eV 이상으로 되는 영역 X는, 슬롯(220)의 근방이고 또한 수하 부재(101)의 외측면에 분포하고, 수하 부재(101)의 하면에서는, 전자 온도는 대략 1eV 이하로 되는 것을 도 9에서 확인할 수 있다. 이것은, 상술한 바와 같이, 수하 부재(101)의 외측면이 상단부로부터 하단부를 향해서 외측으로 퍼지고 있으므로, 그 수하 부재(101)의 외측면에서 마이크로파가 가로 방향이나 비스듬한 상 방향으로 반사되고, 그에 의해 수하 부재의 외측면 근방에 있어서의 전계 강도가 높아지는 것이 원인이라고 추정된다.
따라서, 도 4에 도시한 바와 같이, 제2 가스 공급구(151)를 수하 부재(101)의 외측면의 외측에 배치하고, 제1 가스 공급구(133) 및 관통 구멍(150, 160)을 수하 부재(101)의 외측면보다 내측에 배치함으로써, 한쪽에서는, 영역 X에 플라즈마 발생용 가스를 집중적으로 공급하고, 다른 쪽에서는, 분해하기 쉬운 원료 가스를, 영역 X를 통과시키지 않고 처리 용기(10) 내에 도입할 수 있다. 이러한 경우, 원료 가스가 영역 X에서 과잉으로 분해되는 것을 억제할 수 있으므로, 원료 가스에 의한 전구체의 생성을 억제하여, 관통 구멍(160)이나 제2 가스 공급구(151)가 폐색되는 것을 방지할 수 있다.
또한, 수하 부재(101)를 설치한 경우의 샤워 플레이트(100) 근방의 전자 밀도에 대해서도 확인한 바, 도 10에 도시한 바와 같이, 슬롯(220)의 근방이고 또한 수하 부재(101)의 외측면 근방에 고밀도의 영역이 형성되어 있는 것이 확인되었다. 이러한 점에서도, 영역 X는 고에너지의 상태로 되어 있고, 그 영역 X에 있어서 플라즈마 발생용 가스가 효율적으로 여기되는 것을 확인할 수 있다.
여기서, 예를 들어 도 9에서 확인할 수 있듯이, 전자 온도가 높은 영역 X는, 수하 부재(101)의 외측면으로부터 외측 방향으로 분포되어 있고, 예를 들어 수하 부재를 하방에서 본 경우에, 수하 부재(101) 저면의 외측 위치에도 영역 X가 분포되어 있다. 그 때문에, 상술한 바와 같이, 제2 가스 공급구(151)는, 반드시 수하 부재(101)를 하방에서 본 경우에 수하 부재(101)에 덮여서 시인할 수 없는 위치에 설치할 필요는 없으며, 영역 X에 면한 위치에 설치되어 있으면 된다. 또한, 본 발명자들에 따르면, 예를 들어 본 실시 형태와 같이, 수하 부재(101)의 외측면이, 샤워 플레이트(100)의 하부 플레이트(120)와 수하 부재(101)의 접점을 원점으로 하는 포물선 형상을 갖는 경우, 그 포물선의 초점 근방에서 고에너지 상태로 되는 것이 확인되어 있다. 이러한 경우, 제2 가스 공급구(151)는 초점 근방에 면한 위치에 형성하는 것이 바람직하다.
또한, 하부 플레이트(120)에 돌기물인 수하 부재(101)를 설치함으로써, 그 수하 부재(101)에도 표면파가 전파함으로써, 플라즈마 공간 U에 있어서의 균일한 플라즈마의 생성이 저해될 가능성이 있다. 그 때문에, 수하 부재(101)의 길이 L은, 최대라도 처리 용기(10) 내에 도입하는 마이크로파의 파장 이하로 하는 것이 바람직하고, 파장의 1/2 이하로 하는 것이 더욱 바람직하다. 본 발명자들에 의하면, 이와 같이 수하 부재(101)의 길이 L을 설정함으로써, 수하 부재(101)에서의 표면파의 전파를 억제하여, 처리 용기(10) 내에 안정적으로 플라즈마를 생성할 수 있는 것이 확인되고 있다. 본 실시 형태에서는, 파장이 348.6㎜인 860㎒의 마이크로파를 사용하므로, 수하 부재(101)의 길이 L은 대략 10㎜ 내지 60㎜의 범위에서 설정하는 것이 바람직하고, 20㎜ 내지 40㎜의 범위에서 설정하는 것이 보다 바람직하다.
본 실시 형태에 따른 플라즈마 처리 장치(1)는 이상과 같은 지견에 기초하는 것이다. 이어서, 플라즈마 처리 장치(1)를 사용해서 행해지는 처리에 대해서, 웨이퍼(W)에 질화 실리콘막을 형성하는 경우를 예로 들어 설명한다.
먼저, 웨이퍼(W)를 처리 용기(10) 내에 반입하고, 서셉터(11) 위에 적재한다. 그리고, 제2 가스 공급원(141)으로부터, 플라즈마 발생용 가스로서 질소 가스, 아르곤 가스 및 수소 가스를 혼합한 가스를 샤워 플레이트(100)의 하부 플레이트(120)를 통해서 처리 용기(10) 내에 도입한다. 계속해서, 마이크로파가 마이크로파 출력부(40)로부터 출력되고, 마이크로파 전송 기구(30) 및 지파판(70), 슬롯(220)을 지나서 처리 용기(10) 내에 마이크로파가 도입된다. 이에 의해, 안테나(20) 및 수하 부재(101)의 표면에 형성된 금속 표면파에 의해 표면파 플라즈마가 생성된다. 이때, 슬롯(220)이 형성된 수하 부재(101)의 외측면 근방의 영역 X는 고에너지의 상태로 되어 있으므로, 수하 부재(101)의 외측면 근방에 형성된 제2 가스 공급구(151)로부터 공급되는 플라즈마 발생용 가스는, 이 영역 X에서 고에너지에 의해 여기되어, 효율적으로 질소 라디칼이 생성된다. 그와 더불어, 제1 가스 공급원(131)으로부터, 원료 가스로서의 모노실란 가스가 제1 가스 공급구(133), 관통 구멍(150, 160)을 통해서 처리 용기(10) 내에 도입된다.
처리 용기(10) 내에 도입된 모노실란 가스는, 플라즈마에 의해 여기되어 SiH3로 분해된다. 이때, 모노실란 가스는 수하 부재(101)의 저면으로부터 처리 용기(10)의 플라즈마 공간 U에 도입되므로, 모노실란 가스는 전자 온도가 높은 영역 X를 통과하는 일이 없다. 그 결과, 과잉의 SiH3에 의한 반응 생성과 기상 반응이 억제된다.
그리고, 질소 라디칼 및 SiH3는, 샤워 플레이트(100)로부터 웨이퍼(W)를 향하는 연직 하방의 가스 흐름에 수반하여 웨이퍼(W)의 표면에 도달하여, 웨이퍼(W) 상면에 질화 실리콘으로서 퇴적된다. 이에 의해, 웨이퍼(W)의 상면에 질화 실리콘막이 형성된다.
이상의 실시 형태에 따르면, 수하 부재(101)의 외측면보다 내측에 제1 가스 공급구(133)가 형성되어 있기 때문에, 제1 가스가, 샤워 플레이트(100)에 형성된 슬롯(220) 근방의 전자 온도가 높은 영역 X를 통과하는 일이 없다. 따라서, 모노실란 가스가 표면파 플라즈마에 의해 과잉으로 분해되는 것을 피할 수 있다. 그 결과, 샤워 플레이트(100)를 사용해서 웨이퍼(W)에 플라즈마 처리를 실시함에 있어서, 샤워 플레이트(100)의 관통 구멍(160)이나 제2 가스 공급구(151)와 같은 가스 구멍에 반응 생성과 기상 반응에 의한 퇴적물, 본 실시 형태에서는 실리콘막이 성막되는 것을 억제할 수 있다.
또한, 수하 부재(101)의 외측면이 포물선 형상을 갖고 또한 슬롯(220)의 중심으로부터 연직 하방을 향해서 그은 가상선과 이 포물선이 교차하도록 수하 부재(101)의 형상과 슬롯(220)의 배치가 설정되어 있으므로, 그 수하 부재(101)의 외측면에서 마이크로파가 가로 방향이나 비스듬한 상 방향으로 반사된다. 그 때문에, 수하 부재(101)의 외측면 근방에 있어서의 전계 강도가 높아져, 수하 부재(101)의 외측면에 고에너지 상태의 영역 X가 형성된다. 그 결과, 제2 가스 공급구로부터 공급되는 제2 가스는, 영역 X에 있어서 효율적으로 여기되므로, 효율적으로 플라즈마를 발생시킬 수 있다. 또한, 슬롯(220)과 수하 부재(101)의 위치 관계는, 반드시 본 실시 형태의 내용에 한정되는 것은 아니고, 슬롯(220)이 수하 부재(101) 외측면의 포물선 형상의 외측에 위치해 있더라도, 슬롯(220)으로부터 도입되는 마이크로파는 수하 부재(101)의 외측면에 의해 반사되므로, 수하 부재(101)의 외측면 근방에 전계 강도가 높은 영역을 형성할 수 있다.
또한, 본 실시 형태에 의하면, 샤워 플레이트(100)의 하면에 수하 부재(101)를 설치함으로써, 예를 들어 도 8에 도시한 바와 같이, 수하 부재(101)의 외측면 근방에서 가로 방향의 전계 강도가 높아진다. 여기서, 수하 부재(101)를 설치하지 않은 종래의 샤워 플레이트에 있어서는, 예를 들어 도 7에 도시한 바와 같이, 그 샤워 플레이트로부터 가로 방향으로의 전계의 확대가 크지 않고, 동축 관(60)의 하방에 대응하는 영역의 전계 강도는, 그 이외의 영역의 전계 강도보다 상대적으로 높아지는 경향이 있었다. 그 결과, 처리 용기 내의 전계 강도가 불균일해져서, 플라즈마 처리의 균일성에는 한계가 있었다. 이러한 점에서, 본 실시 형태와 같이 수하 부재(101)를 설치함으로써, 가로 방향의 전계 강도를 높여서, 종래보다 전계 강도 분포를 균일화할 수 있다. 따라서, 본 실시 형태에 따른 플라즈마 처리 장치(1)에 의하면, 종래보다 균일성이 높은 플라즈마 처리를 행할 수 있다.
또한, 하부 플레이트(120)의 하면 근방은 표면파 플라즈마에 의해 고온이 되기 때문에, 가스 유로(140) 내를 유통하는 가스도 이 플라즈마의 열에 의해 온도 상승한다. 그 결과, 가스 유로(140) 내의 가스의 내부 에너지가 증가하여, 표면파 플라즈마에 의해 분해하기 쉬운 상태로 된다. 따라서, 분해하기 어려운 가스, 즉 이 경우에는 플라즈마 발생용 가스를 가스 유로(140) 내에 유통시키면, 표면파 플라즈마에 의한 분해를 촉진할 수 있다. 따라서, 플라즈마 발생용 가스를 공급하는 제2 가스 공급원(141)은 하부 플레이트(120)의 가스 유로(140)에 접속하는 것이 바람직하다.
또한, 이상의 실시 형태에서는, 제1 가스 공급구(133)는, 수하 부재(101)에 대응하는 위치에만 형성되어 있었지만, 제1 가스 공급구(133)는, 수하 부재(101)에 대응하는 위치 이외에 형성되어 있어도 되고, 예를 들어 도 11에 도시한 바와 같이, 샤워 플레이트(100)의 하면에, 제2 가스 공급구(151)와 제1 가스 공급구(133)가 대략 등간격으로 되도록 배치해도 된다. 또한, 하부 플레이트(120)의 제1 가스 공급구(133)에 대응하는 위치에는, 관통 구멍(150)이 형성된다. 이러한 경우, 하부 플레이트(120) 하면의 전자 온도가 높은 영역을 원료 가스인 제1 가스가 통과함으로써, 반응 생성과 기상 반응에 의한 퇴적물이 제2 가스 공급구(151)나 관통 구멍(150)과 같은 가스 구멍을 막는 것을 방지하기 때문에, 관통 구멍(150)의 하단에는 소정 길이의 공급 노즐(200)을 설치해도 된다. 또한, 도 11에서는, 공급 노즐(200)의 길이는 수하 부재(101)의 길이 L과 동등한 상태를 묘사하여 도시하고 있지만, 공급 노즐(200)의 길이는 본 실시 형태의 내용에 한정되는 것은 아니고, 예를 들어 상술한 바와 같이 샤워 플레이트(100)의 하면으로부터 대략 5mm 이내의, 전자 온도가 비교적 높은 영역을 통과하는 길이이면 임의로 설정할 수 있다. 또한, 돌기물인 공급 노즐(200)을 설치함으로써, 그 공급 노즐(200)에도 표면파가 전파해서 공진을 일으켜서, 플라즈마 공간 U에 있어서의 균일한 플라즈마의 생성이 저해될 가능성이 있다. 그 때문에, 공급 노즐(200)의 길이는, 처리 용기(10) 내에 도입하는 마이크로파의 파장의 1/16 내지 3/16 정도, 보다 바람직하게는 1/8 정도로 하는 것이 바람직하다.
또한, 이상의 실시 형태에서는, 수하 부재(101)의 외측면은 포물선 형상을 갖고 있었지만, 수하 부재(101)의 형상은, 본 실시 형태의 내용에 한정되는 것은 아니고, 외측면이, 상단부로부터 하단부를 향해서 외측으로 퍼지는 형상이면, 임의로 설정이 가능하다. 예를 들어, 도 12에 도시한 바와 같이, 외측면이 직선 형상으로 형성된, 대략 원뿔대 형상의 수하 부재(300)를 사용해도 되고, 예를 들어 도 13에 도시한 바와 같이, 외측면의 접선 방향이 서서히 경사 방향으로부터 연직 방향으로 변화하는 대략 2차 곡선 형상인 수하 부재(310)를 사용해도 된다. 본 발명에 의하면, 수하 부재(101)의 외측면이, 상단부부터 하단부를 향해서 외측으로 퍼지는 형상을 갖고 있으면, 수하 부재(101)의 외측면에서 마이크로파가 가로 방향이나 비스듬한 상 방향으로 반사되므로, 수하 부재(101)의 외측면 근방에 있어서 고에너지의 상태를 형성할 수 있다.
이상의 실시 형태에서는, 수하 부재(101)의 내부에 상하 방향으로 관통하는 관통 구멍(160)을 형성하고 있었지만, 관통 구멍(160)은 예를 들어 경사 방향으로 연신해 있어도 되고, 예를 들어 모노실란 가스와 같은 원료 가스가 과잉으로 분해되는 일이 없도록, 영역 X와 면하지 않는 위치에 형성되어 있으면, 그 형상은 임의로 설정할 수 있다. 또한, 예를 들어 도 14에 도시한 바와 같이, 수하 부재(101)의 내부에, 하부 플레이트(120)의 관통 구멍(150)과 연통하는 가스실(101a)을 형성하고, 그 가스실(101a)의 하방에 관통 구멍(160)을 형성하도록 해도 된다.
또한, 이상의 실시 형태에서는, 수하 부재(101)의 중앙부 근방에 복수의 관통 구멍(160)이 형성되어 있고, 제1 가스 공급구(133)도 그 관통 구멍(160)에 대응하는 위치에 형성되어 있었지만, 제1 가스 공급구(133) 및 관통 구멍(160)은 본 실시 형태의 내용에 한정되지 않는다. 원료 가스로서의 모노실란 가스의 과잉의 분해를 억제한다는 관점에서는, 수하 부재(101) 하면의 면 내에 있어서, 전계 강도가 약하거나, 또는 전자 온도가 낮아지는 영역이 존재하면, 상기 저전계 강도, 저전자 온도로 되는 영역에만 관통 구멍(160)을 형성할 수도 있다.
이 점에 대해서 본 발명자들이 예의 조사한 바, 예를 들어 수하 부재(101) 하면의 소정의 위치에, 동심원 형상으로 전계 강도가 약해지는 영역이 존재하는 것이 확인되었다. 본 발명자들에 의하면, 이 전계 강도가 약해지는 영역은, 후술하는 바와 같이, 수하 부재(101)의 하면에 있어서의 전계 강도 분포를 나타내는 베셀 방정식의 해로서 얻어지는 베셀 함수의 극소값에 대응하는 위치에 존재한다. 이하, 이 전계 강도가 약해지는 영역에 대해서 설명한다.
본 발명자들은, 우선 수하 부재(101) 하면의 전계 강도 분포를, 랭뮤어 프로브 및 스펙트럼 분석기에 의해 측정하였다. 구체적으로는, 처리 용기(10)의 외부로부터 스펙트럼 분석기(도시하지 않음)에 접속한 랭뮤어 프로브(도시하지 않음)를 삽입하여, 수하 부재(101)의 하단면으로부터 대략 10㎜ 하방의 위치를, 수하 부재(101) 하면의 직경 방향을 따라 주사시켰다. 이때, 마이크로파 발진기(42)로부터는 860㎒의 마이크로파를 공급하였다. 또한, 수하 부재(101)의 반경은, 대략 45㎜이다. 그 결과를 도 15에 도시한다. 도 15의 횡축은 수하 부재(101)의 반경 방향의 위치와, 종축은 전계 강도를 각각 나타내고 있다.
도 15에 도시하는 전계 강도 분포에 따르면, 수하 부재(101) 하면의 중심으로부터 대략 20㎜의 위치에 전계 강도가 극소로 되는 점이 존재하는 것을 확인할 수 있다. 또한, 스펙트럼 분석기에 있어서의 측정 결과에서는, 860㎒에 있어서 피크가 관측되었다. 이러한 점에서, 처리 용기(10) 내에 마이크로파를 도입한 경우, 수하 부재(101) 하면에는, 그 수하 부재(101)의 중심으로부터 반경 20㎜의 원의 원주 상의 위치에 있어서, 다른 영역과 비교해서 전계 강도가 낮은 영역이 형성되는 것을 알 수 있다.
그리고 본 발명자들은, 수하 부재(101)의 하면에 이러한 전계 강도 분포가 발생하는 이유에 대해서 더 검토하여, 그 전계 강도 분포가, 수하 부재(101)의 하면에 있어서의 전계 강도 분포를 나타내는 베셀 방정식의 해로서 얻어지는 베셀 함수에 대응하고 있는 것을 지견하였다. 이하에, 전계 강도 분포를 나타내는 베셀 방정식의 해로서 베셀 함수를 구하는 방법에 대해서 설명한다.
본 발명자들은, 수하 부재(101)의 하면을 전파하는 표면파는, 도 16에 도시한 바와 같은 원기둥 좌표계의 모델이 성립된다고 생각하였다. 구체적으로는, 금속인 수하 부재(101)의 저면(하면)(250)을 기준으로 해서, 연직 하방으로 소정의 두께 d의 원반 형상의 유전체(251)가 형성되고, 그 유전체(251)의 하면에 플라즈마(252)가 형성되는 상태이다. 여기서, 원기둥 좌표계의 반경은 a이다. 또한, 유전체(251)는 수하 부재(101)의 하방에 형성되는 플라즈마 시스이며, 그 비유전율은 1로 된다. 그리고, 표면파가 도 16에 도시한 바와 같은 원기둥 좌표계로 표현되는 경우, 표면파를 나타내는 맥스웰 방정식은, 예를 들어 도 17에 도시한 바와 같은, 베셀 방정식에 의해 나타낼 수 있다. 또한, 도 17에 나타내는 식에 있어서, Ez는 연직 방향의 전계 강도, r은 반경 방향의 좌표, k 및 β는 마이크로파의 파수이다.
그리고, 도 16에 나타내는 모델에 있어서는, 수하 부재(101)의 외주 단부는 개방되어 있으므로, 플라즈마 시스의 단부, 즉 유전체(251)의 단부를 개방단으로 하여 도 17의 식을 풀면, 베셀 방정식의 해로서, 도 18에 도시한 바와 같은 베셀 함수가 얻어진다.
그리고, 이 베셀 함수에 의해 반경 45㎜의 수하 부재(101) 하면의 전계 강도 분포의 이론값을 구하면, 예를 들어 도 19에 파선으로 나타내는 분포를 얻는다. 도 19의 횡축은 수하 부재(101)의 반경 방향의 위치와, 종축은 전계 강도를 각각 나타내고 있다. 또한, 도 19의 실선은, 도 15에 도시한 실측한 전계 강도 분포이다.
도 19에 도시한 바와 같이, 도 18의 함수로 나타나는 전계 강도 분포는, 대략 반경 20㎜ 근방의 위치에 극소점을 갖고 있으며, 도 15에 도시되는, 전계 강도 분포의 실측 데이터와 대략 정합한 것으로 되어 있는 것을 확인할 수 있다. 이 결과로부터, 본 실시 형태에 따른 수하 부재(101)의 하면에 있어서의 전계 강도 분포는, 베셀 방정식의 해로서 얻어지는 베셀 함수에 의해 구해지는 것을 알 수 있다.
그리고, 수하 부재(101)의 하면에 있어서의 전계 강도 분포는, 소정의 반경, 본 실시 형태에서는 대략 반경 20㎜의 원의 원주 상에 있어서 극소의 값으로 된다. 따라서, 상술한 바와 같이, 수하 부재(101) 하면의 관통 구멍(160) 및 그 관통 구멍(160)에 대응하는 제1 가스 공급구(133)는, 베셀 함수의 극소값에 대응하는 위치에 형성하는 것이 보다 바람직하다. 이와 같이 함으로써, 영역 X를 피함과 함께, 수하 부재(101) 하면의 보다 전계 강도가 낮은 영역을 통과해서 원료 가스를 처리 용기(10) 내로 도입시킬 수 있다. 그 결과, 예를 들어 원료 가스로서의 모노실란 가스의 과잉의 분해를 보다 효율적으로 억제할 수 있다. 또한, 이와 같이 극소값을 고려한 위치에 관통 구멍(160)을 형성함으로써, 극소값을 고려하지 않는 경우에 비해 수하 부재(101)의 돌출 길이 L을 상대적으로 짧게 하는 것이 가능하게 된다. 이 때문에, 처리 용기(10)의 용적을 작게 하는 것이 가능하게 되어, 스페이스의 절약과 같은 효과를 얻을 수 있다. 또한, 처리 용기(10) 내의 진공 배기에 필요로 하는 시간 등도 단축할 수 있는 점에서, 처리의 스루풋 향상이라고 하는 측면에서도 효과를 얻는 것이 가능하게 된다.
또한, 원료 가스를, 영역 X를 통과시키지 않고 처리 용기(10) 내에 도입한다고 하는 관점에서는, 수하 부재(101)는 반드시 그 내부를 원료 가스로서의 제1 가스가 통과하는 구조로 할 필요는 없고, 예를 들어 내부를 중공으로 한 환상의 수하 부재를 사용하여, 그 수하 부재의 내측면보다 내측에 제1 가스를 공급하도록 해도 된다. 구체적으로는, 예를 들어 도 20에 도시한 바와 같이, 하측 방향을 향해서 점차 직경이 커지는, 상단과 하단이 개구된 대략 원환상의 수하 부재(320)를 하부 플레이트(120)의 하면에 설치한다. 이러한 경우, 하부 플레이트(120)의 각 관통 구멍(150)의 하단에는, 연직 하방으로 소정의 길이 연신하는 공급 노즐(321)을 각각 설치하는 것이 바람직하다. 공급 노즐(321)을 경유함으로써 샤워 플레이트(100)의 하면으로부터 대략 5mm 이내의, 전자 온도가 비교적 높은 영역을 통과시키지 않고 원료 가스를 처리 용기(10) 내에 도입할 수 있다. 또한, 도 20에서는, 공급 노즐(321)의 길이는 수하 부재(320)의 길이 L과 동등한 상태를 묘사하여 도시하고 있지만, 공급 노즐(321)의 길이는, 상술한 공급 노즐(200)과 마찬가지 방법에 의해 결정할 수 있다.
이상의 실시 형태에서는, 상부 플레이트(110)의 가스 유로(130) 및 하부 플레이트(120)의 가스 유로(140)에 각각 하나의 공급관(132, 142)을 통해서 제1 가스 공급원(131), 제2 가스 공급원(141)을 접속했지만, 예를 들어 가스 유로(130), 가스 유로(140)를 각각 독립된 환상으로 동심원 형상의 유로로 하고, 각각의 가스 유로에 복수개 공급관(132) 및 공급관(142)을 복수 설치하여, 각 유로에 공급하는 가스의 유량을 제어하도록 해도 된다. 그와 같이 함으로써, 하부 플레이트(120)의 각 영역마다 가스의 공급량을 제어하는 것이 가능하게 되고, 예를 들어 전계 강도 분포에 대응해서 원료 가스나 플라즈마 발생용 가스의 공급량을 제어하여, 웨이퍼(W)에 대하여 보다 균일한 플라즈마 처리를 행할 수 있다.
특히, 종래와 같이 수하 부재(101)를 갖지 않은 샤워 플레이트(100)를 사용하여, 원료 가스로서 모노실란 가스를 처리 용기(10) 내에 공급하는 경우, 샤워 플레이트(100) 하면에서 원료 가스가 과잉으로 분해되기 때문에, SiH3의 생성량을 제어하는 것이 곤란하였지만, 본 발명에서는 수하 부재(101)를 통해서 모노실란 가스를 공급함으로써, 과잉의 SiH3의 생성을 억제할 수 있다. 따라서, 모노실란 가스의 공급량을 제어함으로써 용이하게 SiH3의 생성량을 조정할 수 있고, 이에 의해, 웨이퍼(W) 상의 성막량을 제어하는 것이 가능하게 된다. 이러한 경우, 또한 공급관(132) 및 공급관(142)을 복수 설치해서 하부 플레이트(120)의 소정의 영역마다 가스의 공급량을 제어함으로써, 각 영역마다 더 엄밀하게 질소 라디칼과 SiH3의 생성량을 조정할 수 있으므로, 웨이퍼(W)에 대하여 보다 균일한 플라즈마 처리를 실시하는 것이 가능하게 된다
또한, 이상의 실시 형태에서는, 샤워 플레이트(100)는, 상부 플레이트(110)와 하부 플레이트(120)에 의해 구성되어 있었지만, 제1 가스의 가스 유로(130) 및 제2 가스의 가스 유로(140)가 독립해서 형성되고, 샤워 플레이트(100)의 내부에서 가스가 혼합되지 않는 구성으로 되어 있으면, 샤워 플레이트(100)을 어떻게 구성할지에 대해서는 본 실시 형태에 한정되는 것은 아니고, 임의로 설정이 가능하다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시 형태에 대해서 상세하게 설명하였지만, 본 발명은 이러한 예에 한정되지 않는다. 발명의 속하는 기술 분야에 있어서의 통상의 지식을 갖는 자이면, 청구범위에 기재된 기술적 사상의 범주에 있어서, 각종 변경예 또는 수정예에 상도할 수 있는 것은 명백하며, 이들에 대해서도, 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
1 : 플라즈마 처리 장치
10 : 처리 용기
11 : 서셉터
12 : 지지 부재
13 : 정합기
14 : 고주파 전원
30 : 마이크로파 전송 기구
40 : 마이크로파 출력부
50 : 안테나 모듈
100 : 샤워 플레이트
101 : 수하 부재
110 : 상부 플레이트
120 : 하부 플레이트
130 : 가스 유로
133 : 제1 가스 공급구
140 : 가스 유로
151 : 제2 가스 공급구
220 : 슬롯
500 : 제어부
U : 플라즈마 공간
W : 웨이퍼
X : 영역
10 : 처리 용기
11 : 서셉터
12 : 지지 부재
13 : 정합기
14 : 고주파 전원
30 : 마이크로파 전송 기구
40 : 마이크로파 출력부
50 : 안테나 모듈
100 : 샤워 플레이트
101 : 수하 부재
110 : 상부 플레이트
120 : 하부 플레이트
130 : 가스 유로
133 : 제1 가스 공급구
140 : 가스 유로
151 : 제2 가스 공급구
220 : 슬롯
500 : 제어부
U : 플라즈마 공간
W : 웨이퍼
X : 영역
Claims (7)
- 처리 용기 내에 제1 가스와 제2 가스를 공급하는 샤워 플레이트를 구비한 플라즈마 발생용 안테나를 갖고, 마이크로파의 공급에 의해 상기 샤워 플레이트 표면에 형성된 표면파에 의해 플라즈마를 형성해서 기판을 처리하는 플라즈마 처리 장치로서,
상기 샤워 플레이트의 하단면으로부터 하방으로 돌출되고, 도전체에 의해 구성된 수하 부재를 갖고,
상기 수하 부재의 외측면은, 상단부부터 하단부를 향해서 외측으로 퍼지고,
상기 샤워 플레이트는, 상기 처리 용기 내에 제1 가스를 공급하는 복수의 제1 가스 공급구와 제2 가스를 공급하는 복수의 제2 가스 공급구를 구비하고,
상기 제1 가스 공급구는, 상기 수하 부재의 외측면보다 내측에 배치되고,
상기 제2 가스 공급구는, 상기 수하 부재의 외측면보다 외측에 배치되며,
상기 샤워 플레이트에는, 상기 처리 용기 내에 마이크로파를 방사하는 마이크로파 방사 구멍이 형성되고,
상기 마이크로파 방사 구멍은, 평면에서 볼 때, 상기 수하 부재의 외주 단부보다 내측에 위치하도록 배치되어 있는 플라즈마 처리 장치. - 제1항에 있어서,
상기 수하 부재의 내부에는, 그 수하 부재의 상단면으로부터 하단면으로 연통하는 관통 구멍이 형성되고,
상기 제1 가스 공급구는, 상기 관통 구멍에 접속되어 있는 플라즈마 처리 장치. - 제1항에 있어서,
상기 수하 부재는 환상으로 형성되고,
상기 제1 가스 공급구는, 상기 수하 부재의 내측면보다 내측에 배치되어 있는 플라즈마 처리 장치. - 제3항에 있어서,
상기 각 제1 가스 공급구에는, 상기 샤워 플레이트의 하면으로부터 연직 하방으로 돌출하는 복수개의 공급 노즐이 각각 접속되어 있는 플라즈마 처리 장치. - 제1항에 있어서,
상기 수하 부재의 외측면은, 아래로 향해서 점차 외측에 퍼지는 포물선 형상인 플라즈마 처리 장치. - 제1항에 있어서,
상기 제1 가스는, 상기 제2 가스보다, 플라즈마에 의해 분해되기 쉬운 가스인 플라즈마 처리 장치. - 제6항에 있어서,
상기 제1 가스는 원료 가스이며, 상기 제2 가스는 플라즈마 발생용 가스인 플라즈마 처리 장치.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2013-188665 | 2013-09-11 | ||
JP2013188665 | 2013-09-11 | ||
JPJP-P-2014-118531 | 2014-06-09 | ||
JP2014118531A JP6338462B2 (ja) | 2013-09-11 | 2014-06-09 | プラズマ処理装置 |
PCT/JP2014/073311 WO2015037508A1 (ja) | 2013-09-11 | 2014-09-04 | プラズマ処理装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167006190A Division KR101831537B1 (ko) | 2013-09-11 | 2014-09-04 | 플라즈마 처리 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170123692A KR20170123692A (ko) | 2017-11-08 |
KR101831576B1 true KR101831576B1 (ko) | 2018-02-22 |
Family
ID=52665614
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177028538A KR101831576B1 (ko) | 2013-09-11 | 2014-09-04 | 플라즈마 처리 장치 |
KR1020167006190A KR101831537B1 (ko) | 2013-09-11 | 2014-09-04 | 플라즈마 처리 장치 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167006190A KR101831537B1 (ko) | 2013-09-11 | 2014-09-04 | 플라즈마 처리 장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10557200B2 (ko) |
JP (1) | JP6338462B2 (ko) |
KR (2) | KR101831576B1 (ko) |
CN (1) | CN105531800B (ko) |
TW (1) | TWI643236B (ko) |
WO (1) | WO2015037508A1 (ko) |
Families Citing this family (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
JP6338462B2 (ja) * | 2013-09-11 | 2018-06-06 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US20150118416A1 (en) * | 2013-10-31 | 2015-04-30 | Semes Co., Ltd. | Substrate treating apparatus and method |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
JP6404111B2 (ja) * | 2014-12-18 | 2018-10-10 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
KR20180068582A (ko) * | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10790118B2 (en) * | 2017-03-16 | 2020-09-29 | Mks Instruments, Inc. | Microwave applicator with solid-state generator power source |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10811232B2 (en) * | 2017-08-08 | 2020-10-20 | Applied Materials, Inc. | Multi-plate faceplate for a processing chamber |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
JP6960813B2 (ja) * | 2017-09-20 | 2021-11-05 | 東京エレクトロン株式会社 | グラフェン構造体の形成方法および形成装置 |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7206265B2 (ja) | 2017-11-27 | 2023-01-17 | エーエスエム アイピー ホールディング ビー.ブイ. | クリーン・ミニエンバイロメントを備える装置 |
CN111316417B (zh) | 2017-11-27 | 2023-12-22 | 阿斯莫Ip控股公司 | 与批式炉偕同使用的用于储存晶圆匣的储存装置 |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
CN116732497A (zh) | 2018-02-14 | 2023-09-12 | Asm Ip私人控股有限公司 | 通过循环沉积工艺在衬底上沉积含钌膜的方法 |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR102709511B1 (ko) | 2018-05-08 | 2024-09-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조 |
TW202349473A (zh) | 2018-05-11 | 2023-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
JP2021529254A (ja) | 2018-06-27 | 2021-10-28 | エーエスエム・アイピー・ホールディング・ベー・フェー | 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法 |
TW202405221A (zh) | 2018-06-27 | 2024-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TW202405220A (zh) | 2019-01-17 | 2024-02-01 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
TWI756590B (zh) | 2019-01-22 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
TW202044325A (zh) | 2019-02-20 | 2020-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 填充一基板之一表面內所形成的一凹槽的方法、根據其所形成之半導體結構、及半導體處理設備 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
KR20200108248A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOCN 층을 포함한 구조체 및 이의 형성 방법 |
JP2020167398A (ja) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | ドアオープナーおよびドアオープナーが提供される基材処理装置 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) * | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN112323048B (zh) | 2019-08-05 | 2024-02-09 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210078405A (ko) | 2019-12-17 | 2021-06-28 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 나이트라이드 층을 형성하는 방법 및 바나듐 나이트라이드 층을 포함하는 구조 |
CN113000233B (zh) * | 2019-12-18 | 2022-09-02 | 中微半导体设备(上海)股份有限公司 | 等离子体反应器及其气体喷嘴 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
JP2021111783A (ja) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
JP2021109175A (ja) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (ko) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
KR20210117157A (ko) | 2020-03-12 | 2021-09-28 | 에이에스엠 아이피 홀딩 비.브이. | 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
JP2021172884A (ja) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化バナジウム含有層を形成する方法および窒化バナジウム含有層を含む構造体 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
KR20210132605A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
TW202147383A (zh) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
TW202200837A (zh) | 2020-05-22 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基材上形成薄膜之反應系統 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
KR20220076343A (ko) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
TW202233887A (zh) * | 2021-02-03 | 2022-09-01 | 美商Mks儀器公司 | 利用微波輻射能量對原子層沉積製程進行微波輔助表面化學退火的微波系統 |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US20230015528A1 (en) * | 2021-07-19 | 2023-01-19 | Epirus, Inc. | Systems and methods for decomposition of molecules |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
CN117457467B (zh) * | 2023-12-19 | 2024-04-19 | 哈尔滨工业大学 | 等离子体腔室阵列成像监测装置及空间不均匀性校准方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807792A (en) * | 1996-12-18 | 1998-09-15 | Siemens Aktiengesellschaft | Uniform distribution of reactants in a device layer |
US6576062B2 (en) * | 2000-01-06 | 2003-06-10 | Tokyo Electron Limited | Film forming apparatus and film forming method |
US7220937B2 (en) * | 2000-03-17 | 2007-05-22 | Applied Materials, Inc. | Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination |
JP2002299331A (ja) * | 2001-03-28 | 2002-10-11 | Tadahiro Omi | プラズマ処理装置 |
JP3969081B2 (ja) | 2001-12-14 | 2007-08-29 | 東京エレクトロン株式会社 | プラズマ処理装置 |
KR100497748B1 (ko) * | 2002-09-17 | 2005-06-29 | 주식회사 무한 | 반도체소자 제조용 원자층 증착 장치 및 원자층 증착 방법 |
JP2005167227A (ja) * | 2003-11-11 | 2005-06-23 | Ibiden Co Ltd | ガス噴出ヘッド、その製法、半導体製造装置及び耐食性材料 |
JP4532897B2 (ja) | 2003-12-26 | 2010-08-25 | 財団法人国際科学振興財団 | プラズマ処理装置、プラズマ処理方法及び製品の製造方法 |
US8083853B2 (en) | 2004-05-12 | 2011-12-27 | Applied Materials, Inc. | Plasma uniformity control by gas diffuser hole design |
US8074599B2 (en) * | 2004-05-12 | 2011-12-13 | Applied Materials, Inc. | Plasma uniformity control by gas diffuser curvature |
JP4503356B2 (ja) * | 2004-06-02 | 2010-07-14 | 東京エレクトロン株式会社 | 基板処理方法および半導体装置の製造方法 |
US7718030B2 (en) * | 2005-09-23 | 2010-05-18 | Tokyo Electron Limited | Method and system for controlling radical distribution |
JP5068458B2 (ja) * | 2006-01-18 | 2012-11-07 | 東京エレクトロン株式会社 | プラズマ処理装置およびプラズマ処理方法 |
JP2008066413A (ja) * | 2006-09-05 | 2008-03-21 | Tokyo Electron Ltd | シャワーヘッド構造及びこれを用いた処理装置 |
KR100849929B1 (ko) | 2006-09-16 | 2008-08-26 | 주식회사 피에조닉스 | 반응 기체의 분사 속도를 적극적으로 조절하는 샤워헤드를구비한 화학기상 증착 방법 및 장치 |
US8715455B2 (en) * | 2007-02-06 | 2014-05-06 | Tokyo Electron Limited | Multi-zone gas distribution system for a treatment system |
CN101451237B (zh) * | 2007-11-30 | 2012-02-08 | 中微半导体设备(上海)有限公司 | 具有多个等离子体反应区域的包括多个处理平台的等离子体反应室 |
JP5202050B2 (ja) | 2008-03-14 | 2013-06-05 | 東京エレクトロン株式会社 | シャワーヘッド及び基板処理装置 |
JP5253932B2 (ja) * | 2008-09-04 | 2013-07-31 | 東京エレクトロン株式会社 | 成膜装置、基板処理装置、成膜方法及び記憶媒体 |
JP2010153531A (ja) * | 2008-12-25 | 2010-07-08 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
JP5328685B2 (ja) * | 2010-01-28 | 2013-10-30 | 三菱電機株式会社 | プラズマ処理装置及びプラズマ処理方法 |
CN102918932B (zh) * | 2010-09-09 | 2015-04-08 | 东京毅力科创株式会社 | 微波导入机构、微波等离子体源和微波等离子体处理装置 |
JP2012216525A (ja) * | 2011-03-31 | 2012-11-08 | Tokyo Electron Ltd | プラズマ処理装置及びプラズマ発生用アンテナ |
US20130071581A1 (en) * | 2011-09-20 | 2013-03-21 | Jonghoon Baek | Plasma monitoring and minimizing stray capacitance |
KR101854738B1 (ko) | 2012-01-09 | 2018-06-20 | 주성엔지니어링(주) | 박막 증착 장치, 플라즈마 발생 장치, 및 박막 증착 방법 |
GB201214370D0 (en) * | 2012-08-13 | 2012-09-26 | Element Six Ltd | Thick polycrystalline synthetic diamond wafers for heat spreading applications and microwave plasma chemical vapour deposition synthesis techniques |
JP6096547B2 (ja) | 2013-03-21 | 2017-03-15 | 東京エレクトロン株式会社 | プラズマ処理装置及びシャワープレート |
JP6338462B2 (ja) * | 2013-09-11 | 2018-06-06 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US9275840B2 (en) * | 2014-01-25 | 2016-03-01 | Yuri Glukhoy | Method for providing uniform distribution of plasma density in a plasma treatment apparatus |
-
2014
- 2014-06-09 JP JP2014118531A patent/JP6338462B2/ja active Active
- 2014-09-04 WO PCT/JP2014/073311 patent/WO2015037508A1/ja active Application Filing
- 2014-09-04 KR KR1020177028538A patent/KR101831576B1/ko active IP Right Grant
- 2014-09-04 CN CN201480050227.5A patent/CN105531800B/zh active Active
- 2014-09-04 KR KR1020167006190A patent/KR101831537B1/ko active IP Right Grant
- 2014-09-04 US US14/917,414 patent/US10557200B2/en active Active
- 2014-09-11 TW TW103131343A patent/TWI643236B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI643236B (zh) | 2018-12-01 |
KR101831537B1 (ko) | 2018-02-22 |
CN105531800B (zh) | 2017-09-05 |
US20160222516A1 (en) | 2016-08-04 |
JP6338462B2 (ja) | 2018-06-06 |
CN105531800A (zh) | 2016-04-27 |
TW201528320A (zh) | 2015-07-16 |
WO2015037508A1 (ja) | 2015-03-19 |
KR20170123692A (ko) | 2017-11-08 |
US10557200B2 (en) | 2020-02-11 |
KR20160055146A (ko) | 2016-05-17 |
JP2015079735A (ja) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101831576B1 (ko) | 플라즈마 처리 장치 | |
KR101851436B1 (ko) | 플라즈마 처리 장치 | |
KR101736070B1 (ko) | 플라즈마 처리 장치 및 샤워 플레이트 | |
JP5438205B2 (ja) | プラズマ処理装置用の天板及びプラズマ処理装置 | |
KR102000355B1 (ko) | 플라즈마 처리 장치 | |
JP2005235755A (ja) | マイクロウェーブ供給装置、それを用いたプラズマ工程装置及びプラズマ工程方法 | |
JP4910396B2 (ja) | プラズマ処理装置 | |
KR20120112261A (ko) | 플라즈마 처리 장치 및 플라즈마 발생용 안테나 | |
JP2008251674A (ja) | プラズマ処理装置 | |
JP2007258570A (ja) | プラズマ処理装置 | |
JP2018006256A (ja) | マイクロ波プラズマ処理装置 | |
CN115881503A (zh) | 等离子体处理装置和盖构件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right |