KR101419978B1 - 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정 - Google Patents

고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정 Download PDF

Info

Publication number
KR101419978B1
KR101419978B1 KR1020107014334A KR20107014334A KR101419978B1 KR 101419978 B1 KR101419978 B1 KR 101419978B1 KR 1020107014334 A KR1020107014334 A KR 1020107014334A KR 20107014334 A KR20107014334 A KR 20107014334A KR 101419978 B1 KR101419978 B1 KR 101419978B1
Authority
KR
South Korea
Prior art keywords
stream
water
pressure
mixture
heavy fraction
Prior art date
Application number
KR1020107014334A
Other languages
English (en)
Other versions
KR20100107459A (ko
Inventor
기-혁 최
Original Assignee
사우디 아라비안 오일 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사우디 아라비안 오일 컴퍼니 filed Critical 사우디 아라비안 오일 컴퍼니
Publication of KR20100107459A publication Critical patent/KR20100107459A/ko
Application granted granted Critical
Publication of KR101419978B1 publication Critical patent/KR101419978B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/24Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with hydrogen-generating compounds
    • C10G45/26Steam or water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Abstract

탄화수소 공급원료로서 사용하기 위한 저황, 저질소, 및 저금속 불순물을 가지는 고가치 원유를 생산하기 위하여, 회수 유체를 이용하고, 추출된 전체 원유/회수 유체 혼합물을 단계적 방식으로 감압하고, 이어서 적어도 전체 원유의 일부를 초임계수 유체와 접촉시켜 전체 원유를 개량하는 공정.

Description

고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정 {PROCESS TO UPGRADE WHOLE CRUDE OIL BY HOT PRESSURIZED WATER AND RECOVERY FLUID}
관련 출원
본 특허 출원은 2008년 11월 28일에 출원된 미국 특허 가출원 제60/990,641호; 제60/990,662호; 제60/990,648호; 제60/990,670호; 및 제60/990,658호를 우선권으로 주장하고, 이들 모두는 전체가 참조로 포함된다.
본 발명의 기술 분야
본 발명은 탄화수소 공급원료로서 사용하기 위한 저황, 저질소, 저금속 불순물, 및 높은 API 비중을 가지는 낮은유동점(pour point)의 고가치 원유를 생산하기 위하여, 수소의 외부 공급물의 사용 없이 회수 유체를 이용하고 회수된 원유를 초임계수 유체와 접촉시키고 단계적(step-wise) 감압 단계가 이어져 전체 원유를 개량(upgrading)하는 공정에 관한 것이다.
발명의 배경
석유 제품에 대한 전세계적인 수요는 최근 몇 년간 급격하게 증가했으며, 이미 알려진 많은 고가치 경질 원유 저류층(reservoir)이 고갈되고 있다. 그 결과, 제조 업체들은 계속하여 증가하는 미래 수요를 충족시키기 위하여 그들의 관심을 저가치의 중질 원유 이용으로 돌렸다. 그러나, 중질 원유를 사용하는 현재의 정제 방법은 경질 원유를 사용하는 방법보다 덜 효율적이기 때문에, 더 중질인 원유로부터 석유 제품을 생산하는 정유소는 동일한 부피의 최종 제품을 얻기 위하여 더 큰 부피의 더 중질인 원유를 정제해야 한다. 그러나 불행히도, 이는 예상된 미래 수요의 증가를 해결하지 못한다. 문제는 더 심각해지는데, 많은 국가들이 석유계 수송 연료의 요건에 대한 더욱 엄격한 규제를 시행하고 있거나 시행할 계획이다. 따라서, 석유 산업은 계속 증가하는 석유 공급원료 수요를 충족시키고 정제 공정에서 사용되는 이용 가능한 원유의 품질을 개선하려는 노력의 일환으로 정제 전에 중질 원유를 처리하기 위한 새로운 방법을 찾으려 하고 있다.
전체 원유(whole crude oil) 또는 원료 원유(raw crude oil)는 임의의 정제 공정 전에 생산정(production well)으로부터 생산된 원유에 대한 일반적인 용어이다. 생산정의 지리적 특징에 따라, 전체 원유는 유정마다 조성이 매우 크게 변할 수 있다. 불행히도, 새롭게 발견되는 많은 유정들은 탄소와 수소 이외에 증가된 양의 중질 분획과 불순물을 함유하는 전제 원유를 생산하는 경향이 있다. 그러므로 이미 확립된 더욱 가치 있는 유정 중 많은 것들이 고갈됨에 따라, 미래 공급물의 대부분은 저급한 원유로 이루어질 것이다.
일반적으로, 고밀도 원유는 더욱 가치 있는 경질 및 중간 증류액을 더 적은 양 제공한다. 뿐만 아니라, 고밀도 원유는 일반적으로 증가된 양의 황, 질소 및 금속과 같은 불순물을 함유하고, 상기 모두는 최종 제품의 불순물 함량에 대한 엄격한 규제를 충족시키기 위한 수소화가공(hydroprocessing)에 증가된 양의 수소와 에너지를 필요로 한다.
일반적으로, 중질 원유는 낮은 API 비중, 높은 아스팔텐 함량, 낮은 중간 증류액 수율, 높은 황 함량, 높은 질소 함량, 및 높은 금속 함량을 가진다. 이러한 특성들은 전통적인 정제 공정으로 중질 원유를 정제하여 엄격한 정부 규제를 충족시키는 사양의 최종 석유 제품을 생산하는 것을 어렵게 만든다.
전통적인 크래킹 방법
저가치 중질 원유는 당해 분야에서 공지인 다양한 방법을 이용하여 중질 분획을 크래킹(cracking)하여 고가치 경질 원유로 전환될 수 있다. 전통적으로, 크래킹 및 클리닝(cleaning)은 수소의 존재하에 상승된 온도에서 촉매를 사용하여 수행되었다. 그러나, 이런 유형의 수소화가공은 다량의 수소 및/또는 촉매를 사용하지 않을 경우 중질 원유 및 산성(sour) 원유 가공에 있어서 분명한 한계를 가진다.
뿐만 아니라, 중질 원유 공급원료의 증류 및/또는 수소화가공은 다량의 아스팔텐과 중질 탄화수소를 생성하고, 이들은 이용되기 위해서 더욱 크래킹되고 수소화처리되어야 한다. 아스팔텐 분획 및 중질 분획을 위한 전통적인 수소화분해 및 수소화처리(hydrotreating) 공정은 또한 큰 자본 투자와 상당한 가공을 필요로 한다.
많은 석유 정유소들이 원유를 다양한 분획으로 증류한 후 전통적인 수소화가공을 수행하는데, 각 분획들이 별도로 수소화가공된다. 그러므로, 정유소는 각 분획을 취급하기 위하여 복잡한 단위조작을 이용해야 한다. 게다가, 상당량의 수소와 값비싼 촉매가 전통적인 수소화분해 및 수소화처리 공정에서 사용된다. 상기 공정들은 중질 원유로부터 더욱 가치 있는 중간 증류액으로의 수율을 증가시키고 황, 질소, 및 금속과 같은 불순물을 제거하기 위하여 가혹한 반응 조건하에서 수행된다.
현재, 최종 제품에 대하여 요구되는 저분자량 요건을 충족시키고; 황, 질소, 및 금속과 같은 불순물을 제거하며; 매트릭스의 수소-대-탄소 비율을 증가시키기 위하여, 다량의 수소가 전통적인 정제 공정으로부터 생성된 분획의 특성 조절에 사용된다. 아스팔텐 분획 및 중질 분획의 수소화분해 및 수소화처리는 다량의 수소를 필요로 하는 공정의 예이고, 이러한 두 공정은 감소된 수명주기(life cycle)를 가지는 촉매를 야기한다.
그 결과, 완전한 전체 원유 스트림이 더욱 가치 있는 경질 분획으로 이루어져 하류의 정제 비용이 낮아지도록, 효과적이고 비용이 적게 드는 방법을 이용하여 전체 원유의 중질 부분만을 크래킹하는 것이 이로울 것이다.
수열 크래킹(Hydrothermal Cracking) - 초임계수
초임계수(supercritical water)가 외부 수소원을 첨가하는 탄화수소의 크래킹의 반응 매질로 사용되어 왔다. 물은 약 705℉(374℃) 및 약 22.1 MPa의 임계점을 가진다. 이러한 조건 위에서, 물의 액체와 기체 사이의 상 경계가 사라지고, 이러한 결과의 초임계수는 유기 화합물에 대한 높은 용해도 및 기체와의 높은 혼화성(miscibility)을 나타낸다.
그러나, 전체 원유 개량을 위하여 초임계수를 사용하는 것은 전체 원유가 증가된 양의 중질 탄화수소 분자를 포함할 경우 심각한 결점을 가질 수 있다. 중질 탄화수소 분자는 더 경질인 대응물보다 훨씬 더 느리게 초임계수에 용해된다. 더욱이, 엉킨 구조를 가지는 아스팔텐 분자는 초임계수로써 쉽게 풀리지 않는다. 그 결과, 초임계수와 접촉하지 않는 중질 탄화수소 분자 부분이 혼자서 열분해되지 않아 다량의 코크를 생성한다. 그러므로, 전체 원유가 증가된 양의 중질 탄화수소를 함유할 경우, 현재의 방법을 이용하여 전체 원유를 초임계수와 반응시키는 것은 반응기 내 코크의 축적을 야기한다.
코크가 반응기 안에 축적될 경우, 코크는 절연체로서 작용하고 반응기 전반의 복사로부터 열을 효과적으로 차단하여 증가된 에너지 비용을 야기하는데, 왜냐하면 조업자가 축적(build-up)에 대한 상쇄를 위하여 조업 온도를 증가시켜야 하기 때문이다. 더욱이, 축적된 코크는 또한 공정 라인 전반에서 압력 강하를 증가시켜, 추가적인 에너지 비용 증가를 초래할 수 있다.
코크 축적을 방지하기 위한 한 가능한 해결책은 원유의 전부의 용해를 위하여 반응기 내의 전체 원유 체류시간을 증가시키고 반응기의 온도를 낮추는 것이다; 그러나, 공정의 총체적인 경제성과 개량 성능이 저하될 것이다. 뿐만 아니라, 반응기 디자인 개선이 도움이 될 수 있다; 그러나, 이는 디자인 비용에서 큰 지출을 요구할 것이고 궁극적으로 유익한 것으로 입증되지 않을 수 있다. 그러므로, 다량의 코크 또는 상당한 조업 비용 증가를 야기하지 않으면서 중질 오일과 초임계수의 효과적인 접촉을 촉진하는 공정에 대한 요구가 존재한다.
석유회수 증진법
석유회수 증진법(Enhanced Oil Recovery, EOR)은 유전에서 추출될 수 있는 오일의 양을 증가시키기 위한 기술의 일반적 용어이다. 일차 및 이차 회수 이용시의 20-40%와는 대조적으로, EOR을 이용하여 저류층의 원래 오일의 약 30-60%, 또는 그 이상이 추출될 수 있다. EOR에 사용되는 전형적인 유체에는 기체, 액체, 수증기 또는 다른 화학물질이 포함되며, 기체 주입이 가장 흔히 이용되는 EOR 기술이다.
기체 유형 EOR에서, 이산화탄소 (CO2), 천연가스, 또는 질소와 같은 기체가 저류층에 주입되고, 이로 인하여 저류층이 팽창하여 추가의 원유를 생산정에 밀어넣는다. 더욱이, 원유에 용해된 기체는 원유의 점도를 낮추고 수송 라인을 통한 원유의 유량을 증가시킨다.
CO2가 저류층의 오일만큼 농후해지기에 충분한 압력으로 오일 저류층에 펌핑될 경우, CO2는 오일과 혼화성으로 될 수 있다. 혼화성(miscibility)이 최초로 획득되는 압력은 최소 혼화성 압력(minimum miscibility pressure, MMP)이라고 지칭된다. MMP 이상에서, CO2는 오일에 대한 이상용매가 되고, 이로 인하여, 물보다 훨씬 더 효과적으로 저류층으로부터 오일을 옮긴다. CO2는 더 경질인 탄화수소 성분을 포착하여, 오일의 총 부피를 팽창시키며, 오일의 점도를 감소시켜 오일이 더욱 쉽게 흐른다.
용해된 CO2는 감압에 의한 제조 후 회수된 원유로부터 쉽게 분리될 수 있기 때문에, CO2가 현재 가장 유망한 원유 회수 유체 중 하나이다. 물론, 원유에 대한 CO2의 용해도는 압력, 온도, 기체 대 오일 비율 및 원유의 조성에 강하게 의존한다. 그러나, CO2와 원유의 상 거동을 제어하는 가장 간단한 방법은 압력을 변화시키는 것이다. 저압에서, CO2는 원유, 특히 중질 분획에 대한 매우 낮은 용해도를 나타낸다. 뿐만 아니라, 원유에 CO2를 용해하는 것은 원유를 팽창시켜, 원유에 존재할 수 있는 아스팔텐 화학종의 용해도 증가를 야기한다.
앞에서 언급한 것과 같이, 고밀도의 전체 원유를 초임계수와 접촉시키는 것의 단점 중 하나는 다량의 저가치 코크 생성이었다. 이러한 코크 생성은 초임계수가 고밀도의 전체 원유, 특히 전체 원유의 중질 분획의 도처에 효과적으로 침입 불가능함에 의하여 초래된다. 그러나, 원유에 용해된 CO2는 원유를 팽창시켜 덜 농후해지도록 하므로, CO2 EOR법을 초임계수와 조합하는 것은 초임계수에 대한 중질 분획 용해를 용이하게 하여 상당한 양의 코크 생성 없이 전체 원유 개량을 허용한다.
전체 원유의 전체 스트림 가공은 처리량(throughput)이 지나치게 커짐에 따라 경제적으로 실시하기 어렵다. 그러므로, 코크 전환을 제한하고, 전체 유정 생산을 증가시키며, 주로 더 고가치의 경질 분획인 최종 원유를 생산하기 위하여, 전체 원유의 중질 부분만을 접촉시키면서 CO2 EOR 회수법을 초임계수 크래킹법과 조합하는 간단하고 경제적인 공정을 가지는 것이 바람직할 것이다.
더욱이, 수소의 외부 공급과 외부에서 공급되는 촉매의 존재 모두를 필요로 하지 않으면서 초임계수 유체로써 전체 원유를 개량하는 개선된 공정을 가지는 것이 바람직할 것이다. 정유 공정 및 다양한 보조 시설이 단순화될 수 있도록, 개별적인 분획이 아니라 전체 원유의 개량을 허용하여 원하는 품질에 도달하게 하는 공정과 장비를 창작하는 것이 유리할 수 있다.
뿐만 아니라, 수소 공급 또는 코크 제거 시스템을 필요로 하는 다른 공정에 관련된 복잡한 설비 또는 시설을 필요로 하지 않아 생산지에서 실행될 수 있는 개선된 공정을 가지는 것이 유익할 것이다.
발명의 요약
본 발명은 상기 요구들 중 적어도 하나를 만족시키는 연속 공정에 관한 것이다. 본 발명은 전체 원유 스트림의 부분만을 초임계수와 접촉시켜 전체 원유 스트림의 일부를 개량하는 공정을 제공한다. 특히, 본 발명은 전체 원유를 회수하기 위하여 EOR 공정을 이용하고, 여기서 회수된 전체 원유는 전체 원유의 중질 분획이 더 이상 회수 유체와 혼화될 수 없도록 단계적 방식으로 감압된다. 소량의 용해된 회수 유체를 함유하는 중질 분획 스트림은, 이후 중질 분획 스트림이 초임계 조건하의 물과 접촉되는 적절한 장치에 보내진다. 소량의 용해된 회수 유체가 중질 분획 스트림을 팽창시키기 때문에, 초임계수를 사용하여 중질 분획 스트림이 더욱 쉽게 개량되어 더 적은 코크 형성 및 낮아진 조업 비용을 야기할 수 있다. 게다가, 공정이 전체 원유의 일부만을 개량하기 때문에, 본 발명의 공정이 더 큰 처리량을 취급할 수 있어, 생산지에서 이용될 수 있으며 전체 조업 비용을 더 감소시킨다.
본 발명의 한 구체예에서, 전체 원유 개량 공정은 생산정으로부터 전체 원유 회수를 증진시키기 위하여 회수 유체가 지하층(underground formation)을 소제(sweep)할 수 있도록, 회수 유체의 최소 혼화성 압력을 초과하는 압력에서 가압된 회수 유체를 주입정(injection well)에 주입하는 것을 포함할 수 있다. 회수 유체는 생산정으로부터 회수된 직후의 전체 원유와 직접 혼합되어 고압 스트림을 형성하고, 여기서 전체 원유는 경질 분획과 중질 분획을 포함한다.
이후 고압 스트림은 중질 분획 내의 회수 유체의 일부분의 혼화성을 유지하기 위한 조건에서 감압되고, 중질 분획은 고압 스트림으로부터 분리되어 경질 원유 스트림과 중질 분획 스트림을 형성한다. 경질 원유 스트림은 회수 유체의 상당 부분을 함유한다. 회수 유체는 순간증발기(flash evaporator)를 포함하는 임의의 적절한 장치에 의하여 경질 원유 스트림으로부터 분리되어 경질 분획 스트림을 형성할 수 있다.
중질 분획 스트림은 중질 분획 스트림을 초임계 조건하에 물 공급물 스트림과 접촉시켜 개질된 중질 분획으로 개질되고, 여기서 개질된 중질 분획은 전체 원유와 비교하여 감소된 양의 아스팔텐, 황, 질소 또는 금속 함유 물질을 가진다.
대안의 구체예에서, 경질 원유 스트림으로부터 상당 부분의 회수 유체를 분리한 후 생성된 경질 분획 스트림이 개질된 중질 분획과 조합되어 개량된 전체 원유를 생성할 수 있고, 여기서 개량된 전체 원유는 전체 원유와 비교하여 더 높은 API 비중 및 감소된 양의 아스팔텐, 황, 질소 또는 금속 함유 물질을 가진다.
추가 구체예에서, 회수 유체는 기체, 액체, 수증기, 화학물질, 및 이들의 조합으로 이루어진 군에서 선택된다. 또 다른 구체예에서, 기체는 이산화탄소, 질소, 천연가스, 및 이들의 조합으로 이루어진 군에서 선택된다. 또 다른 구체에예서, 이산화탄소가 바람직한 기체이다. 본 발명의 목적을 위하여, 기체는 보통의 온도와 압력에서 고체도 아니고 액체도 아닌 물질을 일컫는다.
대안의 구체예에서, 중질 분획 스트림의 개질 단계는 중질 분획을 물 공급물 스트림과 조합하여 혼합물을 생성하는 것을 추가로 포함하고, 여기서 혼합물은 외부에서 공급되는 수소의 부재에서 생성된다. 이후 혼합물의 온도가 물의 임계 온도 이상이 되고, 혼합물 중의 탄화수소의 적어도 일부가 크래킹을 겪어 고온 변형 혼합물을 생성하도록 혼합물의 온도가 변화된다. 고온 변형 혼합물은 냉각되고 감압되어 압력-감소된 변형 혼합물을 생성한다. 압력-감소된 변형 혼합물은 기체 부분과 액체 부분으로 분리되고, 이후 액체 부분은 회수되는 물 스트림과 개질된 중질 분획으로 분리된다. 대안의 구체예에서, 혼합물이 외부에서 공급되는 촉매의 부재에서 생성된다. 또 다른 대안의 구체예에서, 반응 영역은 내부(interior portion)를 가지는 주 반응기(main reactor)를 포함하고, 여기서 주 반응기는 수직으로 배치된 반응기이고, 이로써 예열된 혼합물이 수직으로 배치된 반응기를 통하여 아래쪽으로 흐른다. 또 다른 구체예에서, 고온 변형 혼합물이 압력 조절 장치에 의하여 감압된다. 바람직하게는, 압력 조절 장치가 적어도 하나의 역압 조절기, 더욱 바람직하게는 병렬 방식으로 배열된 둘 이상의 역압 조절기이다.
대안의 구체예에서, 중질 분획 스트림의 개질 단계는 물 공급물 스트림과 중질 분획 스트림의 압력을 물의 임계 압력을 초과하는 목표 압력으로 증가시키는 것을 포함할 수 있다. 중질 분획 스트림은 약간 상승된 온도에서 물 공급물 스트림과 혼합되어 혼합물을 형성하고, 온도는 혼합물이 약간 상승된 온도에서 쉽게 펌핑될 수 있도록 하는 범위에서 선택된다. 약간 상승된 온도는 주위 온도와 비교하여 약간 상승된 온도이다. 예시적인 상승된 온도에는 50 - 150℃ 범위의 온도가 포함된다. 물의 임계 압력 위에서 계속하여 유지되는 혼합물은 가열 영역으로 펌핑된다. 혼합물은 가열 영역에서 약 150℃ 내지 350℃ 범위의 온도로 가열되어 예열된 혼합물을 형성한다. 이후 예열된 혼합물은 반응 영역으로 공급된다. 온도는 반응 영역 내에서 물의 임계 온도 이상의 목표 온도로 증가되어, 예열된 혼합물의 탄화수소의 적어도 일부가 크래킹을 겪고 고온 변형-혼합물을 형성하며, 반응 영역에는 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 본질적으로 없다. 고온 변형-혼합물은 냉각되고 감압되어 압력 감소된 변형-혼합물(adapted-mixture)을 형성한다. 압력 감소된 변형-혼합물은 적어도 하나의 분리기를 사용하여 기체 부분과 액체 부분으로 분리되고, 이후 액체 부분은 적어도 하나의 오일-물 분리기를 사용하여 개질된 중질 분획과 회수되는 물 스트림으로 분리된다.
추가 구체예에서, 회수되는 물 스트림은 초임계 조건하에서 산화되어 처리된 물 스트림을 형성할 수 있고, 처리된 물 스트림은 이후 처리된 물 스트림을 물 공급물 스트림과 조합하여 재순환될 수 있다. 본 발명의 또 다른 추가 구체예에서, 주 반응기는 수직으로 배치된 반응기일 수 있고, 이로써 예열된 혼합물이 수직으로 배치된 반응기를 통하여 아래쪽으로 흐른다. 또 다른 구체예에서, 고온 변형 혼합물이 압력 조절 장치에 의하여 감압된다. 바람직하게는, 압력 조절 장치는 적어도 하나의 역압 조절기이고, 더욱 바람직하게는 병렬 방식으로 배열된 둘 이상의 역압 조절기이다.
대안의 구체예에서, 중질 분획 스트림의 개질 단계는 물 공급물 스트림과 중질 분획 스트림의 압력을 물의 임계 압력을 초과하는 목표 압력으로 증가시키는 것을 포함할 수 있다. 이후 물 공급물 스트림은 상승된 온도로 가열되어 가열된 물 스트림을 형성하고, 이로써 가열된 물 스트림이 초임계 상태에 있게 된다. 중질 분획 스트림은 혼합 영역에서 가열된 물 스트림과 혼합되어 예열된 혼합물을 형성하고, 여기서 혼합 영역은 예열된 혼합물이 초임계 상태로 유지되도록 반응 영역 근처의 위치에 있고, 이후 예열된 혼합물은 반응 영역에 공급된다. 온도는 반응 영역 내에서 물의 임계 온도 이상의 목표 온도로 증가되고, 이로써 예열된 혼합물의 탄화수소으 적어도 일부가 크래킹을 겪고, 고온 변형-혼합물을 형성하며, 반응 영역에는 본질적으로 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없다. 고온 변형-혼합물은 냉각되고 감압되어 냉각된 변형-혼합물을 형성한다. 냉각된 변형-혼합물은 감압되어 압력 감소된 변형-혼합물을 형성한다. 압력 감소된 변형-혼합물은 적어도 하나의 액체-기체 분리기를 사용하여 기체 부분과 액체 부분으로 분리되고, 액체 부분은 적어도 하나의 오일-물 분리기를 사용하여 개질된 중질 분획과 회수되는 물 스트림으로 분리된다.
추가 구체예에서, 회수되는 물 스트림이 초임계 조건하에 산화되어 처리된 물 스트림을 형성할 수 있고, 이후 처리된 물 스트림은 처리된 물 스트림과 물 공급물 스트림을 조합하여 재순환될 수 있다. 본 발명의 또 다른 추가 구체예에서, 주 반응기는 수직으로 배치된 반응기일 수 있고, 이로써 예열된 혼합물이 수직으로 배치된 반응기를 통하여 아래쪽으로 흐른다. 또 다른 구체예에서, 고온 변형 혼합물이 압력 조절 장치에 의하여 감압된다. 바람직하게는, 압력 조절 장치는 적어도 하나의 역압 조절기이고, 더욱 바람직하게는 병렬 방식으로 배열된 둘 이상의 역압 조절기이다.
본 발명의 공정은 수소의 외부 공급 및/또는 탄화수소 개량을 위한 촉매를 필요로 하지 않는다. 외부 촉매의 부재는 외부 촉매 사용의 조업상 결점뿐만 아니라 촉매의 비용 발생을 피하여 비용 효율적인 공정을 만든다. 또한, 본 발명의 공정에서 초임계수 유체는 다른 열분해법(thermal cracking method)과 비교하여 코크의 형성을 억제하고 그 결과 액체 수율을 증가시킨다.
더욱이, 초임계수 유체는 물질전달을 촉진하고 이는 반응 속도를 증가시킨다. 한 구체예에서, 반응 영역 내의 예열된 혼합물 체류시간은 0.1 내지 30 분이고, 더욱 바람직하게는 5 내지 15 분이다.
또한 본 발명은 전체 원유 개량을 위한 장비를 제공한다. 본 발명의 한 구체예에서, 장비는 주입정, 생산정, 분획 장치 및 수열 개질 시설을 가진다. 한 구체예에서, 주입정은 지하층과 유체연통(fluid communication)된다. 게다가, 주입정은 가압된 회수 유체을 받아들이고 가압된 회수 유체를 지하층에 도입할 수 있다. 가압된 회수 유체는 지하층 내의전체 원유와 직접 혼합되어 고압 스트림을 형성하며, 고압 스트림은 회수 유체과 전체 원유로 이루어지는데, 여기서 전체 원유는 경질 분획과 중질 분획을 포함한다. 한 구체예에서, 생산정이 지하층으로부터 고압 스트림을 생산할 수 있도록, 생산정은 지하층과 유체연통된다.
본 발명의 한 구체예에서, 분획 장치는 생산정과 유체연통된다. 분획 장치는 중질 분획이 고압 스트림으로부터 분리되어 경질 원유 스트림과 중질 분획 스트림을 형성하도록, 단계적 방식으로 고압 스트림을 감압할 수 있으며, 회수 유체의 일부분이 중질 분획 내에 혼화성으로 유지되고, 경질 원유 스트림은 회수 유체의 상당 부분을 함유한다.
본 발명의 한 구체예에서, 수열 개질 시설(hydrothermal reforming facility)은 중질 분획 스트림을 초임계 조건하에 물 공급물 스트림과 접촉시켜 중질 분획 스트림을 개질된 중질 분획으로 개질하여, 전체 원유와 비교하여 감소된 양의 중질 분획, 아스팔텐, 황, 질소 또는 금속 함유 물질을 가지는 개질된 중질 분획을 생성할 수 있다. 본 발명의 다른 구체예에서, 수열 개질 시설은 혼합 영역, 예열 영역, 고압 펌핑 수단, 및 반응 영역을 가진다. 한 구체예에서, 혼합 영역은 초음파 발생기를 포함한다. 게다가, 혼합 영역이 약간 상승된 온도에서 중질 오일과 물 공급물을 조합할 수 있다. 예열 영역은 혼합 영역과 유동적으로(fluidly) 연결되고, 예열 영역은 그 내용물을 최대 약 350℃의 온도로 가열할 수 있다. 고압 펌핑 수단은 장비 내의 압력을 물의 임계 압력을 초과하는 압력으로 증가시킬 수 있다. 반응 영역은 주 반응기의 내부를 포함하고, 여기서 반응 영역은 예열 영역과 유동적으로 연결되며, 주 반응기는 적어도 물의 임계 온도만큼 높은 온도에 견딜 수 있다. 뿐만 아니라, 주 반응기는 물의 임계 압력을 초과하는 압력에 견딜 수 있다. 본 발명의 한 구체예에서, 반응 영역에는 본질적으로 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없다.
본 발명의 다른 구체예에서, 수열 개질 시설이 또한 압력 조절 장치, 압력 조절 장치와 유동적으로 연결된 액체-기체 분리기, 및 액체-기체 분리기와 유동적으로 연결된 물-오일 분리기를 포함할 수 있다. 액체-기체 분리기는 액체 스트림과 기체 스트림을 생성할 수 있고, 물-오일 분리기는 회수되는 물 스트림과 개량된 탄화수소 스트림을 생성할 수 있다. 본 발명의 추가 구체예에서, 수열 개질 시설은 또한 회수되는 물 스트림을 통하여 물-오일 분리기와 유동적으로 연결된 산화 반응기를 포함할 수 있다. 산화 반응기는 회수되는 물이 재순환되고 물 공급물과 조합되기 전에 회수되는 물을 정제할 수 있다.
뿐만 아니라, 본 발명의 공정과 장비는 본 발명의 다양한 구체예가 수소 공급 또는 코크 제거 시스템을 필요로 하는 다른 공정과 관련된 복잡한 설비 또는 시설을 필요로 하지 않기 때문에, 전체 원유의 생산지에서 쉽게 이용될 수 있다. 게다가, 낮은 유동점 및 높은 API 비중의 원유는 낮은 수준의 황, 질소, 및 금속을 가지고, 이로 인하여 추가된 비용이 많이 드는 수소화가공이 최소화 될 수 있기 때문에 공급원료의 가치가 증가된다.
이를 비롯한 본 발명의 특성, 양태 및 장점은 다음의 상세한 설명, 청구범위 및 첨부도면에 관하여 더욱 잘 이해될 것이다. 그러나 도면은 본 발명의 몇 가지의 구체예만을 설명할 뿐이고, 다른 동등하게 효과적인 구체예를 허용할 수 있기 때문에 발명의 범위를 한정하는 것으로 간주해서는 안된다는 것에 주의해야 한다.
도 1은 본 발명의 한 구체예에 따른 공정 다이어그램의 투시도이다.
도 2는 공정의 개질 단계의 구체예의 더욱 상세한 도면이다.
도 3은 공정의 개질 단계의 대안의 구체예의 더욱 상세한 도면이다.
도 4는 경질 분획 및 중질 분획에서 이산화탄소의 용해도 곡선을 나타낸다.
상세한 설명
본 발명은 수소 또는 촉매의 외부 공급 없이 전체 원유를 더욱 가치 있는 원유 공급원료로 전환하는 공정을 제공한다. 상기 공정은 일반적으로, 회수 유체가 지하층을 소제하여 생산정으로부터의 전체 생산물을 증가시키도록, 압력하에 회수 유체를 주입정에 주입하는 것을 포함한다. 공정은 전체 원유를 이루는 경질 분획과 중질 분획이 분리되도록, 회수 유체와 직접 혼합되는 회수된 전체 원유를 단계적 방식으로 감압하는 것을 추가로 포함한다. 이후 중질 분획이 개질을 위한 수열 개량 시설에 보내질 수 있다.
개질 단계는 일반적으로 중질 분획을 고온 가압수과 접촉시켜 전체 원유와 비교하여 더 높은 API 비중 및 감소된 양의 아스팔텐, 황, 질소 또는 금속 함유 물질을 가지는 개질된 중질 분획을 생성하는 것을 포함한다. 개질 단계는 첨가되는 수소의 부재에서 수행된다. 고온 가압수는 물의 임계 온도와 압력 위에 있고, 원하는 최종 결과를 얻기 위하여 본 발명에서 이용되는 독특한 특성을 나타낸다.
고온 가압수는 물질확산, 열전달, 분자내 또는 분자간 수소 이동 촉진, 코크 형성 억제를 위한 라디칼 화합물 안정화 및 황, 질소 및 금속 함유 분자와 같은 불순물 제거를 통하여 저분자량 탄화수소로 크래킹될 중질 성분을 위한 반응 매질을 제공한다. 비록 불순물 제거의 정확한 메커니즘이 규명되지는 않았지만, 불순물이 수상에 흡착되거나, 코크 또는 개량된 생성물의 중질 분획에 농축되는 것으로 보인다. 유해한 효과를 피하기 위하여, 초임계수의 사용을 통해 이러한 불순물이 원유로부터 분리된다.
공정은 경질 원유 스트림으로부터 회수 유체를 분리하여 경질 분획 스트림을 형성하는 것을 추가로 포함하고, 한 구체예에서, 경질 분획 스트림이 개질된 중질 분획과 조합되어 개량된 전체 원유를 형성한다. 게다가, 경질 원유 스트림으로부터 분리된 회수 유체가 주입 단계 동안의 재사용을 위하여 회수되고 재순환될 수 있다.
본 발명의 상기 구체예는 처리량을 보통 수준으로 지속하면서 땅으로부터 전체 원유를 추출하고 전체 원유의 저가치의 중질 성분을 개량하는 효과적인 공정을 제공한다. 본 발명은 중질 분획 개질을 위하여 값비싼 촉매를 필요로 하지 않기 때문에 유리하다. 더욱이, 본 발명은 더 통상적이고 더 값비싼 증류 설비를 사용하지 않고 전체 원유를 중질 분획과 경질 분획으로 분획하기 위한 실제적인 방식을 제공한다. 게다가, 본 발명은 제조사가 개량을 위하여 원거리 위치로 전체 원유를 수송하기보다는 생산지에서 전체 원유를 개량하는 것을 허용하고, 비용을 더욱 감소시킨다.
이제 도 1로 돌아가는데, 이는 이산화탄소가 회수 유체인 본 발명의 한 구체예를 나타낸다. 이산화탄소 저장 탱크(5)에 저장된 이산화탄소는 압축되고, 압축 이산화탄소 라인(7)을 통하여 주입정(15)에 주입된다. 지하층(17)에 있는 전체 원유 중의 이산화탄소의 혼화성을 보장하기 위하여 압축 이산화탄소의 압력이 최소 혼화성 압력(MMP) 위로 유지된다. MMP는 유정마다 변화할 것이지만; 이산화탄소에 대한 MMP는 일반적으로 2000 psig 내지 4000 psig 범위이다. 그러므로, 이산화탄소 주입의 조업 압력은 전형적으로 2000 psig 내지 5000 psig이다. 원유 회수를 촉진하기 위하여 물이 또한 이산화탄소와 함께 주입될 수 있는데, 이는 공지인 WAG(Water-Alternating-Gas) 디자인이고, 본 명세서에 참조로 포함된다.
혼화 가능한(miscible) 이산화탄소와 전체 원유는 생산정(25)을 통하여 지표에 도달하고, 이러한 고압 스트림(27)은 이후 분획 장치(35)에 들어가며, 여기서 압력은 고압 스트림의 중질 부분이 이산화탄소와 혼화 불가능하게 되도록 MMP 미만이지만 특정한 값을 초과하는 정도까지 감소된다. 한 구체예에서, 분획 장치(35)의 압력이 임계 이산화탄소의 압력(1073 psig)에 근접한 압력 범위 내의 압력에서 유지된다. 바람직한 압력 범위는 500 psig 내지 2000 psig, 더욱 바람직하게는 1,000 psig 내지 1,300 psig이다. 분획 장치(35) 내의 온도는 0℃ 내지 50℃, 바람직하게는 20℃ 내지 40℃ 범위 내에서 유지된다.
중질 분획 스트림(4)으로 지칭되는 이러한 중질 부분은, 여전히 소량의 이산화탄소를 함유하며, 이후 수열 개질 시설(45)에 보내지고, 이에 의하여 중질 분획 스트림(4)이 초임계 조건하에 물과 접촉하여, 개질된 중질 분획(92)을 생성한다. 중질 분획 스트림(4) 내의 소량의 이산화탄소의 존재는 두 가지 이점을 제공한다. 첫 번째로, 중질 분획 스트림에 용해된 이산화탄소가 점도를 낮춰, 스트림이 더욱 쉽게 흐르도록 한다. 두 번째로, 앞에서 언급한 바와 같이, 용해된 이산화탄소가 중질 분획 밀도의 밀도를 낮춰, 초임계수가 중질 오일 분자와 더욱 효과적으로 상호작용하도록 하고, 이는 더욱 양호한 전환, 감소된 양의 코크 생성, 및 더 낮아진 조업 비용을 야기한다.
이산화탄소의 상당한 부분과 전체 원유의 경질 분획을 포함하는 경질 원유 스트림(37)은 분획 장치(35)를 나가고 이산화탄소 분리기(55)에 들어가며, 여기서 주위 대기압으로 낮춰 잔존하는 이산화탄소가 압력을 제거되고; 경질 분획 스트림(59)을 떠난다. 분리된 이산화탄소는 재순환 이산화탄소 라인(57)을 통하여 이산화탄소 저장 탱크(5)로 되돌아가 재순환된다. 이후 경질 분획 스트림(59)이 개량된 전체 원유 저장 탱크(65)에 공급되고, 여기서 저장을 위하여 개질된 중질 분획(92)과 조합된다. 최종 생성물인 개량된 전체 원유(96)는 이후 추가 정유를 위하여 수송될 수 있다.
도 2는 수열 개질 시설(45)의 구체예를 나타낸다. 물 공급물 스트림(2)은 물 저장 탱크(10)에 공급되고, 이어서 물 공급물 스트림(2)이 고압 정량 수펌프(20)를 사용하여 혼합 영역(30)의 공정으로 펌핑된다. 중질 분획 스트림(4)이 중질 분획 저장 탱크(11)로 유사하게 공급되고, 이어서 중질 분획 스트림(4)이 고압 정량 중질 분획 펌프(21)를 사용하여 혼합 영역(30)의 공정으로 펌핑된다. 혼합 영역(30) 앞에서, 중질 분획 스트림(4)의 온도는 흐름을 허용하지만 바람직하게는 150℃를 초과하지 않는 온도이다. 두 스트림이 혼합 영역(30)에서 조합되어 혼합물(32)을 형성한다. 이후 혼합물(32)이 가열 영역(40)에 공급되고, 여기서 온도가 150 내지 400℃, 더욱 바람직하게는 150 내지 350℃ 범위 내의 온도로 증가되어 예열된 혼합물(42)을 형성한다.
예열된 혼합물(42)은 이후 주 반응기(50)로 공급되고, 여기서 예열된 혼합물(42)의 탄화수소의 적어도 일부가 크래킹을 겪어 고온 변형-혼합물(52)을 형성하도록 온도와 압력이 물의 임계점에 근접하거나 이를 초과하며, 내부를 가지는 주 반응기(50)에는 본질적으로 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없다. 고온 변형-혼합물(52)은 이후 임의의 적절한 냉각 수단(60), 바람직하게는 열교환기를 사용하여 냉각되어, 냉각된 변형-혼합물(62)을 생성한다. 냉각된 변형-혼합물(62)은 이후 압력 조절 장치(70)에 의하여 감압되어 압력 감소된 변형-혼합물(72)을 생성한다. 한 구체예에서, 압력 조절 장치(70)는 병렬 방식으로 연결된 적어도 둘의 역압 조절기, 더욱 바람직하게는 셋의 역압 조절기(70a, 70b, 70c)를 포함한다. 이러한 배열은 유리하게도, 주(primary) 역압 조절기가 막힐 경우에도 연속 조업을 제공한다. 이후 압력 감소된 변형-혼합물(72)이 액체-기체 분리기(80)에 들어가고, 여기서 압력 감소된 변형-혼합물(72)이 기체 부분(82)과 액체 부분(84)으로 분리된다. 이후 액체 부분(84)이 오일-물 분리기(90)에 공급되어 개질된 중질 분획(92)과 회수되는 물(94)을 산출한다. 대안의 구체예에서, 회수되는 물(94)이 물 저장 탱크(10)의 전 또는 후에서 재순환되고 물 공급물 스트림(2)으로서 재사용될 수 있다.
도 3은 혼합 영역(30) 앞에서 물 공급물 스트림(2)이 초임계 상태로 예열되는 한 구체예를 나타낸다. 이러한 구체예에서, 물 공급물 스트림(2)이 물 저장 탱크(10)로 공급되고, 이어서 물 공급물 스트림(2)이 고압 정량 수펌프(20)를 사용하여 공정으로 펌핑된다. 그러나, 중질 분획 스트림(4)과의 첫 번째 혼합 대신, 물 공급물 스트림(2)은 가열 영역(40)에서 가열되어 가열된 물 스트림(41)을 형성하고, 여기서 가열된 물 스트림(41)은 초임계 상태에 있다.
중질 분획 스트림(4)은 고 왁스질 원유 저장 탱크(11)로 유사하게 공급되고, 이어서 중질 분획 스트림(4)이 고압 정량 중질 분획 펌프(21)를 사용하여 혼합 영역(30)의 공정으로 펌핑된다. 혼합 영역(30) 전에서, 중질 분획 스트림(4)의 온도는 흐름을 허용하지만; 바람직하게는 150℃를 초과하지 않는 온도이다. 중질 분획 스트림(4)과 가열된 물 스트림(41)은 바람직하게는 주 반응기(50) 근처인 혼합 영역(30)에서 조합되어 예열된 혼합물(42)을 생성한다.
예열된 혼합물(42)은 주 반응기(50)에 들어가는데, 여기서 예열된 혼합물(42)의 탄화수소의 적어도 일부가 크래킹을 겪어 고온 변형-혼합물(52)을 형성하도록 온도와 압력이 물의 임계점에 근접하거나 이를 초과하며, 주 반응기(50)에는 본질적으로 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없다. 고온 변형-혼합물(52)은 이후 임의의 적절한 냉각 수단(60), 바람직하게는 열교환기를 사용하여 냉각되어, 냉각된 변형-혼합물(62)을 생성한다. 냉각된 변형-혼합물(62)은 이후 압력 조절 장치(70)에 의하여 감압되어 압력 감소된 변형-혼합물(72)을 생성한다. 한 구체예에서, 압력 조절 장치(70)는 병렬 방식으로 연결된 적어도 둘의 역압 조절기, 더욱 바람직하게는 셋의 역압 조절기(70a, 70b, 70c)를 포함한다. 이러한 배열은 유리하게도, 주 역압 조절기가 막힐 경우에도 연속 조업을 제공한다. 이후 압력 감소된 변형-혼합물(72)이 액체-기체 분리기(80)에 들어가고, 여기서 압력 감소된 변형-혼합물(72)이 기체 부분(82)과 액체 부분(84)으로 분리된다. 이후 액체 부분(84)이 오일-물 분리기(90)에 공급되어 개질된 중질 분획(92)과 회수되는 물(94)을 산출한다. 대안의 구체예에서, 회수되는 물(94)이 물 저장 탱크(10)의 전 또는 후에서 재순환되고 물 공급물 스트림(2)으로서 재사용될 수 있다.
도 4는 이산화탄소의 일반적인 용해도 곡선을 압력의 함수로서 나타낸다. 일반적으로, 이산화탄소는 더 큰 분자량의 오일 분획보다 더 작은 분자량의 오일 분획에 더욱 쉽게 용해된다. 곡선1은 중질 분획에 대한 이산화탄소의 용해도 곡선을 나타내고, 곡선 2는 경질 분획에 대한 이산화탄소의 용해도 곡선을 나타낸다. 본 발명에서, 압력 A는 생산정을 나가는 고압 스트림의 압력을 나타내고, 압력 B는 도 1의 분획 장치(35)의 압력이다.
도 4에 나타나는 바와 같이, 중질 분획에 대한 이산화탄소의 용해도는 경질 분획에 대한 용해도보다 더욱 빠르게 감소한다. 이러한 용해도 차이는 본 발명이 성공적으로 고압 스트림의 나머지로부터 중질 분획을 분리하도록 하는 것이다. 실제로, 압력 A는 회수 유체의 MMP를 초과해야 하는데, 회수 유체의 MMP는 측정되거나 예측될 수 있다.
압력 B는 일련의 실험을 수행하여 최적으로 선택될 수 있다. 직관적으로, 압력 B가 지나치게 높을 경우, 더 적은 중질 분획이 분리될 것이고, 이는 전체 전환을 제한한다; 그러나 압력 B가 지나치게 낮게 설정될 경우, 경질 분획의 비교적 상당한 부분이 수열 개질 시설로 보내지고, 이는 수열 시설 전반에서 경질 분획의 추가 흐름을 수용하기 위하여 더 큰 설비와 더 많은 동력을 필요로 한다. 두 경우 모두에서, 공정의 전체 효율이 감소된다. 그러므로 실험은 예를 들어, 당업자에게 자명할 다른 많은 변형 중 사용되는 회수 유체의 유형, 전체 원유의 고유한 특징, 설비 특징, 및 원하는 처리량을 고려하여, 도 1의 분획 장치(35)의 조업 압력을 최적화하도록 수행되어야 한다.
비록 본 발명이 그 형태의 단지 일부에 대해서 나타나거나 기재되기는 하지만, 발명이 한정되는 것이 아니고 발명의 범위에서 벗어나지 않으면서 다양한 변형이 되기 용이함이 당업자에게 자명할 것이다.

Claims (20)

  1. 다음 단계:
    생산정(production well)으로부터 전체 원유(whole crude oil)의 회수를 증진시키기 위하여 회수 유체가 지하층(underground formation)을 소제(sweep)할 수 있도록, 회수 유체의 최소 혼화성 압력(minimum miscibility pressure)을 초과하는 압력에서 주입정(injection well)에 가압된 회수 유체를 주입하는 단계, 상기 회수 유체는 생산정으로부터 회수된 직후의 전체 원유와 직접 혼합되어 고압 스트림을 형성하고, 여기서 상기 전체 원유는 경질 분획과 중질 분획을 포함함;
    상기 중질 분획 내의 회수 유체의 일부분의 혼화성을 유지하기 위한 조건에서 상기 고압 스트림을 감압하고, 상기 고압 스트림으로부터 상기 중질 분획을 분리하여 경질 원유 스트림과 중질 분획 스트림을 형성하는 단계, 상기 경질 원유 스트림은 상기 회수 유체의 상당 부분을 함유함;
    상기 경질 원유 스트림으로부터 상기 회수 유체를 분리하여 경질 분획 스트림을 형성하는 단계;
    상기 중질 분획 스트림을 초임계 조건하에 물 공급물 스트림과 접촉시켜 상기 중질 분획 스트림을 개질된 중질 분획으로 개질(reforming)하는 단계, 여기서 개질된 중질 분획은 개질전 전체 원유와 비교하여 아스팔텐, 황, 질소 또는 금속 함유 물질 중의 하나 이상의 양이 감소된 아스팔텐, 황, 질소 또는 금속 함유 물질을 가짐;
    를 포함하는, 전체 원유(whole crude oil) 개량 방법.
  2. 제1항에 있어서, 상기 경질 분획 스트림을 상기 개질된 중질 분획과 조합하여 개량된 전체 원유를 생성하는 단계를 추가로 포함하고, 여기서 상기 개량된 전체 원유는 개량전 전체 원유와 비교하여 아스팔텐, 황, 질소 또는 금속 함유 물질 중의 하나 이상의 양이 감소된 아스팔텐, 황, 질소 또는 금속 함유 물질을 함유함을 특징으로 하는 전체 원유 개량 방법.
  3. 제1항에 있어서, 상기 회수 유체는 기체, 액체, 수증기, 화학물질, 및 이들의 조합으로 이루어진 군에서 선택되는 하나임을 특징으로 하는 전체 원유 개량 방법.
  4. 제1항에 있어서, 상기 회수 유체는 이산화탄소, 질소, 천연가스 및 이들의 조합으로 이루어진 군에서 선택되는 하나의 기체임을 특징으로 하는 전체 원유 개량 방법.
  5. 제1항에 있어서, 상기 회수 유체는 이산화탄소임을 특징으로 하는 전체 원유 개량 방법.
  6. 제1항에 있어서, 상기 회수 유체로부터 상기 경질 원유 스트림을 분리하는 단계는 순간증발기(flash evaporator)를 포함함을 특징으로 하는 전체 원유 개량 방법.
  7. 제1항에 있어서, 상기 중질 분획 스트림의 개질 단계는 다음 단계를 추가로 포함함을 특징으로 하는 전체 원유 개량 방법:
    상기 중질 분획을 상기 물 공급물 스트림과 조합하여 혼합물을 생성하는 단계, 여기서 상기 혼합물은 외부에서 공급되는 수소의 부재에서 생성됨;
    반응 영역 내의 상기 혼합물의 온도가 물의 임계 온도 이상이 되고, 상기 혼합물 중의 탄화수소의 적어도 일부가 크래킹을 겪어 고온에 적응된 혼합물을 생성하도록, 상기 혼합물의 온도를 변화시키는 단계;
    상기 고온에-적응된 혼합물을 냉각하고 감압하여 감압에-적응된 혼합물을 생성하는 단계;
    상기 감압에-적응된 혼합물을 기체 부분과 액체 부분으로 분리하는 단계; 및
    상기 액체 부분을 회수되는 물 스트림과 개질된 중질 분획으로 분리하는 단계.
  8. 제7항에 있어서, 상기 혼합물은 외부에서 공급되는 촉매의 부재에서 생성됨을 특징으로 하는 전체 원유 개량 방법.
  9. 제7항에 있어서, 상기 반응 영역은 내부(interior portion)를 가지는 주 반응기(main reactor)를 포함하고, 상기 주 반응기는 수직으로 배치된 반응기를 포함하여, 상기 혼합물이 상기 수직으로 배치된 반응기를 통하여 아래쪽으로 흐름을 특징으로 하는 전체 원유 개량 방법.
  10. 제7항에 있어서, 상기 고온에-적응된 혼합물은 압력 조절 장치에 의하여 감압되고, 상기 압력 조절 장치가 적어도 하나의 역압 조절기를 포함함을 특징으로 하는 전체 원유 개량 방법.
  11. 제10항에 있어서, 상기 압력 조절 장치는 병렬 방식으로 배열된 둘 이상의 역압 조절기임을 특징으로 하는 전체 원유 개량 방법.
  12. 제1항에 있어서, 상기 중질 분획 스트림의 개질 단계가 다음 단계:
    상기 물 공급물 스트림과 상기 중질 분획 스트림의 압력을 목표 압력으로 증가시키는 단계, 상기 목표 압력은 물의 임계 압력을 초과함;
    약간 상승된 온도에서 상기 중질 분획 스트림을 상기 물 공급물 스트림과 혼합하여 혼합물을 형성하는 단계, 상기 온도는 혼합물이 약간 상승된 온도에서 쉽게 펌핑될 수 있도록 하는 범위에서 선택됨;
    상기 혼합물을 물의 임계 압력을 초과하는 압력에서 가열 영역으로 펌핑하는 단계;
    상기 가열 영역에서 상기 혼합물을 150℃ 내지 350℃ 범위의 온도로 가열하여 예열된 혼합물을 형성하는 단계;
    상기 예열된 혼합물을 반응 영역에 공급하는 단계;
    상기 예열된 혼합물의 탄화수소의 일부가 크래킹을 겪어 고온에-적응된 혼합물을 형성하도록, 상기 반응 영역 내의 온도를 물의 임계 온도 이상인 목표 온도로 증가시키는 단계, 상기 반응 영역에는 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없음;
    상기 고온에-적응된 혼합물을 냉각하고 감압하여 감압에-적응된 혼합물을 형성하는 단계;
    적어도 하나의 분리기를 사용하여 상기 감압에-적응된 혼합물을 기체 부분과 액체 부분으로 분리하는 단계; 및
    적어도 하나의 오일-물 분리기를 사용하여 상기 액체 부분을 개질된 중질 분획과 회수되는 물 스트림으로 분리하는 단계;
    를 추가로 포함함을 특징으로 하는 전체 원유 개량 방법.
  13. 제12항에 있어서, 다음 단계:
    상기 회수되는 물 스트림을 초임계 조건에서 산화시켜 처리된 물 스트림을 형성하는 단계; 및
    상기 처리된 물 스트림을 상기 물 공급물 스트림과 조합하여 상기 처리된 물 스트림을 재순환시키는 단계;
    를 추가로 포함함을 특징으로 하는 전체 원유 개량 방법.
  14. 제1항에 있어서, 상기 중질 분획 스트림의 개질 상기 중질 분획 스트림의 개질 단계는 다음 단계:
    상기 물 공급물 스트림과 상기 중질 분획 스트림의 압력을 물의 임계 압력을 초과하는 목표 압력으로 증가시키는 단계;
    가열된 물 스트림이 초임계 상태에 있도록, 상기 물 공급물 스트림을 상승된 온도로 가열하여 가열된 물 스트림을 형성하는 단계;
    혼합 영역에서 상기 중질 분획 스트림을 상기 가열된 물 스트림과 혼합하여 예열된 혼합물을 형성하는 단계, 여기서 상기 혼합 영역은 상기 예열된 혼합물이 초임계 상태로 유지되도록 반응 영역 근처의 위치에 있음;
    상기 예열된 혼합물을 상기 반응 영역에 공급하는 단계;
    상기 예열된 혼합물의 탄화수소의 일부가 크래킹을 겪어 고온에-적응된 혼합물을 형성하도록, 상기 반응 영역 내의 온도를 물의 임계 온도 이상인 목표 온도로 증가시키는 단계, 상기 반응 영역에는 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없음;
    상기 고온에-적응된 혼합물을 냉각하고 감압하여 감압에-적응된 혼합물을 형성하는 단계;
    적어도 하나의 분리기를 사용하여 상기 감압에-적응된 혼합물을 기체 부분과 액체 부분으로 분리하는 단계; 및
    적어도 하나의 오일-물 분리기를 사용하여 상기 액체 부분을 개질된 중질 분획과 회수되는 물 스트림으로 분리하는 단계;
    를 추가로 포함함을 특징으로 하는 전체 원유 개량 방법.
  15. 제14항에 있어서, 다음 단계:
    상기 회수되는 물 스트림을 초임계 조건에서 산화시켜 처리된 물 스트림을 형성하는 단계; 및
    상기 처리된 물 스트림을 상기 물 공급물 스트림과 조합하여 상기 처리된 물 스트림을 재순환시키는 단계;
    를 추가로 포함함을 특징으로 하는 전체 원유 개량 방법.
  16. 다음:
    지하층과 유체연통(fluid communication)되는 주입정, 상기 주입정은 가압된 회수 유체를 받아들이고 상기 가압된 회수 유체를 상기 지하층 도입할 수 있고, 여기서 상기 가압된 회수 유체가 상기 지하층 내의 전체 원유와 직접 혼합되어 고압 스트림을 형성하며, 상기 고압 스트림은 상기 회수 유체와 전체 원유를 포함하고, 상기 전체 원유는 경질 분획과 중질 분획을 포함함;
    지하층과 유체연통되는 생산정, 상기 생산정은 상기 지하층으로부터 상기 고압 스트림을 생산할 수 있음;
    생산정과 유체연통되는 분획 장치, 여기서 상기 분획 장치는 상기 중질 분획이 상기 고압 스트림으로부터 분리되어 경질 원유 스트림과 중질 분획 스트림을 형성하도록, 단계적으로 상기 고압 스트림을 감압할 수 있으며, 여기서 상기 회수 유체의 일부분이 상기 중질 분획 내에 혼화성으로 유지되고 상기 경질 원유 스트림이 상기 회수 유체의 상당 부분을 함유함; 및
    상기 중질 분획 스트림을 초임계 조건하에서 물 공급물 스트림과 접촉시켜 상기 중질 분획 스트림을 개질된 중질 분획으로 개질할 수 있는 수열 개질 시설(hydrothermal reforming facility), 여기서 상기 개질된 중질 분획은 개질전 전체 원유와 비교하여 아스팔텐, 황, 질소 또는 금속 함유 물질 중의 하나 이상의 양이 감소된 아스팔텐, 황, 질소 또는 금속 함유 물질을 가짐;
    을 포함하는, 전체 원유 개량 장비(apparatus).
  17. 제16항에 있어서, 상기 수열 개질 시설은 다음:
    약간 상승된 온도에서 상기 중질 분획을 상기 물 공급물과 함께 받아들여 중질 오일/물 혼합물을 형성할 수 있는 혼합 영역;
    상기 혼합 영역과 유동적으로(fluidly) 연결되는 예열 영역, 상기 예열 영역은 상기 중질 오일/물 혼합물을 최대 350℃의 온도로 가열할 수 있음;
    고압 펌핑 수단, 상기 고압 펌핑 수단은 상기 중질 오일/물 혼합물의 압력을 적어도 물의 임계 압력으로 증가시킬 수 있음; 및
    상기 예열 영역과 유동적으로 연결되는 반응 영역; 상기 반응 영역은 주 반응기의 내부를 포함하고, 상기 주 반응기는 적어도 물의 임계 온도만큼 높은 온도에 견딜 수 있으며; 상기 주 반응기는 물의 임계 압력을 초과하는 압력에 견딜 있고, 상기 반응 영역에는 외부에서 제공된 촉매 및 외부에서 제공된 수소원이 없음;
    을 포함함을 특징으로 하는 전체 원유 개량 장비.
  18. 제17항에 있어서, 상기 혼합 영역은 상기 중질 오일/물 혼합물이 공동화(cavitation)를 거치게 하고, 서브마이크로멀젼(submicromulsion)을 생성하여 상기 중질 오일/물 혼합물의 혼합을 더욱 유도하는 초음파 발생기를 추가로 포함함을 특징으로 하는 전체 원유 개량 장비.
  19. 제17항에 있어서, 다음:
    압력 조절 장치;
    상기 압력 조절 장치와 유동적으로 연결되는 액체-기체 분리기, 상기 액체-기체 분리기는 액체 스트림과 기체 스트림을 생성할 수 있음; 및
    상기 액체 스트림을 통하여 상기 액체-기체 분리기와 유동적으로 연결되는 물-오일 분리기, 상기 물-오일 분리기는 회수되는 물 스트림과 개량된 탄화수소 스트림을 생성할 수 있음;
    을 추가로 포함함을 특징으로 하는 전체 원유 개량 장비.
  20. 제19항에 있어서, 상기 회수되는 물 스트림은 재순환되고 물 공급물과 조합될 수 있고, 상기 장비는 상기 회수되는 물 스트림과 유동적으로 연결되는 산화 반응기를 추가로 포함하며, 상기 산화 반응기는 산화를 통하여 상기 회수되는 물 스트림을 정제할 수 있음을 특징으로 하는 전체 원유 개량 장비.
KR1020107014334A 2007-11-28 2008-11-25 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정 KR101419978B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US99066207P 2007-11-28 2007-11-28
US99065807P 2007-11-28 2007-11-28
US99064107P 2007-11-28 2007-11-28
US99064807P 2007-11-28 2007-11-28
US99067007P 2007-11-28 2007-11-28
US60/990,670 2007-11-28
US60/990,648 2007-11-28
US60/990,662 2007-11-28
US60/990,658 2007-11-28
US60/990,641 2007-11-28
PCT/US2008/084520 WO2009082585A2 (en) 2007-11-28 2008-11-25 Process to upgrade whole crude oil by hot pressurized water and recovery fluid

Publications (2)

Publication Number Publication Date
KR20100107459A KR20100107459A (ko) 2010-10-05
KR101419978B1 true KR101419978B1 (ko) 2014-07-16

Family

ID=40674560

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020157033396A KR101606680B1 (ko) 2007-11-28 2008-11-24 고도로 밀납을 함유하는 원유의 유동점 및 파라핀 함량을 낮추기 위한 연속 공정
KR1020107014239A KR101419977B1 (ko) 2007-11-28 2008-11-24 고온 가압수 및 초음파를 발생하는 사전-혼합기에 의한 중유 업그레이드 공정
KR1020107013449A KR20100105611A (ko) 2007-11-28 2008-11-24 고온 가압수에 의한 고도 밀납 원유 업그레이드 공정
KR1020107014333A KR101504384B1 (ko) 2007-11-28 2008-11-24 원유의 산도를 감소시키기 위한 공정
KR1020107014331A KR101577082B1 (ko) 2007-11-28 2008-11-24 수소의 공급 없이 중질 원유 및 고왁스질 원유를 개량하는 공정
KR1020107014334A KR101419978B1 (ko) 2007-11-28 2008-11-25 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020157033396A KR101606680B1 (ko) 2007-11-28 2008-11-24 고도로 밀납을 함유하는 원유의 유동점 및 파라핀 함량을 낮추기 위한 연속 공정
KR1020107014239A KR101419977B1 (ko) 2007-11-28 2008-11-24 고온 가압수 및 초음파를 발생하는 사전-혼합기에 의한 중유 업그레이드 공정
KR1020107013449A KR20100105611A (ko) 2007-11-28 2008-11-24 고온 가압수에 의한 고도 밀납 원유 업그레이드 공정
KR1020107014333A KR101504384B1 (ko) 2007-11-28 2008-11-24 원유의 산도를 감소시키기 위한 공정
KR1020107014331A KR101577082B1 (ko) 2007-11-28 2008-11-24 수소의 공급 없이 중질 원유 및 고왁스질 원유를 개량하는 공정

Country Status (10)

Country Link
US (7) US8025790B2 (ko)
EP (5) EP2231823A2 (ko)
JP (5) JP5346036B2 (ko)
KR (6) KR101606680B1 (ko)
CN (5) CN101970610B (ko)
BR (5) BRPI0819687A2 (ko)
DK (1) DK2240556T3 (ko)
ES (1) ES2582392T3 (ko)
MX (5) MX2010005854A (ko)
WO (5) WO2009073442A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568615B1 (ko) * 2014-11-28 2015-11-11 연세대학교 산학협력단 중질 탄화수소 유분의 연속적 처리 방법
DE102017127417A1 (de) 2017-11-21 2019-05-23 Egm-Holding-International Gmbh Reaktionskammer

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310199B4 (de) * 2003-03-06 2007-09-20 Kronotec Ag Holzfaserplatte und Verfahren zu deren Herstellung
US7943036B2 (en) 2009-07-21 2011-05-17 Chevron U.S.A. Inc. Systems and methods for producing a crude product
KR101606680B1 (ko) 2007-11-28 2016-03-25 사우디 아라비안 오일 컴퍼니 고도로 밀납을 함유하는 원유의 유동점 및 파라핀 함량을 낮추기 위한 연속 공정
US20090159498A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Intergrated process for in-field upgrading of hydrocarbons
US8236169B2 (en) * 2009-07-21 2012-08-07 Chevron U.S.A. Inc Systems and methods for producing a crude product
US7931797B2 (en) 2009-07-21 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8551323B2 (en) * 2009-08-31 2013-10-08 Chevron U.S.A. Inc. Systems and methods for hydroprocessing a heavy oil feedstock
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US8197670B2 (en) * 2010-02-23 2012-06-12 Chevron U.S.A. Inc. Process for upgrading hydrocarbons and device for use therein
US8444843B2 (en) 2010-04-15 2013-05-21 Saudi Arabian Oil Company Electrocatalytic dissociation of water for hydrodesulfurization of hydrocarbon feedstock
US9005432B2 (en) * 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
US9382485B2 (en) * 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US9039889B2 (en) * 2010-09-14 2015-05-26 Saudi Arabian Oil Company Upgrading of hydrocarbons by hydrothermal process
CN102453513B (zh) * 2010-10-22 2014-03-05 中国石油化工股份有限公司 降低催化裂化烟气中硫氧化物含量的方法
CN102453514B (zh) * 2010-10-22 2014-03-05 中国石油化工股份有限公司 减少催化裂化烟气中二氧化碳排放量的方法
CA2815882C (en) * 2010-10-27 2020-10-27 1555771 Alberta Ltd. Non-aqueous hydrocarbon recovery
US8894846B2 (en) * 2010-12-23 2014-11-25 Stephen Lee Yarbro Using supercritical fluids to refine hydrocarbons
WO2012091382A2 (ko) * 2010-12-28 2012-07-05 에스케이이노베이션 주식회사 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
KR101759351B1 (ko) 2010-12-28 2017-07-21 에스케이이노베이션 주식회사 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
US9018124B2 (en) 2010-12-30 2015-04-28 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8535518B2 (en) * 2011-01-19 2013-09-17 Saudi Arabian Oil Company Petroleum upgrading and desulfurizing process
WO2012143972A1 (ja) * 2011-04-19 2012-10-26 日揮株式会社 改質油の製造方法、及び改質油製造装置
EP2702121B1 (en) * 2011-04-27 2019-04-10 Saudi Arabian Oil Company Sulfone cracking using supercritical water
CN104039434B (zh) * 2011-10-31 2015-11-25 沙特阿拉伯石油公司 用于改质石油的超临界水工艺
CA2757962C (en) 2011-11-08 2013-10-15 Imperial Oil Resources Limited Processing a hydrocarbon stream using supercritical water
KR101515690B1 (ko) 2011-12-30 2015-05-06 연세대학교 산학협력단 중질 탄화수소 유분 및 목질계 바이오매스의 개질 방법
CN103320160B (zh) * 2012-03-22 2016-01-13 中国石油化工股份有限公司 一种含酸原油的加工方法
AU2013280585A1 (en) * 2012-06-27 2014-12-18 Shell Internationale Research Maatschappij B.V. Petroleum recovery process and system
JP2014074111A (ja) * 2012-10-03 2014-04-24 Jgc Corp 炭化水素油の処理方法及び炭化水素油の処理装置
KR101938171B1 (ko) 2012-10-31 2019-01-14 대우조선해양 주식회사 백업 기능을 가지는 브라인 및 베이스오일 공급 시스템과 브라인 및 베이스오일의 백업 공급 방법
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
KR101898734B1 (ko) * 2012-12-20 2018-09-13 에스케이에너지 주식회사 원유 탈염 시스템
KR101422483B1 (ko) * 2012-12-21 2014-07-23 삼성중공업 주식회사 고점도의 원유 채굴방법
US8715488B1 (en) 2013-01-07 2014-05-06 Clean Global Energy, Inc. Method and apparatus for making hybrid crude oils and fuels
US10907455B2 (en) * 2013-02-08 2021-02-02 Chevron U.S.A. Inc. System and process for recovering hydrocarbons using a supercritical fluid
US11242735B2 (en) * 2013-02-08 2022-02-08 Chevron U.S.A. Inc. System and process for recovering hydrocarbons using a supercritical fluid
CA2843041C (en) 2013-02-22 2017-06-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US11440815B2 (en) 2013-02-22 2022-09-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9708196B2 (en) 2013-02-22 2017-07-18 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9364773B2 (en) 2013-02-22 2016-06-14 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US10215399B2 (en) 2013-03-14 2019-02-26 The Babcock & Wilcox Company Small supercritical once-thru steam generator
JP6248253B2 (ja) * 2013-08-29 2017-12-20 国立大学法人秋田大学 溶液中の重質油回収方法及び回収システム
CN105518101A (zh) * 2013-09-13 2016-04-20 通用电气公司 处理用于产生超临界密相流体的采出水和注入地质层用于烃生产
US9771527B2 (en) 2013-12-18 2017-09-26 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
DK3097165T3 (da) * 2014-01-20 2022-09-12 Applied Res Associates Inc Højeffektiv flydepunktsnedsættende fremgangsmåde
US20170003264A1 (en) * 2014-01-24 2017-01-05 The University Of Wyoming Research Corporation D/B/A Western Research Institute Volatile Hydrocarbon Separation and Analysis Apparatus and Methods
FR3018274B1 (fr) * 2014-03-10 2016-04-08 Innoveox Procede de traitement de dechets organiques par oxydation hydrothermale
US9505678B2 (en) 2014-05-12 2016-11-29 Saudi Arabian Oil Company Process to produce aromatics from crude oil
CN105368487A (zh) * 2014-08-12 2016-03-02 罗杰·K·洛特 用于加工烃类的超声波处理
CN104492412B (zh) * 2015-01-07 2016-08-24 苏珂 一种石油脱酸催化剂的制备方法
JP6556243B2 (ja) * 2015-01-28 2019-08-07 アプライド リサーチ アソシエーツ, インコーポレイテッド 水熱浄化プロセス
US9802176B2 (en) * 2015-03-24 2017-10-31 Saudi Arabian Oil Company Method for mixing in a hydrocarbon conversion process
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US9452434B1 (en) 2015-04-17 2016-09-27 LLT International (Ireland) Ltd. Providing wear resistance in a reactor configured to facilitate chemical reactions and/or comminution of solid feed materials using shockwaves created in a supersonic gaseous vortex
US10427129B2 (en) * 2015-04-17 2019-10-01 LLT International (Ireland) Ltd. Systems and methods for facilitating reactions in gases using shockwaves produced in a supersonic gaseous vortex
US10434488B2 (en) 2015-08-11 2019-10-08 LLT International (Ireland) Ltd. Systems and methods for facilitating dissociation of methane utilizing a reactor designed to generate shockwaves in a supersonic gaseous vortex
KR102250734B1 (ko) * 2015-09-25 2021-05-11 에스케이이노베이션 주식회사 원유 내의 유기산 및 금속의 제거 방법
US9926497B2 (en) * 2015-10-16 2018-03-27 Saudi Arabian Oil Company Method to remove metals from petroleum
CN105403347B (zh) * 2015-11-27 2019-09-06 中国石油化工股份有限公司 Co2驱最小混相压力测定方法及专用装置
US10066172B2 (en) * 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce paraffinic stream from heavy oil
EP3370858B1 (en) 2015-12-15 2022-01-26 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10066176B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce high grade coke
US10011790B2 (en) 2015-12-15 2018-07-03 Saudi Arabian Oil Company Supercritical water processes for upgrading a petroleum-based composition while decreasing plugging
KR101696376B1 (ko) 2016-03-25 2017-01-12 서울시립대학교 산학협력단 촉매를 이용한 바이오 오일의 안정화 방법
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
JP6886480B2 (ja) * 2016-07-08 2021-06-16 アプライド リサーチ アソシエーツ, インコーポレイテッド 超臨界水分離プロセス
CN106350101B (zh) * 2016-09-19 2018-01-23 华东理工大学 基于亚/超临界水中重芳烃自组装效应的重质油预处理的方法及应用
US10106748B2 (en) 2017-01-03 2018-10-23 Saudi Arabian Oil Company Method to remove sulfur and metals from petroleum
US10577546B2 (en) 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
US10815434B2 (en) 2017-01-04 2020-10-27 Saudi Arabian Oil Company Systems and processes for power generation
CN106701161B (zh) * 2017-02-24 2018-05-08 哈尔滨工业大学 声空化协同供氢剂的重油改质系统与方法
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US10689587B2 (en) * 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
KR102061960B1 (ko) * 2017-05-11 2020-01-03 서울대학교산학협력단 초임계 유체를 이용한 아스팔텐 저감 방법
RU2655394C1 (ru) * 2017-05-25 2018-05-28 Государственное унитарное предприятие "Институт нефтехимпереработки Республики Башкортостан" (ГУП "ИНХП РБ") Способ подготовки высоковязкой нефти
KR101928204B1 (ko) 2017-07-19 2018-12-11 성균관대학교산학협력단 중질유분 개질 방법
CN108452842B (zh) * 2017-10-27 2020-11-06 中国石油天然气股份有限公司 催化裂化油浆糠醛抽出油加氢催化剂及其制备方法与应用
KR102180627B1 (ko) * 2017-12-04 2020-11-18 주식회사 엘지화학 자동화된 시료 열분해 장치
JP2021054873A (ja) * 2018-01-12 2021-04-08 独立行政法人石油天然ガス・金属鉱物資源機構 高粘度重質油からの炭化水素の生産方法、及び生産システム
CN108251093A (zh) * 2018-01-31 2018-07-06 南京工业大学 一种用于稠油热采的超临界流体的制备系统和方法
US11286434B2 (en) * 2018-02-26 2022-03-29 Saudi Arabian Oil Company Conversion process using supercritical water
US11021659B2 (en) * 2018-02-26 2021-06-01 Saudi Arabia Oil Company Additives for supercritical water process to upgrade heavy oil
US10927313B2 (en) * 2018-04-11 2021-02-23 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
WO2019222307A1 (en) * 2018-05-15 2019-11-21 Worcester Polytechnic Institute Water-assisted zeolite upgrading of oils
KR102098148B1 (ko) * 2018-06-22 2020-04-07 서울대학교산학협력단 아스팔텐 저감 방법
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process
CN109650518A (zh) * 2019-01-30 2019-04-19 中国原子能科学研究院 利用超临界水氧化处理有机废液的方法
US11118439B2 (en) 2019-12-06 2021-09-14 Saudi Arabian Oil Company Displacing fluid for enhanced oil recovery
US11384299B2 (en) 2019-12-19 2022-07-12 Saudi Arabian Oil Company Systems and processes for upgrading and converting crude oil to petrochemicals through steam cracking
CN113123740A (zh) * 2019-12-30 2021-07-16 四川宏华石油设备有限公司 一种钻井液冷却系统
US11459511B2 (en) 2020-04-09 2022-10-04 Saudi Arabian Oil Company Crude stabilizer bypass
US11345861B2 (en) 2020-06-22 2022-05-31 Saudi Arabian Oil Company Production of linear olefins from heavy oil
US11845902B2 (en) 2020-06-23 2023-12-19 Saudi Arabian Oil Company Online analysis in a gas oil separation plant (GOSP)
US11781075B2 (en) 2020-08-11 2023-10-10 Applied Research Associates, Inc. Hydrothermal purification process
US11548784B1 (en) 2021-10-26 2023-01-10 Saudi Arabian Oil Company Treating sulfur dioxide containing stream by acid aqueous absorption
US11926799B2 (en) 2021-12-14 2024-03-12 Saudi Arabian Oil Company 2-iso-alkyl-2-(4-hydroxyphenyl)propane derivatives used as emulsion breakers for crude oil
CN114561229A (zh) * 2022-02-28 2022-05-31 中海油天津化工研究设计院有限公司 一种节能的超临界水改质油品的方法
US20240059984A1 (en) * 2022-08-19 2024-02-22 Uop Llc Processes and apparatuses for heating a hydrocarbon feed stream for a reactor
US11898107B1 (en) 2022-12-16 2024-02-13 Saudi Arabian Oil Company Systems and methods for processing hydrocarbon feedstocks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
US3989618A (en) 1974-05-31 1976-11-02 Standard Oil Company (Indiana) Process for upgrading a hydrocarbon fraction
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4483761A (en) 1983-07-05 1984-11-20 The Standard Oil Company Upgrading heavy hydrocarbons with supercritical water and light olefins

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US496779A (en) * 1893-05-02 Tile or brick machine
US2135332A (en) 1935-12-31 1938-11-01 Gasoline Prod Co Inc Conversion of hydrocarbon oil
US3325395A (en) * 1965-04-19 1967-06-13 Mcdowell Wellman Eng Co Travelling grate method for the recovery of oil from oil bearing minerals
US4005005A (en) * 1974-05-31 1977-01-25 Standard Oil Company (Indiana) Process for recovering and upgrading hydrocarbons from tar sands
US3948755A (en) * 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3960706A (en) * 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US3983027A (en) * 1974-07-01 1976-09-28 Standard Oil Company (Indiana) Process for recovering upgraded products from coal
US3948754A (en) * 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US4113446A (en) * 1975-07-22 1978-09-12 Massachusetts Institute Of Technology Gasification process
JPS5250306A (en) 1975-10-22 1977-04-22 Kureha Chem Ind Co Ltd Method and apparatus for decoking
US4118797A (en) * 1977-10-25 1978-10-03 Energy And Minerals Research Co. Ultrasonic emulsifier and method
US4243514A (en) * 1979-05-14 1981-01-06 Engelhard Minerals & Chemicals Corporation Preparation of FCC charge from residual fractions
US4543190A (en) * 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US4550198A (en) * 1982-11-04 1985-10-29 Georgia Tech Research Institute Purification of terephthalic acid by supercritical fluid extraction
US4446012A (en) * 1982-12-17 1984-05-01 Allied Corporation Process for production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4443325A (en) * 1982-12-23 1984-04-17 Mobil Oil Corporation Conversion of residua to premium products via thermal treatment and coking
US4684372A (en) * 1983-11-02 1987-08-04 Petroleum Fermentations N.V. Combustion of viscous hydrocarbons
US4529037A (en) * 1984-04-16 1985-07-16 Amoco Corporation Method of forming carbon dioxide mixtures miscible with formation crude oils
US4543177A (en) * 1984-06-11 1985-09-24 Allied Corporation Production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4839326A (en) 1985-04-22 1989-06-13 Exxon Research And Engineering Company Promoted molybdenum and tungsten sulfide catalysts, their preparation and use
US4818370A (en) * 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4753666A (en) * 1986-07-24 1988-06-28 Chevron Research Company Distillative processing of CO2 and hydrocarbons for enhanced oil recovery
US4733724A (en) * 1986-12-30 1988-03-29 Texaco Inc. Viscous oil recovery method
US4840725A (en) * 1987-06-19 1989-06-20 The Standard Oil Company Conversion of high boiling liquid organic materials to lower boiling materials
US4813370A (en) * 1988-04-21 1989-03-21 Capamaggio Scott A Bookmarker
US5110443A (en) * 1989-02-14 1992-05-05 Canadian Occidental Petroleum Ltd. Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor
US4951561A (en) * 1989-06-06 1990-08-28 Kraft General Foods, Inc. Apparatus for fluid-solid bed processing
US5096567A (en) 1989-10-16 1992-03-17 The Standard Oil Company Heavy oil upgrading under dense fluid phase conditions utilizing emulsified feed stocks
US5851381A (en) * 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
US5133877A (en) * 1991-03-29 1992-07-28 The United States Of America As Represented By The United States Department Of Energy Conversion of hazardous materials using supercritical water oxidation
EP0721360A1 (en) * 1992-11-09 1996-07-17 SIPIN, Anatole J. Controlled fluid transfer system
US5496464A (en) * 1993-01-04 1996-03-05 Natural Resources Canada Hydrotreating of heavy hydrocarbon oils in supercritical fluids
IT1263961B (it) * 1993-02-24 1996-09-05 Eniricerche Spa Procedimento per la deasfaltazione e la demetallazione di residui petroliferi
US5316659A (en) 1993-04-02 1994-05-31 Exxon Research & Engineering Co. Upgrading of bitumen asphaltenes by hot water treatment
US5389240A (en) * 1993-08-02 1995-02-14 Uop Naphthenic acid removal as an adjunct to liquid hydrocarbon sweetening
CA2200945C (en) * 1994-10-27 2006-06-06 Minas Robert Apelian Wax hydroisomerization process
US5720551A (en) * 1994-10-28 1998-02-24 Shechter; Tal Forming emulsions
FR2727634A1 (fr) * 1994-12-06 1996-06-07 Electrolyse L Procede en milieu reducteur de transformation chimique de structures chimiques complexes dans un fluide supercritique
US5674405A (en) * 1995-07-28 1997-10-07 Modar, Inc. Method for hydrothermal oxidation
US5725054A (en) * 1995-08-22 1998-03-10 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process
DE69631901T2 (de) * 1995-08-25 2005-02-03 Exxonmobil Research And Engineering Co. Verfahren zur verminderung der korrosivität und acidität von rohöl
US5885440A (en) * 1996-10-01 1999-03-23 Uop Llc Hydrocracking process with integrated effluent hydrotreating zone
US5871637A (en) * 1996-10-21 1999-02-16 Exxon Research And Engineering Company Process for upgrading heavy oil using alkaline earth metal hydroxide
US5778977A (en) * 1997-01-03 1998-07-14 Marathon Oil Company Gravity concentrated carbon dioxide for process
US5904839A (en) 1997-06-06 1999-05-18 Exxon Research And Engineering Co. Process for upgrading heavy oil using lime
US6268447B1 (en) * 1998-12-18 2001-07-31 Univation Technologies, L.L.C. Olefin polymerization catalyst
US5928502A (en) * 1997-08-29 1999-07-27 Exxon Research And Engineering Co. Process for reducing total acid number of crude oil
US5871636A (en) * 1997-08-29 1999-02-16 Exxon Research And Engineering Company Catalytic reduction of acidity of crude oils in the absence of hydrogen
JP3572176B2 (ja) * 1997-09-03 2004-09-29 三菱重工業株式会社 コンバインド・サイクル発電方法及び発電装置
US6016867A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
DE19835479B4 (de) 1998-08-06 2007-06-06 Kjeld Andersen Verfahren zum katalytischen Entfernen von Metallverbindungen aus Schwerölen
JP2000100850A (ja) 1998-09-24 2000-04-07 Ebara Udylite Kk 低融点金属バンプの形成方法
JP2000104311A (ja) 1998-09-30 2000-04-11 Matsushita Electric Works Ltd 衛生洗浄装置
JP2000109850A (ja) 1998-10-07 2000-04-18 Mitsubishi Materials Corp 重質油の発電設備用流体燃料への転換方法及びその装置
JP3489478B2 (ja) 1999-03-31 2004-01-19 三菱マテリアル株式会社 超臨界水を用いた炭化水素資源の転換方法
US6190541B1 (en) 1999-05-11 2001-02-20 Exxon Research And Engineering Company Process for treatment of petroleum acids (LAW824)
JP3900764B2 (ja) * 1999-11-11 2007-04-04 三菱マテリアル株式会社 重質油の軽質化方法及びその装置
JP2001192676A (ja) 2000-01-11 2001-07-17 Mitsubishi Materials Corp 炭化水素資源等の高効率転換方法
US20010035006A1 (en) * 2000-02-01 2001-11-01 Danan Dou Sulfur trap in NOx adsorber systems for enhanced sulfur resistance
US20020076212A1 (en) * 2000-04-24 2002-06-20 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
FR2814967B1 (fr) * 2000-10-10 2003-11-14 Commissariat Energie Atomique Procede et dispositif pour l'oxydation en eau supercritique de matieres
US6547957B1 (en) 2000-10-17 2003-04-15 Texaco, Inc. Process for upgrading a hydrocarbon oil
US6475396B1 (en) * 2000-11-14 2002-11-05 Hydroprocessing, Llc Apparatus and method for applying an oxidant in a hydrothermal oxidation process
JP2002155286A (ja) * 2000-11-20 2002-05-28 Mitsubishi Materials Corp 重質炭素資源の改質方法
US20020086150A1 (en) * 2000-12-28 2002-07-04 Hazlebeck David A. System and method for hydrothermal reactions-two layer liner
US6454936B1 (en) 2001-03-09 2002-09-24 Exxonmobil Research And Engineering Company Removal of acids from oils
CA2348947A1 (en) * 2001-03-19 2002-09-19 Venanzio Di Tullio A process for the catalytic reduction of heavy oils, kerogens, plastics, bio-masses, sludges and organic waste to light hydrocarbon liquids, carbon dioxide and amines
US20020157991A1 (en) * 2001-03-27 2002-10-31 Mason Thomas G. Disaggregation of asphaltenes in incompatible petroleum oil mixtures
US7081196B2 (en) * 2001-05-10 2006-07-25 Mark Cullen Treatment of crude oil fractions, fossil fuels, and products thereof with sonic energy
JP3791363B2 (ja) 2001-08-07 2006-06-28 株式会社日立製作所 重質油の軽質化方法
WO2003025098A2 (en) * 2001-09-17 2003-03-27 Southwest Research Institute Pretreatment processes for heavy oil and carbonaceous materials
JP3724438B2 (ja) * 2002-03-08 2005-12-07 株式会社日立製作所 超臨界水による重質油の処理方法と処理装置及び重質油処理装置を備えた発電システム
JP3669340B2 (ja) 2002-03-27 2005-07-06 株式会社日立製作所 石油の精製方法と精製装置および発電プラント
JP2004000825A (ja) * 2002-05-31 2004-01-08 Kurita Water Ind Ltd 水熱酸化反応方法
NO20033230D0 (no) * 2003-07-16 2003-07-16 Statoil Asa Fremgangsmåte for utvinning og oppgradering av olje
JP4098181B2 (ja) 2003-08-05 2008-06-11 株式会社日立製作所 重質油の処理方法及び重質油類処理システム
US7435330B2 (en) * 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
JP4942911B2 (ja) 2003-11-28 2012-05-30 東洋エンジニアリング株式会社 水素化分解触媒、重質油を水素化分解する方法
NL1027766C2 (nl) * 2003-12-19 2006-07-13 Shell Int Research Systemen, methoden en katalysatoren voor het produceren van een ruwe-oliehoudend product.
BRPI0405563A (pt) * 2003-12-19 2005-09-20 Shell Int Research Métodos de produzir um produto de petróleo bruto e combustìvel de transporte, combustìvel de aquecimento, lubrificantes ou substâncias quìmicas e produto de petróleo bruto
US7144498B2 (en) * 2004-01-30 2006-12-05 Kellogg Brown & Root Llc Supercritical hydrocarbon conversion process
US20060016723A1 (en) * 2004-07-07 2006-01-26 California Institute Of Technology Process to upgrade oil using metal oxides
JP4555010B2 (ja) 2004-07-15 2010-09-29 株式会社日立製作所 改質燃料焚きガスタービン及びその運転方法
US7381320B2 (en) * 2004-08-30 2008-06-03 Kellogg Brown & Root Llc Heavy oil and bitumen upgrading
WO2006037368A1 (en) 2004-10-04 2006-04-13 Petroleo Brasileiro S.A.-Petrobras Process for reducing the organic acid content of hydrocarbon feedstocks
JP2006104311A (ja) 2004-10-05 2006-04-20 Mitsubishi Materials Corp 未利用重質油の改質方法及びその装置。
SE529006C2 (sv) * 2004-11-15 2007-04-03 Chematur Eng Ab Förfarande och system för överkritisk vattenoxidation av en ström som innehåller oxiderbart material
SE528840C2 (sv) * 2004-11-15 2007-02-27 Chematur Eng Ab Reaktor och förfarande för överkritisk vattenoxidation
JP2006169401A (ja) * 2004-12-16 2006-06-29 Chubu Electric Power Co Inc 改質プラント及び方法
US20070045881A1 (en) * 2005-09-01 2007-03-01 Aguirre Everardo L M Air humidifier
US7947165B2 (en) * 2005-09-14 2011-05-24 Yeda Research And Development Co.Ltd Method for extracting and upgrading of heavy and semi-heavy oils and bitumens
US7938954B2 (en) * 2005-12-16 2011-05-10 Chevron U.S.A. Inc. Systems and methods for producing a crude product
DE102006008809B4 (de) 2006-02-25 2008-04-24 Junghans Microtec Gmbh Mechanischer Raketenzünder
DE602006019698D1 (de) * 2006-05-30 2011-03-03 Environmental Consulting Catalysts & Processes For A Sustainable Dev Verfahren zur Herstellung von leichten Kohlenwasserstoffen aus natürlichen Bitumen oder Schwerölen
US20070289898A1 (en) * 2006-06-14 2007-12-20 Conocophillips Company Supercritical Water Processing of Extra Heavy Crude in a Slurry-Phase Up-Flow Reactor System
US7730958B2 (en) * 2006-08-31 2010-06-08 David Randolph Smith Method and apparatus to enhance hydrocarbon production from wells
JP2008094829A (ja) * 2006-10-12 2008-04-24 Kocat Inc Mc型均一触媒およびo2/co2混合気体を用いた有機酸またはその誘導体の製造方法
US20080099378A1 (en) * 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Process and reactor for upgrading heavy hydrocarbon oils
US20080099377A1 (en) * 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Process for upgrading heavy hydrocarbon oils
US20080099376A1 (en) * 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Upgrading heavy hydrocarbon oils
US20080099374A1 (en) * 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Reactor and process for upgrading heavy hydrocarbon oils
EP2099624A1 (en) 2006-12-01 2009-09-16 The Four Wheeled Motorcycle Company Limited Suspension system
WO2008085436A1 (en) 2006-12-27 2008-07-17 Case Western Reserve University Situated simulation for training, education, and therapy
US8052848B2 (en) * 2007-06-26 2011-11-08 The Penn State Research Foundation Ultrasonic and microwave methods for enhancing the rate of a chemical reaction and apparatus for such methods
KR101606680B1 (ko) * 2007-11-28 2016-03-25 사우디 아라비안 오일 컴퍼니 고도로 밀납을 함유하는 원유의 유동점 및 파라핀 함량을 낮추기 위한 연속 공정
US20090166261A1 (en) 2007-12-28 2009-07-02 Chevron U.S.A. Inc. Upgrading heavy hydrocarbon oils
US20090166262A1 (en) 2007-12-28 2009-07-02 Chevron U.S.A. Inc. Simultaneous metal, sulfur and nitrogen removal using supercritical water
US8394260B2 (en) * 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
US3989618A (en) 1974-05-31 1976-11-02 Standard Oil Company (Indiana) Process for upgrading a hydrocarbon fraction
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4483761A (en) 1983-07-05 1984-11-20 The Standard Oil Company Upgrading heavy hydrocarbons with supercritical water and light olefins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568615B1 (ko) * 2014-11-28 2015-11-11 연세대학교 산학협력단 중질 탄화수소 유분의 연속적 처리 방법
DE102017127417A1 (de) 2017-11-21 2019-05-23 Egm-Holding-International Gmbh Reaktionskammer

Also Published As

Publication number Publication date
US20090178952A1 (en) 2009-07-16
EP2240556A2 (en) 2010-10-20
WO2009073442A9 (en) 2009-12-17
CN102159675A (zh) 2011-08-17
US9295957B2 (en) 2016-03-29
JP5346036B2 (ja) 2013-11-20
CN101970610B (zh) 2015-11-25
KR101504384B1 (ko) 2015-03-19
CN101970609A (zh) 2011-02-09
US7740065B2 (en) 2010-06-22
KR101419977B1 (ko) 2014-07-16
EP2222819B1 (en) 2021-04-28
WO2009082585A2 (en) 2009-07-02
EP2231824B1 (en) 2016-04-13
KR20150138865A (ko) 2015-12-10
US20110297506A1 (en) 2011-12-08
KR20100107458A (ko) 2010-10-05
MX357637B (es) 2018-07-16
WO2009073447A3 (en) 2009-10-22
EP2245119A2 (en) 2010-11-03
CN101970611B (zh) 2014-03-12
EP2231824A2 (en) 2010-09-29
KR20100107459A (ko) 2010-10-05
US10010839B2 (en) 2018-07-03
WO2009073442A3 (en) 2009-11-05
EP2231823A2 (en) 2010-09-29
EP2240556B1 (en) 2016-01-13
US20140334985A1 (en) 2014-11-13
KR20100107457A (ko) 2010-10-05
CN101970610A (zh) 2011-02-09
CN101970609B (zh) 2014-10-29
WO2009082585A3 (en) 2009-11-12
WO2009073446A2 (en) 2009-06-11
BRPI0820363A2 (pt) 2015-05-12
BRPI0820362A2 (pt) 2015-05-12
MX2010005853A (es) 2010-10-05
EP2222819A2 (en) 2010-09-01
MX2010005851A (es) 2010-09-07
JP2011504963A (ja) 2011-02-17
BRPI0819674A2 (pt) 2018-10-23
KR101606680B1 (ko) 2016-03-25
BRPI0820363B1 (pt) 2017-09-26
US20090139715A1 (en) 2009-06-04
US20090145805A1 (en) 2009-06-11
WO2009073446A3 (en) 2009-12-03
JP2011504962A (ja) 2011-02-17
JP5269089B2 (ja) 2013-08-21
ES2582392T3 (es) 2016-09-12
JP5202644B2 (ja) 2013-06-05
US20090173664A1 (en) 2009-07-09
US9656230B2 (en) 2017-05-23
KR20100105611A (ko) 2010-09-29
CN101983227A (zh) 2011-03-02
MX2010005854A (es) 2010-09-07
MX2010005855A (es) 2010-09-07
JP5514118B2 (ja) 2014-06-04
JP2011505464A (ja) 2011-02-24
US8216520B2 (en) 2012-07-10
JP2011504966A (ja) 2011-02-17
US8815081B2 (en) 2014-08-26
KR101577082B1 (ko) 2015-12-11
US20090159504A1 (en) 2009-06-25
US8025790B2 (en) 2011-09-27
WO2009073442A2 (en) 2009-06-11
CN102159675B (zh) 2016-06-29
BRPI0819687A2 (pt) 2018-09-11
CN101983227B (zh) 2013-08-14
BRPI0820360B1 (pt) 2017-04-25
BRPI0820360A2 (pt) 2015-05-19
JP5290317B2 (ja) 2013-09-18
MX2010005852A (es) 2010-09-07
JP2011504965A (ja) 2011-02-17
WO2009073440A2 (en) 2009-06-11
WO2009073447A2 (en) 2009-06-11
CN101970611A (zh) 2011-02-09
DK2240556T3 (en) 2016-02-15
KR20100107455A (ko) 2010-10-05
WO2009073440A3 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
KR101419978B1 (ko) 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정
KR101741871B1 (ko) 석유 스트림으로부터 황 화합물의 제거
US20090166262A1 (en) Simultaneous metal, sulfur and nitrogen removal using supercritical water
KR101832015B1 (ko) 초임계수 및 수소 공여제를 이용한 탄화수소로부터의 황의 제거
US20090166261A1 (en) Upgrading heavy hydrocarbon oils
US20080099377A1 (en) Process for upgrading heavy hydrocarbon oils
KR101568615B1 (ko) 중질 탄화수소 유분의 연속적 처리 방법
US10030200B2 (en) Hydroprocessing oil sands-derived, bitumen compositions
RU2625160C2 (ru) Способ улучшения качества тяжелой углеводородной смеси
CN115678601A (zh) 一种重质原油的无氢化升级工艺

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190617

Year of fee payment: 6