WO2012143972A1 - 改質油の製造方法、及び改質油製造装置 - Google Patents

改質油の製造方法、及び改質油製造装置 Download PDF

Info

Publication number
WO2012143972A1
WO2012143972A1 PCT/JP2011/002297 JP2011002297W WO2012143972A1 WO 2012143972 A1 WO2012143972 A1 WO 2012143972A1 JP 2011002297 W JP2011002297 W JP 2011002297W WO 2012143972 A1 WO2012143972 A1 WO 2012143972A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
heavy oil
light
water
mixed fluid
Prior art date
Application number
PCT/JP2011/002297
Other languages
English (en)
French (fr)
Inventor
智生 粥川
高義 藤本
尚久 井上
彰悟 寺谷
永松 茂樹
Original Assignee
日揮株式会社
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社, 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 日揮株式会社
Priority to PCT/JP2011/002297 priority Critical patent/WO2012143972A1/ja
Priority to CA2772095A priority patent/CA2772095C/en
Publication of WO2012143972A1 publication Critical patent/WO2012143972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Definitions

  • the present invention relates to a technique for producing modified oil from heavy oil using supercritical water.
  • the dilution method has a problem that a sufficient diluent such as condensate must be secured, and a problem that the transportation cost increases because the transportation amount increases by the amount of dilution.
  • the reforming method requires a large plant as well as a refinery at the well site, so there is a problem that it is economical only in the vicinity of a large oil field, and processing of by-products such as coke and sulfur. The problem of having to secure the hydrogen required for reforming occurs.
  • existing heavy oil upgrading technologies include pyrolysis processes such as delayed coker and fluid coker, and hydrocracking processes such as H-Oil and LC-Fining.
  • the pyrolysis process is a technology that pyrolyzes heavy oil to produce cracked oil, gas, and coke.
  • the by-products such as coke and sulfur produced in large quantities here have problems such as being forced to pile up in areas where there is no use.
  • the hydrocracking process is a technique for cracking heavy oil using a catalyst under high-temperature and high-pressure hydrogen conditions. Since a large amount of hydrogen is required here, naphtha and natural gas are required, and the supply thereof becomes a problem. Furthermore, it is necessary to consider the supply of the catalyst and the disposal of the used catalyst. As described above, in the existing technology, processing of by-products, hydrogen production, catalyst supply, and waste catalyst processing become problems.
  • the present inventors modified heavy crude oil and super heavy crude oil (hereinafter referred to as heavy oil) using supercritical water, and required a diluent with a simple reforming scheme.
  • heavy oil super heavy crude oil
  • the pyrolysis reaction of heavy oil due to the contact between heavy oil and supercritical water inside the reactor and the extraction of light oil produced by pyrolysis to the supercritical water side are performed in parallel.
  • the synthetic light crude oil that can be transported by pipeline can be obtained by separating and recovering the extracted light oil.
  • heavy oil that has not been extracted into supercritical water can be used as residual oil in applications such as boiler fuel.
  • Patent Document 1 supplies heavy oil vertically downward from the upper part of the reactor, and supercritical water (or subcritical water) from the lower part. Is separated into a light oil dissolved in supercritical water and a heavy oil not dissolved in the supercritical water.
  • Patent Document 2 discloses a primary pyrolysis section that heats and mixes heavy oil with supercritical water in the lower part of a vertical reactor, decomposes a part of the raw material into light components, and vaporizes the reactor.
  • a reformer having a secondary decomposition section that decomposes a part of the vaporized light component into a reformed component at a higher temperature from the center to the top in the inner vertical direction.
  • a pyrolysis vessel is provided in the reactor, and heavy oil is reacted in the reactor.
  • the liquid overflowing from the pyrolysis vessel without pyrolysis is left as a residual oil from the bottom of the reactor. Discharged.
  • Patent Document 3 heavy oil is reacted with supercritical water in a reactor to produce coke together with the reformed oil emulsion, and the reformed oil emulsion is continuously extracted while the coke is intermittently discharged.
  • the technology to be extracted is disclosed.
  • Japanese Patent No. 4117262 Claim 1, paragraphs 0030 to 0033
  • FIG. JP 2008-208170 A claim 1, paragraphs 0012 to 0017
  • FIG. Japanese Patent Laying-Open No. 2007-51224 Claim 1, paragraphs 0024 to 0030
  • Patent Document 1 the technique described in Patent Document 1 is made by bringing heavy oil into contact with supercritical water and dissolving a light oil component on the supercritical water side, so that vanadium contained in heavy oil, etc. It removes heavy metals and has obtained gas turbine fuel that is unlikely to cause high temperature corrosion. At this time, the heavy metal contained in the heavy oil is concentrated on the heavy oil side that does not dissolve in the supercritical water, and this heavy oil is used as a fuel for a boiler or the like. Since the purpose is not heavy oil decomposition but heavy metal removal, the residence time of heavy oil in the reactor is short. Therefore, since the heavy oil decomposition is insufficient, the yield of synthetic crude oil for pipeline transportation cannot be increased.
  • the primary pyrolysis section is heated to 380 ° C. to 450 ° C.
  • the upper secondary pyrolysis section is 450 ° C. to 550 ° C. higher than the primary pyrolysis section.
  • Patent Document 3 The technique described in Patent Document 3 is operated by actively selecting conditions for generating coke, and coke processing becomes a problem. Moreover, under severe conditions that generate coke, there are concerns about an increase in gas production (reduction in liquid yield) and an increase in olefin concentration in the reformed oil due to excessive decomposition of light oil.
  • the present invention has been made under such circumstances.
  • the purpose of the present invention is to produce a reformed oil that can be obtained at a high yield when the reformed oil is produced using supercritical water. It is to provide a method and a modified oil production apparatus.
  • Forming a second phase consisting of a light oil extracted in critical water at the top of the reaction part Extracting the first mixed fluid in the first phase from the lower part of the reaction section so as to suppress the formation of coke in the heavy oil component; Extracting the second mixed fluid in the second phase from the upper part of the reaction section so as to suppress gas generation from the light oil component; And a step of mixing the heavy oil content of the first mixed fluid with the light oil content of the second mixed fluid to obtain the reformed oil.
  • the mixing amount of the heavy oil to the light oil is an amount within a range satisfying a specific gravity or viscosity standard set in advance in the reformed oil (1) to (3) The manufacturing method of the reformed oil in any one of.
  • the residence time of the first fluid mixture in the first phase is: i) Within a range of 3 minutes to 95 minutes, ii) Residence time during which pyrolysis of the heavy oil proceeds within a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil, iii) the residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the heavy oil at 350 ° C. is 3.0 ⁇ 10 ⁇ 5 m 2 / s or less.
  • the residence time of the second mixed fluid in the second phase is: i) In order to suppress excessive decomposition of the light oil, the second residence time is within a range of 1 minute to 25 minutes, ii) a residence time during which thermal decomposition of the heavy oil proceeds in a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil; iii) the reaction part so as to have any one of the residence time in which the thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C.
  • the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil
  • a flow control unit for extracting the second mixed fluid in the second phase from the upper part of the reaction unit so as to suppress gas generation from the light oil component;
  • a mixing unit that obtains reformed oil by mixing the heavy oil component of the first mixed fluid with the light oil component of the second mixed fluid extracted from the upper part of the reaction unit;
  • a reformed oil production apparatus comprising: (9) The first mixed fluid is flash-distilled and separated into a mixed vapor of light fraction and water contained in the heavy oil component of the first phase and the remaining heavy oil component.
  • a flash unit A first separation unit for cooling the mixed steam and separating it into a light fraction and water; A light fraction mixing unit for mixing the light fraction with the light oil content of the second mixed fluid, In the mixing section, the heavy oil content after the flash distillation is mixed with the light oil content.
  • a second separation unit for separating the second mixed fluid into light oil and water;
  • the reforming oil producing apparatus according to (8) or (9), wherein the mixing unit mixes a heavy oil component with the light oil component separated from the water.
  • the mixing amount of the heavy oil to the light oil is an amount within a range satisfying the specific gravity or viscosity standard preset for the reformed oil (8) to (10) The reformed oil manufacturing apparatus in any one of.
  • the residence time of the first mixed fluid in the first phase is: i) Within a range of 3 minutes to 95 minutes, ii) Residence time during which pyrolysis of the heavy oil proceeds within a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil, iii) the residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the heavy oil at 350 ° C. is 3.0 ⁇ 10 ⁇ 5 m 2 / s or less.
  • the reformed oil production apparatus according to any one of (8) to (11), further comprising a control unit that controls the extraction amount of one mixed fluid.
  • Residence time of the second mixed fluid in the second phase is i) In order to suppress excessive decomposition of the light oil, the second residence time is within a range of 1 minute to 25 minutes, ii) a residence time during which thermal decomposition of the heavy oil proceeds in a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil; iii) the reaction part so as to have any one of the residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity at 10 ° C. becomes 5.0 ⁇ 10 ⁇ 3 m 2 / s or less.
  • the reformed oil production apparatus according to any one of (8) to (12), further comprising a control unit that controls a supply amount of supercritical water to the water.
  • the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil.
  • a heavy oil is brought into contact with supercritical water and thermally decomposed into a heavy oil and a light oil, and the heavy oil is mixed with the light oil to produce a modified oil.
  • the reformed oil can be obtained at a rate.
  • the reformed oil production apparatus separates heavy oil and light oil obtained by bringing heavy oil and supercritical water into contact with each other and advancing thermal decomposition of the heavy oil.
  • the obtained synthetic crude oil is transported to a refinery and subjected to various refining processes such as distillation, reforming, cracking, and desulfurization in the same manner as ordinary crude oil to become fuel oil and chemical raw materials.
  • heavy oil that has not been mixed with light oil is used as a residue in applications such as boiler fuel.
  • FIG. 2 schematically shows the internal structure of the reactor 10 constituting the reaction unit 1 and the configuration of the control system provided in the reactor 10.
  • the reactor 10 thermally decomposes the heavy oil by, for example, countercurrent contact between the heated and pressurized heavy oil and supercritical water. This serves to separate and extract the light oil and heavy oil obtained separately.
  • a heavy oil supply line 110 to which heated and pressurized heavy oil is supplied is connected to the upper side of the reactor 10.
  • a supercritical water supply line 120 to which heated and pressurized supercritical water is supplied is connected to the lower side of the reactor 10.
  • 101 is a heavy oil supply nozzle
  • 102 is a supercritical water supply nozzle.
  • the light oil contained in the heavy oil in advance is extracted into supercritical water, and the heavy oil remaining without being extracted in the supercritical water is thermally decomposed.
  • the light oil produced by the extraction into supercritical water forms a continuous phase consisting of supercritical water and light oil (hereinafter referred to as second phase), and heavy oil that has not been extracted into supercritical water.
  • the oil component forms a continuous phase (hereinafter referred to as the first phase) and separates into two phases. Since the heavy oil has a higher specific gravity than the mixed fluid of supercritical water and light oil, the first phase is formed on the lower side of the reactor 10 and the second phase is formed on the upper side of the reactor 10. Will be.
  • the heavy oil constituting the first phase contains heavy oil (dry condition standard containing no water). 3) to 100% by weight of supercritical water dissolves.
  • the first phase is composed of a mixed fluid of heavy oil and supercritical water.
  • supercritical water is supplied from the supercritical water supply nozzle 102 into the first phase on the lower side, and the heavy oil supply nozzle 101 is supplied into the second phase on the upper side. Will be supplied with heavy oil.
  • extraction of light oil to the supercritical water side and dissolution to the heavy oil side of the supercritical water settles the interface with the supercritical water (dispersed phase) that rises the first phase and the second phase. It proceeds at the interface with the heavy oil (dispersed phase) and the contact interface between the first phase and the second phase.
  • the present inventors have a very fast rising speed of supercritical water rising in the first phase, a very high sedimentation speed of heavy oil settling in the second phase, and each supercritical water and heavy oil is, for example, It is understood that it passes through the first and second phases in several seconds to several tens of seconds. For this reason, the pyrolysis of heavy oil actually proceeds with pyrolysis of the heavy oil in the first phase, and the resulting light oil is extracted to the second phase, and the second In this phase, further thermal decomposition of the light oil component and the light oil component supplied from the first phase side proceeds.
  • a heavy oil content extraction line 140 is connected to the bottom of the reactor 10 to extract fluid (mixed fluid of heavy oil and supercritical water) constituting the first phase. Yes.
  • the heavy oil content extraction line 140 is provided with a flow rate adjusting valve 142 that adjusts the amount of fluid extracted from the first phase.
  • the fluid extracted from the heavy oil extraction line 140 is cooled by a cooler or the like, and thermal decomposition is stopped.
  • a light oil content extraction line 130 for extracting fluid (mixed fluid of light oil content and supercritical water) constituting the second phase is connected to the top of the reactor 10.
  • the light oil content extraction line 130 is provided with a pressure adjusting valve 131 for adjusting the pressure in the reactor 10 to, for example, 25 to 30 MPa.
  • the fluid extracted from the light oil content extraction line 130 is also cooled by a cooler or the like, so that the thermal decomposition of the light oil content is stopped.
  • the degree of thermal decomposition of the heavy oil component is determined by the mixed fluid of the heavy oil component in the first phase and the supercritical water dissolved in the heavy oil component (hereinafter, It can be controlled by the residence time of the first mixed fluid).
  • the yield of light oil increases as the pyrolysis progresses, and supercritical water is dissolved in the heavy oil and the decomposition of the heavy oil is moderately advanced under the condition that the cage effect is exhibited.
  • the viscosity of the heavy oil component decreases, and handling of the synthetic crude oil becomes easier when used as boiler fuel or after being mixed with the light oil component.
  • pyrolysis proceeds to such an extent that the cage effect described above is offset, coke is generated in the heavy oil.
  • the kinematic viscosity at, for example, 350 ° C. of the heavy oil as the residual oil is set to 3.0 ⁇ 10 ⁇ 5 m 2 / s or less (30 cSt or less), and coke is used.
  • the thermal decomposition of the heavy oil component proceeds to such an extent that the production of coke is suppressed (for example, the amount of coke produced is in the range of 0 to 20% by weight of the heavy oil component).
  • a mechanism for adjusting the residence time of the mixed fluid is set to 3.0 ⁇ 10 ⁇ 5 m 2 / s or less (30 cSt or less), and coke is used.
  • the degree of progress of thermal decomposition of light oil is determined by the residence time of the mixed fluid of supercritical water in the second phase and the light oil extracted in the supercritical water (hereinafter referred to as the second mixed fluid). Can be adjusted.
  • the light oil component has a kinematic viscosity that decreases as the thermal decomposition proceeds. For example, even in cold regions, it is possible to transport synthetic crude oil without providing special heating equipment. On the other hand, if the light oil component is excessively decomposed, the amount of gas generated from the light oil component increases, and the yield of synthetic crude oil decreases.
  • the kinematic viscosity at 10 ° C. of the light crude oil alone or the synthetic crude oil mixed with the heavy oil is set to 5.0 ⁇ 10 ⁇ 3 m 2 / s or less (5000 cSt or less), and And a mechanism for adjusting the residence time of the second mixed fluid in the second phase so that the thermal decomposition of the light oil proceeds to such an extent that the generation of gas is suppressed.
  • a heavy oil is mixed with a light oil to produce a synthetic crude, so the kinematic viscosity of the synthetic crude after mixing with the heavy oil is 5.0 ⁇ 10 ⁇ 3 m 2. / S or less (5000 cSt or less), the second residence time is adjusted so that the kinematic viscosity of the light oil alone mixed with the heavy oil having a relatively large kinematic viscosity becomes a lower value.
  • the residence time of the first mixed fluid in the first phase is ⁇ pitch
  • the residence time of the second mixed fluid in the second phase is ⁇ Lt
  • the unit time of heavy oil from the heavy oil supply line 110 is F Oin is the supply amount per unit time
  • F Win is the supply amount per unit time of supercritical water from the supercritical water supply line 120
  • the first mixed fluid is extracted from the heavy oil content extraction line 140 per unit time.
  • the ratio of the light oil extracted in the second phase varies depending on the properties of the heavy oil, the temperature and pressure conditions of the reactor 10, and the degree of thermal decomposition of the heavy oil. For example, a fraction lighter than VGO (Vacuumed Gas Oil: vacuum gas oil) having a boiling point of 540 ° C. or less is extracted as a light oil component to the supercritical water side, and the fraction corresponding to VR (Vacuumed Residue) having a boiling point higher than 540 ° C.
  • VGO Vaumed Gas Oil: vacuum gas oil
  • ⁇ pitch is controlled within, for example, a fluctuation range of about ⁇ 1 minute of the target value, and the degree of progress of thermal decomposition is controlled within a certain range, thereby obtaining the VGO yield (ie, VR). ) Is assumed to be almost constant.
  • the flow rate withdrawn a flow rate withdrawn as heavy oil F Pitch, as light oil and F Lt, supercritical water is also fed to the reactor 10 flow rate F w1 withdrawn from the first phase by dissolving the heavy oil of, when a flow rate withdrawn from the second phase by extracting light oil and F w2, the first mixed fluid, the The extraction amount of the mixed fluid 2 is expressed by the following equations (3) and (4).
  • F W1 + Pitch F W1 + F Pitch (3)
  • FW2 + Lt FW2 + FLt (4)
  • the first phase is increased or decreased by increasing or decreasing the extraction amount F W1 + Pitch of the first mixed fluid from the heavy oil content extraction line 140.
  • the residence time ⁇ pitch of the first mixed fluid can be adjusted.
  • the amount of coke produced is controlled within the range of 0 to 20% by weight of heavy oil, for example, and the kinematic viscosity of residual oil at 350 ° C is adjusted to 3.0 x 10 -5 m 2 / s or less (30 cSt or less). Make sure you can.
  • the solubility of supercritical water in the heavy oil is constant under the conditions of constant temperature and pressure, if the outflow amount F Pitch of the heavy oil extracted from the first phase is determined, The amount F W1 of supercritical water dissolved in the refined oil is a constant value. If the supply amount F Win of the supercritical water is increased or decreased in this state, it is possible to increase or decrease the amount of supercritical water that does not dissolve in the heavy oil, that is, the amount F W2 of the supercritical water that forms the second phase. It becomes. Dissolution amount F W1 of supercritical water for outflow F Pitch of heavy oil, for example it is sufficient to understand due preliminary experiments.
  • the residence time ⁇ Lt of the second mixed fluid in the second phase can be adjusted.
  • the residence time ⁇ Lt within the range of “1 minute ⁇ ⁇ Lt ⁇ 25 minutes” from the results of the examples described later, For example, the production amount is suppressed within the range of 0 to 5% by mass of heavy oil, and the kinematic viscosity of light crude oil alone at 10 ° C. or synthetic crude oil after mixing with heavy oil is 5.0 ⁇ 10 ⁇ 3 m. It has been confirmed that it can be adjusted to 2 / s or less (5000 cSt or less).
  • the heavy oil content extraction line 140 is provided with a flow rate controller 93 for adjusting the extraction amount FW1 + Pitch of the first mixed fluid, and the indicated value (b ) Is output to the control unit 9.
  • the controller 9 calculates the residence time ⁇ pitch based on the formula (5), and increases or decreases the flow rate setting value (e) of the flow rate controller 93 so that the ⁇ pitch becomes a preset target value.
  • the opening degree of 142 is adjusted.
  • the flow rate adjustment valve 142 corresponds to the first flow rate adjustment unit.
  • the supercritical water supply line 120 is provided with a flow rate controller 92 for adjusting the supply amount F Win (ie, F W2 ) of the supercritical water, and the indicated value (a) of the flow rate controller 92 is a control unit. 9 is output.
  • the controller 9 calculates the residence time ⁇ Lt based on the equation (6), and increases or decreases the flow rate setting value (d) of the flow rate controller 93 so that the ⁇ Lt becomes a preset target value.
  • the opening degree of 122 is adjusted.
  • the reactor 10 is provided with an interface level meter 94 such as a differential pressure type, an ultrasonic type, an X-ray type, etc., which is an interface detection unit of the present embodiment, and the first phase in the reactor 10 and the first phase.
  • an interface level meter 94 such as a differential pressure type, an ultrasonic type, an X-ray type, etc., which is an interface detection unit of the present embodiment, and the first phase in the reactor 10 and the first phase.
  • a signal (c) indicating “high interface level” or “low interface level” is output to the control unit 9. .
  • the control unit 9 increases or decreases the flow rate set value (f) of the flow rate controller 91 provided in the heavy oil supply line 110 so that the interface level returns to the height position within the set range, thereby supplying the heavy oil supply amount.
  • the volume V 1 of the first phase (that is, the volume V 2 of the second phase) is kept constant.
  • the pressure in the reactor 10 is determined by, for example, opening and closing the pressure regulating valve 131 by a pressure controller (not shown) provided in the light oil content line 310 of the high pressure separator 30 shown in FIG.
  • the extraction amount of the second mixed fluid is adjusted.
  • the pressure adjustment valve 131 corresponds to a second flow rate adjustment unit.
  • an interface level meter 94 is provided to measure the interface between the first and second phases so that V 1 and V 2 are constant.
  • the interface level meter 94 is not necessarily provided.
  • the yields of lighter fractions and VR fractions than VGO according to the oil type, temperature, pressure conditions, etc. of heavy oil are obtained by experiments in advance, and F Oin , F Win , F Pitch , F
  • the interface level in the reactor 10 is estimated from the values of Lt , F w1 , and F w2 , and V 1 and V 2 are kept constant based on the estimated interface level, and each based on the equations (5) and (6)
  • the residence times ⁇ pitch and ⁇ Lt may be adjusted.
  • the residence time ⁇ pitch of the first mixed fluid in the first phase is adjusted by the extraction amount F Pitch of the first mixed fluid
  • the residence time of the second mixed fluid in the second phase is adjusted.
  • ⁇ Lt is adjusted by the supply amount F Win of supercritical water
  • these residence times are set to other operating variables shown in the equations (5) and (6), for example, the supply amount F of heavy oil It does not deny adjusting with Oin or the extraction amount FW2 + Ltout of the second mixed fluid.
  • FIG. 3 shows a configuration example of the mixing unit 3.
  • the mixing tank 21 into which the light oil obtained from the reaction unit 1 and a part or all of the heavy oil flow in, and the fluid in the mixing tank 21 are shown.
  • an agitator 22 for agitating.
  • the fluid mixed in the mixing tank 21 is sent to a pipeline or the like as synthetic crude oil.
  • the mixing unit 3 may be configured by an in-line mixer 23.
  • the in-line mixer 23 is provided, for example, on the downstream side of a joining portion of a pipe through which a light oil component flows and a pipe through which a part or all of the heavy oil component flows.
  • the mixing ratio of the heavy oil to be mixed with the light oil in the mixing section 2 satisfies product standards set in advance for synthetic crude oil such as specific gravity (API (American Petroleum Institute) specific gravity and density) and viscosity. It is conceivable that the mixing ratio of the heavy oil is increased within the range. If it is a range which satisfies such a product specification, you may mix the whole quantity of the heavy oil part obtained from the reaction part 1 with a light oil part.
  • product standards set in advance for synthetic crude oil such as specific gravity (API (American Petroleum Institute) specific gravity and density) and viscosity. It is conceivable that the mixing ratio of the heavy oil is increased within the range. If it is a range which satisfies such a product specification, you may mix the whole quantity of the heavy oil part obtained from the reaction part 1 with a light oil part.
  • the light oil and heavy oil components are adjusted so that the compatibility of the synthetic crude oil after mixing is ensured, in other words, the mixing amount is within a range where the mixed synthetic crude oil is not re-separated into heavy and light oil components. It has become.
  • the mixing ratio of the heavy oil in the synthetic oil is determined in consideration of the product specifications and compatibility of these synthetic crude oils, the yield of the heavy oil from the reactor 10, etc., but is limited to a specific ratio. It is not something.
  • the reformed oil production apparatus reforms the heavy oil by bringing the heavy oil and supercritical water into contact with each other, and separates the heavy oil and the light oil into a reactor 10 (reaction unit), and the reactor 10.
  • the high-pressure separator 30 that separates the mixed fluid of the light oil and supercritical water flowing out of the oil under a pressure condition similar to that in the reactor 10, for example, and the light oil and water flowing out of the high-pressure separator 30
  • a low pressure separator 40 that separates the mixed fluid into oil and water under a pressure condition lower than that of the high pressure separator 30, and a mixed fluid of heavy oil and supercritical water that has flowed out of the reactor 10
  • a flash drum 50 that performs separation and separation of a light fraction contained in a heavy oil component, and a separator 70 that separates a mixture of water flash-distilled in the flash drum 50 and a light fraction into oil and water.
  • a recycled water tank 60 for recycling water after oil-water separation, and a.
  • the reactor 10 is a pressure vessel formed in, for example, a tower shape having the configuration described with reference to FIG. 2, and heavy oil is supplied to the upper side wall portion of the reaction vessel from the heavy oil supply source 11, for example.
  • a heavy oil supply line 110 for receiving is connected.
  • the heavy oil supply source 11 includes, for example, a tank that stores heavy oil.
  • the heavy oil supply line 110 increases the heavy oil received from the heavy oil supply source 11 to a critical pressure of water of 22.1 MPa or higher, for example, 25 MPa to 30 MPa, and sends the heavy oil to the reactor 10.
  • a supply pump 111 and a heater 113 composed of, for example, a heating furnace for heating heavy oil supplied to the reactor 10 to, for example, 300 ° C. to 450 ° C. are interposed.
  • the heavy oil is supplied at a temperature lower than the temperature in the reactor 10 (for example, 374 ° C. to 500 ° C.) in order to prevent polycondensation in the heavy oil supply line 110 and the heater 113.
  • the heavy oil supply line 110, the heavy oil supply pump 111, the flow rate control valve 112, the heater 113, and the like correspond to the heavy oil supply unit of the present embodiment.
  • a supercritical water supply line 120 for supplying water received from a water supply source 12 such as a water storage tank to the reactor 10 in a supercritical state is connected to, for example, the lower side wall portion of the reaction vessel.
  • a supercritical water supply pump 121 that boosts the water received from the water supply source 12 to a critical pressure (22.1 MPa) or higher, for example, 25 MPa to 30 MPa, and sends the water toward the reactor 10;
  • a flow control valve 122 for adjusting the supply amount of supercritical water, and a heating furnace for heating the supercritical water supplied to the reactor 10 to, for example, 450 ° C. to 600 ° C.
  • the heater 123 which consists of these etc. is interposed.
  • the heavy oil supplied from the heavy oil supply line 110 is supplied at a temperature lower than the temperature in the reactor 10 for the purpose of preventing polycondensation. Is supplied at a temperature higher than the temperature in the reactor 10 to supply heat necessary for the heavy oil pyrolysis reaction.
  • the supercritical water supply line 120, the supercritical water supply pump 121, the flow control valve 122, the heater 123, and the like correspond to the supercritical water supply unit of the present embodiment.
  • the light oil content extraction line 130 is connected.
  • the light oil content extraction line 130 has a cooler 132 composed of a heat exchanger or the like for cooling the mixed fluid flowing in the light oil content extraction line 130 to a temperature lower than the critical pressure of water, for example, 200 ° C. to 374 ° C. It is installed.
  • the mixed fluid cooled by the cooler 132 under a pressure substantially equal to the pressure in the reactor 10 is mixed with the light oil content (however, the light oil content also contains moisture).
  • a high pressure separator 30 for separation into water.
  • the light oil content line 310 includes a cooler 312 including a heat exchanger for cooling the light oil content to a temperature of about 40 ° C. to 100 ° C., and the pressure of the light oil content flowing in the line 310 from, for example, normal pressure.
  • the pressure reducing valve 311 also has a function as the pressure adjusting valve 131 shown in FIG.
  • a high-pressure separated water line 320 is provided on the bottom side of the high-pressure separator 30 for extracting water separated from the light oil under a pressure of about 25 MPa to 30 MPa and a temperature of about 200 ° C. to 374 ° C.
  • the high-pressure separation water line 320 is connected to a later-described recycle water line 610 so that the separation water from the high-pressure separator 30 can be supplied to the reactor 10 again.
  • Reference numeral 321 interposed in the high-pressure separation water line 320 is a high-pressure separation water recycle pump for feeding the separation water from the high-pressure separator 30.
  • the low-pressure separator 40 has a pressure of about 0.2 MPa to 1.0 MPa with respect to the light oil content containing water flowing out from the high-pressure separator 30. Under the temperature condition of about 100 ° C. to 100 ° C., it again separates into light oil and water.
  • Reference numeral 420 denotes a synthetic crude oil line for delivering light oil separated from water as synthetic crude oil to the synthetic crude oil tank 82.
  • a low-pressure separation water recycling line 430 is connected to, for example, the bottom of the low-pressure separator 40.
  • the low-pressure separation water recycling line 430 extracts water separated from light oil and recycles it as supercritical water. It plays the role of sending liquid to the tank 60.
  • a drainage line 440 for extracting a part of the recycled water to the wastewater treatment facility 83 is branched from the low-pressure separated water recycle line 430, and it is improved by increasing or decreasing the amount of liquid fed to the wastewater treatment facility 83.
  • the concentration of oil and salinity in the recycled water circulating in the quality oil production apparatus can be adjusted to a predetermined value or less.
  • reference numeral 410 denotes an exhaust gas line for volatilizing the light oil but sending gas to the exhaust gas treatment facility 81.
  • the high-pressure separator 30 and the low-pressure separator 40 described above correspond to the second separation unit of the present embodiment.
  • a heavy oil extraction line 140 is connected to extract a fluid mixture of the heavy oil and supercritical water dissolved in the heavy oil from the second phase.
  • the heavy oil content extraction line 140 includes a cooler 141 including a heat exchanger for cooling the mixed fluid flowing in the line 140 to about 200 ° C. to 350 ° C., and a mixture from the bottom of the reactor 10.
  • a flow rate adjustment valve 142 is provided for adjusting the amount of fluid extracted and reducing the pressure of the mixed fluid flowing in the heavy oil content extraction line 140 to, for example, about 0.2 MPa to 1.0 MPa higher than normal pressure. It is installed.
  • the flow control valve 142 is connected to the flash drum 50.
  • the flash drum 50 performs flash distillation under a pressure condition of about 0.1 to 8 MPa and a temperature condition of about 250 to 430 ° C. It functions as a flash unit that separates water and light fractions dissolved in the oil.
  • the heavy oil separated from the light oil in the reactor 10 contains a portion of the fraction corresponding to the light oil, and the production of synthetic crude oil is increased by collecting the light fraction. I am trying.
  • a flash fluid line 510 connected to the flash drum 50 is a flash fluid line 510 for sending a mixed fluid of light fraction and water separated from heavy oil in the flash drum 50 to the separator 70 on the downstream side.
  • a cooler 511 including a heat exchanger for cooling the fluid mixture of water and water to about 40 to 100 ° C. is interposed.
  • Reference numeral 520 denotes a residual oil line for extracting heavy oil separated from water into a residual oil tank 84 as residual oil for boiler combustion, for example.
  • the total or part of the heavy oil extracted from the flash drum 50 is mixed with the light oil extracted from the low-pressure separator 40 side and sent to the synthetic crude oil tank 82.
  • a crude oil mixing line 530 is branched.
  • the synthetic crude oil mixing line 530 is connected to the synthetic crude oil line 420 from the low pressure separator 40 as shown in FIG. 5, and the inline mixer 23 shown in FIG.
  • the structure etc. which mix and manufacture synthetic crude oil can be illustrated.
  • the joining part of the synthetic crude oil line 420 and the synthetic crude oil mixing line 530 corresponds to the mixing part 2 shown in FIG.
  • a separator 70 Downstream of the flush fluid line 510, a separator 70 is provided as a first separation unit for separating a fluid separated from a heavy oil component by flash distillation into a light fraction and water.
  • a light fraction line 710 for extracting a light fraction is provided on the upper side of the separator 30, and this light fraction line 710 is connected to a synthetic crude oil line 420 that delivers light oil from the low-pressure separator 40 described above. ing.
  • recovered from heavy oil is mixed with light oil as a raw material of synthetic crude oil.
  • the joining part of the light fraction line 710 and the synthetic crude oil line 420 corresponds to the light part mixing part of this example.
  • a drum separation water line 720 is connected to the lower side of the separator 70 for extracting water separated from the light fraction in the separator 70 toward the separation water recycling line 430 and recycling the water.
  • the light crude fraction is separated from the synthetic crude oil by the synthetic crude oil line 420.
  • dehydration from the heavy oil becomes easier than when mixing without flash distillation.
  • a recycled water tank 60 provided downstream of the low-pressure separated water recycling line 430 is separated into light separated from light oil by the low-pressure separator 40 and the separator 70. Accepts water separated from light fractions.
  • the water collected in the recycled water tank 60 is supplied again to the supercritical water supply line 120.
  • reference numeral 610 denotes a recycled water line that connects the recycled water tank 60 and the supercritical water supply line 120
  • reference numeral 611 denotes water discharged from the recycled water tank 60 at a critical pressure (22.1 MPa) or more, for example, 22.1 MPa to This is a recycled water pump for raising the pressure to 40 MPa and sending it out toward the supercritical water supply line 120.
  • the recycle water line 610 is joined with the high pressure separation water line 320 for recycling the water separated by the high pressure separator 30.
  • the reformed oil production apparatus shown in FIG. 6 uses a heavy oil component in a state of a mixed fluid with supercritical water extracted from the first phase, to the supercritical water extracted from the second phase.
  • the point which mixes with the light oil component of the state of a mixed fluid differs from the 1st structural example which mixes, after isolate
  • the heavy oil content mixing line 150 is branched from the heavy oil content extraction line 140, and the heavy oil content mixing line 150 joins the light oil content extraction line 130 to constitute the mixing unit 2. .
  • the heavy oil reforming apparatus has the following effects.
  • heavy oil is brought into contact with supercritical water and pyrolyzed into heavy oil and light oil, and this oil is mixed with heavy oil to produce a modified oil.
  • the modified oil can be obtained with a high yield.
  • a configuration example of the mixing unit 2 is an example in which a heavy oil component is continuously mixed with a light crude oil component separated from water by connecting the synthetic crude oil mixing line 530 to the synthetic crude oil line 420 (FIGS. 5 and 6).
  • the heavy oil content mixing line 150 is connected to the light oil content extraction line 130 and the heavy oil content is continuously mixed with the light oil content in the state of the mixed fluid with the supercritical fluid (FIG. 7). Absent.
  • the synthetic crude oil mixing line 530 shown in FIG. 5 is not provided, but the entire amount of heavy oil is discharged from the residual oil line 520 to the residual oil tank 84, and the residual oil line 520 is supplied to the mixing tank 21 shown in FIG. It is good also as a structure which pays out heavy oil component toward and mixes with light oil component.
  • the installation of the separator 70 shown in FIGS. 5 to 7 may be omitted.
  • the flash drum 50 has conditions suitable for flushing only moisture from the heavy oil, such as a pressure condition in the range of about 0.4 to 1.0 MPa and a temperature condition in the range of about 200 to 350 ° C. Adjusted.
  • recovered from the flash drum 50 is sent directly to a recycle water tank.
  • the installation of the flash drum 50 may be omitted in the case where the heavy oil is mixed before the oil / water separation is performed by the light separator 40a.
  • the boiler fuel and the fuel are still dispersed in the residual oil without depressurizing the first mixed fluid. By doing so, it becomes possible to further reduce the viscosity of the residual oil and make it easier to handle the residual oil.
  • vaporization at the time of using as boiler fuel is accelerated
  • the heavy oil to be reformed by the reformed oil manufacturing apparatus has been described for the case of processing ultra heavy crude oil such as oil sand bitumen or orinocotal.
  • the heavy oil that can be processed in is not limited to crude oil.
  • the case of performing reforming treatment of atmospheric distillation residue oil or vacuum distillation residue oil is also included in the technical scope of the present invention.
  • the residence time ⁇ pitch of the first mixed fluid is the amount F Pitch of the residual oil extracted from the reactor 10
  • the residence time ⁇ Lt of the second mixed fluid is the supply amount F Win of supercritical water. Controlled.
  • As heavy oil Canadian oil sand bitumen having the properties shown in Table 1 was used. (Table 1)
  • Example 1 The experiment was performed under the following conditions. Reaction temperature in reactor 10: 430 ° C Reaction pressure in reactor 10: 25 MPa Water / oil weight ratio: 1.0 Residence time ⁇ Pitch of the first fluid mixture: 95 minutes Residence time ⁇ Lt of the second fluid mixture: 2.3 minutes (Example 2) Reaction temperature in reactor 10: 450 ° C. The experiment was conducted under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 4.9 minutes and the residence time ⁇ Lt of the second fluid mixture was 11 minutes.
  • Example 3 Water / oil weight ratio: 0.5 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 32 minutes and the residence time ⁇ Lt of the second fluid mixture was 25 minutes.
  • Example 4 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 67 minutes and the residence time ⁇ Lt of the second fluid mixture was 1.8 minutes.
  • Comparative Example 1 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 105 minutes and the residence time ⁇ Lt of the second fluid mixture was 1.1 minutes.
  • Table 2 The experimental conditions of each example and comparative example are summarized in (Table 2). (Table 2)
  • Example 6 the yield of each fraction obtained as a result of treating the same oil sand bitumen as used in (Example 1) by a bisbreaker test and a delayed coker test was compared with the results of (Examples 1 and 2). The results are shown in (Table 6).
  • Examples 1 and 2 are obtained by synthesizing the yields of synthetic crude oil and residue wafers and converting them into a VGO fraction having a boiling point of 540 ° C. or lower and a VR fraction having a boiling point higher than 540 ° C. , (Table 3) may not match the yield. (Table 6)
  • Example 2 ( ⁇ Pitch : 4.9 minutes) ⁇ Example 3 (same: 32 minutes) ⁇ Example 1 (same: 95 minutes) and first residence time ⁇ Pitch
  • Example 3 (same: 32 minutes) ⁇ Example 1 (same: 95 minutes)
  • first residence time ⁇ Pitch As the oil length is increased, the yield of residual oil decreases while the yield of synthetic crude oil increases. Further, in Comparative Example 1 where the ⁇ pitch was 105 minutes, generation of coke (coking) was observed.
  • Example 4 ( ⁇ Pitch : 67 minutes) in which the first residence time ⁇ Pitch is longer than that in Example 3, the residual oil yield is higher than that in Example 3, while the synthetic crude oil yield is The reason for this is not clear, but I think it is due to fluctuation error.
  • Example 4 (same as 1.8 minutes) ⁇ Example 2 (same as 11: except for Example 1 ( ⁇ Lt : 2.3 minutes) with the highest gas yield).
  • Min ⁇ Example 3 (25 minutes in the same order)
  • the gas yield tends to increase as the second residence time ⁇ Lt is increased.
  • Example 4 ( ⁇ Lt : 1.8 minutes) ⁇ Example 1 (same: 2.3 minutes) ⁇ Example 2 (same: 11 minutes) ⁇ Example 3 (same: 25 minutes) and second
  • ⁇ Lt the residence time
  • the kinematic viscosity of the residual oil tends to increase. This is considered to be the result of the polymerization of the heavy oil proceeding against the cage effect of supercritical water dissolved in the heavy oil as the first residence time is increased. This can also be confirmed from the fact that the density of the residual oil increases as the first residence time increases.
  • the first residence time ⁇ Pitch should be in the range of about 3 minutes to 95 minutes.
  • the kinematic viscosity at 310 ° C. becomes 1.8 ⁇ 10 ⁇ 5 m 2 / s (18 cSt) or less while suppressing the generation of coke, and it can be seen that a residual oil that is easy to handle can be obtained.
  • the second residence time ⁇ Lt is about 1 to 25 minutes, and the gas generation is suppressed to about 4% by mass or less, and the kinematic viscosity at 10 ° C. is 2.8 ⁇ 10 ⁇ 5 m. It can be said that synthetic crude oil of 2 / s (28 cSt) or less can be obtained.
  • Example 3-2 The same experiment as in Example 3-2 was performed except that the residence time ⁇ Pitch of the first fluid mixture was 25.7 minutes and the residence time ⁇ Lt of the second fluid mixture was 7.7 minutes.
  • Example 3-3 The same experiment as in Example 3-2 was performed, except that the residence time ⁇ Pitch of the first fluid mixture was 37.7 minutes and the residence time ⁇ Lt of the second fluid mixture was 4.0 minutes.
  • Table 7 summarizes the experimental conditions of the examples. (Table 7)
  • Example 3-1 the mixing ratio of the heavy oil in the synthetic crude oil was 2.0% by weight, and the synthetic crude oil yield was 39.3% by weight. This indicates that the yield of synthetic crude oil was increased by 0.8% by weight compared to the light oil yield (38.5% by weight) shown in (Table 7).
  • Example 3-2 the mixing ratio of the heavy oil in the synthetic crude oil was 2.6% by weight, and the yield of the synthetic crude oil was 44.5% by weight. This indicates that the yield of the synthetic crude oil was increased by 1.2% by weight compared to the light oil yield (43.3% by weight) shown in (Table 7).
  • Example 3-3 the mixing ratio of the heavy oil in the synthetic crude oil was 8.1% by weight, and the yield of the synthetic crude oil was 65.1% by weight. This indicates that the yield of the synthetic crude oil was increased by 5.3% by weight compared to the light oil yield (59.8% by weight) shown in (Table 7). None of the synthetic crude oils obtained in Examples 3-1 to 3-3 had compatibility problems, and heavy oil was brought into contact with supercritical water to thermally decompose it into heavy oil and light oil. It was confirmed that synthetic crude oil (modified oil) can be produced by mixing heavy oil with light oil.

Abstract

【課題】超臨界水を利用して改質油を製造するにあたって、改質油を高得率で得られる改質油の製造方法及び改質油製造装置を提供する。 【解決手段】反応器1は水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相を下部に、前記超臨界水と、前記超臨界水中に抽出された軽質油分とからなる第2の相を上部に形成する。前記第1の相からは、前記重質油分におけるコークスの形成を抑えるように第1の混合流体が、前記反応部の下部から抜き出される一方、前記第2の相からは、前記軽質油分からのガス生成を抑えるように第2の混合流体が、前記反応部の上部から抜き出される。混合部2では、前記第2の混合流体の軽質油分に、前記第1の混合流体の重質油分を混合して改質油を得る。

Description

改質油の製造方法、及び改質油製造装置
 本発明は、超臨界水を利用して重質油から改質油を製造する技術に関する。
 今後、中国やインドなどの発展途上国を中心に原油需要の高まりが予想される中、従来から利用されてきた軽質原油の生産はピークを迎えつつあり、これまではあまり利用されていなかった重質原油や超重質原油を利用する必要性が高まってきている。超重質油の中でも、カナダのオイルサンドビチュメンやベネズエラのオリノコタールは、すでに経済的な生産手法も確立され、生産量は増加しつつある。
 これらの超重質原油は密度や粘度が非常に高いため、生産地の井戸から消費地の製油所まで輸送するために、そのままパイプラインなどを用いて輸送することができない。そのため、井戸元では、希釈剤を混合して粘度を低下させる希釈法と、すぐそばにアップグレーダーと呼ばれる熱分解や水素化処理を行うプラントを建設して軽質な合成原油を製造する改質法との2つの手法が選択されている。
 しかしながら、希釈法ではコンデンセートなどの希釈剤を十分に確保しなければならない問題や、希釈する分だけ輸送量が増えるため輸送コストが増大するといった問題が発生する。また、改質法においても、井戸元に製油所並の大規模なプラントを必要とするため、大規模油田の近隣でしか経済性が成り立たないという問題や、コークスや硫黄などの副生成物処理の問題、改質に必要となる水素を確保しなければならないという問題が発生する。
 また既存の重質油のアップグレーディング技術として、ディレードコーカーやフルードコーカーなどの熱分解プロセスやH-Oil、LC-Finingなどの水素化分解プロセスがある。熱分解プロセスは重質油を熱分解し、分解油とガス、コークスを製造する技術である。ここで大量に生成するコークスや硫黄などの副生成物は、用途がない地域では野積みにせざるを得ない場合があるなどの問題がある。
 一方、水素化分解プロセスは、高温高圧水素条件下で触媒を用いて重質油を分解する技術である。ここでは大量の水素が必要なことからナフサや天然ガスが必要となり、その供給が問題となる。さらに、触媒の供給や使用済み触媒の廃棄なども考慮しなければならない。 
 以上のように、既存の技術では副生成物の処理、水素の製造、触媒の供給、廃触媒の処理が問題となる。
 これらの問題に対し、本件発明者らは超臨界水を利用して重質原油や超重質原油(以下、重質油という)を改質し、シンプルな改質スキームで、希釈剤を必要とせずにパイプライン輸送可能な合成原油(改質油)を製造する技術に着目した。この技術では、反応器内部において、重質油と超臨界水とが接触することによる重質油の熱分解反応と、熱分解によって生成した軽質油分の超臨界水側への抽出とを並行して進行させ、抽出された軽質油分を分離回収することで、パイプライン輸送が可能な合成原油を得ることができる。また、超臨界水に抽出されなかった重質油分は残渣油としてボイラー燃料などの用途で使用することができる。
 超臨界水を利用して重質油の改質を行う技術として、例えば特許文献1には反応器の上部から鉛直下向きに重質油を供給し、下部から超臨界水(または亜臨界水)を供給して反応器内部で接触、改質することにより、超臨界水に溶解した軽質油分と、これに溶解しない重質油分とに分離する技術が記載されている。
 また特許文献2には、縦型反応器内の下部で重質油を超臨界水と共に加熱・混合して原料の一部を軽質成分に分解して気化させる一次熱分解部と、同反応器内上下方向の中央部から上部にかけて、気化した軽質成分の一部をさらに高温にて改質成分に分解する二次分解部とを有する改質装置が提案されている。一次熱分解部には反応器内に熱分解容器を設けて、その内部で重質油を反応させる一方、熱分解せずにこの熱分解容器からオーバーフローした液体は残油として反応器の下部から排出される。このほか特許文献3には、反応器内で重質油を超臨界水と反応させて改質油のエマルションと共にコークスを生成し、改質油のエマルションを連続的に抜き出す一方、コークスを間欠的に抜き出す技術が開示されている。
特許4171062号公報:請求項1、段落0030~段落0033、図1 特開2008-208170号公報:請求項1、段落0012~段落0017、図1 特開2007-51224号公報:請求項1、段落0024~段落0030、図3
 上述の各先行技術のうち特許文献1に記載の技術は、重質油を超臨界水と接触させて軽質油分を超臨界水側に溶解させることにより、重質油に含まれているバナジウムなどの重金属を除去し、高温腐食などを引き起こしにくいガスタービン燃料を得ている。このとき、重質油に含まれていた重金属は、超臨界水に溶解しない重質油分側に濃縮され、この重質油分はボイラーなどの燃料として使用される。重質油の分解ではなく、重金属除去を目的としているため、重質油分の反応器内滞留時間が短い。よって、重質油分解が不十分なので、パイプライン輸送を目的とした合成原油収率を高めることはできない。
 また特許文献2に記載の技術によれば、一次熱分解部を380℃~450℃に加熱し、その上部側の二次熱分解部については、一次熱分解部よりも高温の450℃~550℃に加熱することにより、超臨界水と接触させた重質油を軽質油分に分解し、さらに改質成分へと2段階で分解している。しかしながら当該技術のように軽質成分の分解を積極的に進行させると、過分解によるガス生成量の増大(液収率の低下)や、軽質成分中オレフィン濃度の上昇を引き起こしてしまうため、合成原油の製造技術に適した技術とはいえない。
 なお特許文献3に記載の技術は、積極的にコークスを生成する条件を選択して運転しており、コークスの処理が問題となる。またコークスを生成するほどの過酷な条件下では軽質油分の過分解によるガス生成量の増大(液収率の低下)や、改質油中オレフィン濃度の増大が懸念される。
 このように上記先行技術は、重質油の分解が不十分、軽質成分のガス分解、重質油からのコークスの生成など、重質油からの合成原油収率を十分に高めることができなかった。本発明はこのような事情の下になされたものであり、その目的は、超臨界水を利用して改質油を製造するにあたって、改質油を高得率で得られる改質油の製造方法及び改質油製造装置を提供することにある。
 上記課題を解決する手段を以下に示す。 
 (1)反応部に重質油を供給する工程と、
 前記反応部に超臨界水を供給する工程と、
 前記反応部内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油を熱分解する工程と、
 前記重質油が熱分解して得られた重質油分と前記重質油分中に溶解した超臨界水とからなる第1の相を前記反応部の下部に、前記超臨界水と、前記超臨界水中に抽出された軽質油分とからなる第2の相を前記反応部の上部に、それぞれ形成する工程と、
 前記重質油分におけるコークスの形成を抑えるように、前記第1の相における第1の混合流体を、前記反応部の下部から抜き出す工程と、
 前記軽質油分からのガス生成を抑えるように、前記第2の相における第2の混合流体を、前記反応部の上部から抜き出す工程と、
 前記第2の混合流体の軽質油分に、前記第1の混合流体の重質油分を混合して、改質油を得る工程と、を含むことを特徴とする改質油の製造方法。
 (2)前記第1の混合流体をフラッシュ蒸留して、前記第1の相の重質油分に含まれる軽質留分と水との混合蒸気と、残りの重質油分とに分離する工程と、
 前記混合蒸気を冷却して、軽質留分と水とに分離する工程と、
 前記第2の混合流体の軽質油分に、前記軽質留分を混合する工程と、を含み、
 前記改質油を得る工程では、前記フラッシュ蒸留後の重質油分が軽質油分に混合されることを特徴とする(1)に記載の改質油の製造方法。
 (3)前記第2の混合流体を、軽質油分と水とに分離する工程を含み、
 前記改質油を得る工程では、前記水と分離された後の軽質油分に重質油分が混合されることを特徴とする(1)又は(2)に記載の改質油の製造方法。
 (4)前記軽質油分への重質油分の混合量は、前記改質油に予め設定された比重または粘度の規格を満たす範囲内の量であることを特徴とする(1)~(3)の何れかに記載の改質油の製造方法。
 (5)前記第1の相における前記第1の混合流体の滞留時間は、
 i)3分以上、95分以下の範囲内、
 ii)コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
 iii)350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記第1の混合流体の抜き出し量を制御する工程を含むことを特徴とする(1)~(4)の何れかに記載の改質油の製造方法。
 (6)前記第2の相における前記第2の混合流体の滞留時間は、
 i)前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内、
 ii)過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
 iii)10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記反応部への超臨界水の供給量を制御する工程を含むことを特徴とする(1)~(5)の何れかに記載の改質油の製造方法。
 (7)前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれることを特徴とする(1)~(6)の何れかに記載の改質油の製造方法。
 (8)水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相を下部に、前記超臨界水と、前記超臨界水中に抽出された軽質油分とからなる第2の相を上部に形成する反応部と、
 前記重質油分におけるコークスの形成を抑えるように、前記第1の相における重質油分及び当該重質油分中に溶解した超臨界水の第1の混合流体を、前記反応部の下部から抜き出す第1の流量調節部と、
 前記軽質油分からのガス生成を抑えるように、前記第2の相における第2の混合流体を、前記反応部の上部から抜き出す第2の流量調節部と、
 前記反応部の上部から抜き出された前記第2の混合流体の軽質油分に、前記第1の混合流体の重質油分を混合して、改質油を得る混合部と、
を備えることを特徴とする改質油製造装置。
 (9)前記第1の混合流体をフラッシュ蒸留して、当該前記第1の相の重質油分に含まれる軽質留分と水との混合蒸気と、残りの重質油分とに分離するためのフラッシュ部と、
 前記混合蒸気を冷却して、軽質留分と水とに分離するための第1の分離部と、
 前記第2の混合流体の軽質油分に、前記軽質留分を混合するための軽質留分混合部と、を備え、
 前記混合部では、前記フラッシュ蒸留後の重質油分が軽質油分に混合されることを特徴とする(8)に記載の改質油製造装置。
 (10)前記第2の混合流体を、軽質油分と水とに分離するための第2の分離部を備え、
 前記混合部では、前記水と分離された後の軽質油分に重質油分が混合されることを特徴とする(8)又(9)に記載の改質油製造装置。
 (11)前記軽質油分への重質油分の混合量は、前記改質油に予め設定された比重または粘度の規格を満たす範囲内の量であることを特徴とする(8)~(10)の何れかに記載の改質油製造装置。
 (12)前記第1の相における前記第1の混合流体の滞留時間が、
 i)3分以上、95分以下の範囲内、
 ii)コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
 iii)350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記第1の混合流体の抜き出し量を制御する制御部を備えることを特徴とする(8)~(11)の何れかに記載の改質油製造装置。
 (13)前記第2の相における前記第2の混合流体の滞留時間が、
 i)前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内、
 ii)過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
 iii)10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記反応部への超臨界水の供給量を制御する制御部を備えることを特徴とする(8)~(12)の何れかに記載の改質油製造装置。
 (14)前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれることを特徴とする(8)~(13)の何れかに記載の改質油製造装置。
 本発明によれば、重質油を超臨界水と接触させて重質油分と軽質油分とに熱分解し、この軽質油分に重質油分を混合して改質油を製造するので、高得率で改質油を得ることができる。
実施の形態に係わる改質油製造装置の基本構成図である。 前記改質油製造装置に設けられている反応部の構成例である。 前記改質油製造装置に設けられている混合部の第1の構成例である。 前記混合部の第2の構成例である。 前記改質油製造装置の第1の構成例である。 前記改質油製造装置の第2の構成例である。
 [基本構成] 
 本発明の実施の形態に係わる改質油製造装置の基本構成について説明する。改質油製造装置は、例えばオイルサンドビチュメンやオリノコタールなどの高密度、高粘度の原油が生産される井戸元などに設置され、当該重質油から低密度、低粘度の合成原油を製造する役割を果たす。
 図1に示すように改質油製造装置は、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させて得られた重質油分及び軽質油分が別々に抜き出される反応部1と、この反応部1から得られた軽質油分に、前記重質油分の一部、または全量を混合して改質油である合成原油を製造する混合部2と、を備えている。得られた合成原油は、製油所に輸送され、通常の原油と同様に蒸留、改質、分解、脱硫などの各種精製プロセスを経て、燃料油や化成品原料などになる。一方、軽質油分と混合されなかった重質油分は、残渣としてボイラー燃料などの用途で使用される。
 [反応部] 
 図2は前記反応部1を構成する反応器10の内部構造及び当該反応器10に設けられた制御系統の構成を模式的に示している。反応器10は、昇温、昇圧された重質油と超臨界水とを例えば向流接触させることにより当該重質油を熱分解し。これにより得られた軽質油分と重質油分とを別々に分離して抜き出す役割を果たす。反応器10の上部側には、加熱、昇圧された重質油が供給される重質油供給ライン110が接続されている。一方、反応器10の下部側には、加熱、昇圧された超臨界水が供給される超臨界水供給ライン120が接続されている。そして、両流体が反応器10内で接触すると超臨界水により持ち込まれた熱により重質油の熱分解が進行して重質油全体が軽質化することになる。ここで図2に示した101は重質油の供給ノズル、102は超臨界水の供給ノズルである。
 またこれらの流体を接触させると、まず重質油に予め含まれている軽質油分が超臨界水へ抽出され、超臨界水中に抽出されずに残った重質油分が熱分解し、この熱分解により生成した軽質油分が超臨界水中に抽出さることにより、超臨界水と軽質油分とからなる連続相(以下、第2の相という)を形成し、また超臨界水中に抽出されなかった重質油分が連続相(以下、第1の相という)を形成して2つの相に分離する。重質油分は超臨界水と軽質油分との混合流体よりも比重が大きいことから、第1の相は反応器10の下部側に形成され、第2の相は反応器10の上部側に形成されることになる。
 また実際には、重質油の種類や反応器10の温度、圧力条件にもよるが、第1の相を構成する重質油分中には、重質油分(水分を含んでいないドライ状態基準)の3重量%~100重量%程度の超臨界水が溶解する。この観点においては、第1の相は重質油分と超臨界水との混合流体から構成されているといえる。このように重質油分中に超臨界水が溶解することによって、熱分解が進行する重質油分を構成する例えば多環芳香族の分子間に水分子が入り込んで、多環芳香族同士の重縮合によるアスファルテンの生成、アスファルテン同士の重縮合によるコークスの生成を抑制するケージ効果を発揮させることができる。
 本実施の形態に係る反応器10では、下部側の第1の相内に超臨界水供給ノズル102から超臨界水が供給され、また上部側の第2の相内に重質油供給ノズル101から重質油が供給されることになる。このとき軽質油分の超臨界水側への抽出、超臨界水の重質油分側への溶解は、第1の相を上昇する超臨界水(分散相)との界面、第2の相を沈降する重質油(分散相)との界面、及び第1の相と第2の相との接触界面にて進行することになる。
 一方で、本発明者らは第1の相を上昇する超臨界水の上昇速度、第2の相を沈降する重質油の沈降速度は非常に速く、各超臨界水及び重質油は例えば数秒~数十秒程度で第1、第2の相内を通過してしまうことを把握している。このため重質油の熱分解は、実際には第1の相内にて重質油分の熱分解が進行し、その結果生成した軽質油分が第2の相側に抽出されると共に、第2の相内にて軽質油分及び第1の相側から供給された軽質油分のさらなる熱分解が進行することになる。
 図2に示すように反応器10の底部には、第1の相を構成する流体(重質油分と超臨界水との混合流体)を抜き出すための重質油分抜出ライン140が接続されている。この重質油分抜出ライン140には、第1の相からの流体の抜き出し量を調節する流量調節弁142が介設されている。重質油分抜出ライン140から抜き出された流体は、冷却器などで冷却されて熱分解が停止される。一方、反応器10の頂部には、第2の相を構成する流体(軽質油分と超臨界水との混合流体)を抜き出すための軽質油分抜出ライン130が接続されている。この軽質油分抜出ライン130には、反応器10内の圧力を例えば25~30MPaに調節するための圧力調整弁131が介設されている。軽質油分抜出ライン130から抜き出された流体についても、冷却器などで冷却されることにより軽質油分の熱分解が停止されることになる。
 [制御機構]
 以上に説明した熱分解機構によれば、重質油分の熱分解の進行度合いは、第1の相内における重質油分とこの重質油分中に溶解した超臨界水との混合流体(以下、第1の混合流体という)の滞留時間にて制御することができる。重質油は熱分解を進行させるほど軽質油分の収率が増え、また重質油分中に超臨界水を溶解させてケージ効果が発揮される条件下で重質油分の分解を適度に進行させることにより、重質油分の粘度が低下してボイラー燃料などとして使用する際や軽質油分と混合された後の合成原油のハンドリングが容易になる。一方で、既述のケージ効果が相殺される程度まで熱分解が進行してしまうと重質油分中にコークスが生成される。
 そこで本実施の形態に係る改質油製造装置においては残渣油となる重質油分の例えば350℃における動粘度を3.0×10-5/s以下(30cSt以下)とし、また、コークスの生成が抑制される程度(例えばコークスの生成量が重質油分の0~20重量%の範囲内となる程度)に重質油分の熱分解を進行させるように第1の相内における第1の混合流体の滞留時間を調節する機構を備えている。
 また軽質油分の熱分解の進行度合いについては、第2の相内における超臨界水とこの超臨界水中に抽出された軽質油分との混合流体(以下、第2の混合流体という)の滞留時間にて調節することができる。軽質油分は熱分解を進行させるほど動粘度が低下して、例えば寒冷地などにおいても特別な加熱設備を設けることなく合成原油の輸送が可能になる。一方で、軽質油分が過分解すると軽質油分からのガス生成量が増大して、合成原油の収率が低下してしまう。
 そこで本改質油製造装置においては軽質油分単独、または重質油分と混合後の合成原油の例えば10℃における動粘度を5.0×10-3/s以下(5000cSt以下)とし、且つ、ガスの生成が抑制される程度に軽質油分の熱分解を進行させるように第2の相内における第2の混合流体の滞留時間を調節する機構を備えている。本例の改質油製造装置では、軽質油分に重質油分が混合されて合成原油が製造されるので、重質油分と混合後の合成原油の動粘度を5.0×10-3/s以下(5000cSt以下)とするためには、比較的動粘度の大きな重質油分と混合される軽質油分単独の動粘度はさらに低い値となるように第2の滞留時間が調整される。
 例えば第1の相内における第1混合流体の滞留時間をθpitch、第2の相内における第2混合流体の滞留時間をθLtとし、重質油供給ライン110からの重質油の単位時間当たりの供給量をFOin、超臨界水供給ライン120からの超臨界水の単位時間当たりの供給量をFWin、重質油分抜出ライン140からの第1の混合流体の単位時間当たりの抜き出し量をFW1+Pitch、軽質油分抜出ライン130からの第2の混合流体の単位時間当たりの抜き出し量をFW2+Ltと表すと、反応器10への流体の供給、抜き出しバランスは、以下の(2)式で表される。
 FOin+FWin=FW1+Pitch+FW2+Lt…(2)
 また、第2の相に抽出される軽質油分の割合は、重質油の性状や反応器10の温度、圧力条件、重質油分の熱分解の進行度合いによっても変化するが、本例においては、例えば沸点が540℃以下のVGO(Vacuumed Gas Oil:減圧軽油)より軽質な留分が軽質油分として超臨界水側に抽出され、540℃よりも沸点の高いVR(Vacuumed Residue)に相当する留分が超臨界水中に抽出されない重質油分として抜き出される重質油を用いる場合について考える。ここで本実施の形態においては、θpitchを例えば目標値の±1分程度の変動範囲内で制御し、熱分解の進行度を一定の範囲内に制御することによりVGOの得率(即ちVRの得率)は、ほぼ一定として取り扱えるものとする。
 また、反応器10に供給される重質油のうち、重質油分として抜き出される流量をFPitch、軽質油分として抜き出される流量をFLtとし、同じく反応器10に供給される超臨界水のうち重質油分に溶解して第1の相から抜き出される流量をFw1、軽質油分を抽出して第2の相から抜き出される流量をFw2とすると、第1の混合流体、第2の混合流体の抜き出し量は以下の(3)式、(4)式で表される。 
 FW1+Pitch=FW1+FPitch…(3)
 FW2+Lt=FW2+FLt…(4)
 そして、反応器10内における第1の相の体積をV、第2の相の体積をVと表すとき、第1の相内における第1混合流体の滞留時間θpitch、第2の相内における第2混合流体の滞留時間θLtは以下の(5)式、(6)式で表される。 
 θpitch=V/FW1+Pitch 
   =V/(FW1+FPitch)…(5) 
 θLt=V/FW2+Lt 
   =V/(FW2+FLt)…(6)
 (5)式によれば、第1の相の体積Vが一定の場合、重質油分抜出ライン140からの第1の混合流体の抜き出し量FW1+Pitchを増減することにより、第1の相内における第1の混合流体の滞留時間θpitchを調節することができる。本実施の形態に係る改質油製造装置においては、後述の実施例の結果から「3分≦θpitch≦95分」の範囲内で滞留時間θpitchを設定することにより、重質油分中のコークスの生成量を例えば重質油分の0~20重量%の範囲内に抑制し、また350℃における残渣油の動粘度を3.0×10-5/s以下(30cSt以下)に調節することができることを確認している。
 また温度、圧力が一定の条件の下では重質油分中への超臨界水の溶解度は一定となるので、第1の相から抜き出される重質油分の流出量FPitchが決まれば、この重質油分中に溶解する超臨界水の量FW1は一定の値となる。この状態で超臨界水の供給量FWinを増減すると、重質油分中に溶解しない超臨界水の量、即ち、第2の相を形成する超臨界水の量FW2を増減することが可能となる。重質油分の流出量FPitchに対する超臨界水の溶解量FW1は、例えば予備実験などにより把握しておけばよい。
 以上の関係から、第2の相の体積Vが一定の場合、超臨界水供給ライン120からの超臨界水の供給量FWinを増減することによって(6)式中のFW2が増減し、第2の相内における第2の混合流体の滞留時間θLtを調節することができる。本実施の形態に係る改質油製造装置においては、後述の実施例の結果から「1分≦θLt≦25分」の範囲内で滞留時間θLtを設定することにより、過分解によるガスの生成量を例えば重質油の0~5質量%の範囲内に抑制し、また10℃における軽質油分単独、または重質油分と混合後の合成原油の動粘度を5.0×10-3/s以下(5000cSt以下)に調節することができることを確認している。
 以上に説明した考え方に基づき、重質油分抜出ライン140には第1の混合流体の抜き出し量FW1+Pitchを調節するための流量コントローラー93が設けられており、この流量コントローラー93の指示値(b)が制御部9へ出力されるようになっている。制御部9では(5)式に基づいて滞留時間θpitchが計算され、当該θpitchが予め設定した目標値となるように、流量コントローラー93の流量設定値(e)を増減して流量調節弁142の開度が調節される。この観点で流量調節弁142は、第1の流量調節部に相当する。
 また、超臨界水供給ライン120には超臨界水の供給量FWin(即ちFW2)を調節するための流量コントローラー92が設けられており、この流量コントローラー92の指示値(a)が制御部9へ出力されるようになっている。制御部9では(6)式に基づいて滞留時間θLtが計算され、当該θLtが予め設定した目標値となるように、流量コントローラー93の流量設定値(d)を増減して流量調節弁122の開度が調節される。
 また反応器10には本実施の形態の界面検出部である例えば差圧式、超音波式、X線式などの界面レベル計94が設けられており、反応器10内の第1の相と第2の相との界面のレベルが予め設定した範囲を上回るか、下回るかすると「界面レベル高」または「界面レベル低」を示す信号(c)が制御部9へ出力されるようになっている。制御部9では前記界面レベルが設定範囲内の高さ位置に復帰するように重質油供給ライン110に設けられた流量コントローラー91の流量設定値(f)を増減して重質油の供給量供給量FOinを調節することにより第1の相の体積V(即ち第2の相の体積V)を一定に保つ構成となっている。 
 ここで反応器10内の圧力は例えば後述の図5に示す高圧セパレーター30の軽質油分ライン310に設けられた不図示の圧力コントローラーにより、圧力調整弁131を開閉することにより行われ反応器10からの第2の混合流体の抜き出し量が調節される。この観点で圧力調整弁131は、第2の流量調節部に相当する。
 以上説明した構成を備えた改質油製造装置において、各滞留時間θpitch、θLtを調節する動作について説明する。今、第1の相における第1の混合流体の滞留時間θpitchが設定値を上回ったとすると、(5)式によれば第1の混合流体の抜き出し量FPitchを増やすことによりθpitchを低下させ、設定値に復帰させることができる。ところがFPitchを増やすと界面レベルが低下するので界面レベル計94から「界面レベル低」の信号が出力され、流量調節弁112を作動させて重質油供給ライン110からの重質油の供給量FOinを増加させる。
 このとき重質油の供給量の増分ΔFOinのうち「ΔFPitch」は第1の相に分配されるが、「ΔFLt」は第2の相側に分配される。この結果、(6)式よりθLtが小さくなることになるが、この変化については超臨界水の供給量FWin(即ちFW2)を減らすことによりθLtを上昇させて設定値に復帰させることができる。
 また反対に、第2の相における第2の混合流体の滞留時間θLtが設定値を上回ったとすると(6)式によれば超臨界流体の供給量FWin(即ちFW2)を増やすことによりθLtを低下させ、設定値に復帰させる。FWinを増やしても例えば反応器10内の圧力を一定にするようにFWin(FW2)の増加量にあわせて第2の相からの抜き出し量がFW2+Ltが増え、第1の相と第2の相との界面が一定レベルに保たれる。
 ここで図2に示した例では界面レベル計94を設け、第1、第2の相の界面を実測してV、Vが一定となるようにしているが、改質油製造装置は必ずしも界面レベル計94を備えていなくてもよい。例えば、重質油の油種や温度、圧力条件などに応じたVGOより軽質の留分、VR留分の得率を予め実験などにより把握しておき、FOin、FWin、FPitch、FLt、Fw1、Fw2の値から反応器10内の界面レベルを推定し、この推定界面レベルに基づいてV、Vを一定に保ち、(5)、(6)式に基づいて各滞留時間θpitch、θLtを調節してもよい。
 また図2に示した例では、V、Vを一定に保ち、各滞留時間θpitch、θLtを調節する例を示したがV、Vを変化させつつ滞留時間θpitch、θLtを調節することも可能である。例えば第1の相における第1の混合流体の滞留時間θpitchが設定値を上回ったとき、(5)式より第1の混合流体の抜き出し量FPitchを増やすと共に第1の相の体積Vを小さくすることにより、θpitchを低下させ、設定値に復帰させる。この結果、第2の相の体積Vが増大することになり、第2の混合流体の滞留時間θLtに影響を与えるが、体積Vの増大分を相殺するように超臨界水の供給量FWin(即ちFW2)を増やすことによりθLtを設定値に復帰させることができる。
 さらに上述の各例では、第1の相内における第1混合流体の滞留時間θpitchを第1の混合流体の抜き出し量FPitchにより調節し、第2の相内における第2混合流体の滞留時間θLtを超臨界水の供給量FWinにより調節する例を示したが、これらの滞留時間を(5)式、(6)式に示した他の操作変数、例えば重質油の供給量FOinや第2の混合流体の抜き出し量FW2+Ltoutで調節することを否定するものではない。
 [混合部] 
 図3は、混合部3の構成例を示しており、反応部1より得られた軽質油分と、重質油分の一部、または全量とが流入する混合タンク21と、混合タンク21内の流体を攪拌する攪拌機22と、を備えている。混合タンク21内で混合された流体は、合成原油としてパイプライン等へ送られる。また、図4に示すように混合部3は、インラインミキサー23にて構成してもよい。インラインミキサー23は、例えば軽質油分が通流する配管と、重質油分の一部、または全量が通流する配管との合流部の下流側に設けられる。
 混合部2にて、軽質油分に混合される重質油分の混合比率は、例えば比重(API(American Petroleum Institute)比重や密度)や粘度など、合成原油に対して予め設定された製品規格を満足する範囲で重質油分の混合比率を増やしていく場合が考えられる。このような製品規格を満足する範囲であれば、反応部1から得られた重質油分の全量を軽質油分に混合してもよい。
 また、軽質油分と重質油分とは、混合後の合成原油の相溶性が確保される範囲、言い替えると、混合後の合成原油が重軽質油分に再分離しない範囲の混合量に調整されるようになっている。合成油中の重質油分の混合比率は、これら合成原油の製品規格、相溶性に加え、反応器10から重質油分の得率などを考慮して決定されるが、特定の比率に限定されるものではない。
 [第1構成例]
 以上に説明した改質油製造装置の具体的な構成例について図5を参照しながら説明する。改質油製造装置は、重質油と超臨界水とを接触させて当該重質油を改質し、重質油分と軽質油分とに分離する反応器10(反応部)と、反応器10から流出した軽質油分と超臨界水との混合流体を例えば反応器10内の圧力と同程度の圧力条件下で油水分離する高圧セパレーター30と、この高圧セパレーター30から流出した軽質油と水との混合流体を高圧セパレーター30よりも低い圧力条件下で油水分離する低圧セパレーター40と、反応器10から流出した重質油分と超臨界水との混合流体を反応器10よりも低い圧力条件下で油水分離、並びに、重質油分中に含まれている軽質留分の分離を行うフラッシュドラム50と、フラッシュドラム50にてフラッシュ蒸留された水と軽質留分の混合流体を油水分離するセパレーター70と、油水分離後の水をリサイクルするためのリサイクル水タンク60と、を備えている。
 反応器10は、図2を用いて説明した構成を備える例えば塔形状に形成された耐圧容器であり、当該反応容器の例えば上部側側壁部には、重質油供給源11より重質油を受け入れるための重質油供給ライン110が接続されている。重質油供給源11は例えば重質油を貯蔵するタンクなどから構成される。
 重質油供給ライン110には重質油供給源11から受け入れた重質油を水の臨界圧力である22.1MPa以上の例えば25MPa~30MPaに昇圧して反応器10へ向けて送り出す重質油供給ポンプ111と、反応器10に供給される重質油を例えば300℃~450℃に加熱するための、例えば加熱炉などからなる加熱器113とが介設されている。ここで重質油は重質油供給ライン110や加熱器113内における重縮合を防ぐため、反応器10内の温度(例えば374℃~500℃)よりも低い温度で供給される。重質油供給ライン110、重質油供給ポンプ111、流量調節弁112、加熱器113などは本実施の形態の重質油供給部に相当する。
 一方、反応容器の例えば下部側側壁部には、貯水タンクなどからなる水供給源12より受け入れた水を超臨界状態にして反応器10へ供給するための超臨界水供給ライン120が接続されている。超臨界水供給ライン120には水供給源12から受け入れた水をその臨界圧力(22.1MPa)以上の例えば25MPa~30MPaに昇圧して反応器10へ向けて送り出す超臨界水供給ポンプ121と、超臨界水の供給量を調整する流量調節弁122と、反応器10に供給される超臨界水をその臨界温度(374℃)以上の例えば450℃~600℃に加熱するための、例えば加熱炉などからなる加熱器123とが介設されている。ここで既述のように重質油供給ライン110から供給される重質油は重縮合を防ぐ目的で反応器10内の温度よりも低い温度で供給されることから、超臨界水供給ライン120から供給される超臨界水を反応器10内の温度よりも高い温度で供給することにより、重質油の熱分解反応に必要な熱を供給している。超臨界水供給ライン120、超臨界水供給ポンプ121、流量調節弁122、加熱器123などは本実施の形態の超臨界水供給部に相当する。
 また反応器10の例えば塔頂部には、重質油が反応器10内で分解して得られた軽質油分がこの超臨界水中に抽出されて形成された混合流体を第1の相から抜き出すための軽質油分抜出ライン130が接続されている。軽質油分抜出ライン130には軽質油分抜出ライン130内を流れる混合流体を、水の臨界圧力より低い例えば200℃~374℃の温度に冷却するための熱交換器などからなる冷却器132が介設されている。
 この軽質油分抜出ライン130の下流には、反応器10内の圧力とほぼ同等の圧力下で、冷却器132にて冷却された混合流体を軽質油分(但し当該軽質油分中にも水分が含まれている)と水とに分離するための高圧セパレーター30が設けられている。高圧セパレーター30の上部側には軽質油分を抜き出して低圧セパレーター40へと送り出す軽質油分ライン310が接続されている。当該軽質油分ライン310には軽質油分を40℃~100℃程度の温度に冷却するための熱交換器などからなる冷却器312と、このライン310内を流れる当該軽質油分の圧力を例えば常圧よりも高い0.2MPa~1.0MPa程度まで減圧するための減圧弁311と、が介設されている。また減圧弁311は、図2に示した圧力調整弁131としての機能も備えている。
 一方、高圧セパレーター30の底部側には25MPa~30MPa程度の圧力、200℃~374℃程度の温度条件下で軽質油分から分離した水を抜き出すための高圧分離水ライン320が設けられている。高圧分離水ライン320は後述のリサイクル水ライン610に接続されていて、高圧セパレーター30からの分離水を再度反応器10へと供給することができるようになっている。高圧分離水ライン320に介設された321は高圧セパレーター30からの分離水を送液するための高圧分離水リサイクルポンプである。
 次に軽質油分ライン310の下流側に設けられた低圧セパレーター40について説明すると、低圧セパレーター40は、高圧セパレーター30から流出した水分を含む軽質油分について、0.2MPa~1.0MPa程度の圧力、40℃~100℃程度の温度条件下で、再度、軽質油分と水とに分離する役割を果たす。420は水と分離された軽質油分を合成原油として合成原油タンク82へ払い出すための合成原油ラインである。
 一方、低圧セパレーター40の例えば底部には、低圧分離水リサイクルライン430が接続されており、低圧分離水リサイクルライン430は軽質油分から分離された水を抜き出し、超臨界水としてリサイクルするためのリサイクル水タンク60へと送液する役割を果たしている。また低圧分離水リサイクルライン430からはリサイクルされる水の一部を排水処理設備83へ向けて抜き出す排水ライン440が分岐しており、排水処理設備83への送液量を増減することにより、改質油製造装置内を循環するリサイクル水中の油分の濃度や塩分の濃度を所定の値以下に調節することができるようになっている。図中410は、軽質油分から揮発したがガスを排ガス処理設備81へ送るための排ガスラインである。以上に説明した高圧セパレーター30、低圧セパレーター40は、本実施の形態の第2の分離部に相当する。
 以上に説明した反応器10の塔頂系のプロセスフローに対し、反応器10の例えば塔底部には、反応器10内で分解させた重質油のうち、超臨界水中に抽出されなかった重質油分とこの重質油分中に溶解した超臨界水との混合流体を第2の相から抜き出すための重質油分抜出ライン140が接続されている。重質油分抜出ライン140には、当該ライン140内を流れる混合流体を200℃~350℃程度まで冷却するための熱交換器などからなる冷却器141と、反応器10の塔底部からの混合流体の抜き出し量を調節すると共に、重質油分抜出ライン140内を流れる混合流体の圧力を例えば常圧よりも高い0.2MPa~1.0MPa程度まで減圧するための流量調節弁142とが介設されている。
 流量調節弁142はフラッシュドラム50に接続されており、フラッシュドラム50は0.1~8MPa程度の圧力条件、250~430℃程度の温度条件下でフラッシュ蒸留を行い、重質油分とこの重質油分中に溶解した水や軽質留分とを分離するフラッシュ部としての役割を果たす。ここで、反応器10内にて軽質油分から分離された重質油分中には、軽質油分に相当する留分が一部含まれており、この軽質留分を回収することにより合成原油の増産を図っている。フラッシュドラム50に接続された510は、フラッシュドラム50にて重質油分から分離された軽質留分と水との混合流体を下流側のセパレーター70へと送り出すフラッシュ流体ライン510であり、軽質留分と水との混合流体を40~100℃程度に冷却するための熱交換器などからなる冷却器511が介設されている。また、520は水と分離された重質油分を例えばボイラー燃焼用の残渣油として残渣油タンク84に抜き出すための残渣油ラインである。
 前記残渣油ライン520にはフラッシュドラム50から抜き出された重質油分の全量または一部を、低圧セパレーター40側から抜き出された軽質油分と混合して合成原油タンク82へと送り出すための合成原油混合ライン530が分岐して設けられている。合成原油混合ライン530は、図5に示すように低圧セパレーター40からの合成原油ライン420に接続し、接続部の下流側に図4に示したインラインミキサー23を設けて軽質油分に重質油分を混合し、合成原油を製造する構成などを例示できる。この場合には、合成原油ライン420と合成原油混合ライン530との合流部が、図1に示した混合部2に相当する。軽質油分に重質油分を混合することにより、ボイラー燃料と比べて付加価値の高い合成原油の収率を向上させることができる。
 フラッシュ流体ライン510の下流には、フラッシュ蒸留により重質油分から分離された流体を軽質留分と水とに分離するための第1の分離部であるセパレーター70が設けられている。セパレーター30の上部側には軽質留分を抜き出す軽質留分ライン710が設けられており、この軽質留分ライン710は、既述の低圧セパレーター40から軽質油分を払い出す合成原油ライン420に接続されている。これにより、重質油分から回収された軽質留分が合成原油の原料として軽質油分に混合される。この観点で、軽質留分ライン710と合成原油ライン420との合流部は、本例の軽質分混合部に相当している。また、セパレーター70の下部側には、セパレーター70内で軽質留分から分離した水を分離水リサイクルライン430に向けて抜き出して水のリサイクルを行うためのドラム分離水ライン720が接続されている。
 このように、フラッシュドラム50でフラッシュ蒸留を行い、重質油分とこの重質油分中に溶解した水や軽質留分とを分離した後で、合成原油ライン420で、軽質留分を合成原油の原料として軽質油分に混合することで、フラッシュ蒸留しないで混合した場合と比して、重質油分からの脱水が容易になる。
 また、比重差の大きい水と軽質留分を、高圧セパレーター30で油水分離することで、高圧セパレーター30で油水分離しないで、重質油分から回収した軽質油分を混合した後で油水分離した場合と比して、比重差が大きい脱水が容易になる。
 次に超臨界水用の水のリサイクル系統について説明すると、低圧分離水リサイクルライン430の下流に設けられたリサイクル水タンク60は、低圧セパレーター40にて軽質油分から分離された水、及びセパレーター70にて軽質留分から分離された水を受け入れる。リサイクル水タンク60内に集められた水は、超臨界水供給ライン120に再供給される。ここで610はリサイクル水タンク60と超臨界水供給ライン120とを接続するリサイクル水ライン、611はリサイクル水タンク60から払い出された水を臨界圧力(22.1MPa)以上の例えば22.1MPa~40MPaに昇圧して超臨界水供給ライン120へ向けて送り出すためのリサイクル水ポンプである。また既述のようにリサイクル水ライン610には高圧セパレーター30にて分離された水をリサイクルするための高圧分離水ライン320が合流している。超臨界水として用いる水をリサイクル利用することによって新水の使用量を削減し、重質油の改質に必要な水の確保を容易にするとともに、環境負荷を小さくすることが可能となる。
 [第2の構成例]
 図6に示した改質油製造装置は、第1の相から抜き出された超臨界水との混合流体の状態の重質油分を、第2の相から抜き出された超臨界水との混合流体の状態の軽質油分に混合する点が、重質油分や軽質油分から水を分離してから混合を行う第1の構成例と異なっている。本例では、重質油分抜出ライン140より重質油分混合ライン150が分岐しており、この重質油分混合ライン150が軽質油分抜出ライン130に合流して混合部2を構成している。
 以上に説明した本実施の形態に係わる重質油改質装置によれば以下の効果がある。重質油を超臨界水と接触させて重質油分と軽質油分とに熱分解し、この軽質油分に重質油分を混合して改質油を製造するので、重質油分を混合しない場合に比べて高得率で改質油を得ることができる。
 また、重質油分中のコークスの生成が0~20重量%程度に抑えられる範囲で重質油の分解を行うことにより、反応器10内や重質油分系の配管内へのコークスの付着、堆積量を低減することができる。例えば複数のコークスドラムを設けるディレードコーカーなどのように、コークスの堆積に伴うコークスドラムの切り替えや、堆積したコークスの取り出しを行う必要がなく、簡素な構成で長期の連続運転が可能となる。
 ここで、混合部2の構成例は、合成原油ライン420に、合成原油混合ライン530を接続して水と分離された後の軽質油分に重質油分を連続混合する例(図5、図6)や、軽質油分抜出ライン130に重質油分混合ライン150を接続して超臨界流体との混合流体の状態で軽質油分に重質油分を連続混合する例(図7)に限られるものではない。例えば、図5に示した合成原油混合ライン530を設けず、残渣油ライン520から残渣油タンク84へと重質油分の全量を払い出し、この残渣油ライン520から図3に示した混合タンク21ヘ向けて重質油分を払い出して軽質油分に混合する構成としてもよい。
 この他、重質油分からの軽質留分の回収を行わない場合には、図5~図7に示したセパレーター70の設置は省略してもよい。この場合にはフラッシュドラム50は、重質油分から水分だけをフラッシュさせるのに好適な条件、例えば圧力条件が0.4~1.0MPa程度の範囲、温度条件が200~350℃程度の範囲に調整される。そして、フラッシュドラム50から回収された水は、直接リサイクル水タンクに送られる。
 さらには、例えば図7に示した構成例のように、軽質分側のセパレーター40aで油水分離を行う前に重質油分の混合を行う場合などには、フラッシュドラム50の設置を省略してもよい。例えば改質油製造装置の近接のプラントにて残渣油をボイラー燃料として利用する場合には、第1の混合流体の降圧操作を行わずに残渣油中に水分が分散した状態のままボイラー燃料とすることにより、残渣油の粘度をさらに低下させて残渣油をよりハンドリングし易くすることが可能となる。また、残渣油中に分散した水の効果によりボイラー燃料として使用する際のベーパライズが促進されて、ボイラーにおける燃焼性を改善することもできる。
 そして上述の実施の形態においては、改質油製造装置にて改質される重質油はオイルサンドビチュメンやオリノコタールなどの超重質原油を処理する場合について説明したが、本改質油製造装置にて処理可能な重質油は原油に限られない。例えば常圧蒸留残渣油や減圧蒸留残渣油の改質処理を行う場合についても本発明の技術的範囲に含まれる。
 [実験1] 
 上述の改質油製造装置をモデルとした試験装置を製作し、重質油の改質実験を行った。
 A.実験条件
 本装置では第1の混合流体の滞留時間θpitchは反応器10からの残渣油の抜き出し量FPitch、第2の混合流体の滞留時間θLtは超臨界水の供給量FWinにて制御した。重質油としては(表1)に示す性状のカナダ産のオイルサンドビチュメンを使用した。 
 (表1)
Figure JPOXMLDOC01-appb-I000001
 (実施例1)
 以下の条件で実験を行った。
 反応器10内の反応温度:430℃
 反応器10内の反応圧力:25MPa
 水/油重量比:1.0
 第1の混合流体の滞留時間θPitch:95分
 第2の混合流体の滞留時間θLt:2.3分
 (実施例2)
 反応器10内の反応温度:450℃
 第1の混合流体の滞留時間θPitch:4.9分
 第2の混合流体の滞留時間θLt:11分
 とした他は(実施例1)同様の条件で実験を行った。
 (実施例3)
 水/油重量比:0.5
 第1の混合流体の滞留時間θPitch:32分
 第2の混合流体の滞留時間θLt:25分
 とした他は(実施例1)同様の条件で実験を行った。
 (実施例4)
 第1の混合流体の滞留時間θPitch:67分
 第2の混合流体の滞留時間θLt:1.8分
 とした他は(実施例1)同様の条件で実験を行った。
 (比較例1)
 第1の混合流体の滞留時間θPitch:105分
 第2の混合流体の滞留時間θLt:1.1分
 とした他は(実施例1)同様の条件で実験を行った。
 各実施例、比較例の実験条件を(表2)にまとめた。
 (表2)
Figure JPOXMLDOC01-appb-I000002
 
 B.実験結果
 (表3)に各実施例、比較例におけるガス、合成原油(軽質油分)、残渣油(重質油分)の収率を示す。(表4)に合成原油性状、(表5)に残渣油性状を示す。本実験では軽質油分への重質油分の混合は実施していない。
 (表3)
Figure JPOXMLDOC01-appb-I000003
 (表4)
Figure JPOXMLDOC01-appb-I000004
 (表5)
Figure JPOXMLDOC01-appb-I000005
 また(実施例1)で使用したものと同じオイルサンドビチュメンをビスブレーカー試験、ディレードコーカー試験にて処理した結果得られた各留分の得率を(実施例1、2)の結果と比較した結果を(表6)に示す。なお、(実施例1、2)は、合成原油と残渣ウエハの得率を合成して沸点540℃以下のVGO留分と沸点が540℃より高いVR留分とに換算して示してあるので、(表3)に示した得率とは一致しない場合がある。
 (表6)
Figure JPOXMLDOC01-appb-I000006
 (実験1)の結果によれば、実施例2(θPitch:4.9分)→実施例3(同:32分)→実施例1(同:95分)と第1の滞留時間θPitchを長くするに連れて、残渣油収率が低下する一方、合成原油収率が上昇する結果が得られている。また、θPitchが105分の比較例1ではコークスの発生(コーキング)が観察された。ここで第1の滞留時間θPitchが実施例3よりも長い実施例4(θPitch:67分)において残渣油収率が実施例3よりも高くなる一方、合成原油収率が実施例3と同程度となった理由は明らかでないが、変動誤差の影響ではないかと考える。
 またガス収率についてみると、ガス収率が最も多かった実施例1(θLt:2.3分)を除いて、実施例4(同:1.8分)→実施例2(同:11分)→実施例3(同25分)の順に、第2の滞留時間θLtを長くするに連れてガスの収率が増大する傾向が見られる。第2の滞留時間θLtが2番目に短い実施例1においてガスの収率が4重量%と最大になった理由は明らかでないが、これも変動誤差の影響ではないかと考える。
 そして(表4)に示した合成原油の動粘度の計測結果によれば、各実施例において、10℃において最大でも2.8×10-5/s(28cSt)(規格値5.0×10-3/s(5000cSt))と、実用上問題のない動粘度の合成原油が得られた。ここで実施例4(θLt:1.8分)→実施例1(同:2.3分)→実施例2(同:11分)→実施例3(同:25分)と第2の滞留時間θLtを長くするにつれて合成原油の動粘度が低下する傾向が見られる。これは第2の滞留時間を長くするに従って、軽質油分の分解が進行した結果ではないかと考えられる。このことは、第2の滞留時間が長くなるに従って合成原油の密度が小さくなっていることからも確認できる。
 次いで(表5)に示した残渣油の動粘度の計測結果によれば、各実施例において、310℃において最大でも1.8×10-5/s(18cSt)と、実用上問題のない動粘度の残渣油が得られた。当該残渣油を350℃まで加熱した場合には、動粘度はさらに小さくなる。そして、実施例2(θPitch:4.9分)、実施例3(同:32分)→実施例4(同:67分)→実施例1(同:95分)の順に第1の滞留時間θPitchを長くするに従って、残渣油の動粘度が増大する傾向が見られる。これは第1の滞留時間を長くするに従って、重質油分中に溶解する超臨界水のケージ効果に抗して重質油分の重合が進行した結果ではないかと考えられる。このことは、第1の滞留時間が長くなるに従って残渣油の密度が大きくなっていることからも確認できる。
 実施例1~4及び比較例1の結果を総合すると、オイルサンドビチュメンを原料の重質油としたとき、第1の滞留時間θPitchについては、およそ3分以上、95分以下の範囲であれば、コークスの発生を抑えつつ、310℃における動粘度が1.8×10-5/s(18cSt)以下となって、ハンドリングの容易な残渣油が得られることが分かる。また、第2の滞留時間θLtについては、およそ1分以上、25分以下の範囲において、ガスの生成を4質量%程度以下に抑え、10℃における動粘度が2.8×10-5/s(28cSt)以下の合成原油が得られるといえる。
 また(表6)に示した結果によれば、コークスの生成が抑えられている一方、VGO留分の得率がビスブレーカーよりも高くなっており、実施例1ではディレードコーカーと同程度のVGO留分得率が得られている。このことから、超臨界水を利用した重質油の熱分解は、第1、第2の滞留時間を適切に制御することにより、コークスやガスの発生を抑えつつ、高得率でVGO留分(軽質油分)を得ることが可能な熱分解プロセスであることが分かる。
 [実験2]
 [実験1]と同様の実験装置の反応器1に内部観察用の覗き窓を設け、容器内の流体が第1の相と第2の相とに分離し、界面が形成されることを確認した。目視の結果、反応器1の下部側には、重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、超臨界水とこの超臨界水中に抽出された軽質油分とからなる第2の相とが確認された。
 [実験3]
 重質油の改質実験にて得られた重質油分、軽質油分を混合して合成原油を製造する実験を行った。
 A.実験条件
 実験1と同様の実験装置にて、第1の混合流体の滞留時間θPitch、第2の混合流体の滞留時間θLtを変化させて(表1)に示した性状のオイルサンドビチュメンを処理した。得られた軽質油分及び重質油分の性状に基づいて、軽質油分への重質油分の混合可能量を検討した。反応器10内の反応温度は430℃、反応温度は25MPa、水/油比は1で一定とした。
 (実施例3-1) 
 第1の混合流体の滞留時間θPitchを9.7分、第2の混合流体の滞留時間θLtを6.7分とし、合成原油のAPI比重が21.0°となるように、軽質油分への重質油分の混合可能量を求めた。 
 (実施例3-2) 
 第1の混合流体の滞留時間θPitchを25.7分、第2の混合流体の滞留時間θLtを7.7分とした点以外は(実施例3-2)と同様の実験を行った。 
 (実施例3-3) 
 第1の混合流体の滞留時間θPitchを37.7分、第2の混合流体の滞留時間θLtを4.0分とした点以外は(実施例3-2)と同様の実験を行った。 
 (表7)に実施例の実験条件をまとめて示す。
 (表7)
 B.実験結果
 実施例3-1~3-3の実験にて得られた軽質油分、重質油分、ガスの収率、並びに軽質油分、重質油分の密度とAPI比重を(表8)に示す。また、合成原油の製品規格をAPI比重21.0に設定したときの軽質油分及び重質油分の混合割合、合成原油の収率を(表9)に示す。
 (表8)
Figure JPOXMLDOC01-appb-I000008
 (表9)
Figure JPOXMLDOC01-appb-I000009
 (表8)に示した実験結果によれば、第1の混合流体の滞留時間θPitchを長くするにつれて、軽質油分の収率が増加すると共に、性状は軽質化(密度が小さくなり、API比重が大きくなる)する傾向が見られた。一方で、重質油分の収率は、滞留時間θPitchを長くすると共に低下し、性状は重質化(密度が大きくなり、API比重が小さくなる)した。滞留時間θPitchを長くするにつれて、第1の相における重質油の熱分解が進行して軽質油分の収率が増える一方、熱分解しにくい留分が残ることにより重質油分が重質化したものと考えられる。
 実施例3-1~3-3にて得られた軽質油分に重質油分を混合して合成原油を製造する検討を行った。
 実施例3-1では、合成原油中の重質油分の混合割合を2.0重量%として、合成原油収率を39.3重量%とすることができた。これは、(表7)に示した軽質油分の収率(38.5重量%)に比べて合成原油の収率を0.8重量%増産できたことを示している。また、実施例3-2では、合成原油中の重質油分の混合割合を2.6重量%として、合成原油の収率を44.5重量%とすることができた。これは、(表7)に示した軽質油分の収率(43.3重量%)に比べて合成原油の収率を1.2重量%増産できたことを示している。さらに、実施例3-3では、合成原油中の重質油分の混合割合を8.1重量%として、合成原油の収率を65.1重量%とすることができた。これは、(表7)に示した軽質油分の収率(59.8重量%)に比べて合成原油の収率を5.3重量%増産できたことを示している。実施例3-1~3-3で得られた合成原油のいずれにも相溶性の問題はなく、重質油を超臨界水と接触させて重質油分と軽質油分とに熱分解し、この軽質油分に重質油分を混合することにより合成原油(改質油)を製造できることが確認できた。
10    反応器
110   重質油供給ライン
112   流量調節弁
120   超臨界水供給ライン
122   流量調節弁
130   軽質油分抜出ライン
131   圧力調整弁
140   重質油分抜出ライン
142   流量調節弁
2     混合部
30    高圧セパレーター
40    低圧セパレーター
50    フラッシュドラム
60    リサイクル水タンク
70    セパレーター
9     制御部
 
 
 

Claims (12)

  1.  反応部に重質油を供給する工程と、
     前記反応部に超臨界水を供給する工程と、
     前記反応部内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油を熱分解する工程と、
     前記重質油が熱分解して得られた重質油分と前記重質油分中に溶解した超臨界水とからなる第1の相を前記反応部の下部に、前記超臨界水と、前記超臨界水中に抽出された軽質油分とからなる第2の相を前記反応部の上部に、それぞれ形成する工程と、
     前記重質油分におけるコークスの形成を抑えるように、前記第1の相における第1の混合流体を、前記反応部の下部から抜き出す工程と、
     前記軽質油分からのガス生成を抑えるように、前記第2の相における第2の混合流体を、前記反応部の上部から抜き出す工程と、
     前記第2の混合流体の軽質油分に、前記第1の混合流体の重質油分を混合して、改質油を得る工程と、を含むことを特徴とする改質油の製造方法。
  2.  前記第1の混合流体をフラッシュ蒸留して、前記第1の相の重質油分に含まれる軽質留分と水との混合蒸気と、残りの重質油分とに分離する工程と、
     前記混合蒸気を冷却して、軽質留分と水とに分離する工程と、
     前記第2の混合流体の軽質油分に、前記軽質留分を混合する工程と、を含み、
     前記改質油を得る工程では、前記フラッシュ蒸留後の重質油分が軽質油分に混合されることを特徴とする請求項1に記載の改質油の製造方法。
  3.  前記第2の混合流体を、軽質油分と水とに分離する工程を含み、
     前記改質油を得る工程では、前記水と分離された後の軽質油分に重質油分が混合されることを特徴とする請求項1又は2に記載の改質油の製造方法。
  4.  前記軽質油分への重質油分の混合量は、前記改質油に予め設定された比重または粘度の規格を満たす範囲内の量であることを特徴とする請求項1~3の何れか1項に記載の改質油の製造方法。
  5.  前記第1の相における前記第1の混合流体の滞留時間は、
     i)3分以上、95分以下の範囲内、
     ii)コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
     iii)350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記第1の混合流体の抜き出し量を制御する工程を含むことを特徴とする請求項1~4の何れか1項に記載の改質油の製造方法。
  6.  前記第2の相における前記第2の混合流体の滞留時間は、
     i)前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内、
     ii)過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
     iii)10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記反応部への超臨界水の供給量を制御する工程を含むことを特徴とする請求項1~5の何れか1項に記載の改質油の製造方法。
  7.  水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相を下部に、前記超臨界水と、前記超臨界水中に抽出された軽質油分とからなる第2の相を上部に形成する反応部と、
     前記重質油分におけるコークスの形成を抑えるように、前記第1の相における重質油分及び当該重質油分中に溶解した超臨界水の第1の混合流体を、前記反応部の下部から抜き出す第1の流量調節部と、
     前記軽質油分からのガス生成を抑えるように、前記第2の相における第2の混合流体を、前記反応部の上部から抜き出す第2の流量調節部と、
     前記反応部の上部から抜き出された前記第2の混合流体の軽質油分に、前記第1の混合流体の重質油分を混合して、改質油を得る混合部と、
    を備えることを特徴とする改質油製造装置。
  8.  前記第1の混合流体をフラッシュ蒸留して、前記第1の相の重質油分に含まれる軽質留分と水との混合蒸気と、残りの重質油分とに分離するためのフラッシュ部と、
     前記混合蒸気を冷却して、軽質留分と水とに分離するための第1の分離部と、
     前記第2の混合流体の軽質油分に、前記軽質留分を混合するための軽質留分混合部と、を備え、
     前記混合部では、前記フラッシュ蒸留後の重質油分が軽質油分に混合されることを特徴とする請求項7に記載の改質油製造装置。
  9.  前記第2の混合流体を、軽質油分と水とに分離するための第2の分離部を備え、
     前記混合部では、前記水と分離された後の軽質油分に重質油分が混合されることを特徴とする請求項7又8に記載の改質油製造装置。
  10.  前記軽質油分への重質油分の混合量は、前記改質油に予め設定された比重または粘度の規格を満たす範囲内の量であることを特徴とする請求項7~9の何れか1項に記載の改質油製造装置。
  11.  前記第1の相における前記第1の混合流体の滞留時間が、
     i)3分以上、95分以下の範囲内、
     ii)コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
     iii)350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記第1の混合流体の抜き出し量を制御する制御部を備えることを特徴とする請求項7~10の何れか1項に記載の改質油製造装置。
  12.  前記第2の相における前記第2の混合流体の滞留時間が、
     i)前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内、
     ii)過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間、
     iii)10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間、の何れかとなるように、前記反応部への超臨界水の供給量を制御する制御部を備えることを特徴とする請求項7~11の何れか1項に記載の改質油製造装置。
     
PCT/JP2011/002297 2011-04-19 2011-04-19 改質油の製造方法、及び改質油製造装置 WO2012143972A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/002297 WO2012143972A1 (ja) 2011-04-19 2011-04-19 改質油の製造方法、及び改質油製造装置
CA2772095A CA2772095C (en) 2011-04-19 2011-04-19 Method for producing upgraded oil, and apparatus for producing upgraded oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002297 WO2012143972A1 (ja) 2011-04-19 2011-04-19 改質油の製造方法、及び改質油製造装置

Publications (1)

Publication Number Publication Date
WO2012143972A1 true WO2012143972A1 (ja) 2012-10-26

Family

ID=47022402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002297 WO2012143972A1 (ja) 2011-04-19 2011-04-19 改質油の製造方法、及び改質油製造装置

Country Status (2)

Country Link
CA (1) CA2772095C (ja)
WO (1) WO2012143972A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504685A (ja) * 2013-12-18 2017-02-09 サウジ アラビアン オイル カンパニー 超臨界水による品質向上させた石油の製造
CN107474871A (zh) * 2017-09-18 2017-12-15 张冰童 一种催化重整生成油脱烯烃的方法和催化剂
JP2019049006A (ja) * 2013-07-02 2019-03-28 サウディ ベーシック インダストリーズ コーポレイション 原油を石油化学製品に転化する、炭素利用率の改善された方法および装置
JP2020512442A (ja) * 2017-03-08 2020-04-23 サウジ アラビアン オイル カンパニー 重油の質を向上させるための統合型水熱プロセス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179687B1 (en) * 2017-03-30 2019-03-25 Steeper Energy Aps High pressure treatment system separation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049180A (ja) * 2001-08-07 2003-02-21 Hitachi Ltd 重質油の軽質化方法
JP2008297443A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
JP2008297466A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
WO2009082585A2 (en) * 2007-11-28 2009-07-02 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
JP2011088964A (ja) * 2009-10-20 2011-05-06 Jgc Corp 重質油の改質装置及び重質油の改質方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049180A (ja) * 2001-08-07 2003-02-21 Hitachi Ltd 重質油の軽質化方法
JP2008297443A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
JP2008297466A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
WO2009082585A2 (en) * 2007-11-28 2009-07-02 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
JP2011088964A (ja) * 2009-10-20 2011-05-06 Jgc Corp 重質油の改質装置及び重質油の改質方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASARU WATANABE ET AL., J. OF SUPERCRITICAL FLUIDS, 2010, pages 48 - 52 *
SHINSUKE KOKUBO ET AL., J. JPN. PETROL. INST., vol. 51, no. 5, 2008, pages 309 - 314 *
YUMA SAKAMOTO ET AL., SEKIYU - SEKIYU KAGAKU TORONKAI KOEN YOSHI, 2009, pages 181 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049006A (ja) * 2013-07-02 2019-03-28 サウディ ベーシック インダストリーズ コーポレイション 原油を石油化学製品に転化する、炭素利用率の改善された方法および装置
US10676681B2 (en) 2013-07-02 2020-06-09 Saudi Basic Industries Corporation Process and installation for the conversion of crude oil to petrochemicals having an improved carbon-efficiency
JP2017504685A (ja) * 2013-12-18 2017-02-09 サウジ アラビアン オイル カンパニー 超臨界水による品質向上させた石油の製造
JP2020512442A (ja) * 2017-03-08 2020-04-23 サウジ アラビアン オイル カンパニー 重油の質を向上させるための統合型水熱プロセス
US11149216B2 (en) 2017-03-08 2021-10-19 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
JP7029464B2 (ja) 2017-03-08 2022-03-03 サウジ アラビアン オイル カンパニー 重油の質を向上させるための統合型水熱プロセス
CN107474871A (zh) * 2017-09-18 2017-12-15 张冰童 一种催化重整生成油脱烯烃的方法和催化剂

Also Published As

Publication number Publication date
CA2772095A1 (en) 2012-10-19
CA2772095C (en) 2015-05-05

Similar Documents

Publication Publication Date Title
WO2011048642A1 (ja) 重質油の改質装置及び重質油の改質方法
JP5514118B2 (ja) 高温加圧水及び回収流体により全原油を品質改良する方法
US20090166261A1 (en) Upgrading heavy hydrocarbon oils
US10344228B2 (en) Supercritical water upgrading process to produce high grade coke
US20090159498A1 (en) Intergrated process for in-field upgrading of hydrocarbons
EP3565871B1 (en) Processes for deasphalting oil
US20080230440A1 (en) Methods and Systems for Producing Reduced Resid and Bottomless Products from Heavy Hydrocarbon Feedstocks
WO2012143972A1 (ja) 改質油の製造方法、及び改質油製造装置
MX2012007075A (es) Proceso mezclando agua, oxidante y petroleo pesado bajo condiciones super-criticas de temperatura y presion y eventualmente sometiendo la mezcla a tratamiento con microondas.
CA2666673A1 (en) Process for upgrading heavy hydrocarbon oils
KR20140088186A (ko) 석유를 업그레이드시키기 위한 초임계수 공정
US20160108324A1 (en) Method and system for preparing a pipelineable hydrocarbon mixture
JP2013520529A (ja) 炭化水素をアップグレードするためのプロセス及びそのプロセスにおいて使用するための装置
EP3565873B1 (en) Processes for power generation
US9988890B2 (en) System and a method of recovering and processing a hydrocarbon mixture from a subterranean formation
US20220220396A1 (en) Systems and processes for hydrocarbon upgrading
US10407621B2 (en) Method and a system of recovering and processing a hydrocarbon mixture from a subterranean formation
JP2009073906A (ja) 溶剤脱れき装置
CA2816133A1 (en) A method to improve the characteristics of pipeline flow

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2772095

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP