WO2012091382A2 - 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정 - Google Patents

초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정 Download PDF

Info

Publication number
WO2012091382A2
WO2012091382A2 PCT/KR2011/010096 KR2011010096W WO2012091382A2 WO 2012091382 A2 WO2012091382 A2 WO 2012091382A2 KR 2011010096 W KR2011010096 W KR 2011010096W WO 2012091382 A2 WO2012091382 A2 WO 2012091382A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
xylene
heavy hydrocarbon
fraction
hydrocarbon fraction
Prior art date
Application number
PCT/KR2011/010096
Other languages
English (en)
French (fr)
Other versions
WO2012091382A3 (ko
WO2012091382A9 (ko
Inventor
유재욱
정일용
김경록
박성범
김도완
김은경
최선
이창하
이재혁
김요한
Original Assignee
에스케이이노베이션 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110138122A external-priority patent/KR101759351B1/ko
Application filed by 에스케이이노베이션 주식회사, 연세대학교 산학협력단 filed Critical 에스케이이노베이션 주식회사
Priority to CN201180063613.4A priority Critical patent/CN103282464B/zh
Priority to US13/977,370 priority patent/US9550947B2/en
Publication of WO2012091382A2 publication Critical patent/WO2012091382A2/ko
Publication of WO2012091382A9 publication Critical patent/WO2012091382A9/ko
Publication of WO2012091382A3 publication Critical patent/WO2012091382A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Definitions

  • the present invention relates to a hydrocracking process for heavy hydrocarbon fractions using supercritical solvents. More specifically, the present invention relates to a hydrocracking process in which a lower heavy hydrocarbon fraction is converted to a high value hydrocarbon fraction using a supercritical solvent as a medium.
  • a vacuum residue which is a bottom fraction of a reduced pressure distillation column (for example, obtained at about 25 to 100 mmHg and having an atmospheric boiling point equivalent of about 813.15 K or more) in a crude oil refining process Etc.
  • This low heavy fraction has a low H / C ratio and high viscosity properties, making it very difficult to upgrade.
  • heavy oils, especially vacuum residues are also high levels of sulfur, nitrogen, oxygen and heavy metals (vanadium, nickel, iron, etc.) as well as components having condensed polyaromatic rings such as asphaltenes.
  • a cracking, hydrocracking process, catalytic cracking process, steam cracking process, and the like are known.
  • the aforementioned conversion processes typically involve harsh operating conditions such as high temperature and high hydrogen pressure conditions, and hydrogenated catalysts with weakly acidic supports are also used to inhibit coke formation.
  • the reduced-pressure residue oil is known to have different hydrocracking properties from light raw materials.
  • a disadvantage of the prior art is that the composition change of the oil converted with the hydrogen pressure is large. This property can lead to the disadvantage of having to carry out the treatment reaction under relatively high hydrogen partial pressures in converting heavy fractions into high value fractions such as intermediate fractions (and / or naphtha).
  • Embodiments presented in the present invention seek to provide a process for converting a lower heavy hydrocarbon fraction to a high value hydrocarbon fraction using a supercritical solvent as a medium.
  • a method for converting a heavy hydrocarbon fraction comprising a lower boiling hydrocarbon is provided.
  • the xylene-containing solvent is aromatic based containing at least 25% by weight of m-xylene Solvent, or in some cases xylene sole solvent.
  • the heavy hydrocarbon fraction may be a vacuum residue.
  • the weight ratio (solvent / heavy hydrocarbon) of the xylene-containing solvent to the heavy hydrocarbon fraction may be about 0.5 to 15.
  • the catalyst may be an activated carbon catalyst (preferably an acid-treated activated carbon catalyst) or a base metal based catalyst, wherein the activated carbon catalyst comprises at least one of Group IA, VIIB, and Group VIII metals. Can be used by adding the selected metal promoter component.
  • the xylene-containing solvent contains at least 25% by weight of xylene
  • the hydrogenation step is carried out under hydrogen pressure of 30 to 150 bar.
  • a process for continuously converting heavy hydrocarbon fractions to lower boiling hydrocarbons, wherein the recycle component contains at least xylene.
  • the process for converting heavy hydrocarbon fractions using a solvent in a supercritical state as a medium is carried out by using a xylene-containing solvent as a medium to obtain a high value hydrocarbon fraction, in particular, a middle oil which is a raw material for producing diesel oil.
  • a xylene-containing solvent as a medium to obtain a high value hydrocarbon fraction, in particular, a middle oil which is a raw material for producing diesel oil.
  • the recovery can be increased and the yield structure in the high value added oil (eg intermediate oil and naphtha) can be adjusted according to the catalyst used.
  • it has the advantage that can be effectively converted to high value fraction even under low hydrogen pressure.
  • FIG. 1 is a process diagram schematically illustrating an exemplary process for hydrogenating heavy hydrocarbon fractions in a supercritical medium according to one embodiment
  • Figure 2 is a graph showing the results of the analysis of the high-pressure SIMDIS method of the vacuum residue used in the examples
  • FIG. 4 is a diagram schematically showing an experimental apparatus for performing an embodiment
  • FIG. 5 is a diagram illustrating a sampling process of recovering a sample from a catalyst and a liquid product after hydrocracking of a vacuum residue in an embodiment
  • FIG. 6 is a diagram showing the results (conversion rate, total coke amount and product distribution) of hydrocracking reaction (about 400 ° C., 3.45 MPa) of a vacuum residue having a supercritical state of n-hexane as a medium;
  • FIG. 7 is a diagram showing the results (conversion rate, total coke amount and product distribution) of hydrocracking reaction (about 400 ° C., 3.45 MPa) of a vacuum residue having a supercritical state of n-dodecane as a medium;
  • FIG. 8 is a view showing the results (conversion rate, total coke amount and product distribution) of hydrocracking reaction (about 400 ° C., 3.45 MPa) of a reduced pressure residue oil using toluene in a supercritical state as a medium in Examples;
  • FIG. 9 is a view showing the results (conversion rate, total coke amount and product distribution) of hydrocracking reaction (about 400 ° C., hydrogen partial pressure 3.45 MPa) of a reduced pressure residue oil having m-xylene in a supercritical state as a medium in Examples. ego;
  • 10 is a graph showing the ratio of each oil content in the product under high hydrogen pressure (6.89 MPa) to each oil content in the product under low hydrogen pressure (3.45 MPa), by solvent used in the examples (about 400 ° C., Activated carbon catalyst);
  • FIG. 11 illustrates the use of activated carbon catalysts (catalysts A to D) and catalysts in the hydrocracking of vacuum residue (approximately 400 ° C., hydrogen partial pressure 3.45 MPa) using a supercritical m-xylene medium. It is a figure which shows the product distribution characteristic in the case of not doing it;
  • FIG. 12 shows acid-treated activated carbon catalysts (catalysts B and D) and crudes in the hydrocracking of vacuum residue (approximately 400 ° C., hydrogen partial pressure 3.45 MPa) using a supercritical m-xylene medium. It is a figure which shows the product distribution characteristic in the case of containing 1 weight% of lithium (Li), nickel (Ni), and iron (Fe) as a catalyst;
  • FIG. 13 shows acid-treated activated carbon catalysts (catalysts B and D) and crudes in the hydrocracking of vacuum residue (approximately 400 ° C., hydrogen partial pressure 3.45 MPa) using a supercritical m-xylene medium. It is a figure which shows the product distribution characteristic in the case of containing 0.1 weight% of lithium (Li) and nickel (Ni) as a catalyst, respectively; And
  • FIG. 14 shows a co-catalyst for acid-treated activated carbon catalysts (catalysts B and D) in the hydrocracking of vacuum residue (approximately 400 ° C., hydrogen partial pressure 3.45 MPa) using a supercritical m-xylene medium.
  • the graph shows the product distribution characteristics when the iron (Fe) content is changed to 0.1% by weight, 1% by weight and 10% by weight, respectively.
  • the heavy hydrocarbon fraction corresponding to the feed is a hydrocarbon fraction having a boiling point of at least 360 ° C. (more typically a boiling point of at least 530 ° C.), more specifically deasphalting (eg For example, it can mean a hydrocarbon fraction having solvent deasphalthene (SDA) and having a boiling point of at least 360 ° C. (more typically boiling point of at least 530 ° C.)
  • SDA solvent deasphalthene
  • crude oil, atmospheric residue oil, A vacuum residue, a hydrogenation residue, sand oil, etc. may be used, and typically a vacuum residue may be used, wherein the boiling point of the feedstock may mean an initial flow point (IBP) or a 5% distillation point. have.
  • “heavy hydrocarbon fraction” is understood to be part of an oil content of about 360 ° C. or less, or an oil containing some insoluble substances with respect to the xylene-containing solvent as described below. Can be.
  • the process of converting heavy hydrocarbon fractions to low boiling hydrocarbon fractions in accordance with embodiments of the present invention may be performed under supercritical conditions above the critical temperature and critical pressure of the particular solvent.
  • the solvent behaves in a gas-like liquid phase, with a significant decrease in viscosity, which improves transport properties.
  • the diffusion rate in the pore inlet in the catalyst is increased, thereby minimizing mass transfer limitations and coke formation.
  • the supercritical solvent not only exhibits hydrogen-shuttling ability, but also has excellent solubility in heavy intermediates that are tar-forming precursors.
  • embodiments of the present invention convert the heavy fraction to a low boiling fraction using a solvent containing at least a xylene component.
  • the xylene component is a component having a greater steric hindrance compared to other aromatic solvents such as toluene, but such steric hindrance and hydrodynamic resistance The effect of is not considered to be an important factor under supercritical conditions.
  • xylene in particular m-xylene, can act as a stronger hydrogen donor than other alkanes or toluene solvents in the treatment of heavy fractions under supercritical conditions.
  • the xylene component has a temperature range (eg, at least 350 ° C. and 420 ° C.) at which supercritical conditions are formed under a low pressure of about 100 kg / cm 2 (generally, heavy oil reforming pressure conditions> 150 kg / cm 2). Up to) high selectivity to high value-added low boiling fraction.
  • the middle distillate which is a raw material of diesel oil
  • solvents n-hexane, dodecane, toluene, etc.
  • an aromatic solvent containing xylene preferably m-xylene
  • the content of the xylene component in the solvent is required for heavy oils (especially asphaltenes). It can be determined in consideration of factors such as dissolution level, coke formation degree, conversion rate.
  • the content of xylene component in the solvent may be, for example, at least about 25% by weight, specifically at least about 30% by weight, more specifically at least about 50% by weight.
  • pure xylene solvent may be used as the reaction medium if necessary.
  • components other than xylene may preferably exemplify ethylbenzene, toluene, C9 + aromatics or mixtures thereof as the aromatic component.
  • the composition of the exemplary solvents applicable is (i) about 70 to 85% by weight of the xylene component, (ii) about 15 to 25% by weight of the ethylbenzene component, and (iii) about 5 toluene or C9 + aromatic components. It may include up to weight percent.
  • components similar to the boiling point (about 137 ° C.) of xylene, a supercritical medium may be included in the naphtha fraction generated during the reaction.
  • an amount of xylene may be replenished to maintain the xylene concentration in the xylene-containing solvent at an appropriate level.
  • the weight ratio (solvent / heavy hydrocarbon) of the xylene-containing solvent to the heavy hydrocarbon fraction is, for example, about 0.5 to 15, specifically about 3 to 10, more specifically about It may range from 5 to 8.
  • activated carbon more specifically, an activated carbon-based catalyst having an acidic surface through acid treatment may be used as the catalyst.
  • Exemplary activated carbon physical properties are shown in Table 1 below, but the present invention is not necessarily limited thereto.
  • the activated carbon may be one obtained from various sources, and may include, for example, bituminous coal-derived activated carbon, petroleum pitch-derived activated carbon, and the like.
  • the specific surface area and volume of the mesopores can be considered important in order to increase the conversion rate and suppress coke formation during the hydrocracking process of heavy oil such as vacuum residue.
  • mesopores provide an adsorption point that facilitates the diffusion of free radicals of hydrocarbons initially produced from asphaltenes and inhibits polymerization or condensation, or mesopores of activated carbon. This can be explained by the fact that asphaltene micelles and aggregates contribute to the effective production of light oil while suppressing coke formation by allowing easy access to the catalytic active site.
  • xylene particularly m-xylene
  • it can be seen to contribute to the diffusion into mesopores in the supercritical state.
  • the physical properties of the micropores are considered to be relatively small.
  • petroleum pitch-derived activity may be more advantageous, but the present invention is not limited thereto.
  • the activated carbon catalyst may be an acid treated activated carbon catalyst, and the acid may be an inorganic acid (hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, etc.), and / or an organic acid (formic acid, acetic acid, etc.). . Specifically, it may be an inorganic acid, more specifically sulfuric acid.
  • the total acidity of the acid treated activated carbon may be, for example, about 0.1 to 3, specifically about 0.13 to 2.5, and more specifically about 0.15 to 2, but the present invention is necessarily limited to the above range. It doesn't happen.
  • the activated carbon catalyst may further include a metal promoter (additive) component.
  • a metal promoter component can be added to the activated carbon catalyst to effect hydrocracking in a supercritical xylene-containing medium to increase the proportion of naphtha in the light fraction produced.
  • cocatalyst components for example, Group IA (alkali metal), Group VIIB and Group VIII metals may be used alone or in combination. More specifically, iron, nickel, lithium or a combination thereof may be mentioned, and specific compound forms of such promoter components may be Fe 2 O 3 , NiSO 4 , and C 2 H 3 O 2 Li. While the present invention is not bound to a particular theory, it can be seen that the promoter component facilitates the conversion of some of the intermediate fractions to naphtha. Such cocatalyst components may also be more effective in hydrocracking heavy fractions using acid-treated activated carbon catalysts in supercritical xylene media.
  • the content of the promoter component is, for example, greater than about 0.1 weight percent and up to about 30 weight percent, specifically about 1 to 20 weight percent, more specifically about 5 to weight percent, based on the weight of the activated carbon catalyst It may be used in the range of 15% by weight.
  • the metal component may be, for example, Mo, W, V, Cr, Co, Fe, Ni, or a combination thereof, specifically Mo, W, Co, Ni, or a combination thereof, more preferably Co It may be -Mo or Ni-Mo.
  • the metal component may be in a metallic element state, but may be in a sulfide state, and even in the form of a metallic element, the surface may exist in the form of sulfide by the sulfur compound contained in the heavy oil.
  • the metal catalyst may be in a form supported on a support, and examples of the support that can be used include inorganic oxides (for example, alumina, silica, silica-alumina, zirconia, titania, magnesium oxide, combinations thereof, and the like). Can be.
  • Such supports may, for example, have a specific surface area (BET specific surface area) of about 100 to 500 m 2 / g, more specifically about 150 to 300 m 2 / g and a pore of about 1 to 20 nm, specifically about 3 to 10 nm. It may have a size.
  • the total amount of the metal component is in the range of about 5 to 30% by weight, specifically about 10 to 25% by weight, more specifically about 15 to 20% by weight, based on the total catalyst weight. It may be contained.
  • the heavy hydrocarbon fraction is hydrogenated (treated) under supercritical conditions (state) of a xylene-containing solvent as a medium.
  • a mixing step may be further included to selectively increase the contact between the heavy oil and the xylene-containing solvent to facilitate conversion of the heavy oil.
  • the mixture may be sonicated.
  • the hydrogenation reaction (treatment) step can be carried out under supercritical conditions (ie, temperature and pressure above the critical point) of the xylene-containing solvent as a medium.
  • supercritical conditions ie, temperature and pressure above the critical point
  • the critical temperature (Tc) and the critical pressure (Pc) are 344.2 ° C. and 35.36 bar (3.536 MPa), respectively, but the critical temperature and the critical pressure of the mixed solvent with other aromatic components change. can do.
  • similar effects can be obtained near critical conditions, so that the overall pressure of the hydrogenation (treatment) system can be adjusted to take this into account.
  • the process according to this embodiment can be carried out, for example, within a wide hydrogen pressure range of at least about 30 bar (3 MPa).
  • this embodiment has the advantage of being able to convert to higher value fractions in the relatively low hydrogen pressure range compared to the case of using other solvents by using xylene-containing solvents.
  • the hydrogen pressure (partial pressure) may be determined to be, for example, in a range of about 30 to 150 bar (3 to 15 MPa), more specifically, about 30 to 100 bar (3 to 10 MPa), and the hydrogen partial pressure is For example, about 88-95% of the total pressure in a typical hydrotreating (reaction) system.
  • the hydrogenation temperature may be set in a range not to exceed about 420 ° C., specifically about 350 to 410 ° C., more specifically about 370 to 400 ° C., to minimize excessive cracking and coke formation. Can be. In some cases, it may be desirable that the hydrogenation reaction zone be set so that the product is in a supercritical state.
  • the hydroprocessing reaction time may be, for example, about 0.5 to 6 hours, specifically about 1 to 3 hours.
  • the hydrotreating reaction may be performed using a fixed bed reactor, an ebullating reactor, or a slurry reactor.
  • the hydrogen shuttling effect is obtained when using a supercritical xylene-containing solvent as the medium as described above, and carrying out the reaction in the presence of a hydrogenation catalyst. This is because the rate of hydrogen transfer to the catalyst phase is rapidly increased as the reactant hydrogen and heavy hydrocarbon fraction are converted from two phases to a single phase in the supercritical conditions of the medium.
  • the product obtained by the hydrotreatment may be an oil fraction usable as a solvent or a medium for the above-mentioned hydrotreatment; Oils such as middle distillate, naphtha and gas oil; Residue components (e.g., containing coke, catalysts, etc.); And various gaseous compounds (eg, H 2 S, NH 3 , CO 2 , CH 4, etc.).
  • Oils such as middle distillate, naphtha and gas oil
  • Residue components e.g., containing coke, catalysts, etc.
  • various gaseous compounds eg, H 2 S, NH 3 , CO 2 , CH 4, etc.
  • the physical properties of the liquid product in particular 95% boiling point, may vary depending on the heavy hydrocarbon fraction as the feedstock, but may be, for example, about 350 to 550 ° C.
  • Such a hydrogenated product may have characteristics in which not only metal components but also sulfur, nitrogen components, and the like are considerably reduced.
  • the product can be separated by phase separation or boiling point in a fractionator to obtain the desired (target) fraction (light fractions such as naphtha and intermediate fractions, in particular intermediate fractions).
  • the pressure in the separator may be determined so that the temperature of the high temperature region of the bottom of the separator does not exceed about 360 °C in consideration of the boiling point of the oil to be separated, wherein the pressure is, for example, about 0.01 to 5 bar (0.001 to 0.5 MPa) ) Range.
  • Typical examples of such separation devices may be packing or tray type distillation columns (preferably further comprising a reboiler and a condenser).
  • the desired intermediate fraction, and further high value fractions, such as naphtha can be separated and recovered from the separator, and from this, a solvent component suitable for the hydrogenation treatment can be recovered and used again for the hydrogenation treatment.
  • the oil recovered from the separator can be subjected to further processing steps, for example intermediate oils can be used for the production of diesel oil, jet oil and the like, and naphtha is mainly produced for gasoline and further catalysts.
  • the reforming reaction can be further processed.
  • gas oils they may be used as feedstock for catalytic cracking or hydrocracking reactions.
  • the coke contained in the residue component separated from the separation device, the catalyst (waste catalyst) component used, etc. may be separated and removed according to a method known in the art as a solid, but in some cases the waste catalyst may be regenerated or waste A portion of the catalyst can be recycled and used for the hydrogenation reaction.
  • FIG. 1 is a process diagram schematically illustrating an exemplary process for hydroprocessing heavy hydrocarbon fractions in a supercritical medium in accordance with one embodiment of the present invention.
  • the illustrated process 10 is largely composed of a hydroprocessing reactor 11, a fractionator 12, and an extractor 13, and employs a process configuration in which a solvent is used as an extraction solvent such as a supercritical medium and coke.
  • the reactor 11 is controlled at an internal temperature and pressure such that the hydrogenation reaction can take place in the supercritical state of the xylene-containing solvent introduced.
  • the total pressure in the reactor is adjusted so that the hydrogen pressure (partial pressure) is, for example, about 30 to 150 bar (3 to 15 MPa), more specifically, about 30 to 100 bar (3 to 100 MPa).
  • the temperature in the reactor may be controlled, for example, in the range of about 350 to 420 ° C., more specifically about 370 to 400 ° C.
  • the reactor 11 has an inlet port (not shown) into which a heavy hydrocarbon fraction (and / or medium) and hydrogen can be introduced, respectively, and is also subjected to a hydrogenation reaction product, a xylene-containing solvent that is a medium, and a hydrogenation reaction. And an outlet port (not shown) for discharging each of the gas components generated thereby.
  • the type of reactor may be, for example, a slurry phase reactor, an ebulating reactor, or the like, but the present invention is not limited to a specific reactor type.
  • the xylene-containing solvent is recycled from the extractor 13 through the line 112 after the previous step of hydrogenation (treatment) and combined with the heavy hydrocarbon fraction as a feedstock, the heavy hydrocarbon fraction and the xylene-containing solvent It is introduced into reactor 11 via line 101.
  • the mixing ratio of the xylene-containing solvent to the heavy hydrocarbon fraction may be adjusted in the range of about 0.5 to 15.
  • hydrogen is introduced into the reactor 11 through the hydrogen supply line 103, and the hydrogen supplied may be in the form of hydrogen molecules.
  • the hydrogenation catalyst component can be introduced into the reactor, for example in the form of particulates (fill or flow mode), colloidal phase dispersed in xylene (or xylene-containing solvent) and the like.
  • the residence time of the heavy hydrocarbon fraction and the xylene-containing solvent mixture in the reactor is not particularly limited as long as the hydrogenation reaction can proceed sufficiently and can be upgraded, for example, about 0.5 to 6 hours, specifically About 1 to 3 hours.
  • the heavy hydrocarbon fraction is converted to a lower boiling hydrocarbon fraction under the supercritical conditions of the medium, with the formation of gaseous components (H 2 S, NH 3 , CO 2 , CH 4, etc.).
  • the gaseous component is discharged through line 104 via a gas outlet port provided in the reactor.
  • the hydrogenation reaction product (i.e., contains low boiling hydrocarbon fraction and medium components) is withdrawn from reactor 11 via an outlet port and sent to separator 12 via line 105.
  • the hydrogenation reaction product can be fractionated into naphtha 106, middle fraction 107, gas oil 108, etc., respectively, depending on the boiling point, while the media component discharged with the naphtha product is naphtha. Further fractionate from is discharged as top stream and then conveyed to extractor 13 via line 109.
  • the naphtha component having a similar boiling point may be contained in the medium component transferred to the extractor 13, and a small amount of xylene component may also be contained in the naphtha 106 separated and recovered.
  • insufficient media components such as xylene or xylene-containing solvent components, may be supplemented during the transfer to the extractor 13.
  • the remaining components may contain not only coke (and waste catalyst components) generated during the hydrogenation reaction, but also hydrogenated oil, media components, and the like.
  • the residue component is discharged to the bottom stream via line 110 and transported to the extractor 13.
  • the extractor separates the recycle component (mainly xylene-containing solvent component) and the discharge component (mainly coke, and solid components including spent catalyst).
  • the separation method in the extractor 13 is not particularly limited, but may be, for example, a method similar to a solvent diaspaltene (SDA) process.
  • the recycle component is combined with heavy hydrocarbon fraction, which is the feedstock of the process along line 111, as described above.
  • the discharge component may be discharged from the extractor 13 along the line 112 and disposed of.
  • the spent catalyst in the discharge component may be supplied to the hydrogenation reactor 11 after being regenerated.
  • the vacuum residue contained more than 23.03% Conradson Carbon residue (CCR), and the recoverable content was only about 62.6% by mass at a high temperature of 750 ° C. Moreover, about 96 mass% or more of pitch components (boiling point: 524 degreeC or more) were contained. Physical properties of the vacuum residue are shown in Table 2 below.
  • the viscosity of the vacuum residue oil is very high, and the sulfur and nitrogen contents are also 5.32% by weight and 0.289% by weight, respectively, containing a large amount of sulfur and nitrogen components.
  • N-hexane, n-dodecane and toluene were used as comparative solvents
  • m-xylene was used as a solvent according to an embodiment of the present invention
  • all four solvents were obtained from Sigma Aldrich (Chromasolv-HPLC- grade). Physical properties of the four solvents are shown in Table 3 below. For reference, the physical properties of o-xylene, p-xylene and ethylbenzene are also shown.
  • Hydrogen gas (high purity hydrogen of 99.999% purity) was pressurized using a high pressure regulator H-YR-5062 having a distribution pressure range of 0-15 MPa.
  • each of the two types of activated charcoal was treated with sulfuric acid to increase the acid point (or surface functional group concentration) on the surface as follows: Concentrated hydrochloric acid and hydrofluoric acid were used to remove ash from the activated charcoal, It was dried using an air oven at a temperature of 120 ° C. overnight. Thereafter, chemical reforming was performed with concentrated sulfuric acid (96 wt%) at 250 ° C. over 3 hours in a flask equipped with a water reflux condenser. After the above-described chemical treatment, activated carbon was washed thoroughly with deionized distilled water (until the sulfate was not contained) and dried at 120 ° C. overnight. After acid treatment, it was recycled by Soxhlet procedure using a toluene solvent.
  • particulate activated carbon bituminous coal-derived activated carbon, Calgon Filtrasorb 300
  • catalyst C was somewhat higher in micropore and mesopore area and micropore and mesopore volume than catalyst A. Therefore, it can be seen that the pore sizes of the mesopores and micropores of the catalyst C are relatively small.
  • the acidity and basicity of the catalyst C were lower than those of the catalyst A except for the carboxyl group.
  • the specific surface area, pore volume and surface acid of catalysts A to D also increased, and the pore diameter of catalyst B also increased.
  • the micropore diameter of catalyst D did not change, in particular the mesopore diameter decreased (from 2.749 nm to 2.468 nm).
  • the surface acidic properties of the catalysts B and D were almost the same, but the catalyst B was somewhat higher than the catalyst D in the total acidity. Thus, in contrast to catalyst B, catalyst D was found to be somewhat higher only in the mesopore area.
  • the experiment was conducted in a lab-scale batch reactor (designed to withstand up to 873 K and 40 MPa). A schematic configuration of the apparatus used for the experiment is shown in FIG. 4.
  • the reactor 203 used Inconel 625 material, which is a nickel-based alloy (volume capacity: 200 ml). A check valve was installed on the gas supply line to prevent backflow of the medium from the high pressure reactor. An electric furnace was used as the heater 206 (heating rate of about 30 ° C./min). In order to suppress heat loss to the outside, the electric furnace 206 and the reactor 203 were covered with an insulator. K-type thermocouples 206 were located at three points in the system (reactor center, inside reactor wall, and reactor surface between reactor and furnace, respectively). The reactor temperature was measured by a thermocouple placed in the middle of the reactor, and the reactor 203 temperature was controlled by a PID temperature controller within ⁇ 2.5 ° C. Reaction pressure was measured by a pressure gauge and a pressure transducer.
  • the catalyst was placed in four spinning baskets 204 provided on the impeller shaft to support the catalyst and to facilitate contact with the solution without damaging the catalyst by impeller agitation.
  • the stirring speed was controlled using the high pressure stirrer 208 under the control of the speed controller 209.
  • the high pressure stirrer 208 is used to prevent overheating using the stirrer cooler 210 and the cooling bath 211.
  • the reactor was removed from the heating furnace 204 and rapidly cooled to room temperature using water.
  • the spinning catalyst basket connected to the impeller shaft was then raised to the gas phase in the reactor, and 800 rpm was applied to the spinning catalyst basket for 5 hours (centrifugation).
  • a glass fiber filter (grade GF / F, Wattman) was applied to the reaction solution under vacuum, and the filtered solids and catalyst were washed with toluene by the Soxhlet method.
  • the extract solution was recovered and evaporated under reduced pressure and 100 ° C. and the oil residue was mixed with the liquid product.
  • the washed solids and catalyst were dried at 140 ° C. for 2-3 hours in a nitrogen gas atmosphere.
  • the dried solid is referred to as "coke powder" (ie, coke particles suspended in a liquid reaction product), and the dried catalyst weight is measured to calculate the amount of coke deposited in the activated carbon catalyst (in catalyst). Amount of coke).
  • the liquid product was analyzed by simulated distillation (SIMDIS) gas chromatography at high temperature according to ASTM 7213A-7890 method. At this time, the oil product was divided into four groups, naphtha (IBP to 177 ° C), middle fraction (177 to 343 ° C), reduced pressure gas oil (343 to 525 ° C), and residue (above 525 ° C). In order to exclude the solvent from the oil product, boiling point distributions for pure solvents were obtained respectively.
  • an interesting fact is that using m-xylene with a higher steric hindrance as a solvent can obtain a better conversion rate than when using toluene, which is described under supercritical conditions.
  • the effect of steric hindrance and hydrodynamic resistance is not an important consideration.
  • m-xylene (having two methyl groups on the benzene ring) acts as a hydrogen donor that is stronger than toluene in treating the vacuum residue under supercritical conditions.
  • catalyst C The surface acidity of catalyst C was similar to catalyst A, much lower than catalyst B. However, catalyst C exhibited higher conversion (68.3% by weight) and lower coke formation (total coke: 13.2% by weight) compared to catalyst A, but somewhat lower performance than catalyst B. In addition, Catalyst D with the largest mesopore area and volume had the highest conversion (72.4 wt.%) And showed coke formation (13.9 wt.%) Similar to Catalyst B. These results indicate that the surface acidity improved the conversion regardless of the activated carbon type. The surface area and volume of mesopores also seem to play an important role in improving conversion and suppressing coke formation.
  • Catalysts C and D were advantageous in terms of conversion and yield of light fractions.
  • Catalyst C produced at least two-fold naphtha fractions despite lower surface acidity, micropores and mesopore diameters compared to Catalyst A (Catalyst A: 8.4 wt%, Catalyst C: 17.8 wt%).
  • catalyst D (21.3 wt% and 36.8 wt%, respectively) modified by acid treatment had higher naphtha and intermediate fraction yields (13.0 wt% and 34.9 wt%, respectively) than catalyst B, despite the small mesopore diameters.
  • the formation of the residue was inversely proportional to the mesopore area of the activated carbon (catalyst D> catalyst B> catalyst C> catalyst A).
  • the conversion rate upon addition of 1% by weight of the metal promoter for Catalyst B is 69.7% by weight (No. 7), 70.0% by weight (No. 9), from 69.2% by weight without the promoter (No. 3), and Increased to 71.0% by weight (number 11).
  • the effect of the addition of 1% by weight of the metal promoter is relatively insignificant compared to the catalyst B.
  • the conversion was slightly increased (No. 14: 73.1 wt.%; No. 16: 72.7 wt.% And No.
  • FIGS. 12 (a) and 12 (b) Product distribution characteristics according to the three metal promoter components are shown in FIGS. 12 (a) and 12 (b).
  • FIG. 12A shows the addition of the cocatalyst to the catalyst B
  • FIG. 12B shows the addition of the promoter to the catalyst D.
  • the addition of metal decreased the yield of the middle fraction, which was judged to contribute to the conversion of the middle fraction to naphtha to some extent.
  • the coke powder decreased from 2.2 wt% (if not added) to 2.0 wt%, coke in the catalyst slightly increased.
  • the metal promoter component did not significantly affect the product distribution, as shown in FIG. 12 (b). This suggests that the reaction product distribution has a greater influence on the hydrocracking reaction of the reduced residue oil using a modified bitumen-derived activated carbon catalyst (catalyst B) under supercritical m-xylene media conditions. .
  • 13 and 14 show distribution characteristics of the hydrocracking product of the vacuum residue according to the content of the metal promoter components (Li, Ni and Fe) under the conditions shown in Table 10.
  • FIG. 13 shows product distribution when using 0.1 wt.% Li or Ni cocatalyst components.
  • the amount of total coke generated under high iron content was significantly reduced compared to the case of using catalyst D without the promoter.
  • the addition of 10% by weight of iron to the acid-treated activated carbon, especially in supercritical m-xylene media supports the advantages of conversion and light oil retention.
  • xylene-containing solvents are used in the hydrogenation of the heavy hydrocarbon fraction in the medium of the supercritical state, the selectivity to high conversion value as well as to the high value fraction, in particular, the middle fraction is improved.
  • xylene has a relatively low boiling point, which may be advantageous in application to a commercially available process.

Abstract

본 발명의 구체예에서는 초임계 용매를 매질로 하여 저부가가치의 중질 탄화수소 유분을 고부가가치의 탄화수소 유분으로 전환시키는 수소화 전환 공정이 제공된다.

Description

초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
본 발명은 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정에 관한 것이다. 보다 구체적으로, 본 발명은 초임계 용매를 매질로 하여 저급 중질 탄화수소 유분을 고부가가치의 탄화수소 유분으로 전환시키는 수소화 분해 공정에 관한 것이다.
최근 수송 연료, 특히 경유제품에 대한 수요는 지속적으로 증가하는 반면, 벙커유 등의 중질제품에 대한 수요는 감소하고 있으나 과거에 비하여 생산되는 원유는 고유황 및 중질 원유의 비율이 증가하고 있다. 더 나아가 석유 자원의 고갈에 대한 우려에 따라 원유 정제 과정 중 발생하는 중질 유분 및 원유 대체제인 비튜멘(bitumen) 등의 저가 중질 탄화수소 유분을 업그레이딩하여 보다 고부가가치를 갖는 경질 석유 제품 및 석유화학 원료 유분을 제조하는 기술 개발에 대한 필요성이 지속적으로 제기되어 왔다.
이러한 저급 중질 유분의 대표적인 예로서, 원유 정제 공정 중 감압 증류탑(예를 들면, 약 25 내지 100 mmHg에서 얻어지고, 약 813.15 K 이상의 대기압 등가 비점을 가짐)의 바닥 유분인 감압 잔사유(vacuum residue) 등을 들 수 있다. 이러한 저급의 중질 유분은 낮은 H/C 비율 및 높은 점도 성상을 갖고 있기 때문에 업그레이딩하기 매우 곤란하다. 또한, 전형적으로 중질 유분, 특히 감압 잔사유는 아스팔텐과 같은 축합된 폴리아로마틱 고리를 갖는 성분뿐만 아니라, 황, 질소, 산소 및 중금속(바나듐, 니켈, 철 등)의 함량 역시 높은 수준이다.
이와 관련하여, 중질 탄화수소 유분을 업그레이딩하는 다양한 방안이 제시되었는 바, 이중 하나로서 저급의 중질 유분 또는 고비점 유분을 보다 저비점의 고부가가치 유분으로 전환시키는 전환 공정을 들 수 있다.
상술한 전환 공정의 예로서 크래킹, 수소화 분해(hydrocracking) 공정, 접촉 분해(catalytic cracking) 공정, 증기 분해(steam cracking) 공정 등이 알려져 있다. 그러나, 상기 언급된 전환 공정은 전형적으로 고온 및 높은 수소 압력 조건과 같은 가혹한 운전 조건이 수반되며, 또한 코크 형성을 억제하기 위하여 약산성 지지체를 이용한 수첨 촉매가 사용되고 있다. 이와 관련하여, 감압잔사유는 경질 원료와는 상이한 수소화분해 특성을 갖는 것으로 알려져 있다,
한편, 최근에는 초임계 상태의 매질 또는 용매 내에서 원유 또는 중질 유분의 처리 및 업그레이딩 공정이 개발되고 있다. 예를 들면, 중질 분획 스트림을 초임계 상태의 물과 접촉시켜 이를 개질된 중질 분획으로 전환시킴으로써 중질 성분 함량이 감소될 뿐만 아니라, 아스팔텐, 황, 질소 또는 금속 함량이 저감된 유분을 회수하는 공정(국내특허공개번호 제2010-0107459호 등), 포화 탄화수소(도데칸, 노말 헥산, 시클로 헥산 등) 용매의 초임계 조건 하에서 중질 유분을 분해시키는 공정(일본 특허공개번호 제2008-297468호 등), 잔사유와 같은 고비점 탄화수소 유분을 산 수용액 매질의 초임계 조건 하에서 촉매로서 할로겐 또는 하이드로겐 할라이드를 사용하여 저비점 탄화수소 유분으로 전환시키는 공정(미국특허번호 제4,559,127호 등)이 알려져 있다.
종래에 알려진 공정의 대부분은 초임계 매질로서 물 또는 포화탄화수소 용매를 사용하고 촉매의 존재 하에서 중질 탄화수소 유분을 저비점 탄화수소 유분으로 전환시키는 공정이다. 이때, 업그레이딩 공정으로부터 수득 가능한 대표적인 고부가가치 유분으로는 나프타(예를 들면, IBP 내지 177℃) 및 중간 유분(middle distillate; 177 내지 343℃)을 들 수 있다. 특히, 중간 유분은 정유 공정에 있어서 등유(kerosene)와 디젤유를 포함하는 바, 최근 항공유와 디젤 오일(경유)에 대한 수요가 증가함에 따라 많은 관심을 받고 있다. 그러나, 종래 기술에 따른 초임계 매질용 용매를 사용할 경우, 여전히 고부가가치 유분(특히, 디젤의 원료가 되는 중간 유분)으로의 전환을 비롯하여 코크 형성 면에서 개선 필요성이 있다.
더욱이, 종래 기술의 단점은 수소 압력에 따라 전환된 유분의 조성 변화가 크다는 점을 들 수 있다. 이러한 특성으로 인하여, 중질 유분을 중간 유분(및/또는 나프타)과 같은 고부가가치 유분으로 전환하는데 있어 상대적으로 높은 수소 분압 하에서 처리 반응을 수행해야 하는 단점을 야기할 수 있다.
따라서, 종래 기술에 비하여 낮은 수소압 조건 하에서도 코크 발생을 낮추고 높은 전환율 유지 및 최근 수요가 증가하고 있는 중간 유분에 대한 선택성을 향상시킬 수 있는, 초임계 용매를 이용한 중질 탄화수소 유분의 수소화분해 공정에 대한 필요성이 존재한다.
본 발명에서 제시되는 구체예에서는 초임계 용매를 매질로 하여 저급 중질 탄화수소 유분을 고부가가치의 탄화수소 유분으로 전환시키는 공정을 제공하고자 한다.
본 발명에 따라 제공되는 구체예의 제1 면(aspect)에 따르면,
중질 탄화수소 유분을 촉매의 존재 하에서 초임계 상태의 자일렌-함유 용매와 접촉시켜 수소화 반응시키는 단계;
를 포함하는 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법이 제공된다.
예시적인 구체예에 따르면, 상기 자일렌-함유 용매는 적어도 25 중량%의 m-자일렌을 함유하는 방향족계 용매, 또는 경우에 따라서는 자일렌 단독 용매일 수 있다.
예시적인 구체예에 따르면, 상기 중질 탄화수소 유분은 감압잔사유일 수 있다.
예시적인 구체예에 따르면, 상기 중질 탄화수소 유분에 대한 자일렌-함유 용매의 중량비(용매/중질탄화수소)는 약 0.5 내지 15 일 수 있다.
예시적인 구체예에 따르면, 상기 촉매는 활성탄 촉매(바람직하게는 산-처리 활성탄 촉매) 또는 금속(base metal)계 촉매일 수 있으며, 상기 활성탄 촉매에 IA족, VIIB족 및 VIII족 금속으로부터 적어도 하나가 선택되는 금속 조촉매 성분을 첨가하여 사용할 수 있다.
본 발명의 제2 면에 따르면,
a) 반응 영역(zone) 내로 중질 탄화수소 유분을 공급하는 단계;
b) 초임계 상태의 자일렌-함유 용매 및 촉매의 존재 하에서 상기 중질 탄화수소 유분을 수소화 반응시키는 단계;
c) 상기 수소화 반응 생성물을 분리탑(fractionator)으로 이송하여 보다 낮은 비점의 타겟 탄화수소 유분을 분리 회수하는 단계;
d) 상기 분리 회수되지 않는 성분을 익스트랙터로 이송하여 리사이클 성분 및 배출 성분으로 분리하는 단계; 및
e) 상기 리사이클 성분을 상기 반응 영역으로 이송하는 단계;
를 포함하며,
여기서, 상기 자일렌-함유 용매는 적어도 25 중량%의 자일렌을 함유하고,
상기 수소화 반응 단계는 30 내지 150 bar의 수소 압력 하에서 수행되며; 그리고
상기 리사이클 성분은 적어도 자일렌을 함유하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 연속 전환시키는 방법이 제공된다.
본 발명의 구체예에서 제공되는, 초임계 상태의 용매를 매질로 하는 중질 탄화수소 유분의 전환 공정은 매질로서 자일렌-함유 용매를 사용함으로써 고부가가치의 탄화수소 유분, 특히 디젤 오일 제조 원료인 중간 유분의 회수를 높일 수 있으며, 사용하는 촉매에 따라 고부가가치 유분(예를 들면, 중간 유분과 나프타) 내 수율 구조를 조절할 수 있다. 또한, 낮은 수소 압력 하에서도 효과적으로 고부가가치 유분으로 전환할 수 있는 장점을 갖는다.
따라서, 향후 광범위한 상용화가 기대된다.
도 1은 일 구체예에 따라 초임계 매질 내에서 중질 탄화수소 유분을 수소화 처리하는 예시적인 공정을 개략적으로 도시하는 공정도이고;
도 2는 실시예에서 사용된 감압잔사유를 ASTM 고온 SIMDIS 방법으로 분석한 결과를 나타내는 그래프이고;
도 3은 실시예에서 사용된 감압잔사유에 대한 비점 분포 특성을 보여주는 그래프이고;
도 4는 실시예를 수행하기 위한 실험 장치를 개략적으로 도시하는 도면이고;
도 5는 실시예에서 감압잔사유의 수소화분해 반응 후 촉매 및 액상 생성물로부터 시료를 회수하는 샘플링 과정을 도시하는 도면이고;
도 6은 실시예에 있어서 초임계 상태의 n-헥산을 매질로 하는 감압잔사유의 수소화 분해 반응(약 400℃, 3.45 MPa) 결과(전환율, 총 코크량 및 생성물 분포)를 나타내는 도면이고;
도 7은 실시예에 있어서 초임계 상태의 n-도데칸을 매질로 하는 감압잔사유의 수소화 분해 반응(약 400℃, 3.45 MPa) 결과(전환율, 총 코크 량 및 생성물 분포)를 나타내는 도면이고;
도 8은 실시예에 있어서 초임계 상태의 톨루엔을 매질로 하는 감압잔사유의 수소화 분해 반응(약 400℃, 3.45 MPa) 결과(전환율, 총 코크량 및 생성물 분포)를 나타내는 도면이고;
도 9는 실시예에 있어서 초임계 상태의 m-자일렌을 매질로 하는 감압잔사유의 수소화 분해 반응(약 400℃, 수소부분압 3.45 MPa) 결과(전환율, 총 코크량 및 생성물 분포)를 나타내는 도면이고;
도 10은 실시예에서 사용된 용매별, 낮은 수소압(3.45 MPa) 하에서의 생성물 내 각 유분 함량에 대한 높은 수소압(6.89 MPa) 하에서의 생성물 내 각 유분 함량의 비를 나타내는 그래프이고(약 400℃, 활성탄 촉매);
도 11은 초임계 m-자일렌 매질을 이용하여 감압잔사유의 수소화분해 반응(약 400℃, 수소부분압 3.45 MPa)을 수행함에 있어서, 활성탄 촉매를 사용한 경우(촉매 A 내지 D)와 촉매를 사용하지 않은 경우에 있어서의 생성물 분포 특성을 나타내는 도면이고;
도 12는 초임계 m-자일렌 매질을 이용하여 감압잔사유의 수소화분해 반응(약 400℃, 수소부분압 3.45 MPa)을 수행함에 있어서, 산-처리된 활성탄 촉매(촉매 B 및 D) 및 이에 조촉매로서 리튬(Li), 니켈(Ni) 및 철(Fe)을 각각 1 중량%를 함유시킨 경우에 있어서의 생성물 분포 특성을 나타내는 도면이고;
도 13은 초임계 m-자일렌 매질을 이용하여 감압잔사유의 수소화분해 반응(약 400℃, 수소부분압 3.45 MPa)을 수행함에 있어서, 산-처리된 활성탄 촉매(촉매 B 및 D) 및 이에 조촉매로서 리튬(Li) 및 니켈(Ni)을 각각 0.1 중량%를 함유시킨 경우에 있어서의 생성물 분포 특성을 나타내는 도면이고; 그리고
도 14는 초임계 m-자일렌 매질을 이용하여 감압잔사유의 수소화분해 반응(약 400℃, 수소부분압 3.45 MPa)을 수행함에 있어서, 산-처리된 활성탄 촉매(촉매 B 및 D)에 조촉매로서 철(Fe)의 함량을 각각 0.1 중량%, 1 중량% 및 10 중량%로 변화시킨 경우에 있어서의 생성물 분포 특성을 나타내는 도면이다.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다.
또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.
공급원료
본 발명의 구체예에 있어서, 공급원료(feed)에 상당하는 중질 탄화수소 유분은 적어도 360℃의 비점(보다 전형적으로는 적어도 530℃의 비점)을 갖는 탄화수소 유분, 보다 구체적으로는 탈아스팔트화(예를 들면, 용제 아스팔텐 제거(solvent deasphalthene; SDA)되고 적어도 360℃의 비점(보다 전형적으로는 적어도 530℃의 비점)을 갖는 탄화수소 유분을 의미할 수 있다. 예를 들면, 원유, 상압잔사유, 감압잔사유, 수소화반응 잔사유, 샌드 오일 등을 사용할 수 있으며, 전형적으로는 감압잔사유가 사용될 수 있다. 이때, 상기 공급원료의 비점은 초류점(IBP) 또는 5% 증류점을 의미할 수 있다.
다만, 본 명세서에서는 "중질 탄화수소 유분"은 약 360℃ 이하의 유분이 일부 함유되거나 후술하는 바와 같이 자일렌-함유 용매에 대하여 일부 불용성인 물질이 함유된 유분 역시 공급원료로 사용할 수 있는 것으로 이해될 수 있다.
전술한 바와 같이, 본 발명의 구체예에 따라 중질 탄화수소 유분을 저비점 탄화수소 유분으로 전환하는 공정은 특정 용매의 임계 온도 및 임계 압력 이상의 초임계 조건 하에서 수행될 수 있다.
용매
일반적으로, 초임계 상태에서 용매는 가스와 유사한 액상으로 거동하는데, 이때 점도가 현저히 감소하여 이송 특성이 개선된다. 초임계 단계에서는 촉매 내 포어(pore) 입구 내 확산 속도가 증가되므로 물질 전달 한계 및 코크 형성을 최소화할 수 있다. 또한, 초임계 상태의 용매는 수소-전달능(shuttling ability)을 나타낼 뿐만 아니라, 타르 형성 전구체인 중질의 중간물(intermediate)에 대한 용해능이 우수한 특성을 갖는다.
이와 관련하여, 본 발명의 구체예에서는 적어도 자일렌 성분을 함유하는 용매를 사용하여 중질 유분을 저비점 유분으로 전환시킨다. 본 발명이 특정 이론에 구속되는 것은 아니지만, 상기 자일렌 성분은 다른 방향족계 용매, 예를 들면 톨루엔과 비교하면, 보다 큰 입체 장애를 갖는 성분이기는 하나, 이러한 입체 장애 및 수력학적 저항(hydrodynamic resistance)의 효과는 초임계 조건 하에서는 중요한 고려 요소에 해당되지 않는 것으로 판단된다.
오히려, 자일렌, 특히 m-자일렌은 초임계 조건 하에서의 중질 유분의 처리 시 다른 알칸계 용매 또는 톨루엔 용매에 비하여 보다 강한 수소 공여체(donor)로 작용할 수 있다. 또한, 자일렌 성분은 약 100 kg/㎠(일반적으로, 중질유 개질 압력 조건 > 약 150 kg/㎠)의 낮은 압력 하에 초임계 조건이 형성되는 온도 범위(예를 들면, 적어도 350℃, 그리고 420℃까지)에서 전환율 및 고부가가치의 저비점 유분으로의 선택성이 높은 장점을 갖는다. 특히, 초임계 상태의 자일렌-함유 용매 내에서 중질 유분을 수소화 분해 반응시킬 경우, 종래에 알려진 용매(n-헥산, 도데칸, 톨루엔 등)에 비하여 디젤유의 원료인 중간 유분(middle distillate)의 수율을 상당히 높일 수 있음을 주목할 필요가 있다.
이처럼, 본 구체예에서는 자일렌, 바람직하게는 m-자일렌을 함유하는 방향족계 용매를 반응 매질로 사용하는 바, 이때 용매 내 자일렌 성분의 함량은 중질 유분(특히, 아스팔텐)에 대한 요구되는 용해 수준, 코크 형성 정도, 전환율 등의 요인을 고려하여 정할 수 있다. 상기 용매 내 자일렌 성분의 함량은, 예를 들면 적어도 약 25 중량%, 구체적으로는 적어도 약 30 중량%, 보다 구체적으로는 적어도 약 50 중량%일 수 있다. 또한, 필요시 순수한 자일렌 용매를 반응 매질로 사용할 수 있다. 매질인 자일렌-함유 방향족계 용매에 있어서, 자일렌 이외의 성분은 바람직하게는 방향족 성분으로서 에틸벤젠, 톨루엔, C9+ 방향족 또는 이의 혼합물을 예시할 수 있다. 이와 관련하여, 적용 가능한 예시적 용매의 조성은, (i) 자일렌 성분 약 70 내지 85 중량%, (ii) 에틸벤젠 성분 약 15 내지 25 중량%, 그리고 (iii) 톨루엔 또는 C9+ 방향족 성분 약 5 중량%까지 포함할 수 있다. 또한, 반응 중 생성되는 나프타 유분 중에서 초임계 매질인 자일렌의 비점(약 137℃)과 유사한 성분들이 포함될 수 있다. 따라서, 필요시 자일렌-함유 용매 내 자일렌 농도를 적절한 수준으로 유지하기 위하여 일정량의 자일렌을 보충할 수 있다.
본 발명의 구체예에 있어서, 상기 중질 탄화수소 유분에 대한 자일렌-함유 용매의 중량비(용매/중질탄화수소)는, 예를 들면 약 0.5 내지 15, 구체적으로는 약 3 내지 10, 보다 구체적으로는 약 5 내지 8 범위일 수 있다.
촉매
본 발명의 구체예에 따르면, 중질 유분의 수소화 분해 반응을 위하여 자일렌을 이용한 매질 반응을 촉매의 존재 하에서 수행하는 것이 바람직할 수 있다. 이때, 촉매로서 활성탄, 보다 구체적으로는 산 처리를 통해 산성 표면을 갖는 활성탄 계열 촉매가 사용될 수 있다. 예시적인 활성탄의 물리적 성상은 하기 표 1과 같으며, 본 발명이 이에 반드시 한정되는 것은 아니다:
[규칙 제26조에 의한 보정 12.03.2012] 
표 1
Figure WO-DOC-TABLE-1
상기 활성탄은 다양한 소스로부터 얻어진 것을 사용할 수 있는 바, 대표적으로는 비튜멘-유래(bituminous coal-derived) 활성탄, 석유 피치-유래(petroleum pitch-derived) 활성탄 등을 예시할 수 있다. 이와 관련하여, 감압 잔사유와 같은 중질 유분을 수소화 분해(hydrocracking)하는 과정 중 전환율을 높이고 코크 형성을 억제하기 위하여는 메조포어의 비표면적 및 체적이 중요하게 고려될 수 있다. 본 발명이 특정 이론에 구속되는 것은 아니지만, 상기 이유로서 메조포어가 아스팔텐으로부터 초기 생성된 탄화수소의 자유 라디컬의 확산을 용이하게 하고 중합 또는 축합을 억제하는 흡착점을 제공하거나, 활성탄의 메조포어가 아스팔텐 미셀(micelles) 및 응집물(aggregate)이 촉매 활성점에 용이하게 접근하도록 하여 코크 형성을 억제하면서 경질 유분을 효과적으로 생산할 수 있는데 기여하기 때문으로 설명할 수 있다.
특히, 용매로서 자일렌(특히, m-자일렌)을 사용할 경우, 초임계 상태에서 메조포어로의 확산에 기여하는 것으로 볼 수 있는데, 초임계 상태의 자일렌을 이용한 중질 유분의 수소화 분해 반응에서는 마이크로포어의 물리적 성상의 영향이 상대적으로 작은 것으로 판단된다. 이러한 관점에서, 석유 피치-유래 활성이 보다 유리할 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
한편, 일 구체예에 따르면, 활성탄 촉매는 산(acid) 처리된 활성탄 촉매일 수 있으며, 상기 산은 무기산(염산, 인산, 황산, 질산 등), 및/또는 유기산(포름산, 아세트산 등)일 수 있다. 구체적으로는 무기산, 보다 구체적으로는 황산일 수 있다. 이때, 산 처리된 활성탄의 산도(total acidity)는, 예를 들면 약 0.1 내지 3, 구체적으로 약 0.13 내지 2.5, 보다 구체적으로는 약 0.15 내지 2 범위일 수 있으나, 본 발명이 반드시 상기 범위에 한정되는 것은 아니다.
본 발명의 예시적인 구체예에 따르면, 경질 유분으로의 전환율을 추가적으로 개선하거나 생성물 내 수율 구조를 변경하기 위하여(예를 들면, 중간 유분의 생성을 최대한 증가시키는 경우에도 시장 수요 등의 변화로 인하여 그 일부를 나프타로 전환시키기 위하여), 상기 활성탄 촉매에 금속 조촉매(첨가제) 성분을 더 포함할 수 있다. 초임계 상태의 자일렌-함유 매질 내에서의 중질 유분의 수소화 분해 반응의 경우, 특히 경질 유분 중 디젤유의 원료가 되는 중간 유분에 대한 수율이 높다. 이와 관련하여, 금속 조촉매 성분을 활성탄 촉매에 첨가하여 초임계 상태의 자일렌-함유 매질 내에서 수소화 분해 반응을 수행하여 생성된 경질 유분 중 나프타의 비율을 일정 수준 증가시킬 수 있다.
이러한 조촉매 성분으로, 예를 들면 IA족(알칼리 금속), VIIB족 및 VIII족 금속을 단독으로 또는 조합하여 사용할 수 있다. 보다 구체적으로는, 철, 니켈, 리튬 또는 이의 조합을 들 수 있는 바, 이러한 조촉매 성분의 구체적인 화합물 형태는 Fe2O3, NiSO4, 및 C2H3O2Li일 수 있다. 본 발명이 특정 이론에 구속되는 것은 아니지만, 조촉매 성분으로 인하여 중간 유분의 일부가 나프타로 전환되는 것이 촉진되는 것으로 볼 수 있다. 또한, 이러한 조촉매 성분은 초임계 자일렌 매질 내에서 산-처리된 활성탄 촉매를 사용한 중질 유분의 수소화 분해 반응시 보다 효과적일 수 있다.
일 구체예에 있어서, 상기 조촉매 성분의 함량은, 활성탄 촉매 중량 기준으로, 예를 들면 약 0.1 중량% 초과 그리고 약 30 중량%까지, 구체적으로 약 1 내지 20 중량%, 보다 구체적으로 약 5 내지 15 중량% 범위로 사용될 수 있다.
상술한 활성탄계 촉매 이외에도, 중질 유분의 수소화 개질 공정에서 이미 적용되고 있는 다양한 금속(base metal)계 촉매도 사용될 수 있다. 이때, 금속 성분은, 예를 들면 Mo, W, V, Cr, Co, Fe, Ni, 또는 이의 조합일 수 있으며, 구체적으로는 Mo, W, Co, Ni, 또는 이의 조합, 보다 바람직하게는 Co-Mo 또는 Ni-Mo일 수 있다. 또한, 상기 금속 성분은 금속 원소 상태일 수도 있으나, 황화물 상태일 수 있는 바, 금속 원소 형태인 경우에도 중질 유분 내에 함유된 황 화합물에 의하여 표면이 황화물 형태로 존재할 수도 있다.
한편, 상기 금속계 촉매는 지지체에 담지된 형태일 수 있는 바, 사용 가능한 지지체의 예로서 무기 산화물(예를 들면 알루미나, 실리카, 실리카-알루미나, 지르코니아, 티타니아, 산화마그네슘, 이의 조합 등)을 예시할 수 있다. 이러한 지지체는, 예를 들면 약 100 내지 500 ㎡/g, 보다 구체적으로는 약 150 내지 300 ㎡/g의 비표면적(BET 비표면적) 및 약 1 내지 20 nm, 구체적으로 약 3 내지 10 nm의 포어 사이즈를 가질 수 있다.
상기와 같이 담지된 형태의 촉매에 있어서, 상기 금속 성분의 총량이 전체 촉매 중량을 기준으로 약 5 내지 30 중량%, 구체적으로 약 10 내지 25 중량%, 보다 구체적으로 약 15 내지 20 중량% 범위로 함유될 수 있다.
수소화 반응(처리) 조건
본 발명의 구체예에 따르면, 중질 탄화수소 유분은 매질인 자일렌-함유 용매의 초임계 조건(상태)에서 수소화 반응(처리)된다. 이때, 중질 유분의 전환이 용이하도록, 수소화 처리에 앞서, 선택적으로 중질 유분과 자일렌-함유 용매 간의 접촉을 증가시키는 혼합 단계를 더 포함할 수 있다. 이를 위하여, 혼합물을 초음파 처리(sonication)할 수도 있다.
전술한 바와 같이, 수소화 반응(처리) 단계는 매질인 자일렌-함유 용매의 초임계 조건(즉, 임계점 이상의 온도 및 압력) 하에서 수행될 수 있다. 자일렌, 특히 m-자일렌의 경우, 임계 온도(Tc) 및 임계 압력(Pc)이 각각 344.2℃ 및 35.36 bar(3.536 MPa)이나, 다른 방향족 성분과의 혼합 용매의 임계 온도 및 임계 압력은 변화할 수 있다. 또한, 임계조건 근처에서도 유사한 효과를 낼 수 있기 때문에, 이를 고려하여 수소화 반응(처리) 시스템의 전체 압력을 조절할 수 있다.
본 구체예에 따른 공정은, 예를 들면 적어도 약 30 bar(3 MPa)의 넓은 수소 압력 범위 내에서 수행될 수 있다. 이와 관련하여, 본 구체예는 자일렌-함유 용매를 사용함으로써 다른 용매를 사용한 경우에 비하여 상대적으로 낮은 수소압 범위에서 고부가가치의 유분으로 전환시킬 수 있는 장점을 갖는다. 이때, 수소 압력(분압)은 예를 들면 약 30 내지 150 bar(3 내지 15 MPa), 보다 구체적으로는 약 30 내지 100 bar(3 내지 10 MPa) 범위가 되도록 정할 수 있는 바, 상기 수소 분압은, 예를 들면 전형적인 수소화 처리(반응) 시스템 내 전체 압력의 약 88 내지 95% 수준일 수 있다.
또한, 수소화 온도는, 과도한 크래킹 및 코크(coke) 형성을 최소화하도록, 예를 들면 약 420℃를 넘지 않는 범위, 구체적으로는 약 350 내지 410 ℃, 보다 구체적으로는 약 370 내지 400 ℃ 범위로 정할 수 있다. 경우에 따라서는 상기 수소화 반응 영역은 생성물이 초임계 상태에 있도록 그 조건이 설정되는 것이 바람직할 수도 있다.
한편, 본 발명의 구체예에 따르면, 상기 수소화 처리 반응 시간(또는 체류 시간)은, 예를 들면 약 0.5 내지 6 시간, 구체적으로 약 1 내지 3 시간 범위일 수 있다. 또한, 상기 수소화 처리 반응은 고정층(fixed bed) 반응기, 에뷸레이팅(ebullating) 반응기 또는 슬러리(slurry) 반응기를 사용하여 수행할 수 있다.
본 발명이 특정 이론에 구속되는 것은 아니지만, 상술한 바와 같이 매질로서 초임계 상태의 자일렌-함유 용매를 사용하고, 그리고 수소화 촉매의 존재 하에서 반응을 수행할 경우, 수소 셔틀링(hydrogen shuttling) 효과를 유발하는데, 이는 매질의 초임계 조건에서 반응물인 수소와 중질 탄화수소 유분이 2상에서 단일상으로 전환되면서 촉매 상으로의 수소 전달 속도가 급속히 증가하기 때문으로 판단된다.
상술한 바와 같이 수소화 처리에 의하여 얻어진 생성물은 상술한 수소화 처리를 위한 용매 또는 매질로서 사용 가능한 유분; 중간 유분(middle distillate), 나프타, 가스 오일 등의 유분; 잔사 성분(예를 들면, 코크, 촉매 등을 함유); 그리고 각종 가스 상 화합물(예를 들면, H2S, NH3, CO2, CH4 등)을 함유할 수 있다. 상기 액상 생성물의 물성, 특히 95% 비점은 공급원료인 중질 탄화수소 유분에 따라 변화될 수 있으나, 예를 들면 약 350 내지 550℃ 수준일 수 있다.
또한, 이와 같이 수소화 처리된 생성물은 금속 성분뿐만 아니라, 황, 질소 성분 등이 상당히 감소된 특성을 가질 수 있다.
한편, 원하는(타겟) 유분(나프타 및 중간 유분와 같은 경질 유분, 특히 중간 유분)을 얻기 위하여는 분리 장치(fractionator) 내에서 상 분리 또는 비점에 따라 생성물을 분리할 수 있다. 이때, 분리 장치 내의 압력은 분리하고자 하는 유분의 비점을 고려하여 분리장치 하단부 고온 영역의 온도가 대략 360 ℃를 넘지 않도록 정할 수 있고, 이때 압력은 예를 들면 약 0.01 내지 5 bar(0.001 내지 0.5 MPa) 범위일 수 있다. 이러한 분리 장치의 전형적인 예는 팩킹 타입 또는 트레이 타입의 증류 컬럼(바람직하게는, 리보일러 및 응축기(condenser)를 더 구비함)일 수 있다.
상기 분리장치로부터 각각의 비점에 따라 원하는 중간 유분, 더 나아가 나프타 등의 고부가가치 유분을 분리 회수할 수 있고, 또한 이로부터 수소화 처리에 적합한 용매 성분을 회수하여 다시 수소화 처리에 사용할 수도 있다.
예시적인 구체예에 있어서, 분리장치로부터 회수된 유분은 추가 처리 단계를 거칠 수 있는데, 예를 들면 중간 유분은 디젤 오일, 제트 오일 등의 제조에 사용될 수 있으며, 나프타는 주로 가솔린 제조, 더 나아가 촉매개질 반응 과정을 더 거칠 수 있다. 가스 오일의 경우, 접촉 분해 또는 수소화 분해 반응의 공급원료로 활용할 수 있을 것이다.
한편, 분리 장치로부터 분리된 잔사 성분 중에 함유된 코크, 사용된 촉매(폐촉매) 성분 등은 고형물로서 당업계에 알려진 방법에 따라 분리 제거할 수 있으며나, 경우에 따라서는 폐촉매를 재생하거나 폐촉매의 일부를 리사이클하여 수소화 반응에 사용할 수 있다.
도 1은 본 발명의 일 구체예에 따라 초임계 매질 내에서 중질 탄화수소 유분을 수소화 처리하는 예시적인 공정을 개략적으로 도시하는 공정도이다.
상기 예시된 공정(10)은 크게 수소화 처리 반응기(11), 분리장치(fractionator, 12) 및 익스트랙터(13)로 구성되며, 용매를 초임계 매질 및 코크 등의 추출 용매로 병용하는 공정 구성을 갖는다.
상기 반응기(11)는 도입되는 자일렌-함유 용매의 초임계 상태에서 수소화 반응이 일어날 수 있도록 내부 온도 및 압력이 조절된다. 이때, 반응기 내 전체 압력은 전술한 바와 같이 수소 압력(분압)이 예를 들면 약 30 내지 150 bar(3 내지 15 MPa), 보다 구체적으로는 약 30 내지 100 bar(3 내지 100 MPa)이 되도록 조절할 수 있고, 또한 반응기 내 온도는 예를 들면 약 350 내지 420 ℃, 보다 구체적으로는 약 370 내지 400 ℃ 범위로 조절할 수 있다.
상기 반응기(11)는 중질 탄화수소 유분(및/또는 매질) 및 수소를 각각 도입할 수 있는 입구 포트(도시되지 않음)를 구비하고, 또한 수소화 반응 생성물, 매질인 자일렌-함유 용매 및 수소화 반응에 의하여 발생하는 가스 성분을 각각 배출하는 출구 포트(도시되지 않음)를 구비한다. 상기 반응기의 타입은 예를 들면 슬러리 상 반응기, 에뷸레이팅 반응기 등일 수 있으나, 본 발명이 특정 반응기 타입으로 한정되는 것은 아니다.
자일렌-함유 용매는 전 단계의 수소화 반응(처리) 후 익스트랙터(13)로부터 라인(112)을 거쳐 리사이클되면서 공급원료인 중질 탄화수소 유분과 합쳐지며, 상기 중질 탄화수소 유분과 자일렌-함유 용매는 라인(101)을 통하여 반응기(11) 내로 도입된다. 이때, 중질 탄화수소 유분에 대한 자일렌-함유 용매의 혼합비(중량 기준으로 용매/중질 탄화수소 유분)는 약 0.5 내지 15 범위로 조절될 수 있다.
한편, 수소는 수소 공급 라인(103)을 통하여 반응기(11) 내로 도입되는 바, 이때 공급되는 수소는 수소 분자 형태일 수 있다.
라인(102)를 통하여 수소화 촉매 성분은, 예를 들면 입자상(충진 또는 유동 방식), 자일렌(또는 자일렌-함유 용매)에 분산된 콜로이드 상 등의 형태로 반응기 내에 도입될 수 있다.
상기 반응기 내에서 중질 탄화수소 유분과 자일렌-함유 용매 혼합물의 체류 시간은 수소화 반응이 충분히 진행되어 업그레이드될 수 있는 정도인 한, 특별히 한정되는 것은 아니나, 예를 들면 약 0.5 내지 6 시간, 구체적으로는 약 1 내지 3 시간일 수 있다.
수소화 반응이 진행됨에 따라 중질 탄화수소 유분은 매질의 초임계 조건 하에서 보다 낮은 비점의 탄화수소 유분으로 전환되고, 이와 함께 가스상 성분(H2S, NH3, CO2, CH4 등) 역시 생성된다. 상기 가스상 성분은 반응기에 구비된 가스 출구 포트를 거쳐 라인(104)을 통하여 배출된다.
수소화 반응 생성물(즉, 낮은 비점의 탄화수소 유분 및 매질 성분이 함유됨)은 출구 포트를 거쳐 반응기(11)로부터 배출되어 라인(105)을 통하여 분리장치(12)로 이송된다. 상기 분리장치(12)에서, 수소화 반응 생성물은 비점에 따라 각각 나프타(106), 중간 유분(107), 가스 오일(108) 등으로 분획될 수 있는 한편, 나프타 생성물과 함께 배출되는 매질 성분은 나프타로부터 추가로 분획되어 상단 흐름으로서 배출된 다음 라인(109)을 통하여 익스트랙터(13)로 이송된다. 이때, 익스트랙터(13)로 이송되는 매질 성분 내에는 유사 비점의 나프타 성분이 함유될 수 있으며, 또한 분리 회수되는 나프타(106) 내에도 소량의 자일렌 성분이 함유될 수 있다. 또한, 익스트랙터(13)로 이송되는 과정 중 부족한 매질 성분, 예를 들면 자일렌 또는 자일렌-함유 용매 성분이 보충될 수 있다.
상기 분리장치(12)에서 나머지 성분, 즉 잔사 성분은 수소화 반응 중 생성된 코크(및 폐촉매 성분) 뿐만 아니라, 수소화된 유분, 매질 성분 등을 함유할 수 있다. 이점을 고려하여, 도시된 구체예에서는 상기 잔사 성분은 라인(110)을 통하여 바닥 흐름(bottom stream)으로 배출되어 익스트랙터(13)로 이송된다. 상기 익스트랙터에 의하여, 리사이클 성분(주로 자일렌-함유 용매 성분), 그리고 배출 성분(주로 코크, 그리고 폐촉매를 비롯한 고체 성분)이 분리된다. 상기 익스트랙터(13) 내에서의 분리 방식은 특별히 한정되는 것은 아니지만, 예를 들면 용제 디아스팔텐(SDA) 공정과 유사한 방식일 수 있다.
이때, 리사이클 성분은 전술한 바와 같이 라인(111)을 따라 공정의 공급원료인 중질 탄화수소 유분과 합쳐진다. 한편, 배출 성분은 라인(112)을 따라 익스트랙터(13)로부터 배출되어 폐기될 수 있다. 경우에 따라서는, 배출 성분 중 폐촉매는 재생 처리를 거친 후, 전부 또는 일부를 수소화 반응기(11)로 공급할 수도 있다.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.
실시예 1
시료(sample)
본 실시예에서는 중질 탄화수소 유분 시료로서 상용 공정으로부터 제공된 감압잔사유를 사용하였으며, 상기 시료를 ASTM 고온 SIMDIS 방법에 의하여 분석한 결과를 도 2에 나타내었으며, 비점 분포 특성을 도 3에 나타내었다.
분석 결과, 감압잔사유는 23.03 질량% 이상의 Conradson 잔류탄소(Conradson Carbon residue; CCR)를 함유하였고, 750℃의 고온에서 회수 가능한 함량이 겨우 약 62.6 질량%이었다. 또한, 약 96 질량% 이상의 피치 성분(비점: 524℃ 이상)을 함유하였다. 감압 잔사유의 물리적 특성을 하기 표 2에 나타내었다.
표 2
Figure PCTKR2011010096-appb-T000002
상기 표로부터 알 수 있듯이, 감압잔사유의 점도는 매우 높은 수준이며, 그리고 황 및 질소 함량 역시 각각 5.32 중량% 및 0.289 중량%로서 많은 량의 황 및 질소 성분을 함유하였다.
용매
비교 용매로서 n-헥산, n-도데칸 및 톨루엔을 사용하고, 본 발명의 실시예에 따른 용매로서 m-자일렌을 사용하였으며, 상기 4가지 용매 모두 시그마 알드리치사로부터 입수하였다(Chromasolv-HPLC-그레이드). 상기 4가지 용매의 물성을 하기 표 3에 나타내었다. 참고적으로, o-자일렌, p-자일렌 및 에틸벤젠의 물성도 함께 나타내었다.
표 3
Figure PCTKR2011010096-appb-T000003
수소 가스
수소 가스(순도 99.999%의 고순도 수소)는 0∼15MPa의 분배 압력 범위를 갖는 고압 조절기 H-YR-5062를 사용하여 가압되었다.
촉매
본 실시예에서는 촉매 제조를 위하여 2가지 타입의 상용 활성탄, 즉 입자상 비튜멘(bituminous coal)-유래 활성탄(Calgon Filtrasorb 300; Calgon Carbon Corporation) 및 구형 석유 피치-유래 활성탄(A-BAC LP, Kureha Corporation) 을 사용하였다.
또한, 상기 2가지 타입의 활성탄 각각을 표면 상에 산점(또는 표면 관능기 농도)을 증가시키기 위하여 하기와 같이 황산 처리하였다: 농축된 염산 및 불수소산을 사용하여 활성탄으로부터 애쉬(ash)를 제거한 다음, 하룻밤 동안 120℃의 온도에서 공기 오븐을 이용하여 건조시켰다. 그 후, 물 환류 응축기를 구비한 플라스크 내에서 3시간에 걸쳐 250℃에서 농축 황산(96 중량%)으로 화학적 개질처리를 수행하였다. 상술한 화학적 처리 후, 활성탄을 탈이온화된 증류수로 완전히 세척하였으며(설페이트가 함유되지 않을 때까지), 하룻밤 동안 120℃에서 건조시켰다. 산 처리 후, 톨루엔 용제를 이용한 Soxhlet 방식(Soxhlet procedure)으로 리사이클시켰다.
활성탄 및 산 처리에 의하여 개질된 활성탄의 성상은 하기 표 4와 같다:
[규칙 제26조에 의한 보정 12.03.2012] 
Figure WO-DOC-TABLE-4
A: 입자상 활성탄(비튜멘(bituminous coal)-유래 활성탄, Calgon Filtrasorb 300)
B: 황산(96 중량%)으로 개질된 촉매 A
C: 구형 활성탄(석유 피치-유래 활성탄, A-BAC LP)
D: 황산(96 중량%)으로 개질된 촉매 C
상기 표에 따르면, 촉매 C는 촉매 A에 비하여 마이크로포어 및 메조포어 면적, 그리고 마이크로포어 및 메조포어 체적 면에서 다소 높았다. 따라서, 촉매 C의 메조포어 및 마이크로포어의 포어 사이즈가 비교적 작음을 알 수 있다. 또한, 촉매 C의 산도 및 염기도는 카르복실기를 제외하고는 촉매 A에 비하여 낮았다. 황산 처리 후, 촉매 A 내지 D의 비표면적, 포어 체적 및 표면 산도 모두 증가하였으며, 촉매 B의 포어 직경 역시 증가하였다. 반면, 촉매 D의 마이크로포어 직경은 변화하지 않았으며, 특히 메조포어 직경은 감소하였다(2.749 nm에서 2.468 nm로 감소). 촉매 B 및 D의 표면 산성 특성은 거의 같았으나, 총 산도에 있어서는 촉매 B가 촉매 D에 비하여 다소 높았다. 따라서, 촉매 B와 대비하여, 촉매 D는 메조포어 면적에 있어서만 다소 높은 것으로 확인되었다.
장치 및 실험 방법
실험은 실험실-스케일의 회분식 반응기(최대 873 K 및 40 MPa을 견딜 수 있도록 설계됨) 내에서 실시하였다. 상기 실험에 사용되는 장치의 개략적인 구성을 도 4에 나타내었다.
반응기(203)는 고온에서의 황에 의한 부식을 방지하기 위하여 니켈계 합금인 Inconel 625 재질을 사용하였다(체적 용량: 200ml). 고압 반응기로부터의 매질의 역류를 방지하기 위하여 가스 공급 라인 상에 체크 밸브를 설치하였다. 히터(206)로서 전기로를 사용하였다(약 30℃/min의 승온 속도). 외부로의 열 손실을 억제하기 위하여 전기로(206) 및 반응기(203)를 단열재(insulator)로 덮었다. K-타입의 열전쌍(206)을 시스템의 3개 지점에 위치시켰다(각각 반응기 중앙, 반응기 벽 안쪽, 그리고 반응기와 가열로 사이의 반응기 표면). 반응기 온도는 반응기 중간에 위치하는 열전쌍에 의하여 측정되었고, 반응기(203) 온도는 ±2.5 ℃ 내에서 PID 온도 제어기에 의하여 제어되도록 하였다. 반응 압력은 압력 게이지 및 압력 트랜스듀서에 의하여 측정되었다.
촉매는 임펠러 축 상에 구비된 4개의 스피닝 바스켓(spinning basket; 204) 내에 위치시켜 촉매를 지지하고 임펠러 교반에 의한 촉매 손상 없이도 용액과의 접촉이 용이하도록 하였다. 교반 속도는 속도 제어기(209)의 제어 하에서 고압 교반기(208)를 이용하여 조절할 수 있도록 하였다. 고압 교반기(208)은 교반기 쿨러(210) 및 냉각 배스(211)를 이용하여 과열을 방지하도록 하였다.
5g의 감압 잔사유 시료 및 용매를 약 10분 동안 초음파처리하면서 혼합하였으며, 이때 용매 : 감압잔사유의 비는 약 8 : 1이었다. 상기 혼합물을 반응기 내로 투입한 다음, 촉매 8g을 4개의 바스켓 내로 균등하게 투입하였다. 반응기는 질소 실린더(201)를 이용하여 질소 가스를 퍼지시켜 반응기 내부의 공기를 제거하였고, 그 다음 단시간에 진공을 가하였다. 타겟 반응온도에 도달할 때, 수소 실린더(202)로부터 고압 조절기에 의하여 수소 가스를 신속하게 반응기로 공급하였다. 교반 속도 400∼600 ppm 하에서 반응온도가 급속히 타겟 온도에 도달한 후, 일정 온도에서 30분 동안 반응을 진행시켰다.
반응 후, 반응기를 가열로(204)에서 제거하여 물을 이용하여 급속히 상온까지 냉각시켰다. 그 다음, 임펠러 축에 연결된 스피닝 촉매 바스켓을 반응기 내 가스 상까지 올렸으며, 스피닝 촉매 바스켓에 800 rpm을 5시간 동안 가하였다(원심분리).
촉매 및 액상 시료의 회수 방법을 도 5에 나타내었다.
진공 하에서 유리섬유 필터(그레이드 GF/F, 와트맨)를 반응 용액에 적용하였으며, 필터링된 고형물 및 촉매를 Soxhlet 방법에 의하여 톨루엔으로 세척하였다. 추출 용액을 회수하여 감압 및 100℃ 조건에서 증발시켰으며, 오일 잔사를 액상 생성물과 혼합하였다. 세척된 고형물 및 촉매는 질소 가스 분위기에서 2 내지 3시간 동안 140℃에서 건조시켰다. 본 실시예에서 상기 건조된 고형물을 "코크 파우더"로 지칭하며(즉, 액상의 반응 생성물에 부유하는 코크 입자), 건조된 촉매 중량을 측정하여 활성탄 촉매 내에 침적된 코크 량을 계산하였다(촉매 내 코크 량).
액상 생성물을 ASTM 7213A-7890 방법에 따라 고온에서의 모사 증류(SIMDIS) 가스 크로마토그래피에 의하여 분석하였다. 이때, 오일 생성물은 4가지 그룹, 즉 나프타(IBP 내지 177℃), 중간 유분(177 내지 343℃), 감압 가스 오일(343 내지 525℃) 및 잔사(525℃ 이상)로 구분하였다. 오일 생성물로부터 용매를 배제하기 위하여, 순수 용매에 대한 비점 분포를 각각 얻었다.
코크 및 오일 생성물의 값은 감압 잔사유 공급원료(feed VR)의 중량을 기준으로 중량%로 표시하였는 바, 나프타(naphtha), 중간 유분(middle distillate), 감압 가스 오일(vacuum gas oil), 잔사(residue), 코크 파우더(coke powder), 촉매 내 코크(coke in catalyst) 각각의 수율(중량%)은 하기 수식 (1) 내지 (7)에 의하여 계산하였다.
[규칙 제26조에 의한 보정 12.03.2012] 
Figure WO-DOC-MATHS-1-6
Total coke(wt%)= coke powder(wt%) + coke in catalyst(wt%) (7)
또한, 전체 전환율은 하기 수식 (8)에 의하여 계산하였다
conversion(wt%) = naptha(wt%) + middle distillate(wt%) + vacuum gas oil(wt%) - 5.8 (8)
이때, 가스 및 코크는 전환율 계산에서 배제하였는데, 이는 본 명세서에서 특히 바람직하지 않은 부산물로 고려되었기 때문이다.
상술한 실험을 동일 조건 하에서 독립적으로 반복하였으며, 생성물 수율(나프타 유분, 중간 유분, 감압 가스 오일 유분, 잔사, 코크 파우더 및 촉매 내 코크의 수율)을 비롯하여 전환율의 실험 오차는 각각 약 0.5 내지 1% 범위이었다.
용매(매질) 종류에 따른 영향
상술한 절차에 따라 4가지 용매(n-헥산, n-도데칸, 톨루엔 및 m-자일렌)을 각각 사용하여 감압 잔사유를 처리하였다. 그 결과를 하기 표 5 내지 8, 그리고 도 6 내지 9에 나타내었다. 이때, 표 4에서 언급된 촉매 A, 즉 입자상 활성탄(비튜멘(bituminous coal)-유래 활성탄, Calgon Filtrasorb 300)을 사용하였다.
표 5
Figure PCTKR2011010096-appb-T000005
표 6
Figure PCTKR2011010096-appb-T000006
표 7
Figure PCTKR2011010096-appb-T000007
표 8
Figure PCTKR2011010096-appb-T000008
본 실시예에 있어서, 흥미로운 사실은, 용매로서 보다 입체 장애가 큰 m-자일렌을 사용하는 경우가 톨루엔을 사용하는 경우에 비하여 양호한 전환율을 얻을 수 있다는 점인데, 이는 전술한 바와 같이 초임계 조건 하에서 입체 장애 및 유체역학적(hydrodynamic) 저항의 효과는 중요한 고려사항이 아님을 뒷받침한다. 특히, m-자일렌(벤젠 고리 상에 2개의 메틸기를 가짐)이 초임계 조건 하에서 감압잔사유를 처리함에 있어서 톨루엔보다 강한 수소 공여체로 작용하는 것으로 판단된다.
도 6 내지 9에 따르면, 초임계 상태의 매질로서 m-자일렌을 사용한 경우에는 n-헥산 및 톨루엔을 사용한 경우에 비하여 유의미한 정도로 전환율이 높음을 알 수 있다. 다만, n-도데칸을 사용한 경우에는 m-자일렌을 용매로 사용한 경우에 비하여 동등하거나 다소 높은 수준의 전환율을 나타내었으나, 고부가가치 경질 유분인 나프타 및 중간 유분의 수율만을 대비할 경우, 오히려 m-자일렌을 사용하는 경우가 동등 수준 이상이었다.
특히, 최근 수요가 증가하고 있는 디젤유의 원료인 중간 유분만을 고려하면, 도 6 내지 9에 나타낸 바와 같이, m-자일렌을 사용할 때 다른 3가지 용매에 비하여 감압 잔사유의 중간 유분으로의 전환이 현저히 높았다.
한편, 코크 파우더 및 총 코크의 함량에 있어서, m-자일렌을 사용할 경우 n-헥산 및 n-도데칸을 사용한 경우에 비하여 동등 수준 이하였으나, 톨루엔에 비하여는 다소 높은 수준이었다.
그러나, 전환율 및 고부가가치 유분의 수율을 종합적으로 고려하면, m-자일렌이 다른 용매에 비하여 전체적으로 개선된 특성을 갖고 있음을 알 수 있다.
수소 압력의 영향
수소 압력이 반응에 미치는 영향을 평가하기 위하여, 수소 분압을 변화시켜(즉, 3.45 MPa에서 6.89 MPa로 증가) 상기 실험을 반복하였으며, 사용된 용매별, 낮은 수소압(3.45 MPa) 하에서의 생성물 내 유분 함량에 대한 높은 수소압(6.89 MPa) 하에서의 생성물 내 유분 함량 비를 도 10에 나타내었다.
상기 도면에 따르면, m-자일렌 용매를 매질로 사용하는 경우, 수소 압력 증가에 따라 생성물 내 고부가가치 유분(즉, 나프타 및 중간유분)의 함량은 크게 영향을 받지 않았다(약 1 내지 1.1). 이는, m-자일렌 매질에서는 수소 압력에 따라 촉매의 수소화 성능의 차이가 크지 않았음을 의미한다.
반면, 다른 용매(톨루엔, n-도데칸 및 n-헥산)에 있어서는, 수소 압력이 증가함에 따라 나프타 및/또는 중간유분의 함량 변화가 상당히 증가하는 경향을 나타내었다. 구체적으로, 톨루엔의 경우, 수소 압력이 증가함에 따라 나프타 및 중간 유분의 함량 증가 경향이 m-자일렌에 비하여 두드러짐을 알 수 있다. 이러한 사실은 m-자일렌 용매가 다른 용매에 비하여 낮은 수소 압력 하에서도 수소화 처리를 통하여 보다 고부가가치를 갖는 유분(특히 디젤 오일의 원료인 중간 유분)의 수율을 높일 수 있음을 뒷받침한다.
활성탄 표면 특성의 영향
산 처리 및 활성탄 타입이 감압 잔사유의 수소화 분해 반응에 미치는 영향을 평가하기 위하여 전술한 실험 절차와 동일하게 실시하였으며(용매: m-자일렌), 촉매를 사용하지 않은 경우, 및 촉매 A 내지 D를 사용하는 경우에 따른 결과를 하기 표 9 및 도 11에 나타내었다.
표 9
Figure PCTKR2011010096-appb-T000009
본 실험에 있어서, 반응 조건은 거의 동일하기 때문에 전환율의 차이는 촉매에 기인한 것으로 볼 수 있다. 상기 표에 따르면, 촉매 A 내지 D를 사용하는 경우에는 촉매를 사용하지 않은 경우에 비하여 전환율이 증가함을 알 수 있다.
촉매 C의 표면 산도는 촉매 A와 유사하였으며, 촉매 B보다는 훨씬 낮았다. 그러나, 촉매 C의 경우, 촉매 A에 비하여 전환율이 높고(68.3 중량%) 코크 형성이 작은 반면(총 코크: 13.2 중량%), 촉매 B보다는 다소 낮은 성능을 나타내었다. 또한, 가장 큰 메조포어 면적 및 체적을 갖는 촉매 D가 가장 높은 전환율(72.4 중량%)을 나타내었고 촉매 B와 유사한 코크 형성량(13.9 중량%)을 보여주었다. 이러한 결과는 표면 산도가 활성탄 타입에 관계없이 전환율을 개선하였음을 의미한다. 메조포어의 표면적 및 체적 역시 전환율의 개선 및 코크 형성 억제에 중요한 기능을 한 것으로 판단된다.
생성물의 성상과 관련하여, 도 11에 따르면 석유계 피치-유래 활성탄 촉매(촉매 C 및 D)가 전환율 및 경질 유분의 수율 면에서 유리하였다. 촉매 C는 촉매 A와 비교하여 표면 산도, 마이크로포어 및 메조포어 직경이 낮음에도 불구하고 2배 이상의 나프타 유분을 생성하였다(촉매 A: 8.4 중량%, 촉매 C: 17.8 중량%). 특히, 산 처리에 의하여 개질된 촉매 D(각각 21.3 중량% 및 36.8 중량%)는 메조포어 직경이 작음에도 불구하고 촉매 B에 비하여 나프타 및 중간 유분 수율(각각 13.0 중량% 및 34.9 중량%)이 높았다. 잔사의 생성은 활성탄의 메조포어 면적에 반비례하였다(촉매 D>촉매 B>촉매 C>촉매 A).
코크 형성 면에서, 촉매 A의 코크 생성은 촉매를 사용하지 않은 경우에 비하여 다소 낮았다. 또한, 산 처리된 촉매 B는 코크 형성을 감소시켰다. 석유계 피치-유래 활성탄의 경우, 개질된 활성탄이 개질되지 않은 활성탄에 비하여 미세하지만 코크 생성 정도가 높았다. 그 결과, 촉매 C의 코크 생성이 가장 작았다. 촉매 C의 경우 나프타 및 중간 유분의 수율 합은 촉매 B와 유사하였으나, 나프타 유분 생성에 있어서는 보다 높았다. 상기 결과로부터 아스팔텐이 메조포어에서 반응하고, 분해된 아스팔텐이 마이크로포어에서 보다 용이하게 반응될 수 있는 것으로 추측된다. 또한, 메조포어 내에서의 입체 장애(steric hindrance)가 전환율 및 코크 억제에 기여하고, 따라서 코크에 의하여 덜 피독된 마이크로포어로 인하여 경질 유분의 생성이 증가하는 것으로 판단되었다.
금속 조촉매 성분에 따른 영향
초임계 m-자일렌 매질 내에서 수소화분해 반응에 있어서 산 처리에 의하여 개질된 활성탄 촉매(촉매 B 및 D)에 금속 조촉매 성분을 첨가할 경우의 효과를 평가하였다. 1 중량%(활성탄 촉매 중량 기준)의 금속 조촉매 성분 첨가에 따른 전환율 및 코크 형성 평가 결과를 표 10에 나타내었다(반응 온도: 약 400℃, 수소분압: 3.45 MPa).
표 10
Figure PCTKR2011010096-appb-T000010
상기 표에 기재된 바와 같이, 금속 조촉매 성분의 첨가에 따라 전환율은 다소 증가하였으나, 개선 정도는 금속 첨가제 및 활성탄 타입에 따라 상이하였다. 촉매 B에 있어서 1 중량%의 금속 조촉매의 첨가시 전환율은, 조촉매를 함유하지 않은 경우(번호 3)의 69.2 중량%로부터 69.7 중량%(번호 7), 70.0 중량%(번호 9), 그리고 71.0 중량%(번호 11)로 증가하였다. 반면, 촉매 D에 있어서, 1 중량%의 금속 조촉매의 첨가가 미치는 영향은 촉매 B에 비하여 상대적으로 미미하였다. 촉매 D에 있어서, 전환율의 경우 촉매를 사용하지 않은 경우(72.4 중량%)에 비하여 소폭 증가하였다(번호 14: 73.1 중량%; 번호 16: 72.7 중량% 및 번호 18: 73.1 중량%). 다만, 코크 형성 면에서는 첨가하지 않은 경우와 유사하였는 바, Ni을 첨가한 경우를 제외하고는 미세하게 증가하였다. 상기 결과에 비추어, 철(Fe)를 첨가할 경우의 전환율 개선 효과가 다른 금속 성분에 비하여 상대적으로 높은 것으로 파악되었다.
3가지 금속 조촉매 성분에 따른 생성물 분포 특성을 도 12(a) 및 12(b)에 나타내었다. 도 12(a)는 촉매 B에 조촉매를 첨가한 것이고, 도 12(b)는 촉매 D에 조촉매를 첨가한 것이다. 금속을 첨가하지 않은 경우(촉매 B)에서의 생성물 수율과 비교할 때, 금속 첨가로 인하여 주로 증가된 유분은 나프타 유분이었다. 특히, 금속 첨가로 인하여 중간 유분의 수율이 감소하였는 바, 이는 조촉매가 중간 유분의 나프타로의 전환에 어느 정도 기여하고 있는 것으로 판단되었다. 또한, 코크 파우더는 2.2 중량%(첨가하지 않은 경우)에서 2.0 중량%로 감소하기는 하였으나, 촉매 내 코크는 약간 증가하였다.
촉매 D의 경우, 금속 조촉매 성분은 도 12(b)에 나타난 바와 같이, 생성물 분포에 큰 영향을 미치지 않았다. 이는 반응생성물 분포에 있어서는 금속 조촉매 성분이 초임계 m-자일렌 매질 조건 하에서는 개질된 비튜멘-유래 활성탄 촉매(촉매 B)를 이용한 감압잔사유의 수소화분해 반응에 보다 큰 영향을 미침을 시사한다.
금속 조촉매 성분의 함량에 따른 영향
상기 표 10에 기재된 조건 하에서 금속 조촉매 성분(Li, Ni 및 Fe)의 함량에 따른 감압잔사유의 수소화분해 생성물의 분포 특성을 도 13 및 14에 나타내었다.
조촉매 성분 함량이 0.1 중량%에서는 활성탄 유래(origin)에 관계없이 전환율이 다소 감소하는 한편 코크 형성이 증가하였다. 반면, 1 중량%에서는 이와 상반된 경향을 나타냈다.
조촉매로서 철을 사용한 경우, 1 중량%에서 다른 성분에 비하여 가장 우수한 결과를 얻을 수 있었으며, 특히 10 중량%에서는 1 중량%에 비하여 전환율 면에서 1.5 내지 1.6 중량% 정도 추가 개선되었다. 반면, 코크 형성에 있어서는 석유 피치-유래 활성탄에서는 감소하였으나, 비튜멘-유래 활성탄에서는 증가하는 경향을 나타내었다.
도 13은 0.1 중량% Li 또는 Ni 조촉매 성분 사용시 생성물 분포를 도시한다.
상기 도면에 따르면, 비튜멘-유래 활성탄 촉매(촉매 B)에 조촉매를 첨가할 경우, 나프타 유분이 증가하는 반면, 중간 유분은 감소되었는 바, 이는 도 12(a)와 부합된 결과로 볼 수 있다. 그러나, 감압 가스 오일 유분 및 촉매 내 코크 량은 1 중량% 사용한 경우의 도 12(a)와 달리, 증가하였다. 이는 Li 및 Ni의 첨가량이 일정 수준 이하에서는 비록 조촉매 성분이 중간 유분의 나프타 유분으로의 수소화분해에 기여하기는 하지만 촉매 상 코크 침적을 유발하여 촉매 활성을 낮추게 됨을 시사한다.
조촉매 성분을 첨가하지 않은 석유 피치-유래 활성탄 촉매(촉매 D)의 경우와 비교하면, 나프타 및 중간 유분은 다소 감소한 반면, 상대적 중질 유분인 감압 가스 오일 및 잔사 유분, 그리고 촉매 내 코크 량은 다소 증가하였다(즉, 낮은 농도에서는 오히려 생성물의 가치를 저하시킬 수 있음). 도 12(b) 및 도 13에 따르면, 활성탄 상의 코크 피독 현상은 비튜멘-유래 활성탄에 비하여 석유 피치-유래 활성탄에서 보다 현저한 것으로 판단된다.
이처럼, 도 13 및 14를 종합하면, 초임계 m-자일렌 매질 반응시 조촉매 성분이 낮은 함량(0.1 중량%)으로 첨가될 경우에는 수소화분해 반응을 위한 금속 사이트를 충분히 제공하지 못하고, 이에 따라 경질 유분(나프타 및 중간 유분)의 비율을 낮추고 중질 유분(감압 가스 오일 및 잔사)과 코크 량을 증가시킬 수 있는 것으로 판단된다.
반면, 도 14에 나타난 바와 같이, 비교적 높은 철 첨가량(10 중량%)에서는 전환율뿐만 아니라 생성물의 품질(경질 유분의 수율)에 있어서 양호한 결과를 얻을 수 있었다. 구체적으로, 표 10에 따르면, 철을 함유하지 않은 촉매 B 및 D(번호 3 및 5)에 비하여 10 중량% 철을 함유시킴으로써 유의미한 전환율 개선 효과를 얻을 수 있었다. 이러한 전환율 개선 정도는 1 중량% 철을 함유시킨 경우에 비하여 높은 수준이었다. 이외에도, 높은 철 함량에서는 경질 유분의 생성이 증가하였고, 또한 도 11 및 14를 비교하면, 촉매 내 코크 량은 감소한 반면, 코크 파우더의 생성은 증가하였다. 특히, 촉매 D의 경우, 높은 철 함량 조건 하에서 전체 코크의 발생량이 조촉매를 함유하지 않은 촉매 D를 사용한 경우에 비하여 상당히 감소하였다. 이처럼, 초임계 m-자일렌 매질 내에서 특히 산-처리된 활성탄에 철 10 중량%를 첨가한 촉매가 전환율 및 경질 유분 확보 면에서 유리함을 뒷받침한다.
이상에서 살펴본 바와 같이, 중질 탄화수소 유분을 초임계 상태의 매질 내에서 수소화 처리함에 있어서 자일렌-함유 용매를 사용할 경우, 전환율은 물론, 고부가가치 유분, 특히 중간 유분에 대한 선택성이 개선됨을 알 수 있다. 특히, 자일렌은 비교적 낮은 비점을 갖고 있어 실제 상용화된 공정에 적용함에 있어서 한층 유리할 수 있을 것이다. 이외에도, 촉매로서 산-처리에 의하여 표면이 개질된 활성탄 촉매를 사용하여 전환율을 개선할 수 있고, 더 나아가 금속 조촉매 성분을 일정 수준 이상으로 혼입하여, 전환율 개선, 코크 발생/코크로 인한 촉매 피독 감소 및 경우에 따라서는 생성물, 특히 경질 유분의 수율 구조를 변화 효과를 얻을 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
(부호의 설명)
10: 중질 탄화수소 유분의 수소화 처리 공정
11: 수소화 반응기
12: 분리장치
13: 익스트랙터
201: 질소 실린더
202: 수소 실린더
203: 반응기
204: 스피닝 바스켓
205: 전기 히터
206: 열전쌍
207: 온도 조절기
208: 고압 교반기(high pressure agitator)
209: 속도 조절기
210: 교반기 쿨러
211: 냉각 배스

Claims (20)

  1. 중질 탄화수소 유분을 수소화 촉매의 존재 하에서 초임계 상태의 자일렌-함유 용매와 접촉시켜 수소화 반응시키는 단계;
    를 포함하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  2. 제1항에 있어서, 상기 수소화 반응 단계는 30 내지 150 bar의 수소 압력 하에서 수행되는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  3. 제1항에 있어서, 상기 자일렌-함유 용매는 적어도 25 중량%의 m-자일렌을 함유하는 방향족계 용매인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  4. 제3항에 있어서, 상기 자일렌-함유 용매는 (i) 자일렌 70 내지 85 중량%, (ii) 에틸벤젠 15 내지 25 중량%, 그리고 (iii) 톨루엔 또는 C9+ 방향족 5 중량%까지 포함하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  5. 제1항에 있어서, 상기 중질 탄화수소 유분은 감압잔사유인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  6. 제1항에 있어서, 상기 중질 탄화수소 유분에 대한 자일렌-함유 용매의 중량비(용매/중질 탄화수소 유분)는 3 내지 10인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  7. 제1항에 있어서, 상기 수소화 반응 단계는 적어도 350℃, 그리고 420℃까지의 온도 및 30 내지 100 bar의 수소 압력 하에서 수행되는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  8. 제1항에 있어서, 상기 수소화 촉매는 금속(base metal)계 촉매 또는 활성탄 촉매인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  9. 제8항에 있어서, 상기 금속계 촉매의 금속 성분은 Mo, W, Co, Ni 또는 이의 조합인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  10. 제8항에 있어서, 상기 활성탄 촉매는 산-처리 활성탄 촉매인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  11. 제10항에 있어서, 상기 산은 황산인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  12. 제10항 또는 제11항에 있어서, IA족, VIIB족 및 VIII족 금속으로부터 적어도 하나가 선택되는 조촉매 성분을 0.1 중량% 초과, 30 중량%까지 함유하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  13. 제12항에 있어서, 상기 조촉매 성분 중 금속은 리튬(Li), 니켈(Ni), 철(Fe) 또는 이의 조합인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  14. 제13항에 있어서, 상기 금속 조촉매 성분의 함량은 5 내지 15 중량%인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  15. 제1항에 있어서, 상기 수소화 반응 단계는 고정층 반응기, 에뷸레이팅(ebullating) 반응기 또는 슬러리 반응기 내에서 수행되는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전환시키는 방법.
  16. 제1항에 있어서, 상기 낮은 비점의 탄화수소는 중간 유분을 포함하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전화시키는 방법.
  17. 제8항에 있어서, 상기 활성탄 촉매는 석유 피치-유래 활성탄인 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 전화시키는 방법.
  18. a) 반응 영역(zone) 내로 중질 탄화수소 유분을 공급하는 단계;
    b) 초임계 상태의 자일렌-함유 용매 및 촉매의 존재 하에서 상기 중질 탄화수소 유분을 수소화 반응시키는 단계;
    c) 상기 수소화 반응 생성물을 분리탑(fractionator)으로 이송하여 보다 낮은 비점의 타겟 탄화수소 유분을 분리 회수하는 단계;
    d) 상기 분리 회수되지 않는 성분을 익스트랙터로 이송하여 리사이클 성분 및 배출 성분으로 분리하는 단계; 및
    e) 상기 리사이클 성분을 상기 반응 영역으로 이송하는 단계;
    를 포함하며,
    여기서, 상기 자일렌-함유 용매는 적어도 25 중량%의 자일렌을 함유하고,
    상기 수소화 반응 단계는 30 내지 150 bar의 수소 압력 하에서 수행되며; 그리고
    상기 리사이클 성분은 적어도 자일렌을 함유하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 연속 전환시키는 방법.
  19. 제18항에 있어서, 상기 배출 성분은 코크 및 폐촉매를 포함하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 연속 전환시키는 방법.
  20. 제19항에 있어서, 상기 폐촉매를 재생하여 그 일부 또는 전부를 상기 단계 b)에 제공하는 것을 특징으로 하는, 중질 탄화수소 유분을 보다 낮은 비점의 탄화수소로 연속 전환시키는 방법.
PCT/KR2011/010096 2010-12-28 2011-12-26 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정 WO2012091382A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180063613.4A CN103282464B (zh) 2010-12-28 2011-12-26 使用超临界溶剂的重质烃馏分加氢裂化方法
US13/977,370 US9550947B2 (en) 2010-12-28 2011-12-26 Hydrocracking process of heavy hydrocarbon distillates using supercritical solvent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100137084 2010-12-28
KR10-2010-0137084 2010-12-28
KR10-2011-0138122 2011-12-20
KR1020110138122A KR101759351B1 (ko) 2010-12-28 2011-12-20 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정

Publications (3)

Publication Number Publication Date
WO2012091382A2 true WO2012091382A2 (ko) 2012-07-05
WO2012091382A9 WO2012091382A9 (ko) 2012-10-26
WO2012091382A3 WO2012091382A3 (ko) 2012-12-27

Family

ID=46383665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010096 WO2012091382A2 (ko) 2010-12-28 2011-12-26 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정

Country Status (1)

Country Link
WO (1) WO2012091382A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212472A (zh) * 2013-06-03 2014-12-17 中国石油化工股份有限公司 一种生产道路沥青原料的设备
CN113214864A (zh) * 2020-07-10 2021-08-06 中国石油大学(北京) 一种馏分油超/亚临界流体强化加氢组合方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737591A (zh) * 2017-09-22 2018-02-27 北京华福工程有限公司 用于重油悬浮床加氢预处理的催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0141884B1 (ko) * 1993-08-18 1998-06-15 나루 세 스스무 중질유의 수소화처리 방법 및 수소화처리 장치
JP2008297468A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
KR20090100423A (ko) * 2006-12-22 2009-09-23 토탈 라피나쥬 마케팅 수소화처리 촉매, 그 제조 및 사용 방법
KR20100107459A (ko) * 2007-11-28 2010-10-05 사우디 아라비안 오일 컴퍼니 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0141884B1 (ko) * 1993-08-18 1998-06-15 나루 세 스스무 중질유의 수소화처리 방법 및 수소화처리 장치
KR20090100423A (ko) * 2006-12-22 2009-09-23 토탈 라피나쥬 마케팅 수소화처리 촉매, 그 제조 및 사용 방법
JP2008297468A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp 炭化水素油の分解方法
KR20100107459A (ko) * 2007-11-28 2010-10-05 사우디 아라비안 오일 컴퍼니 고온의 가압된 물 및 회수 유체에 의하여 전체 원유를 개량하기 위한 공정

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212472A (zh) * 2013-06-03 2014-12-17 中国石油化工股份有限公司 一种生产道路沥青原料的设备
CN104212472B (zh) * 2013-06-03 2017-03-22 中国石油化工股份有限公司 一种生产道路沥青原料的设备
CN113214864A (zh) * 2020-07-10 2021-08-06 中国石油大学(北京) 一种馏分油超/亚临界流体强化加氢组合方法

Also Published As

Publication number Publication date
WO2012091382A3 (ko) 2012-12-27
WO2012091382A9 (ko) 2012-10-26

Similar Documents

Publication Publication Date Title
US2727853A (en) Process for refining of petroleum, shale oil, and the like
KR20160027123A (ko) 원유를 비티엑스(btx) 수율이 향상된 석유화학물질로 변환시키기 위한 방법 및 장치
US20060032789A1 (en) Method of and apparatus for processing heavy hydrocarbon feeds
KR101759351B1 (ko) 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
US9868915B2 (en) Slurry hydroconversion and coking of heavy oils
NO149893B (no) Fremgangsmaate ved fremstilling av premiumkoks ut fra vakuumresidua
KR101568615B1 (ko) 중질 탄화수소 유분의 연속적 처리 방법
AU2003233415B2 (en) Improved residuum conversion process
WO2012091382A2 (ko) 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
US4081358A (en) Process for the liquefaction of coal and separation of solids from the liquid product
US4256567A (en) Treatment of petroleum stocks containing metals
CA2370591C (en) Improved process for deasphalting residua by reactive recycle of high boiling material
US5714056A (en) Process for deasphalting residua (HEN9511)
WO1999003951A1 (en) Integrated residua upgrading and fluid catalytic cracking
US11359148B2 (en) Methods and systems to produce needle coke from aromatic recovery complex bottoms
CA1246481A (en) Coking residuum in the presence of hydrogen donor
EP0842243A1 (en) Integrated residua upgrading and fluid catalytic cracking
RU2013134384A (ru) Способ конверсии углеводородного сырья, содержащего сланцевое масло, путем удаления загрязнений, гидроконверсии в кипящем слое и фракционирования с помощью атмосферной дистилляции
WO2020247166A1 (en) Pyrolysis tar upgrading
JP2011063632A (ja) 重質油の熱分解方法
US2843529A (en) Upgrading of petroleum oils
US5879535A (en) Two-stage process for obtaining significant olefin yields from residua feedstocks
US6652739B2 (en) Process for deasphalting residua by reactive recycle of high boiling material
RU2173695C2 (ru) Усовершенствованный способ достижения значительного выхода олефинов из остаточного исходного сырья
CA2291189A1 (en) Improved process for obtaining significant olefin yields from residua feedstocks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854288

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13977370

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11854288

Country of ref document: EP

Kind code of ref document: A2