JPWO2013190943A1 - 磁気記録膜用スパッタリングターゲット - Google Patents

磁気記録膜用スパッタリングターゲット Download PDF

Info

Publication number
JPWO2013190943A1
JPWO2013190943A1 JP2013535606A JP2013535606A JPWO2013190943A1 JP WO2013190943 A1 JPWO2013190943 A1 JP WO2013190943A1 JP 2013535606 A JP2013535606 A JP 2013535606A JP 2013535606 A JP2013535606 A JP 2013535606A JP WO2013190943 A1 JPWO2013190943 A1 JP WO2013190943A1
Authority
JP
Japan
Prior art keywords
sputtering
powder
target
holding
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013535606A
Other languages
English (en)
Other versions
JP5592022B2 (ja
Inventor
真一 荻野
真一 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013535606A priority Critical patent/JP5592022B2/ja
Application granted granted Critical
Publication of JP5592022B2 publication Critical patent/JP5592022B2/ja
Publication of JPWO2013190943A1 publication Critical patent/JPWO2013190943A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

Cを含有する磁気記録膜用スパッタリングターゲットであって、ラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(IG/ID)が5.0以上であることを特徴とする磁気記録膜用スパッタリングターゲット。高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にするものであり、C粒子が分散した磁気記録膜用スパッタリングターゲット、特にFe−Pt系スパッタリングターゲットを提供することであり、炭素は焼結しにくい材料である上に、炭素同士で凝集体を形成し易いという問題を有し、スパッタリング中に炭素の塊が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するという問題があるが、これらを解決することができる高密度なスパッタリングターゲットを提供することを課題とする。【選択図】図1

Description

本発明は、熱アシスト磁気記録メディアの製造に使用するスパッタリングターゲット、特にC粒子が分散したFe−Pt系スパッタリングターゲットに関する。
ハードディスクドライブに代表される磁気記録の分野では、磁気記録媒体中の磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの磁性薄膜にはCoを主成分とするCo−Cr系やCo−Cr−Pt系の強磁性合金が用いられてきた。
また、近年実用化された垂直磁気記録方式を採用するハードディスクの磁性薄膜には、Coを主成分とするCo−Cr−Pt系の強磁性合金と非磁性の無機物粒子からなる複合材料が多く用いられている。そして上記の磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをDCマグネトロンスパッタ装置でスパッタして作製されることが多い。
一方、ハードディスクの記録密度は年々急速に増大しており、現状の600Gbit/inの面密度から将来は1 Tbit/inに達すると考えられている。1Tbit/inに記録密度が達すると記録bitのサイズが10nmを下回るようになり、その場合、熱揺らぎによる超常磁性化が問題となってくると予想され、現在、使用されている磁気記録媒体の材料、例えばCo−Cr基合金にPtを添加して結晶磁気異方性を高めた材料では十分ではないことが予想される。10nm以下のサイズで安定的に強磁性として振る舞う磁性粒子は、より高い結晶磁気異方性を持っている必要があるからである。
上記のような理由から、L1構造を持つFePt相が超高密度記録媒体用材料として注目されている。L1構造を持つFePt相は高い結晶磁気異方性とともに、耐食性、耐酸化性に優れているため、磁気記録媒体としての応用に適した材料と期待されているものである。
そしてFePt相を超高密度記録媒体用材料として使用する場合には、規則化したFePt磁性粒子を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。
このようなことから、L1構造を有するFePt磁性粒子を酸化物や炭素といった非磁性材料で孤立させたグラニュラー構造磁性薄膜が、熱アシスト磁気記録方式を採用した次世代ハードディスクの磁気記録媒体用として提案されている。
このグラニュラー構造磁性薄膜は、磁性粒子同士が非磁性物質の介在により磁気的に絶縁される構造となっている。
グラニュラー構造の磁性薄膜を有する磁気記録媒体及びこれに関連する公知文献としては、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5を挙げることができる。
上記L1構造を持つFe−Pt相を有するグラニュラー構造磁性薄膜としては、非磁性物質としてCを体積比率として10〜50%含有する磁性薄膜が、特にその磁気特性の高さから注目されている。このようなグラニュラー構造磁性薄膜は、Feターゲット、Ptターゲット、Cターゲットを同時にスパッタリングするか、あるいは、Fe−Pt合金ターゲット、Cターゲットを同時にスパッタリングすることで作製されることが知られている。しかしながら、これらのスパッタリングターゲットを同時スパッタするためには、高価な同時スパッタ装置が必要となる。
また、一般に、スパッタ装置で合金に非磁性材料の含まれるスパッタリングターゲットをスパッタしようとすると、スパッタ時に非磁性材料の不用意な脱離やスパッタリングターゲットに内包される空孔を起点として異常放電が生じパーティクル(基板上に付着したゴミ)が発生するという問題がある。この問題を解決するには、非磁性材料と母材合金との密着性を高め、スパッタリングターゲットを高密度化させる必要がある。一般に、合金に非磁性材料が含まれるスパッタリングターゲットの素材は粉末焼結法により作製される。ところが、Fe−PtにCが大量に含まれる場合、Cが難焼結材料であるため高密度な焼結体を得ることが困難であった。
上記の通り、垂直磁気記録の記録層において、これまではCo−Cr−Pt合金が磁性相として広く用いられてきた。しかし、記録密度を高密度化すればするほどCo合金の1ビットの大きさを小さくしなければならず、同時に熱揺らぎによる超常磁性化が問題となる。そこで、結晶磁気異方性の高いFe−Ptが注目されている。
また、一般に磁気記録層はFe−Ptなどの磁性相とそれを分離している非磁性相から構成されており、非磁性相の一つとして炭素が有効であることが知られている。
しかし、炭素は焼結しにくい材料である上に、炭素同士で凝集体を形成し易いという問題を有している。従って、スパッタリング中に炭素の塊が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するという問題がある。
このように、炭素を導入することによる磁気記録層の改善が試みられているが、ターゲットのスパッタリング時の問題を解決するには至っていないのが現状である。
一方、カーボン膜を形成する場合の提案がなされている。例えば、特許文献6には、
一つの波形(A)のピーク位置が1545cm−1以下、他の波形(B)のピーク位置が1320〜1360cm−1であり、これらの波形の半値幅における面積比(B/A)が0.3〜0.7となる非晶質水素化カーボン層からなる磁気ディスク及びその製造方法が記載されている。
また、特許文献7には、表面増強ラマンスペクトルのほぼ1550〜1650cm−1にピークを有するバンドG(graphite)の強度Iと、ほぼ1350〜1450cm−1にピークを有するバンドD(disorder)の強度Iとの比I/Iに基づきカーボン膜の膜質を評価する工程とを有するカーボン膜評価方法と、I/Iが0.1〜0.5の範囲にあることを確認する工程からなるカーボン膜評価方法及び磁気記録媒体の製造方法が記載されている。
しかしながら、これらの特許文献6と特許文献7は、あくまでカーボン膜の評価であって、カーボンが磁気記録膜を形成するためのスパッタリングターゲットの主要構成材料である磁性金属の中に、かなりの量で存在する場合に、ターゲットにどのような影響を与えるのか、またターゲットの製造工程中において、どのような挙動を示すのか、さらにはこのようなターゲットを用いてスパッタリングした場合に、成膜にどのような影響を与えるのかということに、直接関係するものではなく、これらが十分に解明されている技術とは言えない。
また、特許文献8と特許文献9では、磁気記録媒体において、SiCあるいは炭素系薄膜のラマンスペクトルによる評価がなされているが、カーボンが磁気記録膜を形成するためのスパッタリングターゲットの主要構成材料である磁性金属の中に、かなりの量で存在する場合に、ターゲットにどのような影響を与えるのか、またターゲットの製造工程中において、どのような挙動を示すのか、さらにはこのようなターゲットを用いてスパッタリングした場合に、成膜にどのような影響を与えるのかということに、直接関係するものではなく、これらが十分に解明されている技術とは言えない。
特開2000−306228号公報 特開2000−311329号公報 特開2008−59733号公報 特開2008−169464号公報 特開2004−152471号公報 特開平06−267063号公報 特開2003−028802号公報 特開2000−268357号公報 特開2006−127621号公報 国際出願PCT/JP2012/057482号
本発明の課題は、高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にするものであり、C粒子が分散した磁気記録膜用スパッタリングターゲット、特に、Fe−Pt系スパッタリングターゲットを提供することであり、炭素は焼結しにくい材料である上に、炭素同士で凝集体を形成し易いという問題を有し、スパッタリング中に炭素の塊が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するという問題があるが、これらを解決することができる高密度なスパッタリングターゲットを提供することを課題とする。
上記の課題を解決するために、本発明者らは鋭意研究を行った結果、非磁性材料であるCの材質の改良を図り、所定の大きさのC粒子を母材金属に均一に分散させることによって、粉砕、混合中に炭素が凝集してしまうことを防止でき、高密度なスパッタリングターゲットであって、パーティクル発生の非常に少ないターゲットを製造することが可能になる。すなわち、成膜時の歩留まりを向上できることを見出した。
このような知見に基づき、本発明は、以下の発明を提供するものである。
1)Cを含有する磁気記録膜用スパッタリングターゲットであって、ラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(I/I)が5.0以上であることを特徴とする磁気記録膜用スパッタリングターゲット。
2)Ptが5mol%以上60mol%以下、残余がFeである組成の金属とCからなる上記1)記載の磁気記録膜用スパッタリングターゲット。
3)Cの含有割合が10mol%以上70mol%以下であることを特徴とする上記1)又は2)記載の磁気記録膜用スパッタリングターゲット。
4)相対密度が90%以上であることを特徴とする上記1)〜3)のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
5)添加元素として、B、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下含有することを特徴とする上記1)〜4)のいずれか一項に記載の磁気記録膜用スパッタリングターゲット、
6)添加剤として、SiO、Cr、CoO、Ta、B、MgO、Coから選択した1種以上の酸化物を、0.5mol%以上20mol%以下を含有することを特徴とする上記1)〜5)のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
本発明の磁気記録膜用スパッタリングターゲットは、高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にするものであり、C粒子が分散した磁気記録膜用スパッタリングターゲット、特に、Fe−Pt系スパッタリングターゲットを提供することができ、炭素は焼結しにくい材料であり、炭素同士で凝集体を形成し易いという問題を解決し、さらにスパッタリング中に炭素の塊が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するという問題を解決することができるという優れた効果を有する。
実施例1の焼結体をレーザー顕微鏡で観察したときの組織画像である。 実施例1のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 実施例2の焼結体をレーザー顕微鏡で観察したときの組織画像である。 実施例2のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 実施例3の焼結体をレーザー顕微鏡で観察したときの組織画像である。 実施例3のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 実施例4の焼結体をレーザー顕微鏡で観察したときの組織画像である。 実施例4のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 実施例5の焼結体をレーザー顕微鏡で観察したときの組織画像である。 実施例5のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 比較例1の焼結体をレーザー顕微鏡で観察したときの組織画像である。 比較例1のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。 比較例2の焼結体をレーザー顕微鏡で観察したときの組織画像である。 比較例2のラマン散乱分光測定結果とカーブフィッティング結果を示す図である。
先に発明者らは、炭素の結晶性を意図的に崩すことによって、炭素材料のスパッタリング特性を改善し、スパッタリング時のパーティクルを低減できると考えた(特許文献10)。しかし、極めて微細にした炭素粒子は凝集することがあり、この凝集体がスパッタリング時のパーティクル発生原因となることがあった。
そこで、発明者らは、炭素の原料として凝集しにくい大きさのものをあらかじめ選択し、混合中に炭素が粉砕されないように、かつ、炭素原料を母材金属(マトリックス)中に一様に分散させることによって、炭素の焼結性を向上させることができ、スパッタリング時のパーティクルを低減できることを見出した。
以上から、本願発明の磁気記録膜用スパッタリングターゲットは、Cを含有する磁気記録膜用スパッタリングターゲットであり、ラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(I/I)が5.0以上とするものである。
この場合、Ptが5mol%以上60mol%以下、残余がFeである組成の金属とCからなる磁気記録膜用スパッタリングターゲットに、特に有効である。これらの成分の含有量は、良好な磁気特性を得るための条件である。
また、Cの含有割合は10mol%以上70mol%以下とするのが良い。C量については、ターゲット組成中における含有量が、10mol%未満であると、良好な磁気特性が得られない場合があり、また70mol%を超えると、C粒子が凝集し、パーティクルの発生が多くなる場合があるからである。
また、相対密度が90%以上の磁気記録膜用スパッタリングターゲットとすることができる。相対密度が90%以上であることは、本発明の要件の一つである。相対密度が高いと、スパッタ時にスパッタリングターゲットからの脱ガスによる問題が少なく、また、合金とC粒子の密着性が向上するため、パーティクル発生を効果的に抑制できるからである。より好ましくは95%以上とする。
本発明において相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成元素が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
式:計算密度=シグマΣ(構成元素の原子量×構成元素の原子数比)/Σ(構成元素の原子量×構成元素の原子数比/構成元素の文献値密度)
ここで、Σは、ターゲットの構成元素の全てについて、和をとることを意味する。
磁気記録膜用スパッタリングターゲットは、さらに添加元素として、B、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下を含有させることができる。これらの添加は任意であるが、磁気特性の向上のために、材料に応じて添加することができる。
また、磁気記録膜用スパッタリングターゲットは、添加剤として、酸化物や窒化物等のセラミック材料を用いることができる。好ましくは、SiO、Cr、CoO、Ta、B、MgO、Coから選択した1種以上の酸化物を0.5mol%以上20mol%以下含有させることである。これらの添加剤の使用は任意であるが、磁気特性の向上のために、材料に応じて添加することができる。
炭素原料は一次粒子径が大きくなるほど、グラファイトの平面構造が大きくなることから、一次粒子径の大きさは結晶性と高い相関関係があると考えられる。そこで、発明者らは、炭素の結晶性をラマン散乱分光法によって評価して、スパッタリング時のパーティクルの発生量と比較したところ、両者の間には高い相関関係があることが分かった。
炭素材料の結晶性(sp混成軌道の完全性)を評価するための指標として、一般的に知られているラマン散乱分光測定のGバンドとDバンドの比を用いることができる。
Gバンドは、グラファイトの六員環構造に由来する振動モードであり、1570cm−1付近にピークが現れ、結晶構造が完全に近いほどピーク強度は大きくなる。
また、Dバンドは、グラファイトの欠陥構造に由来する振動モードであり、1350cm−1付近にピークが現れ、欠陥が大きいほどピーク強度は大きくなる。
すなわち、結晶性が高い炭素材料ほどI/I比が高くなる。Gバンドの強度が大きいほど結晶構造が完全(結晶性が高い)、小さいほど結晶構造が不完全(結晶性が低い)である。
ラマン散乱分光計としては、Renishaw inVia Raman Microscope(Renishaw社製)を用いた。励起光は、CompassTM 315M Diode−Pumped Laser(COHERENT社製)を光源とし、励起波長は532nm、励起光源の出力は5mWとし、回折格子は1800L/mmを使用した。ラマンシフトの測定範囲は、1033〜1842cm−1とした。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。なお、カーブフィッティングをする都合上、1620cm−1付近のD´バンドも現れるが、D´バンドはグラファイトの欠陥構造に由来する振動モードであり、これは本願発明には、直接関係しないので、図において表示するに留める。
なお、ラマン散乱分光測定でGバンドとDバンドの振動モードを測定する場合、本願発明では、レーザーの励起波長532nmを使用しているが、励起光源としては、この他にArレーザー、He−Neレーザー、Krレーザー等の気体レーザーを用いることができる。これらのレーザーは、要求される励起波長に合わせて適宜選択する。
この場合は、ラマンスペクトルの1520〜1600cm−1にピークを有するGバンドの強度I と、1320〜1450cm−1にピークを有するDバンドの強度Iが現れる。これらの場合においても、本願発明を適用できるものである。
以上から、GバンドとDバンドのピーク強度比(I/I比と呼ぶことにする)を計算することで、炭素材料の結晶性を評価できる。
上記から明らかなように、本願発明においては、結晶性を上げることによってスパッタリング特性を改善し、スパッタリング時のパーティクルを低減するものであり、ラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(I/I)が5.0以上とするものである。
これによって、炭素同士で凝集体を形成し易いという問題を解決し、さらにスパッタリング中に炭素が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するのを抑制することができる。
GバンドとDバンドのピーク強度比(I/I)の上限値は、特に制限はないが、多くの場合20以下となる。ピーク強度比(I/I)が5.0以上であれば、パーティクルの発生を効果的に抑制できる。なお、本発明のピーク強度比は、ターゲットの任意10箇所の強度比を測定し、その平均値としている。
本発明のスパッタリングターゲットは、粉末焼結法によって作製する。作製にあたり、各原料粉末(例えば、代表的な例として、Fe粉末、Pt粉末、C粉末)を用意する。
Fe粉末やPt粉末は、平均粒径が0.5μm以上10μm以下のものを用いることが望ましい。これらの原料粉末の粒径が小さ過ぎると、酸化が促進されてスパッタリングターゲット中の酸素濃度が上昇するなどの問題があるため、0.5μm以上とすることが望ましい。一方、これらの原料粉末の粒径が大きいと、C粒子を合金中に微細分散することが難しくなるため10μm以下のものを用いることがさらに望ましい。
本発明において重要なことは、C原料粉末は平均粒子径0.5〜50μmのものを使用することである。使用するC粉末の種類に特に制限はなく、ターゲットの種類により任意に選択し、使用することができるが、薄片化黒鉛は、薄片化処理をしていない黒鉛よりも導電性が高く、異常放電を生じにくいため好ましい。
また、C粉末の粒子径が小さ過ぎると、凝集しやすくなるため0.5μm以上とすることが望ましい。一方、C粉末の粒子径が大きいと、スパッタリング時の異常放電の原因となるため、50μm以下とすることが望ましい。
さらに原料粉末として、合金粉末(Fe−Pt粉、Fe−Cu粉、Pt−Cu粉、Fe−Pt−Cu粉)を用いてもよい。特にPtを含む合金粉末はその組成にもよるが、原料粉末中の酸素量を少なくするために有効である。合金粉末を用いる場合も、平均粒径が0.5μm以上10μm以下のものを用いることが望ましい。
そして、上記の粉末を所望の組成になるように秤量し、混合、粉砕する。
重要なことは、炭素原料をマトリックス中に一様に分散させるために、C原料粉末に含まれている数百μm〜数mmの大きさの塊を解砕あるいはふるいで取り除くことである。方法としては、攪拌混合機、攪拌転動混合機、100〜200メッシュ程度のふるい等を使用することができる。なお、ふるいは、粗大粒の除去だけではなく、解砕や混合の機能も兼ね備えるものである。
また、このようなC原料粉末の解砕やふるい分けは、炭素原料とその他の原料を混合した後に行うこともできる。混合装置としては、縦型ミキサー、V型混合機もしくはこれに準ずる性能を有する混合機を使用することができる。
このようにしてC原料粉末に含まれる大きな塊を排除した後に、炭素原料とその他の原料粉を混合する。混合方法としては、せん断力によって混合する装置を使用することができる。例えば、乳鉢、攪拌混合機(高速)、攪拌転動混合機(高速)等を使用することができる。また、せん断力が発生し、かつ原料が微粉砕しない装置であれば、その他の装置を使用することもできる。
一方で、ボールミルや媒体攪拌ミル等のように衝撃力で原料を微粉砕してしまうような混合装置は、炭素原料の微粉砕を促進し、炭素原料同士の凝集を助長してしまうため好ましくない。但し、ごく短時間の使用その他の微粉砕の影響を抑える条件であれば、このような装置を使用することも可能である。
こうして得られた混合粉末をホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度は、スパッタリングターゲットの組成にもよるが、多くの場合、1000〜1500°Cの温度範囲とする。25MPa〜35MPaとする。この焼結条件においても、C粒子の凝集を抑えることが必要である。
次に、ホットプレスから取り出した焼結体に熱間等方加圧加工を施す。熱間等方加圧加工は焼結体の密度向上に有効である。熱間等方加圧加工時の保持温度は焼結体の組成にもよるが、多くの場合、1000〜1500°Cの温度範囲である。また加圧力は100Mpa以上に設定する。
このようにして得られた焼結体を旋盤で所望の形状に加工することにより、本発明のスパッタリングターゲットは作製できる。
以上により、合金中にC粒子が均一に分散し、かつ高密度なC粒子が分散したラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(I/I)が5.0以上であることを特徴とする磁気記録膜用スパッタリングターゲットを作製することができる。このようにして製造した本発明のスパッタリングターゲットは、グラニュラー構造磁性薄膜の成膜に使用するスパッタリングターゲットとして有用である。
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量したC粉末を攪拌混合機に封入し、800rpm、5分間回転させて解砕した。その後、この解砕したC粉末と、Fe粉末と、Pt粉末とを乳鉢に入れて2時間混合した。次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図1に示す。このように、投入原料の粒子径と同程度の大きさのC粒子が残留している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.1%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図2に示す。I/I比は7.05となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は64個であった。比較例に比べて大きく減少した。
(実施例2)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量したC粉末を攪拌混合機に封入し、800rpm、5分間回転させて解砕した。その後、解砕したC粉末と、Fe粉末と、Pt粉末とを5L型媒体攪拌ミルに入れて、300rpm、1時間回転させて混合した。次に、攪拌ミルから取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図3に示す。このように、投入原料の粒子径と同程度の大きさのC粒子が残留している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.0%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図4に示す。I/I比は5.02となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は153個であった。比較例に比べて大きく減少した。
(実施例3)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径0.5μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径0.5μmのグラファイトを使用した。
次に、秤量したC粉末を攪拌混合機に封入し、800rpm、5分間回転させて解砕した。その後、解砕したC粉末と、Fe粉末と、Pt粉末とを5L型媒体攪拌ミルに入れて、300rpm、30分間回転させて混合した。次に、攪拌ミルから取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図5に示す。このように、投入原料の粒子径と同程度の大きさのC粒子が残留している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.5%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図6に示す。I/I比は5.93となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は116個であった。比較例に比べて大きく減少した。
(実施例4)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径20μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径20μmのグラファイトを使用した。
次に、秤量した原料粉末を、100メッシュふるいを通し、その後、これを攪拌混合機(高速)に入れて、1300rpm、5分間回転させて混合した。次に、攪拌混合機から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図7に示す。このように、投入原料の粒子径と同程度の大きさのC粒子が残留している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.6%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図8に示す。I/I比は6.52となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は121個であった。比較例に比べて大きく減少した。
(実施例5)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒径3μmのAg粉末、平均粒子径20μmのC粉末を用意し、組成が35Fe−25Pt−35C−5Ag(mol%)となるように秤量した。C粉末には平均粒子径20μmのグラファイトを使用した。
次に、秤量した原料粉末を縦型ミキサーに封入し、混合した。その後、200メッシュふるいを通してから、原料粉末を乳鉢で2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図9に示す。このように、投入原料の粒子径と同程度の大きさのC粒子が残留している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.0%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図10に示す。I/I比は5.84となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は28個であった。比較例に比べて大きく減少した。
(実施例6)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が25Fe−25Pt−50C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末をV型混合機に封入して混合した。その後、攪拌混合機を用いて、800rpm、5分間解砕した後、これを乳鉢で2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.1%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.93となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は102個であった。比較例に比べて大きく減少した。
(実施例7)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が45Fe−45Pt−10C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末をV型混合機に封入して混合した。その後、攪拌混合機を用いて、800rpm、5分間解砕した後、これを乳鉢で2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.6%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.85となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は24個であった。比較例に比べて大きく減少した。
(実施例8)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒径3μmのRu粉末、平均粒子径20μmのC粉末、平均粒径1μmのTiO粉末、平均粒径0.5μmのSiO粉末、平均粒径0.5μmのCr粉末を用意し、組成が39Fe−40Pt−2Ru−10C−3TiO−3SiO−3Cr(mol%)となるように秤量した。C粉末には平均粒子径20μmのグラファイトを使用した。
次に、秤量した原料粉末を縦型ミキサーに封入して混合した。その後、攪拌混合機を用いて、800rpm、5分間解砕した後、これを乳鉢で2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ99.1%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.27となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は13個であった。比較例に比べて大きく減少した。
(実施例9)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が30Fe−60Pt−10C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を、100メッシュふるいを通し、その後、これを乳鉢に入れて、2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.9%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は7.02となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は23個であった。比較例に比べて大きく減少した。
(実施例10)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末を用意し、組成が55Fe−5Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径6μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を、100メッシュふるいを通し、その後、これを乳鉢に入れて、2時間混合した。
次に、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.7%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.94となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は97個であった。比較例に比べて大きく減少した。
(実施例11)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末、平均粒径5μmのAu粉末を用意し、組成が30Fe−45Pt−20C−5Au(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を縦型ミキサーに封入し、混合した後、攪拌混合機を用いて800rpm、5分間解砕した。その後、攪拌混合機(高速)を用いて1300rpm、5分間混合した。
次に、攪拌混合機から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1350°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.69となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は56個であった。比較例に比べて大きく減少した。
(実施例12)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末、平均粒径5μmのCu粉末を用意し、組成が35Fe−35Pt−20C−10Cu(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を縦型ミキサーに封入し、混合した後、攪拌混合機を用いて800rpm、5分間解砕した。その後、攪拌混合機(高速)を用いて1300rpm、5分間混合した。
次に、攪拌混合機から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1350°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.2%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.92となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は42個であった。比較例に比べて大きく減少した。
(実施例13)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末、平均粒径10μmのB粉末を用意し、組成が43Fe−45Pt−2B−10C(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を縦型ミキサーに封入し、混合した後、攪拌混合機を用いて800rpm、5分間解砕した。その後、攪拌混合機(高速)を用いて1300rpm、5分間混合した。
次に、攪拌混合機から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ97.1%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.88となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は72個であった。比較例に比べて大きく減少した。
(実施例14)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径15μmのC粉末、平均粒径1μmのTa粉末、平均粒径1μmのB粉末、平均粒径1μmの3MgO粉末、平均粒径1μmのCoO粉末を用意し、組成が40Fe−40Pt−10C−3Ta−3B−3MgO−1CoO(mol%)となるように秤量した。C粉末には平均粒子径15μmの薄片化黒鉛を使用した。
次に、秤量した原料粉末を縦型ミキサーに封入し、混合した後、攪拌混合機を用いて800rpm、5分間解砕した。その後、乳鉢を用いて2時間混合した。
次に、攪拌混合機から取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ98.2%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。その結果、I/I比は6.29となり、本願発明のI/I比が5.0以上という条件を満たしていた。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は24個であった。比較例に比べて大きく減少した。
(比較例1)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径20μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径20μmのグラファイトを使用した。
次に、秤量した原料粉末を縦型ミキサーに封入して混合した。その後、200メッシュふるいを通してから、5L媒体攪拌ミルを用いて300rpm、20時間混合した。
次に、攪拌ミルから取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織写真を図11に示す。このように、投入原料が細かく粉砕されたC粒子が存在している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.7%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図12に示す。I/I比は2.05となり、本願発明のI/I比が5.0以上という条件を満たしていなかった。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は35000個と非常に多かった。
(比較例2)
原料粉末として平均粒径3μmのFe粉末、平均粒径3μmのPt粉末、平均粒子径20μmのC粉末を用意し、組成が30Fe−30Pt−40C(mol%)となるように秤量した。C粉末には平均粒子径20μmのグラファイトを使用した。
次に、秤量した原料粉末を縦型ミキサーに封入して混合した。その後、100メッシュふるいを通してから、5L媒体攪拌ミルを用いて300rpm、48時間混合した。
次に、攪拌ミルから取り出した混合粉末をカーボン製の型に充填しホットプレスした。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。こうして作製された焼結体の組織を図13に示す。このように、投入原料が細かく粉砕されたC粒子が存在している様子が分かる。また、焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
次に、この焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工してターゲットとした。このターゲットについて、ラマン散乱分光測定の測定条件は、励起波長532nm、出力5mW、回折格子は1800L/mmを使用した。
また、測定結果のカーブフィッティングにはローレンツ関数を使用した。Fe−Pt−Cのラマン散乱分光測定結果とカーブフィッティング結果を図14に示す。I/I比は1.70となり、本願発明のI/I比が5.0以上という条件を満たしていなかった。
次に、このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒径0.25〜3μmのパーティクルの個数を表面異物検査装置(Surfscan6420、KLA−Tencor社製)で測定した結果、表1に示すように、このときのパーティクル個数は90000個と非常に多かった。
本発明の磁気記録膜用スパッタリングターゲットは、高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にするものであり、C粒子が分散した磁気記録膜用スパッタリングターゲット、特にFe−Pt系スパッタリングターゲットを提供することができ、炭素は焼結しにくい材料であり、炭素同士で凝集体を形成し易いという問題を解決し、さらにスパッタリング中に炭素の塊が容易に脱離し、スパッタリング後の膜上にパーティクルが多数発生するという問題を解決することができるという優れた効果を有する。したがってグラニュラー構造の磁性薄膜の成膜用スパッタリングターゲットとして有用である。
本発明において相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
式:計算密度=シグマΣ(構成成分の分子量×構成成分の原子量比)/Σ(構成成分の分子量×構成成分の原子量比/構成成分の文献値密度)
ここで、Σは、ターゲットの構成成分の全てについて、和をとることを意味する。

Claims (6)

  1. Cを含有する磁気記録膜用スパッタリングターゲットであって、ラマン散乱分光測定におけるGバンドとDバンドのピーク強度比(I/I)が5.0以上であることを特徴とする磁気記録膜用スパッタリングターゲット。
  2. Ptが5mol%以上60mol%以下、残余がFeである組成の金属とCからなる請求項1記載の磁気記録膜用スパッタリングターゲット。
  3. Cの含有割合が10mol%以上70mol%以下であることを特徴とする請求項1又は2記載の磁気記録膜用スパッタリングターゲット。
  4. 相対密度が90%以上であることを特徴とする請求項1〜3のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
  5. 添加元素として、B、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下含有することを特徴とする請求項1〜4のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
  6. 添加剤として、SiO、Cr、CoO、Ta、B、MgO、Coから選択した1種以上の酸化物を、0.5mol%以上20mol%以下を含有することを特徴とする請求項1〜5のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
JP2013535606A 2012-06-18 2013-05-22 磁気記録膜用スパッタリングターゲット Active JP5592022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013535606A JP5592022B2 (ja) 2012-06-18 2013-05-22 磁気記録膜用スパッタリングターゲット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012136958 2012-06-18
JP2012136958 2012-06-18
PCT/JP2013/064242 WO2013190943A1 (ja) 2012-06-18 2013-05-22 磁気記録膜用スパッタリングターゲット
JP2013535606A JP5592022B2 (ja) 2012-06-18 2013-05-22 磁気記録膜用スパッタリングターゲット

Publications (2)

Publication Number Publication Date
JP5592022B2 JP5592022B2 (ja) 2014-09-17
JPWO2013190943A1 true JPWO2013190943A1 (ja) 2016-05-26

Family

ID=49768548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013535606A Active JP5592022B2 (ja) 2012-06-18 2013-05-22 磁気記録膜用スパッタリングターゲット

Country Status (7)

Country Link
US (1) US9540724B2 (ja)
JP (1) JP5592022B2 (ja)
CN (1) CN104145306B (ja)
MY (1) MY167825A (ja)
SG (1) SG11201404067PA (ja)
TW (1) TWI564416B (ja)
WO (1) WO2013190943A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
JP5226155B2 (ja) 2010-08-31 2013-07-03 Jx日鉱日石金属株式会社 Fe−Pt系強磁性材スパッタリングターゲット
WO2012086335A1 (ja) 2010-12-20 2012-06-28 Jx日鉱日石金属株式会社 C粒子が分散したFe-Pt系スパッタリングターゲット
US9683284B2 (en) * 2011-03-30 2017-06-20 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
CN105026610B (zh) * 2013-03-01 2017-10-24 田中贵金属工业株式会社 FePt‑C系溅射靶及其制造方法
SG11201604730PA (en) * 2014-03-18 2016-08-30 Jx Nippon Mining & Metals Corp Magnetic sputtering target
WO2016047236A1 (ja) 2014-09-22 2016-03-31 Jx金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法
SG11201701838XA (en) * 2014-09-26 2017-04-27 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film formation and production method therefor
EP3466532B1 (en) 2014-12-05 2023-04-26 Nisshinbo Holdings Inc. Carbon catalyst, electrode, and battery
AT14701U1 (de) * 2015-03-19 2016-04-15 Plansee Composite Mat Gmbh Beschichtungsquelle zur Herstellung dotierter Kohlenstoffschichten
WO2017141558A1 (ja) 2016-02-19 2017-08-24 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JP6383510B2 (ja) 2016-03-07 2018-08-29 田中貴金属工業株式会社 FePt−C系スパッタリングターゲット
WO2019220675A1 (ja) * 2018-05-14 2019-11-21 Jx金属株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
CN118076762A (zh) * 2021-11-05 2024-05-24 Jx金属株式会社 Fe-Pt-C系溅射靶部件、溅射靶组件、成膜方法、以及溅射靶部件的制造方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267063A (ja) 1993-03-11 1994-09-22 Hitachi Ltd 磁気ディスクおよびその製造方法
JP2000268357A (ja) 1999-03-12 2000-09-29 Hitachi Ltd 磁気記録媒体の製造方法及び製造装置
JP3141109B2 (ja) 1999-04-19 2001-03-05 東北大学長 磁気記録媒体及び磁気記録媒体の製造方法
JP3328692B2 (ja) 1999-04-26 2002-09-30 東北大学長 磁気記録媒体の製造方法
JP2003028802A (ja) 2001-07-12 2003-01-29 Sony Corp カーボン膜評価方法および磁気記録媒体の製造方法
US6759005B2 (en) * 2002-07-23 2004-07-06 Heraeus, Inc. Fabrication of B/C/N/O/Si doped sputtering targets
US20070189916A1 (en) 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
KR100470151B1 (ko) 2002-10-29 2005-02-05 한국과학기술원 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법
WO2005083148A1 (ja) 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
WO2005093124A1 (ja) 2004-03-26 2005-10-06 Nippon Mining & Metals Co., Ltd. Co-Cr-Pt-B系合金スパッタリングターゲット
JP2006127621A (ja) * 2004-10-28 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及びその製造方法
CN101198716B (zh) 2005-06-15 2010-12-22 日矿金属株式会社 溅射靶用氧化铬粉末及溅射靶
CN100555418C (zh) * 2006-01-24 2009-10-28 鸿富锦精密工业(深圳)有限公司 垂直磁记录介质、及其制造方法
US20080057350A1 (en) 2006-09-01 2008-03-06 Heraeus, Inc. Magnetic media and sputter targets with compositions of high anisotropy alloys and oxide compounds
MY145087A (en) 2008-03-28 2011-12-30 Jx Nippon Mining & Metals Corp Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
WO2009123055A1 (ja) 2008-04-03 2009-10-08 日鉱金属株式会社 パーティクルの発生の少ないスパッタリングターゲット
WO2010101051A1 (ja) 2009-03-03 2010-09-10 日鉱金属株式会社 スパッタリングターゲット及びその製造方法
CN102333905B (zh) 2009-03-27 2013-09-04 吉坤日矿日石金属株式会社 非磁性材料粒子分散型强磁性材料溅射靶
WO2011016365A1 (ja) 2009-08-06 2011-02-10 Jx日鉱日石金属株式会社 無機物粒子分散型スパッタリングターゲット
CN102652184B (zh) 2009-12-11 2014-08-06 吉坤日矿日石金属株式会社 磁性材料溅射靶
SG181632A1 (en) 2009-12-25 2012-07-30 Jx Nippon Mining & Metals Corp Sputtering target with reduced particle generation and method of producing said target
SG175953A1 (en) 2010-01-21 2011-12-29 Jx Nippon Mining & Metals Corp Ferromagnetic-material sputtering target
US9181617B2 (en) 2010-07-20 2015-11-10 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
US8679268B2 (en) 2010-07-20 2014-03-25 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
MY165512A (en) * 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
JP5226155B2 (ja) * 2010-08-31 2013-07-03 Jx日鉱日石金属株式会社 Fe−Pt系強磁性材スパッタリングターゲット
CN103038388B (zh) 2010-09-03 2015-04-01 吉坤日矿日石金属株式会社 强磁性材料溅射靶
JP5590322B2 (ja) * 2010-11-12 2014-09-17 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
CN103228816B (zh) * 2010-11-29 2015-09-30 三井金属矿业株式会社 溅射靶
WO2012073879A1 (ja) * 2010-11-29 2012-06-07 三井金属鉱業株式会社 スパッタリングターゲット
US20130220804A1 (en) 2010-12-09 2013-08-29 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target
WO2012081363A1 (ja) 2010-12-15 2012-06-21 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット及びその製造方法
MY161157A (en) 2010-12-17 2017-04-14 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
US20130206591A1 (en) 2010-12-17 2013-08-15 Jx Nippon Mining & Metals Corporation Sputtering Target for Magnetic Recording Film and Method for Producing Same
CN103261469A (zh) 2010-12-17 2013-08-21 吉坤日矿日石金属株式会社 强磁性材料溅射靶
WO2012086335A1 (ja) * 2010-12-20 2012-06-28 Jx日鉱日石金属株式会社 C粒子が分散したFe-Pt系スパッタリングターゲット
US20130206592A1 (en) 2010-12-22 2013-08-15 Jx Nippon Mining & Metals Corporation Ferromagnetic Sputtering Target
US20130213802A1 (en) 2010-12-22 2013-08-22 Jx Nippon Mining & Metals Corporation Sintered Compact Sputtering Target
JP5041262B2 (ja) * 2011-01-31 2012-10-03 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5912559B2 (ja) 2011-03-30 2016-04-27 田中貴金属工業株式会社 FePt−C系スパッタリングターゲットの製造方法
US9683284B2 (en) * 2011-03-30 2017-06-20 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
JP5811672B2 (ja) * 2011-08-04 2015-11-11 富士電機株式会社 垂直磁気記録媒体およびその製造方法
US20140001038A1 (en) 2011-08-23 2014-01-02 Jx Nippon Mining & Metals Corporation Ferromagnetic Sputtering Target with Less Particle Generation
US20140083847A1 (en) * 2011-09-26 2014-03-27 Jx Nippon Mining & Metals Corporation Fe-Pt-C Based Sputtering Target
US20140231250A1 (en) * 2011-12-22 2014-08-21 Jx Nippon Mining & Metals Corporation C particle dispersed fe-pt-based sputtering target
CN104221085B (zh) * 2012-07-20 2017-05-24 吉坤日矿日石金属株式会社 磁记录膜形成用溅射靶及其制造方法

Also Published As

Publication number Publication date
US20140346039A1 (en) 2014-11-27
CN104145306B (zh) 2017-09-26
WO2013190943A1 (ja) 2013-12-27
JP5592022B2 (ja) 2014-09-17
US9540724B2 (en) 2017-01-10
MY167825A (en) 2018-09-26
TW201413019A (zh) 2014-04-01
CN104145306A (zh) 2014-11-12
TWI564416B (zh) 2017-01-01
SG11201404067PA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5592022B2 (ja) 磁気記録膜用スパッタリングターゲット
JP5497904B2 (ja) 磁気記録膜用スパッタリングターゲット
JP5041262B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
TWI636149B (zh) 強磁性材濺鍍靶
JP5457615B1 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
JP5913620B2 (ja) Fe−Pt系焼結体スパッタリングターゲット及びその製造方法
JP6422096B2 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JPWO2013094605A1 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JP5041261B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP6305881B2 (ja) 磁気記録媒体用スパッタリングターゲット
JP6108064B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP6037206B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5876155B2 (ja) 磁気記録膜用スパッタリングターゲット及びその製造に用いる炭素原料
JP6037197B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
TWI605143B (zh) Magnetic recording media sputtering target
CN109943814B (zh) 磁记录膜形成用溅射靶及其制造方法
JP6062586B2 (ja) 磁気記録膜形成用スパッタリングターゲット
JPWO2015141571A1 (ja) 磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5592022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250