KR100470151B1 - FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법 - Google Patents

FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법 Download PDF

Info

Publication number
KR100470151B1
KR100470151B1 KR10-2002-0066163A KR20020066163A KR100470151B1 KR 100470151 B1 KR100470151 B1 KR 100470151B1 KR 20020066163 A KR20020066163 A KR 20020066163A KR 100470151 B1 KR100470151 B1 KR 100470151B1
Authority
KR
South Korea
Prior art keywords
magnetic recording
thin film
carbon
recording medium
feptc
Prior art date
Application number
KR10-2002-0066163A
Other languages
English (en)
Other versions
KR20040037609A (ko
Inventor
신성철
고현석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2002-0066163A priority Critical patent/KR100470151B1/ko
Priority to US10/679,543 priority patent/US7241520B2/en
Priority to JP2003367342A priority patent/JP3950838B2/ja
Publication of KR20040037609A publication Critical patent/KR20040037609A/ko
Application granted granted Critical
Publication of KR100470151B1 publication Critical patent/KR100470151B1/ko
Priority to US11/255,908 priority patent/US20060051622A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

본 발명은 고밀도 자기기록에 적합한 기록매체에 관한 것으로, 보다 상세하게는 자기기록에 적합한 보자력과 미세한 결정립 및 균일한 결정립 크기 분포를 가지는 최적 조성의 탄소가 첨가된 FePtC 합금 박막으로 이루어진 자기기록매체 및 그 제조방법을 제공하기 위한 것이며, 이러한 목적을 달성하기 위하여 FePtC 합금 박막에 탄소를 25 부피% 첨가함으로써 고밀도 자기기록매체로서 바람직한 미시적 자기 특성 및 구조적 특성을 갖는 자기기록매체를 제공하며, 또한 FePtC 박막을 기판 온도 400℃에서 dc 마그네트론 스퍼터링 장치를 이용해 동시 증착하는 방법으로 형성하고 기판의 열처리 및 증착 시간은 1 시간으로 하는 것을 특징으로 하는 자기기록매체의 제조방법을 제공함으로써, 저장 밀도를 높이고 노이즈를 줄이며 공정 온도를 낮추는 효과를 가짐을 요지로 한다.

Description

FePtC 박막을 이용한 고밀도 자기기록매체 및 그 제조방법 {HIGH-DENSITY MAGNETIC RECORDING MEDIA USING FePtC FILM AND MANUFACTURING METHOD THEREOF}
본 발명은 자기기록매체에 관한 것으로서, 보다 상세하게는 정보 기록용 자기 기록에 있어서 정보 저장 수단으로 사용되는 FePt 박막에 탄소를 첨가하여 정보 저장 밀도를 높인 정보 기록용 자기기록매체의 재료 및 자기기록매체의 제조방법에 관한 것이다.
일반적으로 정보 기록용 자기기록매체로 사용되는 재료의 주요 요건은, 자기 기록의 안정성과 기록헤드 용량을 고려하여 보자력의 크기가 2~5 kOe 정도이며, 입자(Grain)의 크기가 작아야 한다는 것이다. 그러나, 입자의 크기가 감소하면 입자의 열적 안정성이 문제가 되므로, 열적 안정성을 위해 높은 결정 자기 이방성이 요구된다. 이로 인해 정보 기록용 자기기록매체로 주목 받고 있는 재료 중 하나가 규칙화 구조의 FePt 박막이다. 상온에서 증착된 FePt은 비규칙화된 fcc 구조(Disordered Face Centered Cubic)를 가지며, 높은 온도에서 열처리를 하게 되면 높은 결정 자기 이방성을 가지는 규칙화된 fct 구조(Ordered Face Centered Tetragonal)를 얻을 수 있다.
이러한 FePt 박막은 열처리를 하는 경우 규칙 구조를 얻을 수는 있지만, 입자의 크기가 커지고 불규칙하게 되는 단점이 있다. 그러므로, 자기 기록 물질로서의 알맞은 성질을 얻기 위해 열처리나 다른 물질을 첨가하는 방법이 연구되고 있다.
Coffey는 1999년의 특허에서 탄소와 같은 물질을 FePt에 첨가시킴으로써 미세구조를 바꿀 수 있으며 잡음을 줄일 수 있다는 가능성을 언급하였다[미국 특허 제5,989,728호, 1999년 11월 23, Coffey et al]. 그러나, 정확한 탄소의 함량에 대한 TEM 사진을 이용한 입자(Grain)의 관찰이 이루어지지 않았다. 그러므로, 이에 대한 실험이 필요하다고 할 수 있다.
J. A. Christodoulides는 FePt과 탄소를 다층 박막으로 제작하여 구조적, 자기적 특성을 발표한 바 있다[J. A. Christodoulides, J. Appl. Phys. 87, 6938(2000)]. 그는 탄소의 함량을 변화시키면서 보자력의 변화와 미세 구조의 변화를 실험하였다. 그러나, 이 종래 기술에 의하면, 다층 박막 제조상의 문제로 인하여 박막을 증착한 후 열처리하는 과정에서 700도의 높은 온도를 필요로 하게 되며, 이러한 높은 온도는 실제 공정상의 문제점을 발생시키게 된다. 또한, FePt 입자의 크기가 불균일하여 잡음이 증가하게 된다. 즉, 보자력의 값은 수직 자기 기록에 적합한 3.5 kOe의 값이 나오지만, 각형비의 값이 0.5로서 잡음이 증가하게 되는 문제점이 있다.
본 발명은 상기 문제점을 해결하기 위하여, 정보 기록용 자기 매체의 재료로사용되는 FePt 박막의 열처리시 보자력의 값은 2~5 kOe, 각형비는 1의 값을 가지도록 하며 FePt 입자의 크기를 작게 하고 균일하게 하는 재료를 제공하고, 또한 이러한 재료를 제작하기 위하여 동시 증착의 방법을 사용한 제조방법을 제공하는 것을 목적으로 한다.
도 1은 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 XRD 세기의 변화를 도시한 도면,
도 2는 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 TEM 이미지의 변화를 도시한 도면,
도 3은 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 M-H 루프의 변화를 도시한 도면,
도 4는 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 보자력의 변화를 도시한 도면,
도 5는 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 표면 구조의 변화를 도시한 도면,
도 6은 400℃에서 FePt에 탄소 첨가시 그 첨가한 양에 따른 자화 반전의 모습을 비교한 도면.
본 발명은 상기한 바와 같은 목적을 달성하기 위하여 정보를 기록하는 정보 기록 수단 및 상기 정보 기록 수단에 의해 정보가 자기적으로 기록되는 정보 저장 수단으로 이루어진 정보 기록 매체에 있어서, 상기 정보 저장 수단이 400℃의 산화마그네슘(MgO) 기판 위에 철(Fe), 백금(Pt), 탄소(C)가 동시 증착된 FePtC 합금 박막층을 포함하는 자기기록매체를 제공하는 것을 특징으로 한다.
또한, 본 발명에 따른 자기기록매체는 FePtC 박막을 기판 온도 400℃에서 dc 마그네트론 스퍼터링 장치를 이용해 동시 증착 방법으로 제작하고, 상기 Fe과 Pt 의 조성은 원자비 1:1 을 유지하였으며, 탄소(C)의 비율을 0 ~ 85 %로 변화시킴으로서 고밀도 자기기록 장치에 적합한 보자력과 작은 결정립 크기를 지닌 정보 저장 매체로서 정보 저장 밀도를 높이고 잡음을 줄일 수 있는 비율을 찾아 내어 제작하는 것을 특징으로 한다.
상기와 같이, 본 발명의 실시예에 따르면, dc 마그네트론 스퍼터링 장치를이용하여 박막을 증착한다. 또한, 증착 전 초기 진공도는 1×10-6Torr 이하가 되도록 하였으며, 스퍼터링 가스로는 순도 99.9999 %의 아르곤을 사용하였다.
본 발명의 실시예에 따르면, 2 인치 직경의 철(Fe), 탄소(C) 타킷(target)과 가로, 세로 5 mm의 백금(Pt) 칩(chip)이 사용된다. FePtC 박막은 산화마그네슘 MgO(100) 기판 위에 Fe, Pt, C를 동시에 증착함으로써 형성하고, 증착 시간은 1 시간으로 고정시켰다.
또한 증착과 동시에 기판 뒷면에 히터를 놓아 기판의 온도를 1 시간 동안 일정하게 해주었다. MgO 기판은 열적인 안정성이 뛰어나기 때문에, 이러한 열처리를 해 주어야 되는 물질의 기판으로 사용하기에 적당하다. 히터는 기판의 뒷면에 붙어서 위치하게 되는데, 이것은 고온의 열을 가해주기 위한 방법으로, 접촉되지 않을 경우 열의 전달이 잘 이루어지지 않아 고온의 열이 증착면까지 전달되지 않기 때문이다. 그리고, 히터 위쪽에는 세라믹 블럭을 올려 주어 흔들거릴 우려가 있는 히터를 고정시켜 주었다. 히터의 저항은 1Ω이며 700℃ 이상의 고온이 가능하다.
본 발명에 있어서 박막의 결정구조 및 배향성은 X선 회절분석기(XRD)를 통하여 관찰하였으며, 결정립의 크기 및 미세구조는 SEM(Scanning Electron Microscope)과 TEM(Transmission Electron Microscope)을 이용해 관찰하였다. 박막의 자기적 특성은 VSM(Vibrating Sample Magnetometer)을 이용하여 상온에서 측정하였다. 박막의 조성은 EDAX(Energy Dispersive X-Ray Spectroscopy)으로 분석하였으며, 두께는 α-step 을 이용하여 측정하였다.
이하, 본 발명에 따른 자기기록매체를 제작하기 위하여 탄소의 비율을 변화시켰을 때의 여러 특성들을 도시하고 있는 첨부 도면들을 참조하여 설명한다.
도 1은 섭씨 400도에서 FePt에 탄소(C)를 첨가했을 때 그 첨가한 양에 따른 XRD 세기의 변화를 보여준다. 도 1에 도시된 바와 같이, 탄소의 양이 늘어남에 따라서 FePt의 오더링 피크(Ordering Peak)의 크기는 줄어듬을 알 수 있다. 탄소는 FePt의 fct 구조를 깨는 역할을 하게 되며, 50 부피% 에서는 fct 구조의 피크가 사라져감을 볼 수 있다.
도 2는 섭씨 400도에서 FePt에 탄소를 첨가했을 때 그 첨가한 양에 따른 TEM 이미지의 변화를 도시한 것이다. 탄소를 첨가하지 않았을 때의 FePt 입자의 모양을 보면 크기는 10~20 nm 정도로 큰 입자를 형성하고 변화가 심함을 알 수 있다. 또한, 25 부피%의 탄소를 첨가했을 경우 입자의 크기는 5.2 nm로 작아졌으며 변화도 표준편차가 1.7 nm로서 작음을 알 수 있다. 이러한 입자 크기의 감소는 탄소의 비율이 증가함에 따라 더 두드러지며, 50 %의 탄소 첨가시에는 4 nm의 입자 크기를 보인다. 그러나, 완전하게 형성되지 않은 입자들이 많았으며, 이것은 탄소의 함량 증가로 인하여 FePt의 결합을 방해하는 현상이 50 부피% 이상부터는 뚜렷이 나타남을 보여주는 결과이다.
도 3은 섭씨 400도에서 FePt에 탄소를 첨가했을 때 그 첨가한 양에 따른 M-H 루프의 변화도로서, 탄소의 함량이 증가할수록 루프의 모양은 가로축 방향으로 넓어지는 경향이 있음을 보여준다. 즉 포화자화의 값은 감소하게 되며 보자력의 값은 증가한다. 그런데, 33 부피% 부터는 보자력의 값이 감소하게 되지만 포화자화의 값 또한 급격히 감소하게 되므로 이러한 경향성은 지속적으로 일어난다.
도 4는 섭씨 400도에서 FePt에 탄소를 첨가했을 때 그 첨가한 양에 따른 보자력 변화도이다. 탄소를 첨가하게 되면 보자력의 값은 증가하게 되는데 이것은 포화자화 값의 감소에 의한 영향으로 보인다. 25 부피% 이상 첨가한 경우 시료의 보자력은 감소하게 되며, 탄소에 의한 자기이방성의 감소가 포화자화에 비해서 보자력에 더 큰 영향을 미치기 때문으로 보인다. 자기기록에 알맞은 보자력의 값은 2~5 kOe 정도이며, 이러한 조건을 25 부피%의 탄소가 첨가된 시료가 만족시키는 것을 알 수 있다. 또한, 노이즈에 큰 영향을 미치는 각형비도 25 부피%의 탄소가 첨가된 시료까지는 1에 가까운 값을 유지하므로, 노이즈적인 측면에서도 25 부피% 시료는 자기기록에 적당하다고 할 수 있다.
도 5는 섭씨 400도에서 FePt에 탄소를 첨가했을 때 그 첨가한 양에 따른 표면 구조의 변화를 도시한 것이다. 탄소의 첨가량이 25 부피%일 때까지의 표면의 구조는 불연속적인 채널 구조를 보이게 되며 이러한 채널 내부에서는 강한 상호 교환력이 작용하게 된다. 그러므로, 도 3에서 본 바와 같이 각형비도 1의 값을 유지할 수 있게 되는 것이다. 33 부피% 이상의 탄소가 첨가된 경우에는 표면의 구조가 알갱이 구조로 바뀌며 상호 교환력이 줄어들게 됨으로써 각형비의 값이 작아지게 된다. 그러므로, 자기 기록에 알맞은 표면구조는 상호 교환력의 크기가 큰 채널 구조라는 것을 알 수 있다. 또한, 채널 구조가 유지되는 조건 하에서 노이즈에 영향을 미치는 각형비의 값이 1임을 알 수 있다.
도 6은 섭씨 400도에서 FePt에 탄소를 첨가했을 때 그 첨가한 양에 따른 자화 반전의 모습을 비교한 도면이다. a)는 탄소를 첨가하지 않았을 경우 자화반전의 모습이며, 채널 구조와 비슷한 형태의 모습을 보이는 것을 알 수 있다. 즉 채널을 따라서 강한 상호 교환력이 작용하는 것을 알 수 있다. b)는 탄소를 25 부피 % 첨가했을 경우 자화반전의 모습이다. 탄소를 첨가하지 않았을 때와 비교하면 연결되지 않고 끊어진 핵 형성 주도의 자화 반전의 모습을 볼 수 있다. 이것은 도 5에서 본 바와 같이 채널 형성이 탄소를 첨가함으로써 약해져 채널을 따라 발생하는 강한 상호 작용이 감소하기 때문이다.
따라서, 상기와 같은 일련의 실험 결과로서, 탄소가 25 부피% 정도 첨가된 경우에 고밀도 자기기록매체로 적합한 미시적 자기 특성 및 구조적 특성을 가짐을 알 수 있다.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
본 발명에 의하면 다음과 같은 효과를 얻을 수 있다.
첫째, FePt에 탄소를 첨가함으로써 FePt 입자의 크기를 탄소의 첨가가 25 부피%일 경우 5 nm에서 50 부피%의 첨가시에는 4 nm 까지 줄일 수 있으며 균일한 분포를 얻을 수 있다. 그러므로, 자기기록 물질의 기록 밀도를 높이고 노이즈를 줄일 수 있는 효과를 얻게 된다.
둘째, FePt에 탄소를 25 부피% 첨가하면 4.4 kOe의 보자력을 얻을 수 있다. 이것은 자기기록에 쓰이는 기록 헤드에 가해줄 수 있는 자기장의 크기와 기록매체의 안정성을 모두 고려했을 때 알맞은 보자력의 값을 얻은 결과라고 할 수 있다.
셋째, 탄소의 첨가는 FePt 박막의 표면 구조에 변화를 일으키며 탄소의 첨가가 25 부피%일 때까지는 표면 구조가 채널 구조를 보임을 알 수 있다. 이러한 채널구조는 강한 상호작용을 일으켜 보자력의 값을 증가시키는 효과를 가져온다.
넷째, 동시 증착을 하게 되면, 기존의 FePt과 탄소의 다층 박막에 비하여 증착과 동시에 열처리를 할 수 있는 장점이 있으며, 규칙 구조를 형성하게 되는 온도를 낮출 수 있다. 본 발명에 따른 실험에서는 다층 박막의 경우보다 낮은 400℃의 온도에서도 우수한 성질을 나타내는 시료를 제작할 수 있었다.
따라서 종래의 FePt를 사용한 경우와 비교할 때, 본 발명에 따라 탄소를 동시 증착의 방법으로 400℃의 기판온도에서 25 부피%로 첨가시켜주면, 보자력의 크기는 4.4 kOe가 되며 알갱이의 크기를 5 nm로 줄이고 분포를 균일하게 만드므로 자기기록에 알맞은 시료를 얻을 수 있다. 또한, FePt과 탄소를 다층 박막으로 쌓은 경우와 비교하여 보면, 시료를 제작하는 온도를 낮추고 알갱이의 분포를 균일하게 하는 효과를 얻을 수 있다. 그러므로, 정보 저장 물질에 있어서 저장 밀도를 높이고 노이즈를 줄이며 또한 공정 온도를 낮출 수가 있다.

Claims (8)

  1. 정보를 기록하는 정보 기록 수단 및 상기 정보 기록 수단에 의해 정보가 자기적으로 기록되는 정보 저장 수단으로 이루어진 자기기록매체에 있어서,
    상기 정보 저장 수단은 탄소(C)의 함량이 10 ~ 50 부피%로 되도록 철(Fe), 백금(Pt), 탄소(C)를 동시 증착한 FePtC 박막을 포함하는 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체.
  2. 삭제
  3. 정보를 기록하는 정보 기록 수단 및 상기 정보 기록 수단에 의해 정보가 자기적으로 기록되는 정보 저장 수단으로 이루어진 자기기록매체의 제조방법에 있어서,
    상기 정보 저장 수단은 탄소(C)의 함량이 10 ~ 50 부피%로 되도록 기판 위에 철(Fe), 백금(Pt), 탄소(C)를 동시 증착하여 FePtC 박막을 형성함으로써 제조되는 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
  4. 제 3 항에 있어서,
    상기 FePtC 박막은 스퍼터링 장치를 사용하여 동시 증착하는 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
  5. 제 3 항에 있어서,
    상기 탄소의 함량은 25 부피%인 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
  6. 제 3 항에 있어서,
    상기 기판으로 산화마그네슘(MgO) 기판을 사용하는 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
  7. 제 3 항 또는 제 6 항에 있어서,
    상기 증착과 동시에 상기 기판을 400℃로 열처리하는 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
  8. 상기 제 7 항에 있어서,
    상기 증착 시간과 열처리 시간은 1 시간인 것을 특징으로 하는 FePtC 박막을 이용한 고밀도 자기기록매체 제조방법.
KR10-2002-0066163A 2002-10-29 2002-10-29 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법 KR100470151B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2002-0066163A KR100470151B1 (ko) 2002-10-29 2002-10-29 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법
US10/679,543 US7241520B2 (en) 2002-10-29 2003-10-06 High density magnetic recording medium using FePtC thin film and manufacturing method thereof
JP2003367342A JP3950838B2 (ja) 2002-10-29 2003-10-28 FePtC薄膜を利用した高密度磁気記録媒体及びその製造方法
US11/255,908 US20060051622A1 (en) 2002-10-29 2005-10-21 High density magnetic recording medium using FePtC thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0066163A KR100470151B1 (ko) 2002-10-29 2002-10-29 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법

Publications (2)

Publication Number Publication Date
KR20040037609A KR20040037609A (ko) 2004-05-07
KR100470151B1 true KR100470151B1 (ko) 2005-02-05

Family

ID=32464432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0066163A KR100470151B1 (ko) 2002-10-29 2002-10-29 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법

Country Status (3)

Country Link
US (2) US7241520B2 (ko)
JP (1) JP3950838B2 (ko)
KR (1) KR100470151B1 (ko)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765719B2 (ja) * 2005-06-27 2011-09-07 Tdk株式会社 焼結体、磁気ヘッドスライダ、及び焼結体の製造方法
JP4810360B2 (ja) * 2006-08-31 2011-11-09 石福金属興業株式会社 磁性薄膜
US9401170B1 (en) 2009-11-24 2016-07-26 WD Media, LLC Perpendicular magnetic recording medium with epitaxial exchange coupling layer
US8173282B1 (en) 2009-12-11 2012-05-08 Wd Media, Inc. Perpendicular magnetic recording medium with an ordering temperature reducing layer
US8784278B2 (en) 2010-05-28 2014-07-22 Hydroworx International, Inc. Underwater treadmill and integrated jet device and method for selectively controlling an underwater treadmill system
US8945732B1 (en) 2010-08-05 2015-02-03 WD Media, LLC Dual-magnetic layer high anisotropy media with orientation initialization layer
US8530065B1 (en) 2010-08-10 2013-09-10 WD Media, LLC Composite magnetic recording medium
US8889275B1 (en) 2010-08-20 2014-11-18 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
SG190918A1 (en) 2010-11-29 2013-07-31 Mitsui Mining & Smelting Co Sputtering target
WO2012073879A1 (ja) * 2010-11-29 2012-06-07 三井金属鉱業株式会社 スパッタリングターゲット
US9945026B2 (en) 2010-12-20 2018-04-17 Jx Nippon Mining & Metals Corporation Fe-Pt-based sputtering target with dispersed C grains
US8940418B1 (en) 2010-12-23 2015-01-27 WD Media, LLC Dynamic spring media with multiple exchange coupled hard-soft magnetic layers
JP5041262B2 (ja) * 2011-01-31 2012-10-03 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5041261B2 (ja) * 2011-01-31 2012-10-03 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5497904B2 (ja) * 2011-03-30 2014-05-21 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
JP5912559B2 (ja) 2011-03-30 2016-04-27 田中貴金属工業株式会社 FePt−C系スパッタリングターゲットの製造方法
JP6037197B2 (ja) * 2011-05-09 2016-12-07 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP6037206B2 (ja) * 2011-07-05 2016-12-07 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5811672B2 (ja) * 2011-08-04 2015-11-11 富士電機株式会社 垂直磁気記録媒体およびその製造方法
US20140083847A1 (en) * 2011-09-26 2014-03-27 Jx Nippon Mining & Metals Corporation Fe-Pt-C Based Sputtering Target
TWI504768B (zh) 2012-01-13 2015-10-21 Tanaka Precious Metal Ind FePt sputtering target and its manufacturing method
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US20140360871A1 (en) * 2012-05-22 2014-12-11 Jx Nippon Mining & Metals Corporation Fe-Pt-Ag-C-Based Sputtering Target Having C Grains Dispersed Therein, and Method for Producing Same
MY167825A (en) 2012-06-18 2018-09-26 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
JP6182833B2 (ja) * 2012-07-26 2017-08-23 富士電機株式会社 垂直磁気記録媒体
JP2014034730A (ja) * 2012-08-10 2014-02-24 Mitsui Mining & Smelting Co Ltd 焼結体およびスパッタリングターゲット
JP6108064B2 (ja) * 2012-08-24 2017-04-05 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
MY176000A (en) 2012-10-10 2020-07-21 Fuji Electric Co Ltd Magnetic recording medium
US10186404B2 (en) 2013-03-01 2019-01-22 Tanaka Kikinzoku Kogyo K.K. FePt—C-based sputtering target and method for manufacturing same
US8787130B1 (en) 2013-03-15 2014-07-22 WD Media, LLC Systems and methods for providing heat assisted magnetic recording media configured to couple energy from a near field transducer
MY175409A (en) * 2013-04-26 2020-06-24 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and raw carbon material for use in producing same
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
JP6125661B2 (ja) * 2013-11-22 2017-05-17 Jx金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法
MY164347A (en) * 2014-05-12 2017-12-15 Fuji Electric Co Ltd Method for manufacturing perpendicular magnetic recording medium
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US9799362B1 (en) * 2015-05-29 2017-10-24 Seagate Technology Llc Three dimensional data storage medium with a tuned recording layer
SG11201806891QA (en) 2016-03-07 2018-09-27 Tanaka Precious Metal Ind Fept-c-based sputtering target

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812044A (en) * 1970-12-28 1974-05-21 Procter & Gamble Detergent composition containing a polyfunctionally-substituted aromatic acid sequestering agent
US5023148A (en) * 1987-12-30 1991-06-11 Seagate Technology, Inc. Tine film cobalt-containing recording medium
JPH04214206A (ja) * 1990-12-13 1992-08-05 Matsushita Electric Ind Co Ltd 強磁性薄膜とその製造方法
US6086974A (en) * 1997-08-29 2000-07-11 International Business Machines Corporation Horizontal magnetic recording media having grains of chemically-ordered FEPT of COPT
US20030108721A1 (en) * 2001-12-11 2003-06-12 Fullerton Eric E. Thermally - assisted magnetic recording disk with recording layer exchange- coupled to antiferromagnetic-to-ferromagnetic switching layer
US6780291B2 (en) * 2002-06-07 2004-08-24 Seagate Technology Llc Self-annealed thin film deposition process

Also Published As

Publication number Publication date
US20060051622A1 (en) 2006-03-09
US7241520B2 (en) 2007-07-10
JP3950838B2 (ja) 2007-08-01
JP2004152471A (ja) 2004-05-27
US20040110035A1 (en) 2004-06-10
KR20040037609A (ko) 2004-05-07

Similar Documents

Publication Publication Date Title
KR100470151B1 (ko) FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법
Zeng et al. Orientation-controlled nonepitaxial L1 CoPt and FePt films
US6183606B1 (en) Manufacture method of high coercivity FePt-Si3N4 granular composite thin films
JP6439869B2 (ja) 磁気記録媒体の製造方法
JP2996442B2 (ja) 磁気薄膜記録媒体及びその製法
TW584670B (en) Fabrication of nanocomposite thin films for high density magnetic recording media
KR100272980B1 (ko) 자성체 박막 및 그것을 사용한 자기 헤드
Perumal et al. FePtAg–C nanogranular films fabricated on a heat resistant glass substrate for perpendicular magnetic recording
Newman et al. Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording
Wang et al. Preparation and characterization of Al doped longitudinal barium ferrite thin film media
Qiu et al. Nanocluster deposition for high density magnetic recording tape media
JP4069205B2 (ja) 磁気記録媒体の製造方法
Mokhtari et al. Microstructure and magnetic properties of FePt thin films on SiO 2/Si (100) and Si substrates prepared under external magnetic field
US6117282A (en) Method of producing amorphous Co-Tb magnetic recording thin films
WO2015174083A1 (ja) 垂直磁気記録媒体の製造方法
Kaewrawang et al. Self-assembled strontium ferrite dot array on Au underlayer
Kim et al. Microstructure and magnetic properties of hexagonal barium ferrite thin films with various underlayers
JP2006294121A (ja) 磁気記録媒体およびその製造方法
JP5776119B2 (ja) 磁気記録媒体及びその製造方法
KR100814939B1 (ko) 자기기록매체 및 그 제조방법
JP4590600B2 (ja) 着磁可能な磁性薄膜構造体とその製造方法
JPH0358316A (ja) 垂直磁気記録媒体
Kakizaki et al. The effect of AlN underlayer on c-axis orientation of barium ferrite thin films for perpendicular magnetic recording media
Ma et al. Crystal Structure and Magnetic Properties of FePd/Si 3 N 4 Composite Films
JPH03178105A (ja) 光磁気記録媒体用ガーネット薄膜

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091208

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee