WO2012073879A1 - スパッタリングターゲット - Google Patents

スパッタリングターゲット Download PDF

Info

Publication number
WO2012073879A1
WO2012073879A1 PCT/JP2011/077351 JP2011077351W WO2012073879A1 WO 2012073879 A1 WO2012073879 A1 WO 2012073879A1 JP 2011077351 W JP2011077351 W JP 2011077351W WO 2012073879 A1 WO2012073879 A1 WO 2012073879A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
relative density
sputtering
sintering
sintered body
Prior art date
Application number
PCT/JP2011/077351
Other languages
English (en)
French (fr)
Inventor
池田 真
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2012073879A1 publication Critical patent/WO2012073879A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a sputtering target, and more particularly to a sputtering target containing Fe, Pt and C and capable of forming a magnetic recording film without requiring a large-scale apparatus.
  • FePt-based thin film has been proposed as a next-generation magnetic recording film replacing the CoPt-based thin film.
  • FePt-based thin films have the advantage of higher magnetic anisotropy than CoPt-based thin films.
  • the FePt-based thin film has disadvantages that the structure of the FePt-based thin film becomes irregular and the magnetic properties are deteriorated due to excessive particles.
  • Patent Document 1 discloses a technique for obtaining an FePtC-based magnetic recording film having excellent magnetic properties by simultaneously sputtering Fe, Pt and C alone as well as a sputtering target.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique for obtaining a FePtC-based magnetic recording film without requiring a large-scale apparatus.
  • the present invention for achieving the above object is a sputtering target characterized by containing Fe, Pt and C and having a relative density of 90% or more.
  • the sputtering target is preferably manufactured by an electric current sintering method.
  • the sputtering target of the present invention contains all the elements constituting the FePtC magnetic recording film, the FePtC magnetic recording film can be obtained by sputtering one sputtering target. For this reason, since a plurality of cathodes are not required for installing the sputtering target, an FePtC magnetic recording film can be obtained without requiring a large-scale apparatus.
  • the sputtering target of the present invention contains Fe, Pt, and C and has a relative density of 90% or more.
  • the sputtering target of the present invention is composed of Fe, Pt and C, and may contain other unavoidable impurities.
  • X is preferably 45 to 65, more preferably 49 to 51
  • y is preferably 13 to 59, more preferably 32 to 59. If the ratio of Fe, Pt and C is within the above range, a thin film obtained by sputtering this sputtering target can be used effectively as a magnetic recording film.
  • the relative density of the sputtering target of the present invention is 90% or more, preferably 92% or more, more preferably 95% or more.
  • the relative density is 90% or more, when the sputtering target is placed in a vacuum atmosphere during sputtering, the amount of gas released from the sputtering target can be reduced, and the characteristics of the thin film formed by sputtering can be improved. Can do.
  • the relative density is 90% or more, it is possible to prevent the target from being cracked due to thermal shock or temperature difference during sputtering, and to effectively utilize the target thickness without waste. The generation of particles and arcing can be effectively reduced, and the effect of improving the sputtering rate is also brought about.
  • the upper limit of the relative density is not particularly limited, but is usually 100%.
  • the relative density is a numerical value measured based on the Archimedes method.
  • the sputtering target according to the present invention can be manufactured by mixing a Fe powder, a Pt powder and a C powder to prepare a mixed powder, sintering the powder, and further processing the sintered body as necessary. it can.
  • the average particle diameters measured by the BET (Brunauer-Emmett-Teller) method of Fe powder, Pt powder and C powder are usually 10 to 70 ⁇ m, 1 to 4 ⁇ m and 3 to 20 ⁇ m, respectively.
  • the ratio of Fe powder, Pt powder and C powder to be mixed is determined so that the ratio of Fe, Pt and C contained in the obtained sputtering target is within the above range.
  • the mixing method of the Fe powder, Pt powder and C powder is not particularly limited, and examples thereof include mixing by a ball mill.
  • Examples of the method for sintering the mixed powder include sintering by an electric current sintering method and sintering by a hot press (HP) method.
  • the electric current sintering method is particularly preferable.
  • the electric current sintering method since particles are joined and sintered by discharge between particles, less energy is required, and sintering at a lower temperature than hot pressing is possible. For this reason, it becomes easy to obtain the sintered compact which has a high density and consists of fine particles.
  • the use of a target made of fine particles has an advantage that the uniformity of the formed film is increased.
  • a target composed of coarse particles there is a strong tendency to cause problems such as particle generation.
  • the electric current sintering method is superior to the hot press method or the like.
  • a sintered body having a higher relative density than that of a hot press method or the like can be obtained.
  • the relative density of the sintered body can be improved by performing additional processing on the sintered body. Therefore, even if the relative density of the sintered body obtained by sintering the mixed powder is less than 90%, a target having a relative density of 90% or more is obtained by performing additional processing on the sintered body. It is possible.
  • the density can be improved while maintaining the microstructure.
  • the relative density of the sintered body can be increased by subjecting the sintered body obtained by the hot pressing method to hot isostatic pressing, and even if the relative density of the sintered body is less than 90%, A target having a relative density of 90% or more can be obtained by additional processing by a hydraulic press. If a hot isostatic press is applied to the sintered body obtained by the electric current sintering method, a target having a higher relative density can be obtained.
  • the sintering temperature is usually 700 to 1200 ° C., preferably 900 to 1100 ° C.
  • a sputtering target having a higher density can be obtained as the sintering temperature is higher.
  • the sintering temperature is too high, a target composed of coarse particles is obtained, and problems such as generation of particles are likely to occur during film formation.
  • the sputtering target of the present invention can be sputtered in the same manner as a conventional sputtering target for a magnetic recording film.
  • a FePtC thin film can be formed by sputtering using the sputtering target of the present invention. This FePtC thin film can be used as a magnetic recording film.
  • Examples 1 to 4, Comparative Examples 1 and 2 [Manufacture of sputtering target]
  • a ball mill in which an Fe powder having an average particle size of 30 ⁇ m, a Pt powder having an average particle size of 2 ⁇ m, and a C powder having an average particle size of 7 ⁇ m are contained at 20.5 mol%, 20.5 mol%, and 59 mol%, respectively.
  • Each average particle diameter is a numerical value measured by the BET method.
  • the obtained mixed powder was sintered under the following conditions using an electric current sintering apparatus to obtain a sintered body having a diameter of 20 mm and a thickness of 5 mm.
  • This sintered body was used as a sputtering target.
  • C 1 to C i indicate the content (% by weight) of the constituent material of the target sintered body, and ⁇ 1 to ⁇ i are the densities of the constituent materials corresponding to C 1 to C i. (G / cm 3 ) [Evaluation of the sputtering target after molding] The state of the obtained sputtering target was observed with the naked eye, and the state after forming the sputtering target was evaluated.
  • sputtering targets made of Fe, Pt, and C were obtained by using an electric current sintering method. From Table 1, it was found that an excellent sputtering target having a relative density of 90% or higher can be obtained when the sintering temperature is 910 ° C. or higher under the above conditions.

Abstract

 本発明は、Fe、PtおよびCを含有し、相対密度が90%以上であることを特徴とするスパッタリングターゲットである。本発明のスパッタリングターゲットは、磁気記録膜を構成するFe、PtおよびCすべての元素を含んでいるので、1個のスパッタリングターゲットをスパッタすることによりFePtC系磁気記録膜を得ることができる。このため、スパッタリングターゲットを設置するために複数個のカソードが必要になることはないので、大規模な装置を要することなくFePtC系磁気記録膜を得ることができる。

Description

スパッタリングターゲット
 本発明は、スパッタリングターゲットに関し、さらに詳しくは、Fe、PtおよびCを含有し、大規模な装置を要することなく磁気記録膜を形成することのできるスパッタリングターゲットに関する。
 コンピューター等に搭載されるハードディスク等を構成する磁気記録膜として、従来CoPt系薄膜が用いられ、垂直磁気記録方式により高記録密度化が図られてきた。しかし、近年、高記録密度化の要請がますます強まり、CoPt系薄膜ではその要請に応えることが困難になってきている。
 そこで、CoPt系薄膜に替わる次世代磁気記録膜として、FePt系薄膜が提案されている。FePt系薄膜は、CoPt系薄膜に比較して磁気異方性が高い利点を有する。その一方、FePt系薄膜は、これを構成する粒子が過大になることによって、構造が不規則になり、磁気特性が低下する短所がある。
 このため、FePt系薄膜に炭素などを添加することにより磁気特性を制御する技術が検討されている。
 特許文献1には、Fe、PtおよびC単体の他スパッタリングターゲットを同時にスパッタすることにより、磁気特性に優れたFePtC系の磁気記録膜を得る技術が開示されている。
 しかし、この技術は、3種類のスパッタリングターゲットを用いた三元同時スパッタを行うため、スパッタリングターゲットを設置するためのカソードが3個以上必要になり、装置が大規模になるなどの問題点があった。
特許第3950838号公報
 本発明は、前記の問題点を解決するためになされたものであり、大規模な装置を要することなくFePtC系の磁気記録膜を得る技術を提供することを目的とする。
 前記目的を達成する本発明は、Fe、PtおよびCを含有し、相対密度が90%以上であることを特徴とするスパッタリングターゲットである。
 前記スパッタリングターゲットは通電焼結法で製造されることが好ましい。
 本発明のスパッタリングターゲットは、FePtC磁気記録膜を構成するすべての元素を含有しているので、1個のスパッタリングターゲットをスパッタすることによりFePtC磁気記録膜を得ることができる。このため、スパッタリングターゲットを設置するために複数個のカソードが必要になることはないので、大規模な装置を要することなくFePtC磁気記録膜を得ることができる。
 本発明のスパッタリングターゲットは、Fe、PtおよびCを含有し、相対密度が90%以上である。
 本発明のスパッタリングターゲットは、Fe、PtおよびCからなり、その他可避的不純物が含有される場合がある。
 本発明のスパッタリングターゲットに含まれるFe、PtおよびCの比率としては、本スパッタリングターゲットの組成を(FexPt100-x100-y-Cy(x、y:モル%)と表記した場合、xが好ましくは45~65、より好ましくは49~51であり、yが好ましくは13~59、より好ましくは32~59である。Fe、PtおよびCの比率が前記範囲であれば、このスパッタリングターゲットをスパッタして得られる薄膜は磁気記録膜として有効に使用することができる。
 本発明のスパッタリングターゲットの相対密度は90%以上であり、好ましくは92%以上であり、より好ましくは95%以上である。相対密度が90%以上であると、スパッタ時にスパッタリングターゲットを真空雰囲気に設置した際、スパッタリングターゲットから放出されるガスの量を低減させることができ、スパッタにより形成される薄膜の特性を向上させることができる。また、相対密度が90%以上であると、スパッタ時における熱衝撃や温度差などに起因するターゲットの割れを防止できるとともに、ターゲット厚を無駄なく有効に活用することができる。パーティクルおよびアーキングの発生を有効に低減することができるとともに、スパッタリング速度を向上させる効果ももたらす。したがって、連続生産における欠損を抑制し、ターゲット単位面積あたりの成膜数を向上させ、かつ高速成膜化を実現することが可能となる。相対密度が90%より低いと上記の効果が得られない。相対密度の上限には特に制限はないが、通常100%である。
 前記相対密度はアルキメデス法に基づき測定された数値である。
 本発明に係るスパッタリングターゲットは、Fe粉末、Pt粉末およびC粉末を混合して混合粉末を調製し、これを焼結し、さらに必要に応じて焼結体に加工を施すことにより製造することができる。
 Fe粉末、Pt粉末およびC粉末のBET(Brunauer-Emmett-Teller)法で測定された平均粒径は、通常それぞれ10~70μm、1~4μmおよび3~20μmである。
 混合するFe粉末、Pt粉末およびC粉末の割合は、得られるスパッタリングターゲット中に含まれるFe、PtおよびCの比率が前記範囲内になるように決定される。
 Fe粉末、Pt粉末およびC粉末の混合方法としては特に制限はなく、例えばボールミル等による混合が挙げられる。
 混合粉末の焼結方法としては、たとえば通電焼結法による焼結およびホットプレス(HP)法による焼結等が挙げられる。これらの中で、通電焼結法が特に好ましい。通電焼結法では、粒子間の放電によって粒子同士を接合および焼結させるため、必要なエネルギーが少なく、ホットプレス法などよりも低温での焼結が可能である。このため、密度が高く、細かい粒子からなる焼結体が得られやすくなる。
 一方、ホットプレス法では、外部からの加熱によって焼結させるため、多くのエネルギーを要し、高温で焼結しないと密度の高い焼結体が得られない。このため、粗大な粒子からなる焼結体が形成される傾向が強い。
 一般的には、細かい粒子からなるターゲットを用いたほうが、形成される膜の均一性が高くなるというメリットがある。一方、粗大な粒子からなるターゲットを用いると、パーティクル発生などの問題を引き起こす傾向が強い。この点において、通電焼結法はホットプレス法などよりも優れている。
 上述のとおり、通電焼結法を用いると、ホットプレス法などに比較して相対密度の高い焼結体が得られる。たとえば、通電焼結法を用いると相対密度90%以上の焼結体を得ることは容易であるが、ホットプレス法を用いると相対密度90%以上の焼結体を得ることは困難である。
 ただし、焼結体に追加工を施すことにより焼結体の相対密度を向上させることができる。したがって、混合粉末を焼結して得られた焼結体の相対密度が90%未満であったとしても、その焼結体に追加工を施すことにより相対密度が90%以上であるターゲットを得ることは可能である。
 前記追加工としては熱間静水圧プレス(HIP)等が挙げられる。熱間静水圧プレスで焼結体に追加工を行うことにより,微細組織を保ちながら密度を向上させることができる。たとえば、ホットプレス法により得られた焼結体に熱間静水圧プレスを施すことにより焼結体の相対密度を高めることができ、焼結体の相対密度90%未満であっても熱間静水圧プレスによる追加工により相対密度90%以上のターゲットを得ることができる。通電焼結法により得られた焼結体に熱間静水圧プレスを施せば、さらに相対密度が高いターゲットを得ることができる。
 焼結温度としては、通常700~1200℃であり、好ましくは900~1100℃である。焼結温度が高いほど密度の高いスパッタリングターゲットが得られるが、焼結温度が高すぎると、粗大な粒子からなるターゲットが得られ、成膜時にパーティクル発生などの問題が生じやすくなる。
 本発明のスパッタリングターゲットは、従来の磁気記録膜用スパッタリングターゲットと同様にスパッタすることができる。
 本発明のスパッタリングターゲットを用いてスパッタすることにより、FePtC薄膜を形成することができる。このFePtC薄膜は磁気記録膜として使用することができる。
 (実施例1~4、比較例1,2)
 [スパッタリングターゲットの製造]
 平均粒径30μmのFe粉末、平均粒径2μmのPt粉末および平均粒径7μmのC粉末を、それぞれの含有比率が20.5モル%、20.5モル%および59モル%となるようにボールミルで1.5時間混合して、混合粉末を調製した。前記各平均粒径はBET法により測定された数値である。
 得られた混合粉末を、通電焼結装置を用いて下記の条件で焼結して、直径20mm、厚み5mmの焼結体を得た。この焼結体をスパッタリングターゲットとした。このスパッタリングターゲットの組成を(FexPt100-x100-y-Cy(x、y:モル%)と表記した場合、x=50、y=59であった。
 <焼結条件>
  焼結雰囲気:真空
  昇温時間:10min
  焼結温度:表1の通り
  焼結保持時間:10min
  圧力:0.4t/cm2
  降温:自然炉冷
 [相対密度の測定]
 得られたスパッタリングターゲットの相対密度をアルキメデス法に基づき測定した。具体的には、スパッタリングターゲットの空中重量を、体積(=スパッタリングターゲット焼結体の水中重量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)とした。結果を表1に示した。
Figure JPOXMLDOC01-appb-M000001
 (式(X)中、C1~Ciはそれぞれターゲット焼結体の構成物質の含有量(重量%)を示し、ρ1~ρiはC1~Ciに対応する各構成物質の密度(g/cm3)を示す。)
 [スパッタリングターゲットの成形後の状態の評価]
 得られたスパッタリングターゲットの状態を肉眼で観察し、スパッタリングターゲットの成形後の状態を評価した。
 結果を表1に示した。「端部欠け」とは、スパッタリングターゲットに指で力を加えたときに、スパッタリングターゲットの端部が欠けたことを意味する。「端部欠け」がなかった場合には空欄とした。
(比較例3~6)
 実施例1と同様にして得られた混合粉末を、ホットプレス装置を用いて下記の条件で焼結して、直径20mm、厚み5mmの焼結体を得た。この焼結体をスパッタリングターゲットとした。このスパッタリングターゲットの組成を(FexPt100-x100-y-Cy(x、y:モル%)と表記した場合、x=50、y=59であった。
<焼結条件>
焼結雰囲気:アルゴン
昇温時間:10min
焼結温度:表1の通り
焼結保持時間:60min
圧力:0.4t/cm2
降温:自然炉冷
 得られたスパッタリングターゲットの相対密度を、実施例1と同様の方法で求めた。得られたスパッタリングターゲットの成形後の状態を、実施例1と同様の方法で評価した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000002
 上記実施例1~4および比較例1~2において、通電焼結法を用いて、Fe、PtおよびCからなるスパッタリングターゲットが得られた。表1から、上記条件においては、焼結温度が910℃以上である場合に、相対密度が90%以上である優良なスパッタリングターゲットが得られることがわかった。
 上記比較例3~6において、ホットプレス法を用いて、Fe、PtおよびCからなるスパッタリングターゲットが得られた。表1から、上記条件においては、ホットプレス法では、相対密度が90%以上であるスパッタリングターゲットが得られないことがわかった。
 表1から、同じ焼結温度においては、通電焼結法ではホットプレス法よりも高い相対密度を有するスパッタリングターゲットが得られることがわかった。
 ただし、比較例1~6で得られた相対密度90%未満の焼結体に、熱間静水圧プレス等の追加工を施すことにより、相対密度90%以上のスパッタリングターゲットを得ることは可能である。

Claims (2)

  1.  Fe、PtおよびCを含有し、相対密度が90%以上であることを特徴とするスパッタリングターゲット。
  2.  通電焼結法で製造されたことを特徴とする請求項1に記載のスパッタリングターゲット。
PCT/JP2011/077351 2010-11-29 2011-11-28 スパッタリングターゲット WO2012073879A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010265036 2010-11-29
JP2010-265036 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073879A1 true WO2012073879A1 (ja) 2012-06-07

Family

ID=46171811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077351 WO2012073879A1 (ja) 2010-11-29 2011-11-28 スパッタリングターゲット

Country Status (1)

Country Link
WO (1) WO2012073879A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190943A1 (ja) * 2012-06-18 2013-12-27 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
CN104540977A (zh) * 2012-08-10 2015-04-22 三井金属矿业株式会社 烧结体以及溅射靶
US10325762B2 (en) 2012-07-20 2019-06-18 Jx Nippon Mining & Metals Corporation Sputtering target for forming magnetic recording film and process for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2004152471A (ja) * 2002-10-29 2004-05-27 Korea Advanced Inst Of Sci Technol FePtC薄膜を利用した高密度磁気記録媒体及びその製造方法
JP2006161082A (ja) * 2004-12-03 2006-06-22 Ishifuku Metal Ind Co Ltd スパッタリングターゲットの製造方法
JP2008060347A (ja) * 2006-08-31 2008-03-13 Ishifuku Metal Ind Co Ltd 磁性薄膜
JP2008169464A (ja) * 2007-01-08 2008-07-24 Heraeus Inc スパッタターゲット及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2004152471A (ja) * 2002-10-29 2004-05-27 Korea Advanced Inst Of Sci Technol FePtC薄膜を利用した高密度磁気記録媒体及びその製造方法
JP2006161082A (ja) * 2004-12-03 2006-06-22 Ishifuku Metal Ind Co Ltd スパッタリングターゲットの製造方法
JP2008060347A (ja) * 2006-08-31 2008-03-13 Ishifuku Metal Ind Co Ltd 磁性薄膜
JP2008169464A (ja) * 2007-01-08 2008-07-24 Heraeus Inc スパッタターゲット及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190943A1 (ja) * 2012-06-18 2013-12-27 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
US9540724B2 (en) 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
US10325762B2 (en) 2012-07-20 2019-06-18 Jx Nippon Mining & Metals Corporation Sputtering target for forming magnetic recording film and process for producing same
CN104540977A (zh) * 2012-08-10 2015-04-22 三井金属矿业株式会社 烧结体以及溅射靶

Similar Documents

Publication Publication Date Title
JP5730903B2 (ja) スパッタリングターゲット
JP6264846B2 (ja) 酸化物焼結体、スパッタリングターゲットおよびその製造方法
TWI583814B (zh) Fe-Pt magnetic material sintered body
JP6291593B2 (ja) Itoスパッタリングターゲット及びその製造方法並びにito透明導電膜の製造方法
JP6692724B2 (ja) 非磁性材料分散型Fe−Pt系スパッタリングターゲット
KR102493208B1 (ko) 원통형 스퍼터링 타겟, 원통형 성형체, 및 원통형 스퍼터링 타겟, 원통형 소결체, 및 원통형 성형체의 제조 방법
WO2014065201A1 (ja) Fe-Pt系焼結体スパッタリングターゲット及びその製造方法
JP5925907B2 (ja) MgO−TiO焼結体ターゲット及びその製造方法
JP5987105B2 (ja) Itoスパッタリングターゲット及びその製造方法
TWI583813B (zh) Sintered body sputtering target
WO2014024519A1 (ja) 焼結体およびスパッタリングターゲット
WO2012073879A1 (ja) スパッタリングターゲット
JP2009024214A (ja) 超硬合金およびその製造方法
CN104126026B (zh) 含有铬氧化物的强磁性材料溅射靶
TWI640642B (zh) Strong magnetic material sputtering target containing chromium oxide
CN111183244B (zh) 强磁性材料溅射靶
JP6728094B2 (ja) 強磁性材スパッタリングターゲット
KR20130007676A (ko) 소결용 Sb-Te 계 합금 분말 및 그 분말의 제조 방법 그리고 소결체 타겟
JP2005097657A (ja) パーティクル発生の少ない磁性層形成用スパッタリングターゲット
JPWO2020166380A1 (ja) スパッタリングターゲット材
JP5602820B2 (ja) ZnO焼結体の製造方法
JP2011179055A (ja) スパッタリングターゲット
WO2020066114A1 (ja) スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体
TW202012665A (zh) 強磁性材料濺射靶及其製造方法與磁記錄膜的製造方法
JP2000226254A (ja) 高密度ito焼結体の製造方法及び高密度ito焼結体、並びにそれを用いたitoスパッタターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP