JPWO2013157418A1 - SiC単結晶及びその製造方法 - Google Patents

SiC単結晶及びその製造方法 Download PDF

Info

Publication number
JPWO2013157418A1
JPWO2013157418A1 JP2014511168A JP2014511168A JPWO2013157418A1 JP WO2013157418 A1 JPWO2013157418 A1 JP WO2013157418A1 JP 2014511168 A JP2014511168 A JP 2014511168A JP 2014511168 A JP2014511168 A JP 2014511168A JP WO2013157418 A1 JPWO2013157418 A1 JP WO2013157418A1
Authority
JP
Japan
Prior art keywords
single crystal
solution
crystal
sic single
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014511168A
Other languages
English (en)
Other versions
JP5839117B2 (ja
Inventor
克典 旦野
克典 旦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014511168A priority Critical patent/JP5839117B2/ja
Publication of JPWO2013157418A1 publication Critical patent/JPWO2013157418A1/ja
Application granted granted Critical
Publication of JP5839117B2 publication Critical patent/JP5839117B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

らせん転位、刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を低減した高品質なSiC単結晶、及びそのようなSiC単結晶の溶液法による製造方法を提供することを目的とする。内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び種結晶の(1−100)面に、SiC単結晶を、20?10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、を含む、SiC単結晶の製造方法。

Description

本発明は、半導体素子として好適なSiC単結晶及びその製造方法に関し、さらに詳しくは、貫通転位が少ない高品質のSiC単結晶及び溶液法による高品質のSiC単結晶の製造方法に関する。
SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。
従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び結晶多形が生じやすいという欠点を有するが、結晶の成長速度が大きいため、従来、SiCバルク単結晶の多くは昇華法により製造されている。また、成長結晶の欠陥を低減する試みも行われており、昇華法により(11−20)面及び(1−100)面に、繰り返し結晶成長させることで、<0001>方向に伝搬する転位密度を低減する方法が提案されている(特許文献1)。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。
溶液法は、黒鉛坩堝中でSi融液またはSi融液に合金を融解し、その融液中にCを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が期待できる。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されており(特許文献2)、結晶欠陥が少ないSiC単結晶を得る方法が提案されている(特許文献3)。
特開2003−119097号 特開2008−105896号 特開平6−227886号
特許文献1〜3に記載されるように、昇華法または溶液法において、成長結晶の欠陥を低減する試みが行われている。しかしながら、半導体素子として使用することができる高品質のSiC単結晶を安定して得るためには、上記方法では未だ不十分であり、特に、貫通転位を含まないSiC単結晶を歩留よく製造することは依然として困難である。昇華法においては貫通転位をほぼ含まないかあるいは全く含まない単結晶を得ることは困難であり、溶液法においても、種結晶の転位が伝搬しやすく、種結晶の成長面に垂直方向の成長結晶において貫通転位をほぼ含まないかあるいは全く含まない単結晶を得ることは難しい。
本発明は、上記課題を解決するものであり、貫通らせん転位、貫通刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を低減した高品質なSiC単結晶、及びそのようなSiC単結晶の製造方法を提供することを目的とする。
本発明は、内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び
種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、
を含む、SiC単結晶の製造方法である。
本発明はまた、SiC種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶である。
本発明によれば、(0001)面における貫通転位密度が小さいSiC単結晶を得ることができる。
本発明において使用し得る溶液法による単結晶製造装置の断面模式図である。 本発明に係る、(1−100)面上に成長させたSiC単結晶の成長面の外観写真である。 本発明に係る種結晶を基点とした(1−100)面成長結晶から、(0001)面を切り出して、溶融アルカリエッチングした(0001)面の顕微鏡写真である。 図3の種結晶部分について拡大観察した写真である。 図3の成長結晶部分について拡大観察した写真である。 (11−20)面成長させた結晶の成長面の外観写真である。 (1−100)面成長させた結晶の成長面の外観写真である。 (1−100)面成長における、Si−C溶液の表面領域の温度勾配、及び単結晶成長速度/温度勾配の比による、成長条件範囲を表したグラフである。
本明細書において、(1−100)面等の表記における「−1」は、本来、数字の上に横線を付して表記するところを「−1」と表記したものである。
上記特許文献1に記載されるように、従来、RAF成長法が結晶の低転位化に有効と考えられており、昇華法により(11−20)面(a面ともいう)成長及び(1−100)面(m面ともいう)成長を繰り返すことにより、転位を低減した結晶を作製することが行われている。しかしながら、RAF法によっても無転位の単結晶を得ることは難しく、また、(11−20)面及び(1−100)面の繰り返し成長が必要であり、より転位密度の低減が可能で且つ簡便な製造方法が望まれている。
本発明者は、溶液法によるSiC単結晶の製造において、種結晶に起因して成長結晶に発生し得るらせん転位、刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を従来よりも低減し得る高品質なSiC単結晶について鋭意研究を行った。
その結果、従来、典型的に行われていたa面成長ではなく、種結晶の(1−100)面(m面ともいう)を基点としたm面成長を溶液法を用いて行うことによって、種結晶よりも貫通転位密度が低いSiC単結晶が得られることを見出した。また、この方法によれば、単結晶を繰り返し成長させる必要が無く、1度のm面成長で、種結晶よりも貫通転位密度を大幅に低減したSiC単結晶が得られることが分かった。
さらには、Si−C溶液の表面領域の温度勾配、及び温度勾配に対する単結晶の成長速度が、それぞれ、SiC単結晶の成長面の平坦性に影響していることを突き止めた。そして、このSi−C溶液の表面領域の温度勾配と単結晶の成長速度の条件を組み込んだSiC単結晶の製造方法を見出した。
本発明は、内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び
種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、を含む、SiC単結晶の製造方法を対象とする。
本方法においては、種結晶を基点として成長させたSiC単結晶であって、平坦な成長面を有し、且つ(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、好ましくは貫通転位密度が1個/cm2以下、さらに好ましくは貫通転位密度がゼロであるSiC単結晶を得ることができる。
本発明のSiC単結晶の製造方法においては溶液法が用いられる。SiC単結晶を製造するための溶液法とは、坩堝内において、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成することによってSi−C溶液の表面領域を過飽和にして、Si−C溶液に接触させた種結晶を基点として、種結晶上にSiC単結晶を成長させる方法である。
本方法においては、SiC単結晶の製造に一般に用いられる品質のSiC単結晶を種結晶として用いることができる。例えば昇華法で一般的に作成したSiC単結晶を種結晶として用いることができる。このような昇華法で一般的に作成したSiC単結晶には、概して貫通転位及び基底面転位が多く含まれている。
本方法においては、(1−100)面を有するSiC種結晶を用いて、この(1−100)面を基点として溶液法を用いてSiC単結晶を(1−100)面成長させる。得られる(1−100)面成長したSiC単結晶の(0001)面における貫通転位密度は、種結晶の(0001)面における貫通転位密度よりも小さく、好ましくは貫通転位密度が1個/cm2以下であり、より好ましくは貫通転位密度はゼロである。種結晶は、例えば板状、円盤状、円柱状、角柱状、円錐台状、または角錐台状等の任意の形状であることができる。種結晶の(1−100)面をSi−C溶液面に接触させる種結晶の下面として用いることができ、反対側の上面を黒鉛軸等の種結晶保持軸に保持させる面として用いることができる。
Si−C溶液の表面領域の温度勾配とは、Si−C溶液の表面の垂直方向の温度勾配であって、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配である。温度勾配は、低温側となるSi−C溶液の表面における温度Aと、Si−C溶液の表面から溶液側に垂直方向の所定の深さにおける高温側となる温度Bを熱電対で測定し、その温度差を、温度A及び温度Bを測定した位置間の距離で割ることによって算出することができる。例えば、Si−C溶液の表面と、Si−C溶液の表面から溶液側に垂直方向の深さDcmの位置との間の温度勾配を測定する場合、Si−C溶液の表面温度Aと、Si−C溶液の表面から溶液側に垂直方向の深さDcmの位置における温度Bとの差をDcmで割った次の式:
温度勾配(℃/cm)=(B−A)/D
によって算出することができる。
本方法において、Si−C溶液の表面領域の温度勾配は10℃/cm以下である。SiC溶液の表面領域の温度勾配を上記範囲内にすることによって、貫通転位を含まず且つ平坦な表面を有するSiC単結晶を得やすくなることが分かった。
種結晶基板近傍の温度勾配が大きいとSiC単結晶の成長速度を速くし得るが、温度勾配が大きすぎると、平坦な成長面が得られにくくなるため、上記の温度勾配の範囲に制御する必要がある。
Si−C溶液の表面領域の温度勾配の下限は特に限定されないが、例えば2℃/cm以上、4℃/cm以上、6℃/cm以上、または8℃/cm以上にしてもよい。
温度勾配の制御範囲は、好ましくはSi−C溶液の表面から3mmの深さ、さらに好ましくは20mmの深さまでの範囲である。
温度勾配の制御範囲が浅すぎると、温度勾配を制御する範囲が浅くCの過飽和度を制御する範囲も浅くなりSiC単結晶の成長が不安定になることがある。また、温度勾配を制御する範囲が深いと、Cの過飽和度を制御する範囲も深くなりSiC単結晶の安定成長に効果的であるが、実際、単結晶の成長に寄与する深さはSi−C溶液の表面から数mmの深さまでの範囲である。したがって、SiC単結晶の成長と温度勾配の制御とを安定して行うために、上記深さ範囲の温度勾配を制御することが好ましい。
Si−C溶液の表面領域の温度勾配の制御は、後で図面を参照しながら詳細に説明するが、単結晶製造装置の坩堝周辺に配置された高周波コイル等の加熱装置の配置、構成、出力等を調整することによって、Si−C溶液の表面に垂直方向の所定の温度勾配を形成することができる。
本方法においては、Si−C溶液の表面領域の温度勾配(℃/cm)に対するSiC単結晶の成長速度(μm/h)の比(単結晶の成長速度/温度勾配)を、20×10-4cm2/h・℃未満、好ましくは12×10-4cm2/h・℃未満に制御して、SiC単結晶の成長を行う。Si−C溶液の表面領域の温度勾配の制御に加えて、温度勾配に対する単結晶の成長速度を上記範囲内とすることによって、貫通転位を含まず且つ平坦な表面を有するSiC単結晶を安定して得ることができることが分かった。
SiC単結晶の成長速度は、Si−C溶液の過飽和度の制御によって行うことができる。Si−C溶液の過飽和度を高めればSiC単結晶の成長速度は増加し、過飽和度を下げればSiC単結晶の成長速度は低下する。
Si−C溶液の過飽和度は、主に、Si−C溶液の表面温度、及びSi−C溶液の表面領域の温度勾配により制御することができ、例えば、Si−C溶液の表面温度を一定にしつつ、Si−C溶液の表面領域の温度勾配を小さくすれば過飽和度を小さくすることができ、Si−C溶液の表面領域の温度勾配を大きくすれば過飽和度を大きくすることができる。
なお、種結晶保持軸を介した抜熱を変化させても、種結晶近傍のSi−C溶液の過飽和度が変化してSiC単結晶の成長速度が変化し得る。したがって、種結晶保持軸の材料を選定することによって熱伝導率を変更すること、あるいは、種結晶保持軸の直径を変えること等によって抜熱の程度を変えて、SiC単結晶の成長速度を変えることもできる。
貫通転位の有無の評価は、(0001)面を露出させるように鏡面研磨して、溶融水酸化カリウム、過酸化ナトリウム等を用いた溶融アルカリエッチングを行って、転位を強調させて、SiC単結晶の表面を顕微鏡観察することによって行われ得る。
単結晶製造装置への種結晶の設置は、上述のように、種結晶の上面を種結晶保持軸に保持させることによって行うことができる。
種結晶のSi−C溶液への接触は、種結晶を保持した種結晶保持軸をSi−C溶液面に向かって降下させ、種結晶の下面をSi−C溶液面に対して並行にしてSi−C溶液に接触させることによって行うことができる。そして、Si−C溶液面に対して種結晶を所定の位置に保持して、SiC単結晶を成長させることができる。
種結晶の保持位置は、種結晶の下面の位置が、Si−C溶液面に一致するか、Si−C溶液面に対して下側にあるか、またはSi−C溶液面に対して上側にあってもよい。種結晶の下面をSi−C溶液面に対して上方の位置に保持する場合は、一旦、種結晶をSi−C溶液に接触させて種結晶の下面にSi−C溶液を接触させてから、所定の位置に引き上げる。種結晶の下面の位置を、Si−C溶液面に一致するか、またはSi−C溶液面よりも下側にしてもよいが、多結晶の発生を防止するために、種結晶保持軸にSi−C溶液が接触しないようにすることが好ましい。これらの方法において、単結晶の成長中に種結晶の位置を調節してもよい。
種結晶保持軸はその端面に種結晶基板を保持する黒鉛の軸であることができる。種結晶保持軸は、円柱状、角柱状等の任意の形状であることができ、種結晶の上面の形状と同じ端面形状を有する黒鉛軸を用いてもよい。
本方法によって成長させたSiC単結晶を種結晶として用いて、SiC単結晶をさらに成長させることができる。本方法によって(1−100)面成長させたSiC単結晶には、基底面転位は若干含まれるものの貫通転位は非常に少ないかゼロであるため、このSiC単結晶の(000−1)面を基点としてさらに結晶成長させると、貫通転位だけでなく基底面転位も含まない非常に高品質のSiC単結晶を得ることができる。これは、種結晶の成長基点となる(000−1)面における貫通転位が非常に少ないか全く含まれないため、種結晶から成長結晶に伝搬する貫通転位が非常に少ないか全く無いことと、種結晶に含まれ得る基底面転位は(000−1)面成長結晶に伝搬しにくいためである。これは、溶液法を用いて行うことができ、あるいは昇華法を用いて行うことも可能である。
本発明において、Si−C溶液とは、SiまたはSi/X(XはSi以外の1種以上の金属)の融液を溶媒とするCが溶解した溶液をいう。Xは一種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe等が挙げられる。
Si−C溶液はSi/Cr/X(XはSi及びCr以外の1種以上の金属)の融液を溶媒とするSi−C溶液が好ましい。さらに、原子組成百分率でSi/Cr/X=30〜80/20〜60/0〜10の融液を溶媒とするSi−C溶液が、Cの溶解量の変動が少なく好ましい。例えば、坩堝内にSiに加えて、Cr、Ni等を投入し、Si−Cr溶液、Si−Cr−Ni溶液等を形成することができる。
Si−C溶液は、その表面温度が、Si−C溶液へのCの溶解量の変動が少ない1800〜2200℃が好ましい。
Si−C溶液の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。
図1に、本発明の方法を実施するのに適したSiC単結晶製造装置の一例を示す。図示したSiC単結晶製造装置100は、SiまたはSi/Xの融液中にCが溶解してなるSi−C溶液24を収容した坩堝10を備え、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成し、昇降可能な黒鉛軸12の先端に保持された種結晶基板14をSi−C溶液24に接触させて、SiC単結晶を成長させることができる。坩堝10及び黒鉛軸12を回転させることが好ましい。
Si−C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSiまたはSi/Xの融液にCを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解によりCが融液中に溶解し、Si−C溶液が形成される。こうすると、Si−C溶液24中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、または固体のC供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。
保温のために、坩堝10の外周は、断熱材18で覆われている。これらが一括して、石英管26内に収容されている。石英管26の外周には、加熱用の高周波コイル22が配置されている。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。
坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内をAr、He等に雰囲気調整することを可能にするために、ガス導入口とガス排気口とを備える。
Si−C溶液の温度は、通常、輻射等のためSi−C溶液の内部よりも表面の温度が低い温度分布となるが、さらに、高周波コイル22の巻数及び間隔、高周波コイル22と坩堝10との高さ方向の位置関係、並びに高周波コイルの出力を調整することによって、Si−C溶液24に、種結晶基板14が浸漬される溶液上部が低温、溶液下部が高温となるようにSi−C溶液24の表面に垂直方向の所定の温度勾配を形成することができる。例えば、下段コイル22Bの出力よりも上段コイル22Aの出力を小さくして、Si−C溶液24に溶液上部が低温、溶液下部が高温となる所定の温度勾配を形成することができる。
Si−C溶液24中に溶解したCは、拡散及び対流により分散される。種結晶基板14の下面近傍は、コイル22の上段/下段の出力制御、Si−C溶液の表面からの放熱、及び黒鉛軸12を介した抜熱によって、Si−C溶液24の下部よりも低温となる温度勾配が形成されている。高温で溶解度の大きい溶液下部に溶け込んだCが、低温で溶解度の低い種結晶基板下面付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板上にSiC単結晶が成長する。
いくつかの態様において、SiC単結晶の成長前に、SiC種結晶基板の表面層をSi−C溶液中に溶解させて除去するメルトバックを行ってもよい。SiC単結晶を成長させる種結晶基板の表層には、転位等の加工変質層や自然酸化膜などが存在していることがあり、SiC単結晶を成長させる前にこれらを溶解して除去することが、高品質なSiC単結晶を成長させるために効果的である。溶解する厚みは、SiC種結晶基板の表面の加工状態によって変わるが、は加工変質層や自然酸化膜を十分に除去するために、およそ5〜50μmが好ましい。
メルトバックは、Si−C溶液の内部から溶液の表面に向けて温度が増加する温度勾配、すなわち、SiC単結晶成長とは逆方向の温度勾配をSi−C溶液に形成することにより行うことができる。高周波コイルの出力を制御することによって上記逆方向の温度勾配を形成することができる。
メルトバックは、Si−C溶液に温度勾配を形成せず、単に液相線温度より高温に加熱されたSi−C溶液に種結晶基板を浸漬することによっても行うことができる。この場合、Si−C溶液温度が高くなるほど溶解速度は高まるが溶解量の制御が難しくなり、温度が低いと溶解速度が遅くなることがある。
いくつかの態様において、あらかじめ種結晶基板を加熱しておいてから種結晶基板をSi−C溶液に接触させてもよい。低温の種結晶基板を高温のSi−C溶液に接触させると、種結晶に熱ショック転位が発生することがある。種結晶基板をSi−C溶液に接触させる前に、種結晶基板を加熱しておくことが、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。種結晶基板の加熱は黒鉛軸ごと加熱して行うことができる。または、この方法に代えて、比較的低温のSi−C溶液に種結晶を接触させてから、結晶を成長させる温度にSi−C溶液を加熱してもよい。この場合も、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。
本発明はまた、種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶を対象とする。SiC単結晶の(0001)面における貫通転位密度は、好ましくは1個/cm2以下であり、さらに好ましくはゼロである。
(実施例1)
厚み0.8mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いた。種結晶基板の上面を、長さ20cm及び直径12mmの円柱形状の黒鉛軸の端面の略中央部に、黒鉛軸の端面が種結晶の上面からはみ出さずに種結晶の上面内に入るように、黒鉛の接着剤を用いて接着した。
図1に示す単結晶製造装置を用い、Si−C溶液を収容する内径40mm、高さ185mmの黒鉛坩堝に、Si/Cr/Niを原子組成百分率で50:40:10の割合で融液原料として仕込んだ。単結晶製造装置の内部の空気をアルゴンで置換した。高周波コイルに通電して加熱により黒鉛坩堝内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そして黒鉛坩堝からSi/Cr/Ni合金の融液に、十分な量のCを溶解させて、Si−C溶液を形成した。
上段コイル及び下段コイルの出力を調節して黒鉛坩堝を加熱し、Si−C溶液の表面における温度を1820℃に昇温させた。温度の測定は、昇降可能なタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対を用いて行った。黒鉛軸に接着した種結晶の下面をSi−C溶液面に並行なるように保ちながら、種結晶下面の位置を、Si−C溶液の液面に一致する位置に配置して、Si−C溶液に種結晶の下面を接触させるシードタッチを行った。
さらに、Si−C溶液の表面における温度を1930℃まで昇温させ、並びに溶液表面から20mmの範囲で溶液内部から溶液表面に向けて温度低下する温度勾配が8.6℃/cmに制御して、結晶を成長させた。
結晶成長の終了後、黒鉛軸を上昇させて、種結晶及び種結晶を基点として成長したSiC結晶を、Si−C溶液及び黒鉛軸から切り離して回収した。得られた成長結晶は単結晶であり、成長速度は45μm/hであった。図2に成長させた単結晶を成長面から観察した写真を示す。得られた単結晶の成長表面は、図2に示すように平坦であった。
(実施例2)
結晶を成長させる際のSi−C溶液の表面における温度を2030℃にし、温度勾配を9.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は100μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(実施例3)
結晶を成長させる際のSi−C溶液の表面における温度を1920℃にし、温度勾配を9.3℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は80μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(実施例4)
結晶を成長させる際のSi−C溶液の表面における温度を1920℃にし、温度勾配を9.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は60μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(実施例5)
厚み3.5mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用い、結晶を成長させる際のSi−C溶液の表面における温度を2000℃にし、2000℃のSi−C溶液に種結晶の下面をシードタッチさせ、温度勾配を10.0℃/cmとしたこと以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は60μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(実施例6)
厚み2.0mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いたこと以外は実施例5と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は101μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(実施例7)
厚み1.5mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いたこと以外は実施例5と同様の条件にて、結晶を成長させ、回収した。
得られた成長結晶は単結晶であり、成長速度は132μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。
(貫通転位の観察)
実施例1〜7で成長させたSiC単結晶を、それぞれ、(0001)面を露出させるようにダイヤモンドソーで切断し、2種類のダイヤモンドスラリー(スラリー粒径:6μm及び3μm)により研磨を行い鏡面仕上げをした。次いで、水酸化カリウム(ナカライテスク株式会社製)及び過酸化カリウム(和光純薬工業株式会社製)を混合した500℃の融液に、それぞれの成長SiC単結晶を5分間、浸漬してエッチングを行った。各SiC単結晶を混合融液から取り出し、純水中で超音波洗浄した後、顕微鏡観察(ニコン製)により、転位の観察を行った。
図3〜5に、実施例1で得られた単結晶を溶融アルカリエッチングした(0001)面の顕微鏡写真を示す。図3は、種結晶14及び成長結晶30を含む全体写真であり、図3の種結晶14について拡大観察した個所32の拡大写真を図4に示し、成長結晶30について拡大観察した個所34の拡大写真を図5に示す。種結晶の観察から、貫通らせん転位(TSD)及び貫通刃状転位(TED)が検出されたが、成長結晶には、基底面転位(BPD)は若干みられたものの、貫通らせん転位(TSD)、貫通刃状転位(TED)、及びマイクロパイプ欠陥等の貫通転位は検出されず、貫通転位は含まれていないことが分かった。実施例2〜7で成長させた単結晶からも同様に貫通転位は検出されず、貫通転位は含まれていないことが分かった。
(比較例1)
厚み1mm及び10mmの板状4H−SiC単結晶であって、(11−20)面を有するSiC単結晶を用意して、(11−20)面を下面とする種結晶基板として用いた。実施例1と同様にして、種結晶基板の上面を、黒鉛軸の端面の略中央部に、黒鉛の接着剤を用いて接着した。
そして、結晶を成長させる際のSi−C溶液の表面における温度を1930℃にし、温度勾配を8.2℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
図6に成長させた結晶を成長面から観察した写真を示す。得られた結晶の成長表面は、図6に示すように激しく荒れており平坦な面が形成されておらず、また、単結晶成長しなかったことが分かった。
(比較例2)
結晶を成長させる際のSi−C溶液の表面における温度を1890℃にし、温度勾配を10.3℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた結晶の成長速度は83μm/hであった。図7に成長させた結晶を成長面から観察した写真を示す。得られた結晶は単結晶であったが、成長表面は図7に示すように荒れており、平坦な面は得られなかった。
(比較例3)
結晶を成長させる際のSi−C溶液の表面における温度を1870℃にし、温度勾配を12.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた結晶の成長速度は144μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。
(比較例4)
結晶を成長させる際のSi−C溶液の表面における温度を2000℃にし、温度勾配を15.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた結晶の成長速度は144μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。
(比較例5)
結晶を成長させる際のSi−C溶液の表面における温度を1990℃にし、温度勾配を8.6℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
得られた結晶の成長速度は172μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。
表1に、実施例1〜7及び比較例1〜5における、成長面、Si−C溶液表面の温度、Si−C溶液の表面領域の温度勾配、得られた結晶の種類、結晶成長速度、及び成長速度/温度勾配の比を示す。また、図8に、実施例1〜7及び比較例2〜5の(1−100)面成長における、Si−C溶液の表面領域の温度勾配と、単結晶成長速度/温度勾配の比との、最適成長条件範囲を示す。
(11−20)面成長では単結晶が得られなかったが、(1−100)面で成長させることによって単結晶を得ることができた。さらに、Si−C溶液の表面領域の温度勾配を10℃/cm以下、且つ前記温度勾配に対する結晶成長速度の比(成長速度/温度勾配)を20(10-4cm2/(h・℃))未満とする条件下で、結晶成長させることによって、平坦な表面を有し且つ(0001)面にて貫通転位を含まないSiC単結晶が得られた。
100 単結晶製造装置
10 黒鉛坩堝
12 黒鉛軸
14 種結晶基板
18 断熱材
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si−C溶液
26 石英管
30 SiC成長単結晶
32 種結晶部の拡大観察個所
34 成長単結晶部の拡大観察個所

Claims (4)

  1. 内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
    前記Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
    前記Si−C溶液に前記SiC種結晶の(1−100)面を接触させること、及び
    前記種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、前記温度勾配に対する前記SiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、
    を含む、SiC単結晶の製造方法。
  2. 請求項1に記載の方法によって製造されたSiC単結晶を種結晶として用いて、前記種結晶の(000−1)面を基点として結晶成長を行う工程を含む、SiC単結晶の製造方法。
  3. SiC種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、前記種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶。
  4. 前記(0001)面における貫通転位密度がゼロである、請求項3に記載のSiC単結晶。
JP2014511168A 2012-04-20 2013-04-05 SiC単結晶及びその製造方法 Active JP5839117B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014511168A JP5839117B2 (ja) 2012-04-20 2013-04-05 SiC単結晶及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012096958 2012-04-20
JP2012096958 2012-04-20
PCT/JP2013/060515 WO2013157418A1 (ja) 2012-04-20 2013-04-05 SiC単結晶及びその製造方法
JP2014511168A JP5839117B2 (ja) 2012-04-20 2013-04-05 SiC単結晶及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2013157418A1 true JPWO2013157418A1 (ja) 2015-12-21
JP5839117B2 JP5839117B2 (ja) 2016-01-06

Family

ID=49383382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014511168A Active JP5839117B2 (ja) 2012-04-20 2013-04-05 SiC単結晶及びその製造方法

Country Status (5)

Country Link
US (1) US10428440B2 (ja)
JP (1) JP5839117B2 (ja)
CN (1) CN104246026B (ja)
DE (1) DE112013002107B4 (ja)
WO (1) WO2013157418A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002107B4 (de) 2012-04-20 2019-04-04 Toyota Jidosha Kabushiki Kaisha SiC-Einkristall-Herstellungsverfahren
KR101926694B1 (ko) * 2012-05-30 2018-12-07 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR101926678B1 (ko) * 2012-05-31 2018-12-11 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
JP5854013B2 (ja) * 2013-09-13 2016-02-09 トヨタ自動車株式会社 SiC単結晶の製造方法
JP5890377B2 (ja) * 2013-11-21 2016-03-22 トヨタ自動車株式会社 SiC単結晶の製造方法
EP2881498B1 (en) * 2013-12-06 2020-03-11 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
CN105658846B (zh) 2014-09-30 2018-08-28 昭和电工株式会社 碳化硅单晶晶片、和碳化硅单晶锭的制造方法
JP6090287B2 (ja) * 2014-10-31 2017-03-08 トヨタ自動車株式会社 SiC単結晶の製造方法
JP6533716B2 (ja) 2015-08-06 2019-06-19 信越化学工業株式会社 SiC単結晶の製造方法
JP6768491B2 (ja) * 2016-12-26 2020-10-14 昭和電工株式会社 SiCウェハ及びSiCウェハの製造方法
JP6784220B2 (ja) * 2017-04-14 2020-11-11 信越化学工業株式会社 SiC単結晶の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262599A (ja) * 1991-04-18 1993-10-12 Nippon Steel Corp SiC単結晶およびその成長方法
JPH10509943A (ja) * 1994-11-30 1998-09-29 クリー・リサーチ,インコーポレイテッド 炭化ケイ素のエピタキシー成長における、およびその結果形成される炭化ケイ素構造におけるマイクロパイプの形成を減少させる方法
JP2003119097A (ja) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2007197231A (ja) * 2006-01-24 2007-08-09 Toyota Motor Corp SiC単結晶の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227886A (ja) 1985-07-30 1987-02-05 Canon Inc パタ−ン認識装置
US5958132A (en) 1991-04-18 1999-09-28 Nippon Steel Corporation SiC single crystal and method for growth thereof
JP3251687B2 (ja) 1993-02-05 2002-01-28 株式会社東芝 半導体単結晶の製造方法
JP4664464B2 (ja) 2000-04-06 2011-04-06 新日本製鐵株式会社 モザイク性の小さな炭化珪素単結晶ウエハ
JP4903946B2 (ja) 2000-12-28 2012-03-28 株式会社ブリヂストン 炭化ケイ素単結晶の製造方法及び製造装置
DE10247017B4 (de) 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC-Einkristall, Verfahren zur Herstellung eines SiC-Einkristalls, SiC-Wafer mit einem Epitaxiefilm und Verfahren zur Herstellung eines SiC-Wafers, der einen Epitaxiefilm aufweist
JP3750622B2 (ja) 2002-03-22 2006-03-01 株式会社デンソー エピタキシャル膜付きSiCウエハ及びその製造方法並びにSiC電子デバイス
JP4480349B2 (ja) 2003-05-30 2010-06-16 株式会社ブリヂストン 炭化ケイ素単結晶の製造方法及び製造装置
CN101448984B (zh) * 2006-05-18 2012-02-22 昭和电工株式会社 制造碳化硅单晶的方法
JP2008105896A (ja) 2006-10-25 2008-05-08 Toyota Motor Corp SiC単結晶の製造方法
JP4277926B1 (ja) 2007-11-27 2009-06-10 トヨタ自動車株式会社 炭化珪素単結晶の成長法
JP5360639B2 (ja) 2008-02-05 2013-12-04 学校法人関西学院 表面改質単結晶SiC基板、エピ成長層付き単結晶SiC基板、半導体チップ、単結晶SiC成長用種基板及び単結晶成長層付き多結晶SiC基板の製造方法
JP4586857B2 (ja) 2008-02-06 2010-11-24 トヨタ自動車株式会社 p型SiC半導体単結晶の製造方法
WO2010024392A1 (ja) * 2008-08-29 2010-03-04 住友金属工業株式会社 炭化珪素単結晶の製造方法
US9587327B2 (en) 2009-07-17 2017-03-07 Toyota Jidosha Kabushiki Kaisha Method of production of sic single crystal
JP5355533B2 (ja) 2010-11-09 2013-11-27 新日鐵住金株式会社 n型SiC単結晶の製造方法
CN103608497B (zh) 2011-07-04 2016-10-12 丰田自动车株式会社 SiC单晶及其制造方法
JP5750363B2 (ja) 2011-12-02 2015-07-22 株式会社豊田中央研究所 SiC単結晶、SiCウェハ及び半導体デバイス
DE112013002107B4 (de) 2012-04-20 2019-04-04 Toyota Jidosha Kabushiki Kaisha SiC-Einkristall-Herstellungsverfahren
JP6147543B2 (ja) 2013-04-02 2017-06-14 株式会社豊田中央研究所 SiC単結晶及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262599A (ja) * 1991-04-18 1993-10-12 Nippon Steel Corp SiC単結晶およびその成長方法
JPH10509943A (ja) * 1994-11-30 1998-09-29 クリー・リサーチ,インコーポレイテッド 炭化ケイ素のエピタキシー成長における、およびその結果形成される炭化ケイ素構造におけるマイクロパイプの形成を減少させる方法
JP2003119097A (ja) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2007197231A (ja) * 2006-01-24 2007-08-09 Toyota Motor Corp SiC単結晶の製造方法

Also Published As

Publication number Publication date
CN104246026B (zh) 2017-05-31
WO2013157418A1 (ja) 2013-10-24
US10428440B2 (en) 2019-10-01
DE112013002107T5 (de) 2014-12-31
DE112013002107B4 (de) 2019-04-04
US20150128847A1 (en) 2015-05-14
CN104246026A (zh) 2014-12-24
JP5839117B2 (ja) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5839117B2 (ja) SiC単結晶及びその製造方法
JP5854013B2 (ja) SiC単結晶の製造方法
JP5821958B2 (ja) SiC単結晶及びその製造方法
JP5434801B2 (ja) SiC単結晶の製造方法
JP6090287B2 (ja) SiC単結晶の製造方法
JP5668724B2 (ja) SiC単結晶のインゴット、SiC単結晶、及び製造方法
JP5876390B2 (ja) SiC単結晶の製造方法
JP5741652B2 (ja) n型SiC単結晶及びその製造方法
JP5905864B2 (ja) SiC単結晶及びその製造方法
JP5890377B2 (ja) SiC単結晶の製造方法
JP6119732B2 (ja) SiC単結晶及びその製造方法
JP6040866B2 (ja) SiC単結晶の製造方法
JP6060863B2 (ja) SiC単結晶及びその製造方法
JP2017202969A (ja) SiC単結晶及びその製造方法
JP6030525B2 (ja) SiC単結晶の製造方法
JP6390628B2 (ja) SiC単結晶の製造方法及び製造装置
JP2018150193A (ja) SiC単結晶の製造方法
JP2017226583A (ja) SiC単結晶の製造方法
JP6500828B2 (ja) SiC単結晶の製造方法
JP2018043898A (ja) SiC単結晶の製造方法
JP2018048044A (ja) SiC単結晶の製造方法
JP2019014622A (ja) SiC単結晶の製造方法
JP2019043818A (ja) SiC単結晶の製造方法
JP2019094228A (ja) SiC単結晶の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5839117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151