JPWO2013157418A1 - SiC single crystal and method for producing the same - Google Patents

SiC single crystal and method for producing the same Download PDF

Info

Publication number
JPWO2013157418A1
JPWO2013157418A1 JP2014511168A JP2014511168A JPWO2013157418A1 JP WO2013157418 A1 JPWO2013157418 A1 JP WO2013157418A1 JP 2014511168 A JP2014511168 A JP 2014511168A JP 2014511168 A JP2014511168 A JP 2014511168A JP WO2013157418 A1 JPWO2013157418 A1 JP WO2013157418A1
Authority
JP
Japan
Prior art keywords
single crystal
solution
crystal
sic single
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014511168A
Other languages
Japanese (ja)
Other versions
JP5839117B2 (en
Inventor
克典 旦野
克典 旦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014511168A priority Critical patent/JP5839117B2/en
Publication of JPWO2013157418A1 publication Critical patent/JPWO2013157418A1/en
Application granted granted Critical
Publication of JP5839117B2 publication Critical patent/JP5839117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

らせん転位、刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を低減した高品質なSiC単結晶、及びそのようなSiC単結晶の溶液法による製造方法を提供することを目的とする。内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び種結晶の(1−100)面に、SiC単結晶を、20?10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、を含む、SiC単結晶の製造方法。An object of the present invention is to provide a high-quality SiC single crystal with reduced threading dislocation density such as screw dislocations, edge dislocations, and micropipe defects, and a method for producing such a SiC single crystal by a solution method. A method for producing a SiC single crystal by a solution method, wherein a SiC single crystal is grown by bringing a SiC seed crystal into contact with a Si-C solution having a temperature gradient that decreases in temperature from the inside toward the surface. The temperature gradient of the surface region is set to 10 ° C./cm or less, the (1-100) plane of the SiC seed crystal is brought into contact with the Si—C solution, and the SiC single crystal is formed on the (1-100) plane of the seed crystal. Is grown at a ratio of the growth rate of the SiC single crystal to the temperature gradient (single crystal growth rate / temperature gradient) of less than 20-10 <-4> cm <2> /h.degree. C. .

Description

本発明は、半導体素子として好適なSiC単結晶及びその製造方法に関し、さらに詳しくは、貫通転位が少ない高品質のSiC単結晶及び溶液法による高品質のSiC単結晶の製造方法に関する。   The present invention relates to a SiC single crystal suitable as a semiconductor element and a method for producing the same, and more particularly to a high quality SiC single crystal with few threading dislocations and a method for producing a high quality SiC single crystal by a solution method.

SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。   SiC single crystals are very thermally and chemically stable, excellent in mechanical strength, resistant to radiation, and have excellent physical properties such as higher breakdown voltage and higher thermal conductivity than Si single crystals. . Therefore, it is possible to realize high power, high frequency, withstand voltage, environmental resistance, etc. that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs single crystal, and power devices that enable high power control and energy saving. Expectations are growing as next-generation semiconductor materials in a wide range of materials, high-speed and large-capacity information communication device materials, in-vehicle high-temperature device materials, radiation-resistant device materials, and the like.

従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び結晶多形が生じやすいという欠点を有するが、結晶の成長速度が大きいため、従来、SiCバルク単結晶の多くは昇華法により製造されている。また、成長結晶の欠陥を低減する試みも行われており、昇華法により(11−20)面及び(1−100)面に、繰り返し結晶成長させることで、<0001>方向に伝搬する転位密度を低減する方法が提案されている(特許文献1)。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。   Conventionally, as a method for growing a SiC single crystal, a gas phase method, an Acheson method, and a solution method are typically known. Among the vapor phase methods, for example, the sublimation method has a defect that a grown single crystal is liable to cause a lattice defect such as a hollow through defect called a micropipe defect or a stacking fault and a crystal polymorphism, but the crystal growth. Due to the high speed, many of SiC bulk single crystals are conventionally produced by a sublimation method. Attempts have also been made to reduce defects in the grown crystal, and the dislocation density propagates in the <0001> direction by repeatedly growing crystals on the (11-20) plane and the (1-100) plane by the sublimation method. Has been proposed (Patent Document 1). In the Atchison method, since silica and coke are used as raw materials and heated in an electric furnace, it is impossible to obtain a single crystal with high crystallinity due to impurities in the raw materials.

溶液法は、黒鉛坩堝中でSi融液またはSi融液に合金を融解し、その融液中にCを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が期待できる。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されており(特許文献2)、結晶欠陥が少ないSiC単結晶を得る方法が提案されている(特許文献3)。   In the solution method, an Si melt or an alloy is melted into the Si melt in a graphite crucible, C is dissolved in the melt, and a SiC crystal layer is deposited on a seed crystal substrate placed in a low temperature portion to grow. Is the method. Since the crystal growth is performed in the solution method in a state close to thermal equilibrium as compared with the gas phase method, it can be expected to reduce defects. For this reason, recently, several methods for producing an SiC single crystal by a solution method have been proposed (Patent Document 2), and a method for obtaining an SiC single crystal with few crystal defects has been proposed (Patent Document 3).

特開2003−119097号JP 2003-119097 A 特開2008−105896号JP 2008-105896 特開平6−227886号JP-A-6-227886

特許文献1〜3に記載されるように、昇華法または溶液法において、成長結晶の欠陥を低減する試みが行われている。しかしながら、半導体素子として使用することができる高品質のSiC単結晶を安定して得るためには、上記方法では未だ不十分であり、特に、貫通転位を含まないSiC単結晶を歩留よく製造することは依然として困難である。昇華法においては貫通転位をほぼ含まないかあるいは全く含まない単結晶を得ることは困難であり、溶液法においても、種結晶の転位が伝搬しやすく、種結晶の成長面に垂直方向の成長結晶において貫通転位をほぼ含まないかあるいは全く含まない単結晶を得ることは難しい。   As described in Patent Documents 1 to 3, attempts have been made to reduce defects in grown crystals in the sublimation method or the solution method. However, in order to stably obtain a high-quality SiC single crystal that can be used as a semiconductor element, the above method is still insufficient, and in particular, an SiC single crystal that does not contain threading dislocations is manufactured with a high yield. That is still difficult. In the sublimation method, it is difficult to obtain a single crystal containing almost or no threading dislocations. Even in the solution method, the dislocations of the seed crystals are easily propagated, and the crystals grown in the direction perpendicular to the growth surface of the seed crystals are obtained. It is difficult to obtain a single crystal containing substantially no or no threading dislocations.

本発明は、上記課題を解決するものであり、貫通らせん転位、貫通刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を低減した高品質なSiC単結晶、及びそのようなSiC単結晶の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and provides a high-quality SiC single crystal with reduced threading dislocation density such as threading screw dislocations, threading edge dislocations, and micropipe defects, and a method for producing such a SiC single crystal. The purpose is to provide.

本発明は、内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び
種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、
を含む、SiC単結晶の製造方法である。
The present invention is a method for producing a SiC single crystal by a solution method in which a SiC single crystal is grown by bringing a SiC seed crystal into contact with a Si-C solution having a temperature gradient that decreases in temperature from the inside toward the surface,
The temperature gradient of the surface region of the Si—C solution is 10 ° C./cm or less,
The SiC single crystal is brought into contact with the (1-100) plane of the SiC seed crystal in the Si-C solution, and the SiC single crystal is less than 20 × 10 −4 cm 2 / h · ° C. Growing at a ratio of SiC single crystal growth rate to temperature gradient (single crystal growth rate / temperature gradient);
Is a method for producing a SiC single crystal.

本発明はまた、SiC種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶である。   The present invention is also a SiC single crystal grown from an SiC seed crystal, wherein the threading dislocation density in the (0001) plane is smaller than the threading dislocation density in the (0001) plane of the seed crystal. is there.

本発明によれば、(0001)面における貫通転位密度が小さいSiC単結晶を得ることができる。   According to the present invention, a SiC single crystal having a low threading dislocation density in the (0001) plane can be obtained.

本発明において使用し得る溶液法による単結晶製造装置の断面模式図である。It is a cross-sectional schematic diagram of the single crystal manufacturing apparatus by the solution method which can be used in this invention. 本発明に係る、(1−100)面上に成長させたSiC単結晶の成長面の外観写真である。It is an external appearance photograph of the growth surface of the SiC single crystal grown on the (1-100) plane concerning the present invention. 本発明に係る種結晶を基点とした(1−100)面成長結晶から、(0001)面を切り出して、溶融アルカリエッチングした(0001)面の顕微鏡写真である。It is the microscope picture of the (0001) plane which cut out the (0001) plane from the (1-100) plane growth crystal based on the seed crystal concerning the present invention, and carried out the fusion alkali etching. 図3の種結晶部分について拡大観察した写真である。It is the photograph which expanded and observed about the seed crystal part of FIG. 図3の成長結晶部分について拡大観察した写真である。FIG. 4 is a photograph of an enlarged observation of a grown crystal part in FIG. 3. (11−20)面成長させた結晶の成長面の外観写真である。It is an external appearance photograph of the growth surface of the crystal grown by (11-20) plane. (1−100)面成長させた結晶の成長面の外観写真である。It is an external appearance photograph of the growth surface of the crystal grown by (1-100) plane. (1−100)面成長における、Si−C溶液の表面領域の温度勾配、及び単結晶成長速度/温度勾配の比による、成長条件範囲を表したグラフである。It is the graph showing the growth condition range by the temperature gradient of the surface area | region of a Si-C solution in (1-100) plane growth, and the ratio of single crystal growth rate / temperature gradient.

本明細書において、(1−100)面等の表記における「−1」は、本来、数字の上に横線を付して表記するところを「−1」と表記したものである。   In the present specification, “−1” in the notation of the (1-100) plane and the like is a place where “−1” is originally written with a horizontal line on the number.

上記特許文献1に記載されるように、従来、RAF成長法が結晶の低転位化に有効と考えられており、昇華法により(11−20)面(a面ともいう)成長及び(1−100)面(m面ともいう)成長を繰り返すことにより、転位を低減した結晶を作製することが行われている。しかしながら、RAF法によっても無転位の単結晶を得ることは難しく、また、(11−20)面及び(1−100)面の繰り返し成長が必要であり、より転位密度の低減が可能で且つ簡便な製造方法が望まれている。   As described in Patent Document 1, the RAF growth method has hitherto been considered effective for reducing the dislocation of crystals, and (11-20) plane (also referred to as a plane) growth and (1- A crystal with reduced dislocations is produced by repeating 100) plane (also referred to as m-plane) growth. However, it is difficult to obtain a dislocation-free single crystal even by the RAF method, and it is necessary to repeatedly grow the (11-20) plane and the (1-100) plane, and the dislocation density can be further reduced and simplified. New manufacturing methods are desired.

本発明者は、溶液法によるSiC単結晶の製造において、種結晶に起因して成長結晶に発生し得るらせん転位、刃状転位、及びマイクロパイプ欠陥といった貫通転位密度を従来よりも低減し得る高品質なSiC単結晶について鋭意研究を行った。   In the production of SiC single crystals by the solution method, the present inventor has found that the threading dislocation density such as screw dislocations, edge dislocations, and micropipe defects that can occur in the grown crystal due to the seed crystal can be reduced as compared with the prior art. We conducted intensive research on quality SiC single crystals.

その結果、従来、典型的に行われていたa面成長ではなく、種結晶の(1−100)面(m面ともいう)を基点としたm面成長を溶液法を用いて行うことによって、種結晶よりも貫通転位密度が低いSiC単結晶が得られることを見出した。また、この方法によれば、単結晶を繰り返し成長させる必要が無く、1度のm面成長で、種結晶よりも貫通転位密度を大幅に低減したSiC単結晶が得られることが分かった。   As a result, by performing m-plane growth based on the (1-100) plane (also referred to as m-plane) of the seed crystal using the solution method, instead of the a-plane growth that has been typically performed conventionally, It has been found that a SiC single crystal having a threading dislocation density lower than that of a seed crystal can be obtained. Further, according to this method, it has been found that it is not necessary to repeatedly grow a single crystal, and an SiC single crystal having a significantly reduced threading dislocation density than that of a seed crystal can be obtained by one m-plane growth.

さらには、Si−C溶液の表面領域の温度勾配、及び温度勾配に対する単結晶の成長速度が、それぞれ、SiC単結晶の成長面の平坦性に影響していることを突き止めた。そして、このSi−C溶液の表面領域の温度勾配と単結晶の成長速度の条件を組み込んだSiC単結晶の製造方法を見出した。   Furthermore, it has been found that the temperature gradient of the surface region of the Si—C solution and the growth rate of the single crystal with respect to the temperature gradient influence the flatness of the growth surface of the SiC single crystal. And the manufacturing method of the SiC single crystal which incorporated the temperature gradient of the surface area | region of this Si-C solution and the conditions of the growth rate of a single crystal was discovered.

本発明は、内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
Si−C溶液にSiC種結晶の(1−100)面を接触させること、及び
種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、温度勾配に対するSiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、を含む、SiC単結晶の製造方法を対象とする。
The present invention is a method for producing a SiC single crystal by a solution method in which a SiC single crystal is grown by bringing a SiC seed crystal into contact with a Si-C solution having a temperature gradient that decreases in temperature from the inside toward the surface,
The temperature gradient of the surface region of the Si—C solution is 10 ° C./cm or less,
The SiC single crystal is brought into contact with the (1-100) plane of the SiC seed crystal in the Si-C solution, and the SiC single crystal is less than 20 × 10 −4 cm 2 / h · ° C. And a method of manufacturing a SiC single crystal, comprising growing at a ratio of a growth rate of the SiC single crystal to a temperature gradient (growth rate of single crystal / temperature gradient).

本方法においては、種結晶を基点として成長させたSiC単結晶であって、平坦な成長面を有し、且つ(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、好ましくは貫通転位密度が1個/cm2以下、さらに好ましくは貫通転位密度がゼロであるSiC単結晶を得ることができる。In this method, the SiC single crystal is grown from a seed crystal as a starting point, has a flat growth surface, and the threading dislocation density in the (0001) plane is the threading dislocation density in the (0001) plane of the seed crystal. A SiC single crystal having a smaller threading dislocation density of 1 / cm 2 or less, more preferably zero threading dislocation density can be obtained.

本発明のSiC単結晶の製造方法においては溶液法が用いられる。SiC単結晶を製造するための溶液法とは、坩堝内において、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成することによってSi−C溶液の表面領域を過飽和にして、Si−C溶液に接触させた種結晶を基点として、種結晶上にSiC単結晶を成長させる方法である。   In the method for producing a SiC single crystal of the present invention, a solution method is used. The solution method for producing a SiC single crystal is to supersaturate the surface region of the Si-C solution by forming a temperature gradient in the crucible that decreases in temperature from the inside of the Si-C solution toward the surface of the solution. In this method, an SiC single crystal is grown on the seed crystal using the seed crystal brought into contact with the Si-C solution as a base point.

本方法においては、SiC単結晶の製造に一般に用いられる品質のSiC単結晶を種結晶として用いることができる。例えば昇華法で一般的に作成したSiC単結晶を種結晶として用いることができる。このような昇華法で一般的に作成したSiC単結晶には、概して貫通転位及び基底面転位が多く含まれている。   In this method, a SiC single crystal of a quality generally used for the production of an SiC single crystal can be used as a seed crystal. For example, a SiC single crystal generally prepared by a sublimation method can be used as a seed crystal. The SiC single crystal generally produced by such a sublimation method generally contains many threading dislocations and basal plane dislocations.

本方法においては、(1−100)面を有するSiC種結晶を用いて、この(1−100)面を基点として溶液法を用いてSiC単結晶を(1−100)面成長させる。得られる(1−100)面成長したSiC単結晶の(0001)面における貫通転位密度は、種結晶の(0001)面における貫通転位密度よりも小さく、好ましくは貫通転位密度が1個/cm2以下であり、より好ましくは貫通転位密度はゼロである。種結晶は、例えば板状、円盤状、円柱状、角柱状、円錐台状、または角錐台状等の任意の形状であることができる。種結晶の(1−100)面をSi−C溶液面に接触させる種結晶の下面として用いることができ、反対側の上面を黒鉛軸等の種結晶保持軸に保持させる面として用いることができる。In this method, an SiC seed crystal having a (1-100) plane is used, and a SiC single crystal is grown on a (1-100) plane by using the solution method with the (1-100) plane as a base point. The threading dislocation density in the (0001) plane of the obtained (1-100) plane grown SiC single crystal is smaller than the threading dislocation density in the (0001) plane of the seed crystal, and preferably the threading dislocation density is 1 / cm 2. Or more preferably, the threading dislocation density is zero. The seed crystal can have any shape such as a plate shape, a disc shape, a columnar shape, a prism shape, a truncated cone shape, or a truncated pyramid shape. The (1-100) plane of the seed crystal can be used as the lower surface of the seed crystal that makes contact with the Si-C solution surface, and the upper surface on the opposite side can be used as a surface that is held by a seed crystal holding shaft such as a graphite shaft. .

Si−C溶液の表面領域の温度勾配とは、Si−C溶液の表面の垂直方向の温度勾配であって、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配である。温度勾配は、低温側となるSi−C溶液の表面における温度Aと、Si−C溶液の表面から溶液側に垂直方向の所定の深さにおける高温側となる温度Bを熱電対で測定し、その温度差を、温度A及び温度Bを測定した位置間の距離で割ることによって算出することができる。例えば、Si−C溶液の表面と、Si−C溶液の表面から溶液側に垂直方向の深さDcmの位置との間の温度勾配を測定する場合、Si−C溶液の表面温度Aと、Si−C溶液の表面から溶液側に垂直方向の深さDcmの位置における温度Bとの差をDcmで割った次の式:
温度勾配(℃/cm)=(B−A)/D
によって算出することができる。
The temperature gradient of the surface region of the Si—C solution is a temperature gradient in the vertical direction of the surface of the Si—C solution, and is a temperature gradient that decreases in temperature from the inside of the Si—C solution toward the surface of the solution. For the temperature gradient, a temperature A on the surface of the Si—C solution on the low temperature side and a temperature B on the high temperature side at a predetermined depth perpendicular to the solution side from the surface of the Si—C solution are measured with a thermocouple, The temperature difference can be calculated by dividing the temperature A and the temperature B by the distance between the measured positions. For example, when measuring the temperature gradient between the surface of the Si—C solution and the position of the depth Dcm perpendicular to the solution side from the surface of the Si—C solution, the surface temperature A of the Si—C solution and Si -C Difference from temperature B at a position of depth Dcm perpendicular to the solution side from the surface of the solution divided by Dcm:
Temperature gradient (° C./cm)=(B−A)/D
Can be calculated.

本方法において、Si−C溶液の表面領域の温度勾配は10℃/cm以下である。SiC溶液の表面領域の温度勾配を上記範囲内にすることによって、貫通転位を含まず且つ平坦な表面を有するSiC単結晶を得やすくなることが分かった。   In this method, the temperature gradient of the surface region of the Si—C solution is 10 ° C./cm or less. It has been found that by making the temperature gradient of the surface region of the SiC solution within the above range, it becomes easy to obtain a SiC single crystal having no flat threading dislocation and having a flat surface.

種結晶基板近傍の温度勾配が大きいとSiC単結晶の成長速度を速くし得るが、温度勾配が大きすぎると、平坦な成長面が得られにくくなるため、上記の温度勾配の範囲に制御する必要がある。   If the temperature gradient in the vicinity of the seed crystal substrate is large, the growth rate of the SiC single crystal can be increased. However, if the temperature gradient is too large, it becomes difficult to obtain a flat growth surface, so it is necessary to control the temperature gradient within the above range. There is.

Si−C溶液の表面領域の温度勾配の下限は特に限定されないが、例えば2℃/cm以上、4℃/cm以上、6℃/cm以上、または8℃/cm以上にしてもよい。   The lower limit of the temperature gradient of the surface region of the Si—C solution is not particularly limited, and may be, for example, 2 ° C./cm or more, 4 ° C./cm or more, 6 ° C./cm or more, or 8 ° C./cm or more.

温度勾配の制御範囲は、好ましくはSi−C溶液の表面から3mmの深さ、さらに好ましくは20mmの深さまでの範囲である。   The control range of the temperature gradient is preferably a range from the surface of the Si—C solution to a depth of 3 mm, more preferably a depth of 20 mm.

温度勾配の制御範囲が浅すぎると、温度勾配を制御する範囲が浅くCの過飽和度を制御する範囲も浅くなりSiC単結晶の成長が不安定になることがある。また、温度勾配を制御する範囲が深いと、Cの過飽和度を制御する範囲も深くなりSiC単結晶の安定成長に効果的であるが、実際、単結晶の成長に寄与する深さはSi−C溶液の表面から数mmの深さまでの範囲である。したがって、SiC単結晶の成長と温度勾配の制御とを安定して行うために、上記深さ範囲の温度勾配を制御することが好ましい。   If the control range of the temperature gradient is too shallow, the range for controlling the temperature gradient is shallow and the range for controlling the degree of supersaturation of C becomes shallow, and the growth of the SiC single crystal may become unstable. Further, if the range for controlling the temperature gradient is deep, the range for controlling the degree of supersaturation of C is also deep and effective for stable growth of the SiC single crystal. In practice, however, the depth contributing to the growth of the single crystal is Si −. The range is from the surface of the C solution to a depth of several mm. Therefore, in order to stably perform the growth of the SiC single crystal and the control of the temperature gradient, it is preferable to control the temperature gradient in the depth range.

Si−C溶液の表面領域の温度勾配の制御は、後で図面を参照しながら詳細に説明するが、単結晶製造装置の坩堝周辺に配置された高周波コイル等の加熱装置の配置、構成、出力等を調整することによって、Si−C溶液の表面に垂直方向の所定の温度勾配を形成することができる。   The control of the temperature gradient of the surface region of the Si-C solution will be described in detail later with reference to the drawings. The arrangement, configuration, and output of a heating device such as a high-frequency coil arranged around the crucible of the single crystal manufacturing apparatus. By adjusting etc., a predetermined temperature gradient in the vertical direction can be formed on the surface of the Si—C solution.

本方法においては、Si−C溶液の表面領域の温度勾配(℃/cm)に対するSiC単結晶の成長速度(μm/h)の比(単結晶の成長速度/温度勾配)を、20×10-4cm2/h・℃未満、好ましくは12×10-4cm2/h・℃未満に制御して、SiC単結晶の成長を行う。Si−C溶液の表面領域の温度勾配の制御に加えて、温度勾配に対する単結晶の成長速度を上記範囲内とすることによって、貫通転位を含まず且つ平坦な表面を有するSiC単結晶を安定して得ることができることが分かった。In this method, the ratio of the growth rate (μm / h) of the SiC single crystal to the temperature gradient (° C./cm) of the surface region of the Si—C solution (growth rate / temperature gradient of the single crystal) is 20 × 10 − The SiC single crystal is grown under a control of less than 4 cm 2 / h · ° C., preferably less than 12 × 10 −4 cm 2 / h · ° C. In addition to controlling the temperature gradient of the surface region of the Si-C solution, by adjusting the growth rate of the single crystal with respect to the temperature gradient within the above range, the SiC single crystal that does not contain threading dislocations and has a flat surface is stabilized. I found out that

SiC単結晶の成長速度は、Si−C溶液の過飽和度の制御によって行うことができる。Si−C溶液の過飽和度を高めればSiC単結晶の成長速度は増加し、過飽和度を下げればSiC単結晶の成長速度は低下する。   The growth rate of the SiC single crystal can be controlled by controlling the degree of supersaturation of the Si—C solution. Increasing the supersaturation degree of the Si—C solution increases the growth rate of the SiC single crystal, and decreasing the supersaturation degree decreases the growth rate of the SiC single crystal.

Si−C溶液の過飽和度は、主に、Si−C溶液の表面温度、及びSi−C溶液の表面領域の温度勾配により制御することができ、例えば、Si−C溶液の表面温度を一定にしつつ、Si−C溶液の表面領域の温度勾配を小さくすれば過飽和度を小さくすることができ、Si−C溶液の表面領域の温度勾配を大きくすれば過飽和度を大きくすることができる。   The supersaturation degree of the Si-C solution can be controlled mainly by the surface temperature of the Si-C solution and the temperature gradient of the surface region of the Si-C solution. For example, the surface temperature of the Si-C solution is kept constant. However, if the temperature gradient of the surface region of the Si—C solution is reduced, the degree of supersaturation can be reduced, and if the temperature gradient of the surface region of the Si—C solution is increased, the degree of supersaturation can be increased.

なお、種結晶保持軸を介した抜熱を変化させても、種結晶近傍のSi−C溶液の過飽和度が変化してSiC単結晶の成長速度が変化し得る。したがって、種結晶保持軸の材料を選定することによって熱伝導率を変更すること、あるいは、種結晶保持軸の直径を変えること等によって抜熱の程度を変えて、SiC単結晶の成長速度を変えることもできる。   Note that even if the heat removal through the seed crystal holding axis is changed, the supersaturation degree of the Si—C solution in the vicinity of the seed crystal may change and the growth rate of the SiC single crystal may change. Therefore, changing the thermal conductivity by selecting the material of the seed crystal holding shaft, or changing the growth rate of the SiC single crystal by changing the degree of heat removal by changing the diameter of the seed crystal holding shaft, etc. You can also.

貫通転位の有無の評価は、(0001)面を露出させるように鏡面研磨して、溶融水酸化カリウム、過酸化ナトリウム等を用いた溶融アルカリエッチングを行って、転位を強調させて、SiC単結晶の表面を顕微鏡観察することによって行われ得る。   The evaluation of the presence or absence of threading dislocations is performed by mirror polishing so that the (0001) plane is exposed, performing molten alkali etching using molten potassium hydroxide, sodium peroxide, etc. This can be done by microscopic observation of the surface.

単結晶製造装置への種結晶の設置は、上述のように、種結晶の上面を種結晶保持軸に保持させることによって行うことができる。   As described above, the seed crystal can be installed in the single crystal manufacturing apparatus by holding the upper surface of the seed crystal on the seed crystal holding shaft.

種結晶のSi−C溶液への接触は、種結晶を保持した種結晶保持軸をSi−C溶液面に向かって降下させ、種結晶の下面をSi−C溶液面に対して並行にしてSi−C溶液に接触させることによって行うことができる。そして、Si−C溶液面に対して種結晶を所定の位置に保持して、SiC単結晶を成長させることができる。   The contact of the seed crystal with the Si-C solution is performed by lowering the seed crystal holding axis holding the seed crystal toward the Si-C solution surface, and with the lower surface of the seed crystal parallel to the Si-C solution surface. It can be performed by contacting with a -C solution. Then, the SiC single crystal can be grown by holding the seed crystal at a predetermined position with respect to the Si—C solution surface.

種結晶の保持位置は、種結晶の下面の位置が、Si−C溶液面に一致するか、Si−C溶液面に対して下側にあるか、またはSi−C溶液面に対して上側にあってもよい。種結晶の下面をSi−C溶液面に対して上方の位置に保持する場合は、一旦、種結晶をSi−C溶液に接触させて種結晶の下面にSi−C溶液を接触させてから、所定の位置に引き上げる。種結晶の下面の位置を、Si−C溶液面に一致するか、またはSi−C溶液面よりも下側にしてもよいが、多結晶の発生を防止するために、種結晶保持軸にSi−C溶液が接触しないようにすることが好ましい。これらの方法において、単結晶の成長中に種結晶の位置を調節してもよい。   The holding position of the seed crystal is such that the position of the lower surface of the seed crystal coincides with the Si-C solution surface, is below the Si-C solution surface, or is above the Si-C solution surface. There may be. When the lower surface of the seed crystal is held at a position above the Si-C solution surface, the seed crystal is once brought into contact with the Si-C solution and the Si-C solution is brought into contact with the lower surface of the seed crystal. Pull up into place. The position of the lower surface of the seed crystal may coincide with the Si-C solution surface or be lower than the Si-C solution surface, but in order to prevent the occurrence of polycrystals, Si It is preferable to prevent the -C solution from contacting. In these methods, the position of the seed crystal may be adjusted during the growth of the single crystal.

種結晶保持軸はその端面に種結晶基板を保持する黒鉛の軸であることができる。種結晶保持軸は、円柱状、角柱状等の任意の形状であることができ、種結晶の上面の形状と同じ端面形状を有する黒鉛軸を用いてもよい。   The seed crystal holding axis may be a graphite axis that holds the seed crystal substrate on its end face. The seed crystal holding shaft may have an arbitrary shape such as a columnar shape or a prismatic shape, and a graphite shaft having the same end surface shape as the shape of the upper surface of the seed crystal may be used.

本方法によって成長させたSiC単結晶を種結晶として用いて、SiC単結晶をさらに成長させることができる。本方法によって(1−100)面成長させたSiC単結晶には、基底面転位は若干含まれるものの貫通転位は非常に少ないかゼロであるため、このSiC単結晶の(000−1)面を基点としてさらに結晶成長させると、貫通転位だけでなく基底面転位も含まない非常に高品質のSiC単結晶を得ることができる。これは、種結晶の成長基点となる(000−1)面における貫通転位が非常に少ないか全く含まれないため、種結晶から成長結晶に伝搬する貫通転位が非常に少ないか全く無いことと、種結晶に含まれ得る基底面転位は(000−1)面成長結晶に伝搬しにくいためである。これは、溶液法を用いて行うことができ、あるいは昇華法を用いて行うことも可能である。   An SiC single crystal can be further grown using the SiC single crystal grown by the present method as a seed crystal. The SiC single crystal grown by (1-100) plane by this method contains a few basal plane dislocations but very few or zero threading dislocations. Therefore, the (000-1) plane of this SiC single crystal is When the crystal is further grown as a base point, it is possible to obtain a very high quality SiC single crystal that includes not only threading dislocations but also basal plane dislocations. This is because there is very little or no threading dislocations in the (000-1) plane which is the growth base point of the seed crystal, so there is very little or no threading dislocation propagating from the seed crystal to the growth crystal; This is because basal plane dislocations that can be included in the seed crystal are difficult to propagate to the (000-1) plane grown crystal. This can be done using the solution method or can be done using the sublimation method.

本発明において、Si−C溶液とは、SiまたはSi/X(XはSi以外の1種以上の金属)の融液を溶媒とするCが溶解した溶液をいう。Xは一種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe等が挙げられる。   In the present invention, the Si—C solution refers to a solution in which C is dissolved using a melt of Si or Si / X (X is one or more metals other than Si) as a solvent. X is one or more kinds of metals, and is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase). Examples of suitable metals X include Ti, Mn, Cr, Ni, Ce, Co, V, Fe and the like.

Si−C溶液はSi/Cr/X(XはSi及びCr以外の1種以上の金属)の融液を溶媒とするSi−C溶液が好ましい。さらに、原子組成百分率でSi/Cr/X=30〜80/20〜60/0〜10の融液を溶媒とするSi−C溶液が、Cの溶解量の変動が少なく好ましい。例えば、坩堝内にSiに加えて、Cr、Ni等を投入し、Si−Cr溶液、Si−Cr−Ni溶液等を形成することができる。   The Si—C solution is preferably a Si—C solution using a melt of Si / Cr / X (X is one or more metals other than Si and Cr) as a solvent. Furthermore, a Si—C solution using a melt of Si / Cr / X = 30 to 80/20 to 60/0 to 10 in terms of atomic composition percentage as a solvent is preferable since there is little variation in the dissolved amount of C. For example, in addition to Si, Cr, Ni, or the like can be charged into the crucible to form a Si—Cr solution, a Si—Cr—Ni solution, or the like.

Si−C溶液は、その表面温度が、Si−C溶液へのCの溶解量の変動が少ない1800〜2200℃が好ましい。   The surface temperature of the Si—C solution is preferably 1800 to 2200 ° C. with little variation in the amount of C dissolved in the Si—C solution.

Si−C溶液の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。   The temperature of the Si—C solution can be measured using a thermocouple, a radiation thermometer, or the like. Regarding the thermocouple, from the viewpoint of high temperature measurement and prevention of impurity contamination, a thermocouple in which a tungsten-rhenium strand coated with zirconia or magnesia glass is placed in a graphite protective tube is preferable.

図1に、本発明の方法を実施するのに適したSiC単結晶製造装置の一例を示す。図示したSiC単結晶製造装置100は、SiまたはSi/Xの融液中にCが溶解してなるSi−C溶液24を収容した坩堝10を備え、Si−C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成し、昇降可能な黒鉛軸12の先端に保持された種結晶基板14をSi−C溶液24に接触させて、SiC単結晶を成長させることができる。坩堝10及び黒鉛軸12を回転させることが好ましい。   FIG. 1 shows an example of a SiC single crystal manufacturing apparatus suitable for carrying out the method of the present invention. The illustrated SiC single crystal manufacturing apparatus 100 includes a crucible 10 containing a Si-C solution 24 in which C is dissolved in a Si or Si / X melt, and is provided on the surface of the solution from the inside of the Si-C solution. A SiC single crystal can be grown by forming a temperature gradient that decreases toward the surface and bringing the seed crystal substrate 14 held at the tip of the graphite shaft 12 that can be moved up and down into contact with the Si-C solution 24. It is preferable to rotate the crucible 10 and the graphite shaft 12.

Si−C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSiまたはSi/Xの融液にCを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解によりCが融液中に溶解し、Si−C溶液が形成される。こうすると、Si−C溶液24中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、または固体のC供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。   The Si-C solution 24 is prepared by charging a raw material into a crucible and dissolving C in a Si or Si / X melt prepared by heating and melting. By making the crucible 10 a carbonaceous crucible such as a graphite crucible or an SiC crucible, C is dissolved in the melt by melting the crucible 10 to form an Si-C solution. In this way, undissolved C does not exist in the Si—C solution 24, and waste of SiC due to precipitation of the SiC single crystal in the undissolved C can be prevented. The supply of C may be performed by, for example, a method of injecting hydrocarbon gas or charging a solid C supply source together with the melt raw material, or combining these methods with melting of a crucible. Also good.

保温のために、坩堝10の外周は、断熱材18で覆われている。これらが一括して、石英管26内に収容されている。石英管26の外周には、加熱用の高周波コイル22が配置されている。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。   In order to keep warm, the outer periphery of the crucible 10 is covered with a heat insulating material 18. These are collectively accommodated in the quartz tube 26. A high frequency coil 22 for heating is disposed on the outer periphery of the quartz tube 26. The high frequency coil 22 may be composed of an upper coil 22A and a lower coil 22B, and the upper coil 22A and the lower coil 22B can be independently controlled.

坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内をAr、He等に雰囲気調整することを可能にするために、ガス導入口とガス排気口とを備える。   Since the crucible 10, the heat insulating material 18, the quartz tube 26, and the high frequency coil 22 become high temperature, they are disposed inside the water cooling chamber. The water-cooled chamber includes a gas inlet and a gas outlet in order to make it possible to adjust the atmosphere in the apparatus to Ar, He, or the like.

Si−C溶液の温度は、通常、輻射等のためSi−C溶液の内部よりも表面の温度が低い温度分布となるが、さらに、高周波コイル22の巻数及び間隔、高周波コイル22と坩堝10との高さ方向の位置関係、並びに高周波コイルの出力を調整することによって、Si−C溶液24に、種結晶基板14が浸漬される溶液上部が低温、溶液下部が高温となるようにSi−C溶液24の表面に垂直方向の所定の温度勾配を形成することができる。例えば、下段コイル22Bの出力よりも上段コイル22Aの出力を小さくして、Si−C溶液24に溶液上部が低温、溶液下部が高温となる所定の温度勾配を形成することができる。   The temperature of the Si—C solution usually has a temperature distribution in which the surface temperature is lower than the inside of the Si—C solution due to radiation or the like. Further, the number and interval of the high frequency coil 22, the high frequency coil 22 and the crucible 10 By adjusting the positional relationship in the height direction and the output of the high-frequency coil, the Si—C solution 24 is so heated that the upper part of the solution in which the seed crystal substrate 14 is immersed is at a low temperature and the lower part of the solution is at a high temperature. A predetermined temperature gradient in the vertical direction can be formed on the surface of the solution 24. For example, the output of the upper coil 22A can be made smaller than the output of the lower coil 22B, and a predetermined temperature gradient can be formed in the Si—C solution 24 such that the upper part of the solution is low and the lower part of the solution is high.

Si−C溶液24中に溶解したCは、拡散及び対流により分散される。種結晶基板14の下面近傍は、コイル22の上段/下段の出力制御、Si−C溶液の表面からの放熱、及び黒鉛軸12を介した抜熱によって、Si−C溶液24の下部よりも低温となる温度勾配が形成されている。高温で溶解度の大きい溶液下部に溶け込んだCが、低温で溶解度の低い種結晶基板下面付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板上にSiC単結晶が成長する。   C dissolved in the Si-C solution 24 is dispersed by diffusion and convection. The vicinity of the lower surface of the seed crystal substrate 14 has a lower temperature than the lower part of the Si-C solution 24 due to the output control of the upper / lower stages of the coil 22, heat radiation from the surface of the Si—C solution, and heat removal through the graphite shaft 12. A temperature gradient is formed. When C dissolved in the lower part of the solution having a high solubility at a high temperature reaches near the lower surface of the seed crystal substrate having a low solubility at a low temperature, a supersaturated state is obtained, and an SiC single crystal grows on the seed crystal substrate using this supersaturation as a driving force.

いくつかの態様において、SiC単結晶の成長前に、SiC種結晶基板の表面層をSi−C溶液中に溶解させて除去するメルトバックを行ってもよい。SiC単結晶を成長させる種結晶基板の表層には、転位等の加工変質層や自然酸化膜などが存在していることがあり、SiC単結晶を成長させる前にこれらを溶解して除去することが、高品質なSiC単結晶を成長させるために効果的である。溶解する厚みは、SiC種結晶基板の表面の加工状態によって変わるが、は加工変質層や自然酸化膜を十分に除去するために、およそ5〜50μmが好ましい。   In some embodiments, before the growth of the SiC single crystal, meltback may be performed to dissolve and remove the surface layer of the SiC seed crystal substrate in the Si—C solution. The surface layer of the seed crystal substrate on which the SiC single crystal is grown may have a work-affected layer such as dislocations or a natural oxide film, which must be dissolved and removed before the SiC single crystal is grown. However, it is effective for growing a high-quality SiC single crystal. Although the thickness to melt | dissolves changes with the processing state of the surface of a SiC seed crystal substrate, about 5-50 micrometers is preferable in order to fully remove a process deterioration layer and a natural oxide film.

メルトバックは、Si−C溶液の内部から溶液の表面に向けて温度が増加する温度勾配、すなわち、SiC単結晶成長とは逆方向の温度勾配をSi−C溶液に形成することにより行うことができる。高周波コイルの出力を制御することによって上記逆方向の温度勾配を形成することができる。   The meltback can be performed by forming a temperature gradient in the Si-C solution in which the temperature increases from the inside of the Si-C solution toward the surface of the solution, that is, a temperature gradient opposite to the SiC single crystal growth. it can. The temperature gradient in the reverse direction can be formed by controlling the output of the high frequency coil.

メルトバックは、Si−C溶液に温度勾配を形成せず、単に液相線温度より高温に加熱されたSi−C溶液に種結晶基板を浸漬することによっても行うことができる。この場合、Si−C溶液温度が高くなるほど溶解速度は高まるが溶解量の制御が難しくなり、温度が低いと溶解速度が遅くなることがある。   Melt back can also be performed by immersing the seed crystal substrate in a Si—C solution heated to a temperature higher than the liquidus temperature without forming a temperature gradient in the Si—C solution. In this case, the higher the Si-C solution temperature, the higher the dissolution rate, but it becomes difficult to control the amount of dissolution, and the lower the temperature, the slower the dissolution rate.

いくつかの態様において、あらかじめ種結晶基板を加熱しておいてから種結晶基板をSi−C溶液に接触させてもよい。低温の種結晶基板を高温のSi−C溶液に接触させると、種結晶に熱ショック転位が発生することがある。種結晶基板をSi−C溶液に接触させる前に、種結晶基板を加熱しておくことが、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。種結晶基板の加熱は黒鉛軸ごと加熱して行うことができる。または、この方法に代えて、比較的低温のSi−C溶液に種結晶を接触させてから、結晶を成長させる温度にSi−C溶液を加熱してもよい。この場合も、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。   In some embodiments, the seed crystal substrate may be preheated before contacting the seed crystal substrate with the Si-C solution. When a low-temperature seed crystal substrate is brought into contact with a high-temperature Si—C solution, heat shock dislocation may occur in the seed crystal. Heating the seed crystal substrate before bringing the seed crystal substrate into contact with the Si—C solution is effective for preventing thermal shock dislocation and growing a high-quality SiC single crystal. The seed crystal substrate can be heated by heating the entire graphite axis. Alternatively, instead of this method, the Si—C solution may be heated to a temperature at which the crystal grows after contacting the seed crystal with a relatively low temperature Si—C solution. This case is also effective for preventing heat shock dislocation and growing a high-quality SiC single crystal.

本発明はまた、種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶を対象とする。SiC単結晶の(0001)面における貫通転位密度は、好ましくは1個/cm2以下であり、さらに好ましくはゼロである。The present invention is also directed to a SiC single crystal grown from a seed crystal as a starting point, wherein the threading dislocation density in the (0001) plane is smaller than the threading dislocation density in the (0001) plane of the seed crystal. And The threading dislocation density in the (0001) plane of the SiC single crystal is preferably 1 piece / cm 2 or less, more preferably zero.

(実施例1)
厚み0.8mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いた。種結晶基板の上面を、長さ20cm及び直径12mmの円柱形状の黒鉛軸の端面の略中央部に、黒鉛軸の端面が種結晶の上面からはみ出さずに種結晶の上面内に入るように、黒鉛の接着剤を用いて接着した。
(Example 1)
An SiC single crystal having a thickness of 0.8 mm and a 10 mm square plate-like 4H—SiC single crystal having a lower surface having a (1-100) plane was prepared and used as a seed crystal substrate. The upper surface of the seed crystal substrate is placed at the substantially central portion of the end surface of the cylindrical graphite shaft having a length of 20 cm and a diameter of 12 mm, and the end surface of the graphite shaft does not protrude from the upper surface of the seed crystal and enters the upper surface of the seed crystal. Bonding was performed using a graphite adhesive.

図1に示す単結晶製造装置を用い、Si−C溶液を収容する内径40mm、高さ185mmの黒鉛坩堝に、Si/Cr/Niを原子組成百分率で50:40:10の割合で融液原料として仕込んだ。単結晶製造装置の内部の空気をアルゴンで置換した。高周波コイルに通電して加熱により黒鉛坩堝内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そして黒鉛坩堝からSi/Cr/Ni合金の融液に、十分な量のCを溶解させて、Si−C溶液を形成した。   Using a single crystal manufacturing apparatus shown in FIG. 1, a raw material for a melt in a ratio of 50:40:10 of Si / Cr / Ni in an atomic composition percentage in a graphite crucible having an inner diameter of 40 mm and a height of 185 mm containing an Si—C solution. It was charged as. The air inside the single crystal production apparatus was replaced with argon. The raw material in the graphite crucible was melted by energizing and heating the high frequency coil to form a Si / Cr / Ni alloy melt. Then, a sufficient amount of C was dissolved from the graphite crucible into the Si / Cr / Ni alloy melt to form a Si-C solution.

上段コイル及び下段コイルの出力を調節して黒鉛坩堝を加熱し、Si−C溶液の表面における温度を1820℃に昇温させた。温度の測定は、昇降可能なタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対を用いて行った。黒鉛軸に接着した種結晶の下面をSi−C溶液面に並行なるように保ちながら、種結晶下面の位置を、Si−C溶液の液面に一致する位置に配置して、Si−C溶液に種結晶の下面を接触させるシードタッチを行った。   The graphite crucible was heated by adjusting the outputs of the upper and lower coils, and the temperature on the surface of the Si—C solution was raised to 1820 ° C. The temperature was measured using a thermocouple in which a tungsten-rhenium strand capable of raising and lowering was placed in a graphite protective tube. While maintaining the lower surface of the seed crystal bonded to the graphite shaft so as to be parallel to the Si-C solution surface, the position of the lower surface of the seed crystal is arranged at a position corresponding to the liquid surface of the Si-C solution, A seed touch was made to contact the lower surface of the seed crystal.

さらに、Si−C溶液の表面における温度を1930℃まで昇温させ、並びに溶液表面から20mmの範囲で溶液内部から溶液表面に向けて温度低下する温度勾配が8.6℃/cmに制御して、結晶を成長させた。   Further, the temperature at the surface of the Si—C solution is raised to 1930 ° C., and the temperature gradient that decreases from the inside of the solution toward the solution surface within the range of 20 mm from the solution surface is controlled to 8.6 ° C./cm. The crystal was grown.

結晶成長の終了後、黒鉛軸を上昇させて、種結晶及び種結晶を基点として成長したSiC結晶を、Si−C溶液及び黒鉛軸から切り離して回収した。得られた成長結晶は単結晶であり、成長速度は45μm/hであった。図2に成長させた単結晶を成長面から観察した写真を示す。得られた単結晶の成長表面は、図2に示すように平坦であった。   After the completion of crystal growth, the graphite axis was raised, and the seed crystal and the SiC crystal grown from the seed crystal as a base point were separated from the Si-C solution and the graphite axis and collected. The obtained grown crystal was a single crystal, and the growth rate was 45 μm / h. FIG. 2 shows a photograph of the grown single crystal observed from the growth surface. The growth surface of the obtained single crystal was flat as shown in FIG.

(実施例2)
結晶を成長させる際のSi−C溶液の表面における温度を2030℃にし、温度勾配を9.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Example 2)
The crystal was grown and recovered under the same conditions as in Example 1 except that the temperature at the surface of the Si-C solution when growing the crystal was 2030 ° C. and the temperature gradient was 9.0 ° C./cm. .

得られた成長結晶は単結晶であり、成長速度は100μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained grown crystal was a single crystal, and the growth rate was 100 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(実施例3)
結晶を成長させる際のSi−C溶液の表面における温度を1920℃にし、温度勾配を9.3℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Example 3)
The crystal was grown and collected under the same conditions as in Example 1 except that the temperature at the surface of the Si-C solution when growing the crystal was 1920 ° C. and the temperature gradient was 9.3 ° C./cm. .

得られた成長結晶は単結晶であり、成長速度は80μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained grown crystal was a single crystal, and the growth rate was 80 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(実施例4)
結晶を成長させる際のSi−C溶液の表面における温度を1920℃にし、温度勾配を9.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
Example 4
The crystal was grown and collected under the same conditions as in Example 1 except that the temperature on the surface of the Si-C solution when growing the crystal was 1920 ° C. and the temperature gradient was 9.0 ° C./cm. .

得られた成長結晶は単結晶であり、成長速度は60μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained grown crystal was a single crystal, and the growth rate was 60 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(実施例5)
厚み3.5mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用い、結晶を成長させる際のSi−C溶液の表面における温度を2000℃にし、2000℃のSi−C溶液に種結晶の下面をシードタッチさせ、温度勾配を10.0℃/cmとしたこと以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Example 5)
A plate-shaped 4H—SiC single crystal having a thickness of 3.5 mm and a 10 mm square, prepared by a sublimation method with a lower surface having a (1-100) plane, is used as a seed crystal substrate, and the crystal is grown. Example except that the temperature on the surface of the Si—C solution at 2000 ° C. was 2000 ° C., the seed crystal was seed-touched to the 2000 ° C. Si—C solution, and the temperature gradient was 10.0 ° C./cm Crystals were grown and recovered under the same conditions as in 1.

得られた成長結晶は単結晶であり、成長速度は60μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained grown crystal was a single crystal, and the growth rate was 60 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(実施例6)
厚み2.0mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いたこと以外は実施例5と同様の条件にて、結晶を成長させ、回収した。
(Example 6)
Except that a plate-like 4H—SiC single crystal having a thickness of 2.0 mm and a 10 mm square, prepared by a sublimation method having a lower surface having a (1-100) plane, was used as a seed crystal substrate. Under the same conditions as in Example 5, crystals were grown and recovered.

得られた成長結晶は単結晶であり、成長速度は101μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained growth crystal was a single crystal, and the growth rate was 101 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(実施例7)
厚み1.5mm及び10mm角の板状4H−SiC単結晶であって、下面が(1−100)面を有する昇華法により作製したSiC単結晶を用意して種結晶基板として用いたこと以外は実施例5と同様の条件にて、結晶を成長させ、回収した。
(Example 7)
Except that a plate-shaped 4H—SiC single crystal having a thickness of 1.5 mm and a 10 mm square, prepared by a sublimation method having a lower surface having a (1-100) plane, was used as a seed crystal substrate. Under the same conditions as in Example 5, crystals were grown and recovered.

得られた成長結晶は単結晶であり、成長速度は132μm/hであった。得られた単結晶の成長表面は、実施例1で成長させた単結晶と同様に平坦であった。   The obtained growth crystal was a single crystal, and the growth rate was 132 μm / h. The growth surface of the obtained single crystal was flat like the single crystal grown in Example 1.

(貫通転位の観察)
実施例1〜7で成長させたSiC単結晶を、それぞれ、(0001)面を露出させるようにダイヤモンドソーで切断し、2種類のダイヤモンドスラリー(スラリー粒径:6μm及び3μm)により研磨を行い鏡面仕上げをした。次いで、水酸化カリウム(ナカライテスク株式会社製)及び過酸化カリウム(和光純薬工業株式会社製)を混合した500℃の融液に、それぞれの成長SiC単結晶を5分間、浸漬してエッチングを行った。各SiC単結晶を混合融液から取り出し、純水中で超音波洗浄した後、顕微鏡観察(ニコン製)により、転位の観察を行った。
(Observation of threading dislocation)
Each of the SiC single crystals grown in Examples 1 to 7 was cut with a diamond saw so as to expose the (0001) plane, and polished with two types of diamond slurries (slurry particle size: 6 μm and 3 μm) to obtain a mirror surface. Finished. Next, each grown SiC single crystal is immersed for 5 minutes in a melt of 500 ° C. in which potassium hydroxide (manufactured by Nacalai Tesque Co., Ltd.) and potassium peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed. went. Each SiC single crystal was taken out from the mixed melt, subjected to ultrasonic cleaning in pure water, and then observed for dislocation by microscopic observation (manufactured by Nikon).

図3〜5に、実施例1で得られた単結晶を溶融アルカリエッチングした(0001)面の顕微鏡写真を示す。図3は、種結晶14及び成長結晶30を含む全体写真であり、図3の種結晶14について拡大観察した個所32の拡大写真を図4に示し、成長結晶30について拡大観察した個所34の拡大写真を図5に示す。種結晶の観察から、貫通らせん転位(TSD)及び貫通刃状転位(TED)が検出されたが、成長結晶には、基底面転位(BPD)は若干みられたものの、貫通らせん転位(TSD)、貫通刃状転位(TED)、及びマイクロパイプ欠陥等の貫通転位は検出されず、貫通転位は含まれていないことが分かった。実施例2〜7で成長させた単結晶からも同様に貫通転位は検出されず、貫通転位は含まれていないことが分かった。   3 to 5 show micrographs of the (0001) plane obtained by subjecting the single crystal obtained in Example 1 to molten alkali etching. FIG. 3 is an overall photograph including the seed crystal 14 and the growth crystal 30, and FIG. 4 shows an enlarged photograph of the portion 32 observed by magnifying the seed crystal 14 in FIG. A photograph is shown in FIG. From the observation of the seed crystal, threading screw dislocation (TSD) and threading edge dislocation (TED) were detected, but the basal plane dislocation (BPD) was slightly observed in the grown crystal, but threading screw dislocation (TSD). It was found that threading dislocations such as threading edge dislocations (TED) and micropipe defects were not detected and threading dislocations were not included. Similarly, threading dislocations were not detected from the single crystals grown in Examples 2 to 7, and it was found that threading dislocations were not included.

(比較例1)
厚み1mm及び10mmの板状4H−SiC単結晶であって、(11−20)面を有するSiC単結晶を用意して、(11−20)面を下面とする種結晶基板として用いた。実施例1と同様にして、種結晶基板の上面を、黒鉛軸の端面の略中央部に、黒鉛の接着剤を用いて接着した。
(Comparative Example 1)
A plate-like 4H—SiC single crystal having a thickness of 1 mm and 10 mm and having a (11-20) plane was prepared and used as a seed crystal substrate with the (11-20) plane as the bottom surface. In the same manner as in Example 1, the upper surface of the seed crystal substrate was bonded to a substantially central portion of the end surface of the graphite shaft using a graphite adhesive.

そして、結晶を成長させる際のSi−C溶液の表面における温度を1930℃にし、温度勾配を8.2℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。   Then, the crystal was grown under the same conditions as in Example 1 except that the temperature at the surface of the Si—C solution when growing the crystal was 1930 ° C. and the temperature gradient was 8.2 ° C./cm, It was collected.

図6に成長させた結晶を成長面から観察した写真を示す。得られた結晶の成長表面は、図6に示すように激しく荒れており平坦な面が形成されておらず、また、単結晶成長しなかったことが分かった。   FIG. 6 shows a photograph of the grown crystal observed from the growth surface. As shown in FIG. 6, the growth surface of the obtained crystal was severely rough, a flat surface was not formed, and it was found that no single crystal was grown.

(比較例2)
結晶を成長させる際のSi−C溶液の表面における温度を1890℃にし、温度勾配を10.3℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Comparative Example 2)
The crystal was grown and collected under the same conditions as in Example 1 except that the temperature on the surface of the Si-C solution when growing the crystal was 1890 ° C. and the temperature gradient was 10.3 ° C./cm. .

得られた結晶の成長速度は83μm/hであった。図7に成長させた結晶を成長面から観察した写真を示す。得られた結晶は単結晶であったが、成長表面は図7に示すように荒れており、平坦な面は得られなかった。   The growth rate of the obtained crystal was 83 μm / h. FIG. 7 shows a photograph of the grown crystal observed from the growth surface. The obtained crystal was a single crystal, but the growth surface was rough as shown in FIG. 7, and a flat surface was not obtained.

(比較例3)
結晶を成長させる際のSi−C溶液の表面における温度を1870℃にし、温度勾配を12.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Comparative Example 3)
The crystal was grown and recovered under the same conditions as in Example 1 except that the temperature at the surface of the Si-C solution when growing the crystal was 1870 ° C. and the temperature gradient was 12.0 ° C./cm. .

得られた結晶の成長速度は144μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。   The growth rate of the obtained crystal was 144 μm / h. Although the obtained crystal was a single crystal, the growth surface was rough as in Comparative Example 2, and a flat surface was not obtained.

(比較例4)
結晶を成長させる際のSi−C溶液の表面における温度を2000℃にし、温度勾配を15.0℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Comparative Example 4)
The crystal was grown and collected under the same conditions as in Example 1 except that the temperature at the surface of the Si-C solution when growing the crystal was 2000 ° C. and the temperature gradient was 15.0 ° C./cm. .

得られた結晶の成長速度は144μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。   The growth rate of the obtained crystal was 144 μm / h. Although the obtained crystal was a single crystal, the growth surface was rough as in Comparative Example 2, and a flat surface was not obtained.

(比較例5)
結晶を成長させる際のSi−C溶液の表面における温度を1990℃にし、温度勾配を8.6℃/cmとした以外は、実施例1と同様の条件にて、結晶を成長させ、回収した。
(Comparative Example 5)
The crystal was grown and recovered under the same conditions as in Example 1 except that the temperature at the surface of the Si-C solution when growing the crystal was 1990 ° C. and the temperature gradient was 8.6 ° C./cm. .

得られた結晶の成長速度は172μm/hであった。得られた結晶は単結晶であったが、成長表面は比較例2と同様に荒れており、平坦な面は得られなかった。   The crystal growth rate obtained was 172 μm / h. Although the obtained crystal was a single crystal, the growth surface was rough as in Comparative Example 2, and a flat surface was not obtained.

表1に、実施例1〜7及び比較例1〜5における、成長面、Si−C溶液表面の温度、Si−C溶液の表面領域の温度勾配、得られた結晶の種類、結晶成長速度、及び成長速度/温度勾配の比を示す。また、図8に、実施例1〜7及び比較例2〜5の(1−100)面成長における、Si−C溶液の表面領域の温度勾配と、単結晶成長速度/温度勾配の比との、最適成長条件範囲を示す。   In Table 1, in Examples 1-7 and Comparative Examples 1-5, the growth surface, the temperature of the Si-C solution surface, the temperature gradient of the surface region of the Si-C solution, the type of crystals obtained, the crystal growth rate, And the growth rate / temperature gradient ratio. FIG. 8 shows the temperature gradient of the surface region of the Si—C solution and the ratio of the single crystal growth rate / temperature gradient in the (1-100) plane growth of Examples 1 to 7 and Comparative Examples 2 to 5. The optimum growth condition range is shown.

(11−20)面成長では単結晶が得られなかったが、(1−100)面で成長させることによって単結晶を得ることができた。さらに、Si−C溶液の表面領域の温度勾配を10℃/cm以下、且つ前記温度勾配に対する結晶成長速度の比(成長速度/温度勾配)を20(10-4cm2/(h・℃))未満とする条件下で、結晶成長させることによって、平坦な表面を有し且つ(0001)面にて貫通転位を含まないSiC単結晶が得られた。A single crystal could not be obtained by (11-20) plane growth, but a single crystal could be obtained by growing in the (1-100) plane. Furthermore, the temperature gradient of the surface region of the Si—C solution is 10 ° C./cm or less, and the ratio of the crystal growth rate to the temperature gradient (growth rate / temperature gradient) is 20 (10 −4 cm 2 / (h · ° C.). The SiC single crystal which has a flat surface and does not contain threading dislocations on the (0001) plane was obtained by crystal growth under the condition of less than.

100 単結晶製造装置
10 黒鉛坩堝
12 黒鉛軸
14 種結晶基板
18 断熱材
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si−C溶液
26 石英管
30 SiC成長単結晶
32 種結晶部の拡大観察個所
34 成長単結晶部の拡大観察個所
DESCRIPTION OF SYMBOLS 100 Single crystal manufacturing apparatus 10 Graphite crucible 12 Graphite shaft 14 Seed crystal substrate 18 Thermal insulation material 22 High frequency coil 22A Upper high frequency coil 22B Lower high frequency coil 24 Si-C solution 26 Quartz tube 30 SiC growth single crystal 32 Enlarged observation part of seed crystal part 34 Magnified observation of the growing single crystal part

Claims (4)

内部から表面に向けて温度低下する温度勾配を有するSi−C溶液にSiC種結晶を接触させてSiC単結晶を成長させる、溶液法によるSiC単結晶の製造方法であって、
前記Si−C溶液の表面領域の温度勾配を10℃/cm以下にすること、
前記Si−C溶液に前記SiC種結晶の(1−100)面を接触させること、及び
前記種結晶の(1−100)面に、SiC単結晶を、20×10-4cm2/h・℃未満の、前記温度勾配に対する前記SiC単結晶の成長速度の比(単結晶の成長速度/温度勾配)で、成長させること、
を含む、SiC単結晶の製造方法。
A method for producing a SiC single crystal by a solution method, wherein a SiC single crystal is grown by bringing a SiC seed crystal into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the surface,
The temperature gradient of the surface region of the Si-C solution is 10 ° C./cm or less,
(1-100) plane of the SiC seed crystal is brought into contact with the Si-C solution, and an SiC single crystal is placed on the (1-100) plane of the seed crystal at 20 × 10 −4 cm 2 / h · Growing at a ratio of the growth rate of the SiC single crystal to the temperature gradient (single crystal growth rate / temperature gradient) of less than ° C.
The manufacturing method of the SiC single crystal containing this.
請求項1に記載の方法によって製造されたSiC単結晶を種結晶として用いて、前記種結晶の(000−1)面を基点として結晶成長を行う工程を含む、SiC単結晶の製造方法。   A method for producing a SiC single crystal, comprising the step of crystal growth using the SiC single crystal produced by the method according to claim 1 as a seed crystal and using the (000-1) plane of the seed crystal as a base point. SiC種結晶を基点として成長させたSiC単結晶であって、(0001)面における貫通転位密度が、前記種結晶の(0001)面における貫通転位密度よりも小さい、SiC単結晶。   A SiC single crystal grown from a SiC seed crystal as a starting point, wherein the threading dislocation density in the (0001) plane is smaller than the threading dislocation density in the (0001) plane of the seed crystal. 前記(0001)面における貫通転位密度がゼロである、請求項3に記載のSiC単結晶。   The SiC single crystal according to claim 3, wherein the threading dislocation density in the (0001) plane is zero.
JP2014511168A 2012-04-20 2013-04-05 SiC single crystal and method for producing the same Active JP5839117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014511168A JP5839117B2 (en) 2012-04-20 2013-04-05 SiC single crystal and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012096958 2012-04-20
JP2012096958 2012-04-20
JP2014511168A JP5839117B2 (en) 2012-04-20 2013-04-05 SiC single crystal and method for producing the same
PCT/JP2013/060515 WO2013157418A1 (en) 2012-04-20 2013-04-05 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF

Publications (2)

Publication Number Publication Date
JPWO2013157418A1 true JPWO2013157418A1 (en) 2015-12-21
JP5839117B2 JP5839117B2 (en) 2016-01-06

Family

ID=49383382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014511168A Active JP5839117B2 (en) 2012-04-20 2013-04-05 SiC single crystal and method for producing the same

Country Status (5)

Country Link
US (1) US10428440B2 (en)
JP (1) JP5839117B2 (en)
CN (1) CN104246026B (en)
DE (1) DE112013002107B4 (en)
WO (1) WO2013157418A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157418A1 (en) 2012-04-20 2013-10-24 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
KR101926694B1 (en) * 2012-05-30 2018-12-07 엘지이노텍 주식회사 Silicon carbide epi wafer and method of fabricating the same
KR101926678B1 (en) * 2012-05-31 2018-12-11 엘지이노텍 주식회사 Silicon carbide epi wafer and method of fabricating the same
JP5854013B2 (en) 2013-09-13 2016-02-09 トヨタ自動車株式会社 Method for producing SiC single crystal
JP5890377B2 (en) * 2013-11-21 2016-03-22 トヨタ自動車株式会社 Method for producing SiC single crystal
EP2881499B1 (en) 2013-12-06 2020-03-11 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
WO2016051485A1 (en) * 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
JP6090287B2 (en) * 2014-10-31 2017-03-08 トヨタ自動車株式会社 Method for producing SiC single crystal
JP6533716B2 (en) 2015-08-06 2019-06-19 信越化学工業株式会社 Method of manufacturing SiC single crystal
JP6768491B2 (en) * 2016-12-26 2020-10-14 昭和電工株式会社 SiC wafer and method of manufacturing SiC wafer
JP6784220B2 (en) * 2017-04-14 2020-11-11 信越化学工業株式会社 Method for manufacturing SiC single crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262599A (en) * 1991-04-18 1993-10-12 Nippon Steel Corp Sic single crystal and method for growing the same
JPH10509943A (en) * 1994-11-30 1998-09-29 クリー・リサーチ,インコーポレイテッド Method for reducing the formation of micropipes in silicon carbide epitaxy growth and in the resulting silicon carbide structure
JP2003119097A (en) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JP2007197231A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227886A (en) 1985-07-30 1987-02-05 Canon Inc Pattern recognizing device
US5958132A (en) 1991-04-18 1999-09-28 Nippon Steel Corporation SiC single crystal and method for growth thereof
JP3251687B2 (en) 1993-02-05 2002-01-28 株式会社東芝 Manufacturing method of semiconductor single crystal
JP4664464B2 (en) 2000-04-06 2011-04-06 新日本製鐵株式会社 Silicon carbide single crystal wafer with small mosaic
JP4903946B2 (en) 2000-12-28 2012-03-28 株式会社ブリヂストン Method and apparatus for producing silicon carbide single crystal
DE10247017B4 (en) 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
JP3750622B2 (en) 2002-03-22 2006-03-01 株式会社デンソー SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
JP4480349B2 (en) 2003-05-30 2010-06-16 株式会社ブリヂストン Method and apparatus for producing silicon carbide single crystal
KR101145234B1 (en) * 2006-05-18 2012-05-25 쇼와 덴코 가부시키가이샤 Method for producing silicon carbide single crystal
JP2008105896A (en) 2006-10-25 2008-05-08 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP4277926B1 (en) 2007-11-27 2009-06-10 トヨタ自動車株式会社 Growth method of silicon carbide single crystal
JP5360639B2 (en) 2008-02-05 2013-12-04 学校法人関西学院 Surface modified single crystal SiC substrate, single crystal SiC substrate with epitaxial growth layer, semiconductor chip, seed substrate for single crystal SiC growth, and method for producing polycrystalline SiC substrate with single crystal growth layer
JP4586857B2 (en) 2008-02-06 2010-11-24 トヨタ自動車株式会社 Method for producing p-type SiC semiconductor single crystal
JP5304793B2 (en) * 2008-08-29 2013-10-02 新日鐵住金株式会社 Method for producing silicon carbide single crystal
US9587327B2 (en) 2009-07-17 2017-03-07 Toyota Jidosha Kabushiki Kaisha Method of production of sic single crystal
JP5355533B2 (en) 2010-11-09 2013-11-27 新日鐵住金株式会社 Method for producing n-type SiC single crystal
EP2733239B1 (en) 2011-07-04 2021-05-12 Toyota Jidosha Kabushiki Kaisha Sic single crystal and manufacturing process therefor
JP5750363B2 (en) 2011-12-02 2015-07-22 株式会社豊田中央研究所 SiC single crystal, SiC wafer and semiconductor device
WO2013157418A1 (en) 2012-04-20 2013-10-24 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
JP6147543B2 (en) 2013-04-02 2017-06-14 株式会社豊田中央研究所 SiC single crystal and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262599A (en) * 1991-04-18 1993-10-12 Nippon Steel Corp Sic single crystal and method for growing the same
JPH10509943A (en) * 1994-11-30 1998-09-29 クリー・リサーチ,インコーポレイテッド Method for reducing the formation of micropipes in silicon carbide epitaxy growth and in the resulting silicon carbide structure
JP2003119097A (en) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JP2007197231A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Also Published As

Publication number Publication date
CN104246026B (en) 2017-05-31
US10428440B2 (en) 2019-10-01
DE112013002107B4 (en) 2019-04-04
CN104246026A (en) 2014-12-24
US20150128847A1 (en) 2015-05-14
JP5839117B2 (en) 2016-01-06
WO2013157418A1 (en) 2013-10-24
DE112013002107T5 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5839117B2 (en) SiC single crystal and method for producing the same
JP5854013B2 (en) Method for producing SiC single crystal
JP5821958B2 (en) SiC single crystal and method for producing the same
JP5434801B2 (en) Method for producing SiC single crystal
JP6090287B2 (en) Method for producing SiC single crystal
JP5668724B2 (en) SiC single crystal ingot, SiC single crystal, and manufacturing method
JP5876390B2 (en) Method for producing SiC single crystal
JP5741652B2 (en) N-type SiC single crystal and method for producing the same
JP5890377B2 (en) Method for producing SiC single crystal
JP5905864B2 (en) SiC single crystal and method for producing the same
JP6119732B2 (en) SiC single crystal and method for producing the same
JP6040866B2 (en) Method for producing SiC single crystal
JP6060863B2 (en) SiC single crystal and method for producing the same
JP2017202969A (en) SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF
JP6030525B2 (en) Method for producing SiC single crystal
JP6390628B2 (en) Method and apparatus for producing SiC single crystal
JP2018150193A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2017226583A (en) Production method for sic single crystal
JP6500828B2 (en) Method of manufacturing SiC single crystal
JP2018043898A (en) PRODUCING METHOD OF SiC SINGLE CRYSTAL
JP2018048044A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2019014622A (en) Method of manufacturing sic single crystal
JP2019043818A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2019094228A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5839117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151