JP2017202969A - SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF - Google Patents
SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF Download PDFInfo
- Publication number
- JP2017202969A JP2017202969A JP2017032311A JP2017032311A JP2017202969A JP 2017202969 A JP2017202969 A JP 2017202969A JP 2017032311 A JP2017032311 A JP 2017032311A JP 2017032311 A JP2017032311 A JP 2017032311A JP 2017202969 A JP2017202969 A JP 2017202969A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- seed crystal
- single crystal
- sic single
- crystal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本開示は、SiC単結晶の製造方法に関する。 The present disclosure relates to a method for producing a SiC single crystal.
SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。 SiC single crystals are very thermally and chemically stable, excellent in mechanical strength, resistant to radiation, and have excellent physical properties such as higher breakdown voltage and higher thermal conductivity than Si single crystals. . Therefore, it is possible to realize high power, high frequency, withstand voltage, environmental resistance, etc. that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs single crystal, and power devices that enable high power control and energy saving. Expectations are growing as next-generation semiconductor materials in a wide range of materials, high-speed and large-capacity information communication device materials, in-vehicle high-temperature device materials, radiation-resistant device materials, and the like.
従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び異種ポリタイプ(結晶多形)が生じやすい等の欠点を有するが、従来、SiCバルク単結晶の多くは昇華法により製造されており、成長結晶の欠陥を低減する試みも行われている。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。 Conventionally, as a method for growing a SiC single crystal, a gas phase method, an Acheson method, and a solution method are typically known. Among the vapor phase methods, for example, the sublimation method has drawbacks such as the formation of lattice defects such as hollow through defects called micropipe defects and stacking faults and heterogeneous polytypes (crystal polymorphism) in the grown single crystal. However, many of SiC bulk single crystals have been conventionally produced by a sublimation method, and attempts have been made to reduce defects in grown crystals. In the Atchison method, since silica and coke are used as raw materials and heated in an electric furnace, it is impossible to obtain a single crystal with high crystallinity due to impurities in the raw materials.
そして、溶液法は、黒鉛坩堝中でSi融液またはSi以外の金属を融解したSi融液を形成し、その融液中にCを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が最も期待でき、異種ポリタイプも生じにくい。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されている。 In the solution method, a Si melt or a Si melt in which a metal other than Si is melted is formed in a graphite crucible, C is dissolved in the melt, and a SiC crystal is formed on a seed crystal substrate placed in a low temperature portion. In this method, the layer is deposited and grown. In the solution method, crystal growth is performed in a state close to thermal equilibrium as compared with the vapor phase method, so that the reduction in defects can be most expected and heterogeneous polytypes are hardly generated. For this reason, several methods for producing SiC single crystals by the solution method have recently been proposed.
例えば、特許文献1には、種結晶基板として六方晶SiC単結晶の(000−1)面を使用して、融液の深さ方向の温度勾配を1〜5℃/mmの範囲内で結晶成長させる、六方晶SiC単結晶の製造方法が提案されている。しかしながら、特許文献1等の従来の方法では、例えば、4H−SiC種結晶上に結晶成長させても、6Hや15R等が結晶成長し、4Hを維持できないといったように、ポリタイプの制御を十分に行うことが難しかった。 For example, in Patent Document 1, a (000-1) plane of a hexagonal SiC single crystal is used as a seed crystal substrate, and the temperature gradient in the depth direction of the melt is within a range of 1 to 5 ° C./mm. A method for producing a hexagonal SiC single crystal to be grown has been proposed. However, in the conventional method such as Patent Document 1, for example, even if crystal growth is performed on a 4H—SiC seed crystal, polytype control is sufficiently performed such that 6H, 15R, etc. grow and 4H cannot be maintained. It was difficult to do.
SiC結晶には、2H、3C、4H、6H、及び15Rといったポリタイプ(結晶多形)を有することが知られている。各ポリタイプは、物理的、電気的特性が互いに異なるため、SiC結晶をデバイスに応用するためには、ポリタイプの制御を行う必要がある。デバイス応用には、ホール移動度が大きくパワーデバイスとして用いたときのオン抵抗を小さくできる観点から、4H−SiCが好ましく用いられる。しかしながら、特許文献1等の従来の方法では、異種ポリタイプが生成し、4H−SiC単結晶を安定して得ることが難しかった。 It is known that SiC crystals have polytypes (crystal polymorphs) such as 2H, 3C, 4H, 6H, and 15R. Since each polytype has different physical and electrical characteristics, it is necessary to control the polytype in order to apply the SiC crystal to the device. For device application, 4H-SiC is preferably used from the viewpoint of high on-hole mobility and low on-resistance when used as a power device. However, in the conventional method such as Patent Document 1, it is difficult to stably produce a 4H-SiC single crystal because a different polytype is generated.
したがって、ポリタイプの制御を十分に行うことができるSiC単結晶の製造方法が望まれている。 Therefore, a method for producing an SiC single crystal that can sufficiently control the polytype is desired.
本願発明者は、ポリタイプの制御について鋭意研究を行い、特許文献1等の従来技術においては、Si−C溶液の水平方向(成長面に平行方向)の温度勾配が考慮されておらず、水平方向の温度勾配が大きくなった場合、テラス幅が広くなり、異種ポリタイプの核がテラスに発生し、ポリタイプの制御を十分にできないという知見を得た。そして、本願発明者は、種結晶基板として4H−SiC単結晶を用い、種結晶基板の(000−1)面を成長面としつつ、Si−C溶液の鉛直方向の温度勾配に対して水平方向の温度勾配を小さくすることによって、4H以外のポリタイプの発生を抑制して4H−SiC単結晶を成長させることができることを見出した。 The inventor of the present application has conducted extensive research on polytype control, and in the prior art such as Patent Document 1, the temperature gradient in the horizontal direction (parallel to the growth surface) of the Si—C solution is not taken into consideration. When the temperature gradient in the direction becomes larger, the terrace width becomes wider, and nuclei of different polytypes are generated on the terrace, resulting in the knowledge that the polytype cannot be controlled sufficiently. And this inventor uses a 4H-SiC single crystal as a seed crystal substrate, and makes the (000-1) plane of a seed crystal substrate a growth surface, and is horizontal with respect to the temperature gradient of the vertical direction of a Si-C solution. It has been found that 4H-SiC single crystals can be grown while the generation of polytypes other than 4H can be suppressed by reducing the temperature gradient.
本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶基板を接触させてSiC単結晶を成長させる、SiC単結晶の製造方法であって、
前記種結晶基板が4H−SiCであり、
前記種結晶基板の(000−1)面を成長面とすること、
前記Si−C溶液の表面のうち前記種結晶基板の成長面が接触する領域の中央部の温度を1900℃以上にすること、及び
前記中央部と前記中央部から鉛直方向下方に10mmの位置との間の温度勾配ΔTcと、前記中央部と前記中央部から水平方向に10mmの位置との間の温度勾配ΔTaとの比ΔTc/ΔTaを1.7以上とすること
を含む、SiC単結晶の製造方法を対象とする。
The present disclosure is a method for producing a SiC single crystal, wherein a SiC single crystal is grown by bringing a seed crystal substrate into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface,
The seed crystal substrate is 4H-SiC;
Making the (000-1) plane of the seed crystal substrate a growth plane;
The temperature of the central part of the region where the growth surface of the seed crystal substrate is in contact with the surface of the Si-C solution is set to 1900 ° C. or higher, and the central part and a position 10 mm vertically downward from the central part, The ratio ΔTc / ΔTa between the temperature gradient ΔTc between the central portion and the temperature gradient ΔTa between the central portion and a position 10 mm in the horizontal direction from the central portion is 1.7 or more. For manufacturing methods.
本開示はまた、成長面におけるテラス幅が11μm以下であり4H率が46%以上のSiC単結晶を対象とする。 The present disclosure is also directed to a SiC single crystal having a terrace width on a growth surface of 11 μm or less and a 4H ratio of 46% or more.
本開示の方法によれば、4H以外のポリタイプの発生を抑制して4H−SiC単結晶を成長させることができる。 According to the method of the present disclosure, it is possible to grow a 4H—SiC single crystal while suppressing the generation of polytypes other than 4H.
本明細書において、(000−1)面等の表記における「−1」は、本来、数字の上に横線を付して表記するところを「−1」と表記したものである。 In this specification, “−1” in the notation of the (000-1) plane or the like is a place where “−1” is originally written with a horizontal line on the number.
SiC結晶にはさまざまなポリタイプがあり、自由エネルギーに差がほとんどないため、従来、溶液法を用いて4H−SiCの種結晶基板の上に結晶成長させた場合でも、6Hや15R等が結晶成長し、4H−SiC単結晶を安定して得ることが難しかった。 Since there are various polytypes of SiC crystals and there is almost no difference in free energy, even when crystal growth is conventionally performed on a 4H-SiC seed crystal substrate using the solution method, 6H, 15R, etc. are crystallized. It was difficult to grow and stably obtain a 4H—SiC single crystal.
これに対して、本願発明者は、種結晶基板として4H−SiC単結晶を用い、種結晶基板の(000−1)面を成長面としつつ、Si−C溶液の鉛直方向の温度勾配に対して水平方向の温度勾配を小さくすることによって、4H以外のポリタイプの発生を抑制して4H−SiC単結晶を安定して成長させることができることを見出した。 In contrast, the inventor of the present application uses a 4H—SiC single crystal as a seed crystal substrate, and uses the (000-1) plane of the seed crystal substrate as a growth surface, while against the temperature gradient in the vertical direction of the Si—C solution. Thus, it has been found that by reducing the temperature gradient in the horizontal direction, it is possible to stably grow a 4H—SiC single crystal while suppressing the generation of polytypes other than 4H.
本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶基板を接触させてSiC単結晶を成長させる、SiC単結晶の製造方法であって、前記種結晶基板が4H−SiCであり、前記種結晶基板の(000−1)面を成長面とすること、前記Si−C溶液の表面のうち前記種結晶基板の成長面が接触する領域の中央部の温度を1900℃以上にすること、及び前記中央部と前記中央部から鉛直方向下方に10mmの位置との間の温度勾配ΔTcと、前記中央部と前記中央部から水平方向に10mmの位置との間の温度勾配ΔTaとの比ΔTc/ΔTaを1.7以上とすることを含む、SiC単結晶の製造方法を対象とする。 The present disclosure is a method for producing a SiC single crystal, in which a SiC single crystal is grown by bringing a seed crystal substrate into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface. The crystal substrate is 4H-SiC, and the (000-1) plane of the seed crystal substrate is used as a growth surface, and the central portion of the region of the surface of the Si-C solution where the growth surface of the seed crystal substrate contacts And a temperature gradient ΔTc between the central part and a position 10 mm vertically downward from the central part, and a position 10 mm horizontally from the central part and the central part. A method for producing a SiC single crystal, which includes setting a ratio ΔTc / ΔTa to a temperature gradient ΔTa between 1.7 and 1.7 or more, is targeted.
本開示の方法によれば、4H以外のポリタイプの発生を抑制して安定して4H−SiC単結晶を成長させることができる。 According to the method of the present disclosure, it is possible to stably grow a 4H—SiC single crystal while suppressing generation of polytypes other than 4H.
本開示の方法においては、溶液法が用いられる。溶液法とは、内部(深部)から液面(表面)に向けて温度低下する温度勾配を有するSi−C溶液に、SiC種結晶基板を接触させてSiC単結晶を成長させる、SiC単結晶の製造方法である。Si−C溶液の内部からSi−C溶液の液面に向けて温度低下する温度勾配を形成することによって、Si−C溶液の表面領域を過飽和にして、Si−C溶液に接触させた種結晶基板から、SiC単結晶を成長させることができる。 In the method of the present disclosure, a solution method is used. The solution method is a method of growing a SiC single crystal by bringing a SiC seed crystal substrate into contact with a Si—C solution having a temperature gradient that decreases in temperature from the inside (deep part) toward the liquid level (surface). It is a manufacturing method. By forming a temperature gradient in which the temperature decreases from the inside of the Si-C solution toward the surface of the Si-C solution, the surface region of the Si-C solution is supersaturated, and the seed crystal is brought into contact with the Si-C solution. A SiC single crystal can be grown from the substrate.
図1に、本開示の製造方法に用いられ得るSiC単結晶製造装置の断面模式図の一例を示す。図示したSiC単結晶製造装置100は、SiまたはSi/X(XはSi以外の1種以上の金属)の融液中にCが溶解してなるSi−C溶液24を収容した坩堝10を備え、Si−C溶液の内部から溶液の液面に向けて温度低下する温度勾配を形成し、鉛直方向に昇降可能な種結晶保持軸12の先端に保持された種結晶基板14をSi−C溶液24に接触させて、種結晶基板14からSiC単結晶を成長させることができる。 In FIG. 1, an example of the cross-sectional schematic diagram of the SiC single crystal manufacturing apparatus which can be used for the manufacturing method of this indication is shown. The illustrated SiC single crystal manufacturing apparatus 100 includes a crucible 10 containing a Si-C solution 24 in which C is dissolved in a melt of Si or Si / X (X is one or more metals other than Si). The seed crystal substrate 14 held at the tip of the seed crystal holding shaft 12 that forms a temperature gradient that decreases in temperature from the inside of the Si—C solution toward the liquid surface of the solution and that can be moved up and down in the vertical direction is used as the Si—C solution. 24, the SiC single crystal can be grown from the seed crystal substrate 14.
Si−C溶液24中に溶解したCは、拡散及び対流により分散される。種結晶基板14の下面近傍は、Si−C溶液24の内部よりも低温となる温度勾配ΔTcが形成されているので、高温で溶解度の大きい溶液内部に溶け込んだCが、低温で溶解度の低い種結晶基板付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板14上にSiC結晶を成長させることができる。 C dissolved in the Si-C solution 24 is dispersed by diffusion and convection. In the vicinity of the lower surface of the seed crystal substrate 14, a temperature gradient ΔTc that is lower than the inside of the Si—C solution 24 is formed. Therefore, C dissolved in the solution having a high solubility at a high temperature is a seed having a low solubility at a low temperature. When reaching the vicinity of the crystal substrate, a supersaturated state is reached, and an SiC crystal can be grown on the seed crystal substrate 14 by using the degree of supersaturation as a driving force.
本開示の方法に用いる種結晶基板は、(000−1)面を有する4H−SiC単結晶であればよく、SiC単結晶の製造に一般に用いられる品質の単結晶を種結晶基板として用いることができる。例えば、昇華法で一般的に作成したSiC単結晶を種結晶基板として用いることができる。 The seed crystal substrate used in the method of the present disclosure may be a 4H—SiC single crystal having a (000-1) plane, and a single crystal having a quality generally used for manufacturing a SiC single crystal may be used as the seed crystal substrate. it can. For example, a SiC single crystal generally prepared by a sublimation method can be used as a seed crystal substrate.
種結晶基板は、4H−SiC単結晶であり(000−1)面を有する限り、板状、円盤状、円柱状、角柱状、円錐台状、または角錐台状等の任意の形状であることができる。 The seed crystal substrate is a 4H—SiC single crystal and has an arbitrary shape such as a plate shape, a disc shape, a columnar shape, a prism shape, a truncated cone shape, or a truncated pyramid shape as long as it has a (000-1) plane. Can do.
本開示の方法においては、種結晶基板の(000−1)面を成長面とする。種結晶基板の(000−1)面を成長面とすることによって、成長界面に金属インクージョンを混入することなく単結晶成長することができる。 In the method of the present disclosure, the (000-1) plane of the seed crystal substrate is used as the growth plane. By using the (000-1) plane of the seed crystal substrate as the growth plane, single crystal growth can be performed without mixing metal ink into the growth interface.
本開示の方法においては、図2に示すように、Si−C溶液24の表面(液面)のうち種結晶基板の成長面が接触する領域の中央部(中央位置)と前記中央部から鉛直方向下方に10mmの位置との間の温度勾配をΔTcとし、前記中央部と前記中央部から水平方向に10mmの位置との間の温度勾配をΔTaとし、ΔTcとΔTaとの比であるΔTc/ΔTaを1.7以上とする。図2は、Si−C溶液24の表面のうち種結晶基板の成長面が接触する領域の中央部付近の拡大模式図である。 In the method of the present disclosure, as shown in FIG. 2, the center portion (center position) of the surface (liquid surface) of the Si—C solution 24 where the growth surface of the seed crystal substrate contacts and the center portion vertically A temperature gradient between a position 10 mm downward in the direction is ΔTc, a temperature gradient between the center portion and a position 10 mm horizontally from the center portion is ΔTa, and ΔTc / ΔTa is a ratio of ΔTc and ΔTa. ΔTa is set to 1.7 or more. FIG. 2 is an enlarged schematic view of the vicinity of the center of the region of the surface of the Si—C solution 24 where the growth surface of the seed crystal substrate contacts.
ΔTcは、Si−C溶液24の液面に対して垂直方向の表面領域の温度勾配であって、Si−C溶液の内部から溶液の液面(表面)に向けて温度低下する温度勾配である。ΔTcは、Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部における低温側となる温度Aと、前記中央部から鉛直方向に10mmの深さにおける高温側となる温度Bを、種結晶基板をSi−C溶液に接触させる前に熱電対を用いて事前に測定し、その温度差を、温度A及び温度Bを測定した位置間の距離10mmで割ることによって、平均値として算出することができる。 ΔTc is a temperature gradient in a surface region in a direction perpendicular to the liquid level of the Si—C solution 24 and is a temperature gradient in which the temperature decreases from the inside of the Si—C solution toward the liquid level (surface) of the solution. . ΔTc is a temperature A on the low temperature side in the center of the region where the growth surface of the seed crystal substrate is in contact with the surface of the Si—C solution, and a temperature on the high temperature side at a depth of 10 mm vertically from the center. B is measured in advance using a thermocouple before contacting the seed crystal substrate with the Si-C solution, and the temperature difference is divided by the distance 10 mm between the positions where the temperature A and the temperature B are measured. It can be calculated as a value.
ΔTaは、Si−C溶液の液面(表面)の水平方向の温度勾配である。ΔTaは、Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部から外周部に向かって水平方向に温度上昇する温度勾配である。ΔTaは、Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部における低温側となる温度Cと、前記中央部から水平方向に10mmの位置における高温側となる温度Dを、種結晶基板をSi−C溶液に接触させる前に熱電対を用いて事前に測定し、その温度差を、温度C及び温度Dを測定した位置間の距離10mmで割ることによって、平均値として算出することができる。 ΔTa is a temperature gradient in the horizontal direction of the liquid surface (surface) of the Si—C solution. ΔTa is a temperature gradient in which the temperature rises in the horizontal direction from the center to the outer periphery of the region where the growth surface of the seed crystal substrate contacts the surface of the Si—C solution. ΔTa is a temperature C that is the low temperature side in the central portion of the region of the surface of the Si—C solution that contacts the growth surface of the seed crystal substrate, and a temperature D that is the high temperature side at a position 10 mm horizontally from the central portion. Is measured in advance using a thermocouple before bringing the seed crystal substrate into contact with the Si-C solution, and the temperature difference is divided by the distance 10 mm between the positions where the temperature C and the temperature D are measured. Can be calculated as
ΔTc/ΔTaは1.7以上、好ましくは2.0以上、より好ましくは3.0以上、さらに好ましくは4.0以上、さらにより好ましくは5.0以上、さらにより好ましくは5.3以上である。ΔTc/ΔTaを上記範囲内にすることによって、テラス幅が小さくなり、ステップフロー成長が進行する。その結果、4H−SiC単結晶を安定して成長させることができる。テラス幅を小さくして、SiC単結晶を成長させることにより、テラスに4H以外の異種ポリタイプが発生することを抑制することができ、成長させるSiC単結晶の4Hの割合(以下、4H率ともいう)を高めることができる。 ΔTc / ΔTa is 1.7 or more, preferably 2.0 or more, more preferably 3.0 or more, still more preferably 4.0 or more, still more preferably 5.0 or more, and even more preferably 5.3 or more. is there. By setting ΔTc / ΔTa within the above range, the terrace width is reduced and step flow growth proceeds. As a result, the 4H—SiC single crystal can be stably grown. By reducing the terrace width and growing the SiC single crystal, it is possible to suppress the generation of different types of polytypes other than 4H on the terrace, and the proportion of 4H in the SiC single crystal to be grown (hereinafter referred to as 4H rate). Say).
ΔTc及びΔTaは、ΔTc/ΔTaを上記範囲内にすることができれば特に限定されるものではないが、ΔTcは、好ましくは5℃/cm〜50℃/cm、より好ましくは7℃/cm〜30℃/cm、さらに好ましくは8℃/cm〜25℃/cmであり、ΔTaは、好ましくは0℃/cm〜15℃/cm、より好ましくは0℃/cm〜8℃/cm、さらに好ましくは0℃/cm〜4℃/cm、さらにより好ましくは0℃/cm〜1.5℃/cm、最も好ましくは0℃/cmである。 ΔTc and ΔTa are not particularly limited as long as ΔTc / ΔTa can be within the above range, but ΔTc is preferably 5 ° C./cm to 50 ° C./cm, more preferably 7 ° C./cm to 30 ° C / cm, more preferably 8 ° C / cm to 25 ° C / cm, and ΔTa is preferably 0 ° C / cm to 15 ° C / cm, more preferably 0 ° C / cm to 8 ° C / cm, still more preferably It is 0 ° C./cm to 4 ° C./cm, more preferably 0 ° C./cm to 1.5 ° C./cm, and most preferably 0 ° C./cm.
Si−C溶液の鉛直方向の温度勾配であるΔTcは、従来と同様の方法で制御することができ、坩堝の周囲に配置した加熱装置の出力調整、坩堝上部の蓋の開口部の大きさ等により制御することができる。例えば、下段コイル22Bの出力よりも上段コイル22Aの出力を小さくして、Si−C溶液24に溶液上部が低温、溶液下部が高温となる所定の温度勾配ΔTcを形成することができる。Si−C溶液の水平方向の温度勾配であるΔTaは、坩堝内径、坩堝の周囲に配置する断熱材の厚み等により制御することができる。例えば、坩堝内径を小さくすれば、水平方向の温度勾配ΔTaを小さくすることができる。また、坩堝の周囲に配置する断熱材の厚みを大きくしても、水平方向の温度勾配ΔTaを小さくすることができる。このようにしてΔTc及びΔTaを制御することにより、ΔTc/ΔTaを制御することができる。 ΔTc, which is the temperature gradient in the vertical direction of the Si—C solution, can be controlled by the same method as before, adjusting the output of the heating device arranged around the crucible, the size of the opening of the lid on the top of the crucible, etc. Can be controlled. For example, the output of the upper coil 22A can be made smaller than the output of the lower coil 22B, and a predetermined temperature gradient ΔTc can be formed in the Si—C solution 24 so that the upper part of the solution is low and the lower part of the solution is high. ΔTa, which is the temperature gradient in the horizontal direction of the Si—C solution, can be controlled by the crucible inner diameter, the thickness of the heat insulating material disposed around the crucible, and the like. For example, if the crucible inner diameter is reduced, the temperature gradient ΔTa in the horizontal direction can be reduced. Even if the thickness of the heat insulating material disposed around the crucible is increased, the temperature gradient ΔTa in the horizontal direction can be reduced. By controlling ΔTc and ΔTa in this way, ΔTc / ΔTa can be controlled.
本開示の方法において、Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部の温度は1900℃以上、より好ましくは1950℃以上、さらに好ましくは2000℃以上、さらにより好ましくは2050℃以上である。前記中央部の温度を上記範囲内にすることによって、成長させるSiC単結晶の4H率をより高めることができる。前記中央部の温度の上限は、例えば2200℃以下であることができる。 In the method of the present disclosure, the temperature of the central portion of the region where the growth surface of the seed crystal substrate is in contact with the surface of the Si—C solution is 1900 ° C. or higher, more preferably 1950 ° C. or higher, more preferably 2000 ° C. or higher. Preferably it is 2050 degreeC or more. By setting the temperature of the central portion within the above range, the 4H ratio of the SiC single crystal to be grown can be further increased. The upper limit of the temperature of the central portion can be 2200 ° C. or less, for example.
本開示の方法によれば、成長させるSiC単結晶の4H率を従来よりも高めることができる。本開示の方法によれば、4H率が46%以上、好ましくは50%以上、より好ましくは68%以上、さらに好ましくは80%以上、さらにより好ましくは90%以上、特に好ましくは100%のSiC単結晶を得ることができる。 According to the method of the present disclosure, the 4H rate of the SiC single crystal to be grown can be increased as compared with the conventional case. According to the method of the present disclosure, SiC having a 4H ratio of 46% or more, preferably 50% or more, more preferably 68% or more, still more preferably 80% or more, even more preferably 90% or more, and particularly preferably 100%. A single crystal can be obtained.
成長結晶における4H率は、成長結晶の成長面についてラマン分光分析を行うことによって、測定ことができる。4H率の測定手順の具体例を、後述の実施例に記載する。 The 4H ratio in the grown crystal can be measured by performing Raman spectroscopic analysis on the growth surface of the grown crystal. A specific example of the procedure for measuring the 4H rate will be described in the examples described later.
理論に束縛されるものではないが、本開示の方法による4H率向上のメカニズムを以下に説明する。 Although not bound by theory, the mechanism of 4H rate improvement by the method of the present disclosure will be described below.
SiCの結晶成長は、ステップフロー成長により進行する。ステップフロー成長とは、結晶成長面上に向きが同じで幅がほぼ等間隔のステップが順次に形成される態様で結晶が成長する態様をいう。ステップのうち、次に成長したステップに覆われない部分をテラスという。 SiC crystal growth proceeds by step flow growth. Step flow growth refers to an aspect in which crystals grow in such a manner that steps having the same direction and substantially equal intervals are sequentially formed on the crystal growth surface. The portion of the step that is not covered by the next grown step is called a terrace.
図3に示すように、結晶成長時にテラス幅が大きくなると、テラスに4H以外の二次元核が発生する確率が高くなり、そして、その核を起点として、6H、15R等の異種ポリタイプが発生することにつながる。Si−C溶液の水平方向の温度勾配が垂直方向の温度勾配に対して大きくなると、ステップ前進速度が速くなるため、テラス幅が大きくなる。図3は、大きな幅を有するテラスに4H以外の二次元核が発生する態様を表す断面模式図である。 As shown in FIG. 3, when the terrace width is increased during crystal growth, the probability that two-dimensional nuclei other than 4H are generated on the terrace increases, and different polytypes such as 6H and 15R are generated starting from the nuclei. Will lead to. When the temperature gradient in the horizontal direction of the Si—C solution is larger than the temperature gradient in the vertical direction, the step advance speed is increased, and thus the terrace width is increased. FIG. 3 is a schematic cross-sectional view showing a mode in which two-dimensional nuclei other than 4H are generated on a terrace having a large width.
Si−C溶液の液面における水平方向の温度勾配を小さくすると、Si−C溶液の液面における水平方向の温度勾配を駆動力とするステップフロー成長の成長速度が遅くなる。Si−C溶液の液面における水平方向の温度勾配を駆動力とするステップフロー成長速度が遅くなると、図4に示したように、テラス幅が小さくなる。テラス幅が小さくなることにより、4H以外の二次元核がテラスに付着し難くなり、4H−SiCが安定して生成し易くなると考えられる。図4は、テラス幅が小さく4H以外の二次元核が発生しない態様を表す断面模式図である。 If the horizontal temperature gradient on the liquid surface of the Si—C solution is reduced, the growth rate of step flow growth using the horizontal temperature gradient on the liquid surface of the Si—C solution as a driving force is reduced. When the step flow growth rate using a horizontal temperature gradient on the liquid surface of the Si—C solution as a driving force becomes slow, the terrace width becomes small as shown in FIG. As the terrace width is reduced, it is considered that two-dimensional nuclei other than 4H are less likely to adhere to the terrace, and 4H-SiC is easily generated stably. FIG. 4 is a schematic cross-sectional view showing an aspect in which the terrace width is small and no two-dimensional nucleus other than 4H is generated.
本開示の方法によれば、上記メカニズムによって、SiC成長結晶の4H率を向上することができると考えられる。 According to the method of the present disclosure, it is considered that the 4H ratio of the SiC grown crystal can be improved by the above mechanism.
テラスは、成長面の外周部において同心円状に形成される。本開示の方法によれば、成長面におけるテラス幅が11μm以下、好ましくは4μm以下の4H−SiC単結晶を得ることができる。本願において、テラス幅とは、成長面の外周部から成長面の中心に向かって1mm、5mm、及び10mmの3箇所を、光学顕微鏡にて視野範囲600μm角(10倍で観察時)〜1.5mm角(20倍で観察時)で観察して測定されるテラス幅の平均値であり、成長面を光学顕微鏡(倍率10倍〜20倍)で観察することにより測定される。 The terrace is formed concentrically on the outer periphery of the growth surface. According to the method of the present disclosure, a 4H—SiC single crystal having a terrace width on the growth surface of 11 μm or less, preferably 4 μm or less can be obtained. In the present application, the terrace width means a viewing area of 600 μm square (when observed at 10 ×) at three locations of 1 mm, 5 mm, and 10 mm from the outer peripheral portion of the growth surface toward the center of the growth surface to 1.times. It is the average value of terrace widths measured by observing at 5 mm square (when observed at 20 times), and is measured by observing the growth surface with an optical microscope (magnification 10 to 20 times).
坩堝は、黒鉛坩堝などの炭素質坩堝またはSiC坩堝が好ましい。坩堝の形状は円筒形が好ましい。坩堝の内径は、使用する単結晶製造装置の大きさに応じて適宜に設定することができ、例えば、30〜200mm、40〜120mm等とすることができる。 The crucible is preferably a carbonaceous crucible such as a graphite crucible or a SiC crucible. The crucible is preferably cylindrical. The inner diameter of the crucible can be appropriately set according to the size of the single crystal manufacturing apparatus to be used, and can be set to 30 to 200 mm, 40 to 120 mm, or the like, for example.
保温のために、坩堝10の外周は、断熱材18で覆われている。断熱材18は、黒鉛系断熱材料、炭素繊維成形断熱材料等であることができ、断熱材の厚みは、例えば4〜15mmであることができる。 In order to keep warm, the outer periphery of the crucible 10 is covered with a heat insulating material 18. The heat insulating material 18 can be a graphite-based heat insulating material, a carbon fiber molded heat insulating material, or the like, and the thickness of the heat insulating material can be, for example, 4 to 15 mm.
本開示の方法において、Si−C溶液とは、SiまたはSi/X(XはSi以外の1種以上の金属)の融液を溶媒とするCが溶解した溶液をいう。Xは一種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe等が挙げられる。 In the method of the present disclosure, the Si—C solution refers to a solution in which C is dissolved using a melt of Si or Si / X (X is one or more metals other than Si) as a solvent. X is one or more kinds of metals, and is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase). Examples of suitable metals X include Ti, Mn, Cr, Ni, Ce, Co, V, Fe and the like.
Si−C溶液は、Si/Cr/X(XはSi及びCr以外の1種以上の金属)の融液を溶媒とするSi−C溶液が好ましい。原子組成百分率でSiが30〜80、Crが20〜60、及びXが0〜10(Si:Cr:X=30〜80:20〜60:0〜10)の融液を溶媒とするSi−C溶液が、Cの溶解量の変動が少なくさらに好ましい。例えば、坩堝内にSiに加えて、Cr、Ni等を投入し、Si−Cr溶液、Si−Cr−Ni溶液等を形成することができる。 The Si—C solution is preferably a Si—C solution using a melt of Si / Cr / X (X is one or more metals other than Si and Cr) as a solvent. Si- with a melt of 30 to 80, Cr of 20 to 60, and X of 0 to 10 (Si: Cr: X = 30 to 80:20 to 60: 0 to 10) in atomic composition percentage as a solvent The C solution is more preferable because the variation in the dissolved amount of C is small. For example, in addition to Si, Cr, Ni, or the like can be charged into the crucible to form a Si—Cr solution, a Si—Cr—Ni solution, or the like.
Si−C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSiまたはSi/Xの融液に、Cを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解によりCが融液中に溶解し、Si−C溶液を形成することができる。こうすると、Si−C溶液24中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、または固体のC供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。 The Si-C solution 24 is prepared by charging a raw material into a crucible and dissolving C in a melt of Si or Si / X prepared by heating and melting. By making the crucible 10 into a carbonaceous crucible such as a graphite crucible or a SiC crucible, C is dissolved in the melt by melting the crucible 10 to form a Si-C solution. In this way, undissolved C does not exist in the Si—C solution 24, and waste of SiC due to precipitation of the SiC single crystal in the undissolved C can be prevented. The supply of C may be performed by, for example, a method of injecting hydrocarbon gas or charging a solid C supply source together with the melt raw material, or combining these methods with melting of a crucible. Also good.
単結晶製造装置への種結晶基板の設置は、種結晶基板の上面を種結晶保持軸に保持させることによって行うことができる。種結晶基板の種結晶保持軸への保持には、カーボン接着剤を用いることができる。 The seed crystal substrate can be installed in the single crystal manufacturing apparatus by holding the upper surface of the seed crystal substrate on the seed crystal holding shaft. A carbon adhesive can be used for holding the seed crystal substrate on the seed crystal holding shaft.
種結晶保持軸12は、その端面に種結晶基板14を保持する軸であり、黒鉛の軸であることができ、円柱状、角柱状等の任意の形状を有することができる。 The seed crystal holding shaft 12 is an axis that holds the seed crystal substrate 14 on its end face, can be a graphite shaft, and can have any shape such as a columnar shape or a prismatic shape.
種結晶基板14のSi−C溶液24への接触は、種結晶基板14を保持した種結晶保持軸12をSi−C溶液24の液面に向かって降下させ、種結晶基板14の下面である(000−1)面をSi−C溶液24の液面に対して平行にしてSi−C溶液24に接触させることによって行うことができる。そして、Si−C溶液24の液面に対して種結晶基板14を所定の位置に保持して、SiC単結晶を成長させることができる。 The contact of the seed crystal substrate 14 with the Si—C solution 24 is the lower surface of the seed crystal substrate 14 by lowering the seed crystal holding shaft 12 holding the seed crystal substrate 14 toward the liquid surface of the Si—C solution 24. It can be performed by bringing the (000-1) plane into contact with the Si—C solution 24 in parallel with the liquid surface of the Si—C solution 24. The SiC single crystal can be grown by holding the seed crystal substrate 14 at a predetermined position with respect to the liquid surface of the Si—C solution 24.
種結晶基板14の水平方向の保持位置は、ΔTc/ΔTaの比率を上記範囲にし、且つSi−C溶液24の表面温度を上記温度範囲にして、種結晶基板14の成長面から結晶成長を行うことができる限り、特に限定されるものではないが、好ましくは、坩堝10に収容されるSi−C溶液24の表面の略中央部に保持される。 The horizontal holding position of the seed crystal substrate 14 is such that the ratio of ΔTc / ΔTa is within the above range, and the surface temperature of the Si—C solution 24 is within the above temperature range, and crystal growth is performed from the growth surface of the seed crystal substrate 14. Although it is not particularly limited as long as it is possible, it is preferably held substantially at the center of the surface of the Si-C solution 24 accommodated in the crucible 10.
種結晶基板14の鉛直方向の保持位置は、種結晶基板14の下面の位置が、Si−C溶液面に一致するか、Si−C溶液面に対して下側にあるか、またはSi−C溶液面に対して上側にあってもよい。図5に示すように、種結晶基板14の下面にのみSi−C溶液24を濡らしてメニスカス34を形成するように、種結晶基板の下面の位置が、Si−C溶液面に対して上方に位置してもよい。図5は、種結晶基板14とSi−C溶液24との間に形成されるメニスカス34の断面模式図である。 The vertical holding position of the seed crystal substrate 14 is such that the position of the lower surface of the seed crystal substrate 14 coincides with the Si—C solution surface, is below the Si—C solution surface, or is Si—C. It may be above the solution surface. As shown in FIG. 5, the position of the lower surface of the seed crystal substrate is above the Si-C solution surface so that the Si-C solution 24 is wetted only on the lower surface of the seed crystal substrate 14 to form the meniscus 34. May be located. FIG. 5 is a schematic cross-sectional view of a meniscus 34 formed between the seed crystal substrate 14 and the Si—C solution 24.
メニスカスを形成する場合、種結晶基板の下面の位置を、Si−C溶液面に対して0.5〜3mm上方の位置に保持することが好ましい。種結晶基板の下面をSi−C溶液面に対して上方の位置に保持する場合は、一旦、種結晶基板をSi−C溶液に接触させて種結晶基板の下面にSi−C溶液を接触させてから、所定の位置に引き上げる。メニスカスを形成して結晶成長させることにより、種結晶保持軸にSi−C溶液が接触することを容易に防止し、多結晶の発生を防止することができる。 When forming a meniscus, it is preferable to hold the position of the lower surface of the seed crystal substrate at a position 0.5 to 3 mm above the Si-C solution surface. When the lower surface of the seed crystal substrate is held at a position above the Si-C solution surface, the seed crystal substrate is once brought into contact with the Si-C solution, and the Si-C solution is brought into contact with the lower surface of the seed crystal substrate. Then, pull it up to a predetermined position. By forming a meniscus and growing the crystal, it is possible to easily prevent the Si—C solution from coming into contact with the seed crystal holding shaft and to prevent the generation of polycrystals.
種結晶基板の下面の位置を、Si−C溶液面に一致するか、またはSi−C溶液面よりも下側にしてもよいが、多結晶の発生を防止するために、種結晶保持軸にSi−C溶液が接触しないようにすることが好ましい。これらの方法において、SiC単結晶の成長中に種結晶基板の位置を調節してもよい。 The position of the lower surface of the seed crystal substrate may coincide with the Si-C solution surface or be lower than the Si-C solution surface, but in order to prevent the occurrence of polycrystals, It is preferable to prevent the Si—C solution from coming into contact. In these methods, the position of the seed crystal substrate may be adjusted during the growth of the SiC single crystal.
Si−C溶液の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。 The temperature of the Si—C solution can be measured using a thermocouple, a radiation thermometer, or the like. Regarding the thermocouple, from the viewpoint of high temperature measurement and prevention of impurity contamination, a thermocouple in which a tungsten-rhenium strand coated with zirconia or magnesia glass is placed in a graphite protective tube is preferable.
断熱材18に覆われた坩堝10は一括して、石英管26内に収容される。石英管26の外周には、加熱装置として高周波コイル22が配置される。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。 The crucibles 10 covered with the heat insulating material 18 are collectively accommodated in the quartz tube 26. On the outer periphery of the quartz tube 26, a high frequency coil 22 is disposed as a heating device. The high frequency coil 22 may be composed of an upper coil 22A and a lower coil 22B, and the upper coil 22A and the lower coil 22B can be independently controlled.
坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内の雰囲気調整を可能にするために、ガス導入口とガス排気口とを備える。 Since the crucible 10, the heat insulating material 18, the quartz tube 26, and the high frequency coil 22 become high temperature, they are disposed inside the water cooling chamber. The water cooling chamber includes a gas introduction port and a gas exhaust port in order to enable adjustment of the atmosphere in the apparatus.
坩堝10は、上部に種結晶保持軸12を通す開口部28を備えており、開口部28における坩堝10と種結晶保持軸12との間の隙間(間隔)を調節することによって、Si−C溶液24の液面からの輻射抜熱の程度を変更することができる。概して坩堝10の内部は高温に保つ必要があるが、開口部28における坩堝10と種結晶保持軸12との間の隙間を大きく設定すると、Si−C溶液24の液面からの輻射抜熱を大きくすることができ、開口部28における坩堝10と種結晶保持軸12との間の隙間を狭めると、Si−C溶液24の液面からの輻射抜熱を小さくすることができる。開口部28における坩堝10と種結晶保持軸12との間の隙間(間隔)は片側2〜10mm程度が好ましい。メニスカスを形成したときは、メニスカス部分からも輻射抜熱をさせることができる。 The crucible 10 is provided with an opening 28 through which the seed crystal holding shaft 12 passes. By adjusting a gap (interval) between the crucible 10 and the seed crystal holding shaft 12 in the opening 28, the Si—C The degree of radiation extraction heat from the liquid surface of the solution 24 can be changed. Generally, it is necessary to keep the inside of the crucible 10 at a high temperature. However, if the gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is set large, radiation heat from the liquid surface of the Si—C solution 24 is reduced. When the gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is narrowed, the heat of radiation extraction from the liquid surface of the Si—C solution 24 can be reduced. The gap (interval) between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is preferably about 2 to 10 mm on one side. When the meniscus is formed, radiation heat can also be removed from the meniscus portion.
一実施態様において、SiC単結晶の成長前に、種結晶基板の表面層をSi−C溶液中に溶解させて除去するメルトバックを行ってもよい。SiC単結晶を成長させる種結晶基板の表層には、転位等の加工変質層や自然酸化膜などが存在していることがあり、SiC単結晶を成長させる前にこれらを溶解して除去することが、高品質なSiC単結晶を成長させるために効果的である。溶解する厚みは、種結晶基板の表面の加工状態によって変わるが、加工変質層や自然酸化膜を十分に除去するために、およそ5〜50μmが好ましい。 In one embodiment, before the growth of the SiC single crystal, meltback may be performed to dissolve and remove the surface layer of the seed crystal substrate in the Si—C solution. The surface layer of the seed crystal substrate on which the SiC single crystal is grown may have a work-affected layer such as dislocations or a natural oxide film, which must be dissolved and removed before the SiC single crystal is grown. However, it is effective for growing a high-quality SiC single crystal. Although the thickness to melt | dissolves changes with the processing state of the surface of a seed crystal substrate, about 5-50 micrometers is preferable in order to fully remove a work-affected layer and a natural oxide film.
メルトバックは、Si−C溶液の内部からSi−C溶液の液面に向けて温度が増加する温度勾配、すなわち、SiC単結晶成長とは逆方向の温度勾配をSi−C溶液に形成することにより行うことができる。高周波コイルの出力を制御することによって上記逆方向の温度勾配を形成することができる。 Melt back forms a temperature gradient in the Si-C solution in which the temperature increases from the inside of the Si-C solution toward the surface of the Si-C solution, that is, in the opposite direction to the growth of the SiC single crystal. Can be performed. The temperature gradient in the reverse direction can be formed by controlling the output of the high frequency coil.
一実施態様において、あらかじめ種結晶基板を加熱しておいてから種結晶基板をSi−C溶液に接触させてもよい。低温の種結晶基板を高温のSi−C溶液に接触させると、種結晶に熱ショック転位が発生することがある。種結晶基板をSi−C溶液に接触させる前に、種結晶基板を加熱しておくことが、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。種結晶基板の加熱は種結晶保持軸ごと加熱して行うことができる。この場合、種結晶基板をSi−C溶液に接触させた後、SiC単結晶を成長させる前に種結晶保持軸の加熱を止める。または、この方法に代えて、比較的低温のSi−C溶液に種結晶基板を接触させてから、結晶を成長させる温度にSi−C溶液を加熱してもよい。この場合も、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。 In one embodiment, the seed crystal substrate may be previously heated and then contacted with the Si-C solution. When a low-temperature seed crystal substrate is brought into contact with a high-temperature Si—C solution, heat shock dislocation may occur in the seed crystal. Heating the seed crystal substrate before bringing the seed crystal substrate into contact with the Si—C solution is effective for preventing thermal shock dislocation and growing a high-quality SiC single crystal. The seed crystal substrate can be heated by heating the seed crystal holding shaft. In this case, after the seed crystal substrate is brought into contact with the Si—C solution, the heating of the seed crystal holding shaft is stopped before the SiC single crystal is grown. Alternatively, instead of this method, the Si—C solution may be heated to a temperature at which crystals grow after contacting the seed crystal substrate with a relatively low temperature Si—C solution. This case is also effective for preventing heat shock dislocation and growing a high-quality SiC single crystal.
本開示はまた、成長面におけるテラス幅が11μm以下であり従来よりも4H率が高い、特に4H率が46%以上のSiC単結晶を対象とする。 The present disclosure is also directed to a SiC single crystal having a terrace width on the growth surface of 11 μm or less and a higher 4H ratio than the conventional one, particularly a 4H ratio of 46% or more.
テラスは、成長面の外周部において同心円状に形成されている。成長面におけるテラス幅が上記範囲内の4H−SiC単結晶は、テラスに異種ポリタイプの核が発生することが抑制されるので、従来よりも4H率が高いSiC単結晶が得られる。 The terrace is formed concentrically on the outer periphery of the growth surface. Since the 4H-SiC single crystal having a terrace width on the growth surface within the above range can suppress the generation of heterogeneous polytype nuclei on the terrace, an SiC single crystal having a higher 4H ratio than the conventional one can be obtained.
テラス幅は、好ましくは4μm以下である。4H率は、好ましくは50%以上、より好ましくは68%以上、さらに好ましくは80%以上、さらにより好ましくは90%以上、特に好ましくは100%である。 The terrace width is preferably 4 μm or less. The 4H ratio is preferably 50% or more, more preferably 68% or more, still more preferably 80% or more, still more preferably 90% or more, and particularly preferably 100%.
上記の製造方法において記載したテラス幅の観察、測定方法等の内容は、本SiC単結晶についても適用される。 The contents of the terrace width observation, measurement method and the like described in the above manufacturing method are also applied to the present SiC single crystal.
以下の実施例及び比較例における4H率の算出は、以下の方法によって行った。 Calculation of the 4H ratio in the following examples and comparative examples was performed by the following method.
成長結晶の成長面を、均等に1mm間隔に区分けして、それぞれの区画の略中央部について、ラマン分光分析を行った。分析条件は次の通りである:励起波長532nm、20mW、レーザー照射径2.7μm、後方散乱配置、露光時間2秒、積算回数1回、回折格子1600gr/mm、共焦点ホール径10μm、室温、大気中。 The growth surface of the grown crystal was equally divided at intervals of 1 mm, and Raman spectroscopic analysis was performed on the approximate center of each section. The analysis conditions are as follows: excitation wavelength of 532 nm, 20 mW, laser irradiation diameter of 2.7 μm, backscattering arrangement, exposure time of 2 seconds, number of integrations, diffraction grating of 1600 gr / mm, confocal hole diameter of 10 μm, room temperature, in the air.
ラマン分光分析した成長面の全区画が4Hであった場合、成長結晶を4H−SiCと判定した。各区画における4Hかどうかの判定は、4Hのみのラマンピークが得られていれば4Hと判定し、4H以外のラマンピークがみられたら4Hではないと判定した。各実施例及び比較例において同条件で複数回結晶成長させて複数個の成長結晶を得て、前記複数個の成長結晶の成長面についてラマン分光法で分析を行い、4H−SiCと判定された成長結晶の数の、前記複数個の成長結晶の個数に対する割合を4H率とした。すなわち、4H率が100%とは、例えば30個の成長結晶のうち、30個の成長結晶のそれぞれの成長面の全区画が4H−SiCと判定される場合をいい、4H率が50%とは、例えば30個の成長結晶のうち、15個の成長結晶のそれぞれの成長面の全区画が4H−SiCと判定され、残りの15個の成長結晶が4H−SiCと判定されない場合をいう。成長面の全区画のうち一つでも4H−SiCと判定されない区画がある場合は、その成長結晶は4H−SiCではないと判定した。 When all the sections of the growth surface analyzed by Raman spectroscopy were 4H, the grown crystal was determined to be 4H—SiC. The determination of whether each block is 4H was determined to be 4H if a Raman peak of only 4H was obtained, and was determined not to be 4H if a Raman peak other than 4H was observed. In each example and comparative example, a plurality of grown crystals were obtained under the same conditions to obtain a plurality of grown crystals, and the growth surfaces of the plurality of grown crystals were analyzed by Raman spectroscopy, and determined to be 4H-SiC. The ratio of the number of grown crystals to the number of the plurality of grown crystals was 4H rate. That is, the 4H rate is 100%, for example, among 30 grown crystals, where all the sections of the growth surface of each of the 30 grown crystals are determined to be 4H-SiC, and the 4H rate is 50%. For example, among 30 grown crystals, all the sections of the growth surface of each of the 15 grown crystals are determined to be 4H—SiC, and the remaining 15 grown crystals are not determined to be 4H—SiC. When at least one of all the sections of the growth surface was not determined to be 4H—SiC, it was determined that the grown crystal was not 4H—SiC.
(実施例1)
図1に示す単結晶製造装置を用いた。直径が12.7mm、厚みが700μmの円盤状4H−SiC単結晶であって、下面が(000−1)面を有する昇華法により作製したSiC単結晶を用意して、種結晶基板14として用いた。直径が12.7mm及び長さが200mmで種結晶基板の上面と同じ形状の端面を有する円柱状の黒鉛の種結晶保持軸12を用意した。種結晶基板14の下面が(000−1)面となるようにして、種結晶基板14の上面を、種結晶保持軸12の端面の略中央部に、黒鉛の接着剤を用いて接着した。
Example 1
The single crystal manufacturing apparatus shown in FIG. 1 was used. A SiC single crystal having a diameter of 12.7 mm and a thickness of 700 μm, which is a disc-shaped 4H—SiC single crystal and having a (000-1) plane on the bottom surface, is prepared and used as a seed crystal substrate 14 It was. A cylindrical graphite seed crystal holding shaft 12 having a diameter of 12.7 mm and a length of 200 mm and having an end surface having the same shape as the upper surface of the seed crystal substrate was prepared. The upper surface of the seed crystal substrate 14 was bonded to the substantially central portion of the end surface of the seed crystal holding shaft 12 using a graphite adhesive so that the lower surface of the seed crystal substrate 14 became the (000-1) plane.
坩堝10の上蓋中央部に開けた直径18.7mmの円形の開口部28に種結晶保持軸12を通すようにして種結晶保持軸12及び種結晶基板14を配置した。開口部28における坩堝10と種結晶保持軸12との間の隙間は片側3mmずつであった。 The seed crystal holding shaft 12 and the seed crystal substrate 14 were arranged so that the seed crystal holding shaft 12 was passed through a circular opening 28 having a diameter of 18.7 mm opened at the center of the upper lid of the crucible 10. The gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 was 3 mm on each side.
15mm厚の炭素繊維フェルト成型断熱材を周囲に配置した内径40mmの黒鉛坩堝に、Si、Cr、及びNiを、Si:Cr:Ni=55:40:5(at%)の原子組成比率で、Si−C溶液を形成するための融液原料として仕込んだ。 In a graphite crucible having an inner diameter of 40 mm around which a carbon fiber felt molded heat insulating material having a thickness of 15 mm is arranged, Si, Cr, and Ni are in an atomic composition ratio of Si: Cr: Ni = 55: 40: 5 (at%), It was charged as a melt raw material for forming a Si-C solution.
単結晶製造装置の内部を1×10-3Paに真空引きした後、1気圧になるまでアルゴンガスを導入して、該単結晶製造装置の内部の空気をアルゴンで置換した。高周波コイルに通電して加熱により黒鉛坩堝内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そして、黒鉛坩堝からSi/Cr/Ni合金の融液に十分な量のCを溶解させて、Si−C溶液を形成した。 The inside of the single crystal manufacturing apparatus was evacuated to 1 × 10 −3 Pa, and then argon gas was introduced until the pressure became 1 atm. The air inside the single crystal manufacturing apparatus was replaced with argon. The raw material in the graphite crucible was melted by energizing and heating the high frequency coil to form a Si / Cr / Ni alloy melt. Then, a sufficient amount of C was dissolved in the melt of the Si / Cr / Ni alloy from the graphite crucible to form a Si—C solution.
上段コイル及び下段コイルの出力を調節して黒鉛坩堝を加熱し、Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部における温度を1900℃以上1950℃未満の温度範囲に昇温し、Si−C溶液の表面中央部から10mmの範囲で溶液内部からSi−C溶液の液面に向けて鉛直方向に温度低下する温度勾配ΔTcが8℃/cmとなるように制御した。本例において、上記Si−C溶液の表面のうち種結晶基板の成長面が接触する領域の中央部とは、Si−C溶液の表面中央部である。このときのSi−C溶液の表面中央部と前記表面中央部から水平方向に10mmの位置との間の温度勾配ΔTaは1.5℃/cmであった。ΔTc/ΔTaは5.3であった。Si−C溶液の液面の水平方向の温度測定は放射温度計により行い、Si−C溶液の鉛直方向の温度測定は、鉛直方向に移動可能な熱電対を用いて行った。 The graphite crucible is heated by adjusting the output of the upper coil and the lower coil, and the temperature in the center of the region where the growth surface of the seed crystal substrate is in contact with the surface of the Si-C solution is in the temperature range of 1900 ° C. or higher and lower than 1950 ° C. The temperature gradient ΔTc is controlled so as to be 8 ° C./cm in the vertical direction from the inside of the solution toward the surface of the Si—C solution within a range of 10 mm from the center of the surface of the Si—C solution. did. In this example, the central part of the region where the growth surface of the seed crystal substrate contacts the surface of the Si-C solution is the central part of the surface of the Si-C solution. At this time, the temperature gradient ΔTa between the center of the surface of the Si—C solution and a position 10 mm horizontally from the center of the surface was 1.5 ° C./cm. ΔTc / ΔTa was 5.3. The temperature in the horizontal direction of the liquid surface of the Si—C solution was measured with a radiation thermometer, and the temperature in the vertical direction of the Si—C solution was measured using a thermocouple movable in the vertical direction.
種結晶保持軸12に接着した種結晶基板の下面となる(000−1)面をSi−C溶液面に平行にして、種結晶基板の下面の位置を、Si−C溶液の液面に一致する位置に配置して、Si−C溶液に種結晶基板の下面のみをSi−C溶液に接触させるシードタッチを行い、その位置で10時間保持することにより、結晶成長を行った。 The (000-1) plane, which is the lower surface of the seed crystal substrate bonded to the seed crystal holding shaft 12, is parallel to the Si-C solution surface, and the position of the lower surface of the seed crystal substrate coincides with the liquid surface of the Si-C solution. The crystal was grown by placing the Si-C solution in a position where the seed crystal substrate was brought into contact with the Si-C solution and bringing the Si-C solution into contact with the Si-C solution, and holding the Si-C solution for 10 hours.
結晶成長の終了後、種結晶保持軸12を上昇させて、種結晶基板14及び種結晶基板から成長したSiC単結晶を、Si−C溶液24及び種結晶保持軸12から切り離して回収した。次いで、同様の条件で、26回結晶成長を行い、合計27個の成長結晶を得た。 After the completion of the crystal growth, the seed crystal holding shaft 12 was raised, and the SiC single crystal grown from the seed crystal substrate 14 and the seed crystal substrate was separated from the Si—C solution 24 and the seed crystal holding shaft 12 and recovered. Next, crystal growth was performed 26 times under the same conditions to obtain a total of 27 grown crystals.
成長結晶のポリタイプをラマン分光分析により調べたところ、得られた27個の成長結晶の4H率は100%であった。4H率の算出は、上述の方法を用いて行った。図6に、4Hと判定した成長結晶のラマンスペクトルを示す。204cm−1に4Hのピークがみられたが、4H以外のポリタイプのピークはみられなかった。図7に、得られた成長結晶の成長面から観察した外観写真を示す。この成長結晶の成長厚みは2.8mmであった。成長結晶の成長面の外周部から成長面の中心に向かって1mm、5mm、及び10mmの3箇所について、光学顕微鏡を用いて600μm角の範囲を20倍の倍率で観察したところ、この成長結晶の成長面のテラス幅は4μmであった。図8に、得られた成長結晶の成長面を拡大した光学顕微鏡写真を示す。テラス幅を矢印で挟んで示した。 When the polytype of the grown crystal was examined by Raman spectroscopic analysis, the 4H ratio of the 27 grown crystals obtained was 100%. The 4H rate was calculated using the method described above. FIG. 6 shows a Raman spectrum of the grown crystal determined to be 4H. A peak of 4H was observed at 204 cm −1, but no polytype peak other than 4H was observed. FIG. 7 shows an appearance photograph observed from the growth surface of the obtained grown crystal. The growth thickness of the grown crystal was 2.8 mm. When an area of 600 μm square was observed at a magnification of 20 times using an optical microscope at three locations of 1 mm, 5 mm, and 10 mm from the outer periphery of the growth surface of the growth crystal toward the center of the growth surface, The terrace width of the growth surface was 4 μm. FIG. 8 shows an optical micrograph in which the growth surface of the obtained grown crystal is enlarged. The terrace width is indicated by an arrow.
(実施例2−1)
種結晶基板として直径が50.4mmのSiC単結晶及び内径が70mmの黒鉛坩堝を用いて、ΔTcを25℃/cmとし、ΔTaを15℃/cmとし、ΔTc/ΔTaを1.7として、13回結晶成長を行ったこと以外は、実施例1と同じ条件でSiC単結晶を成長させて回収した。
(Example 2-1)
Using a SiC single crystal having a diameter of 50.4 mm and a graphite crucible having an inner diameter of 70 mm as a seed crystal substrate, ΔTc is set to 25 ° C./cm, ΔTa is set to 15 ° C./cm, ΔTc / ΔTa is set to 1.7, and 13 A SiC single crystal was grown and recovered under the same conditions as in Example 1 except that double crystal growth was performed.
得られた13個の成長結晶の4H率は46%であった。図9に、得られた成長結晶の成長面から観察した外観写真を示す。この成長結晶の成長厚みは2.4mmであった。成長結晶の成長面の外周部から成長面の中心に向かって1mm、5mm、及び10mmの3箇所について、光学顕微鏡を用いて600μm角の範囲を20倍の倍率で観察したところ、この成長結晶の成長面のテラス幅は11μmであった。図10に、得られた成長結晶の成長面を拡大した光学顕微鏡写真を示す。テラス幅を矢印で挟んで示した。 The obtained 13 grown crystals had a 4H ratio of 46%. FIG. 9 shows an appearance photograph observed from the growth surface of the obtained grown crystal. The growth thickness of the grown crystal was 2.4 mm. When an area of 600 μm square was observed at a magnification of 20 times using an optical microscope at three locations of 1 mm, 5 mm, and 10 mm from the outer periphery of the growth surface of the growth crystal toward the center of the growth surface, The terrace width of the growth surface was 11 μm. In FIG. 10, the optical microscope photograph which expanded the growth surface of the obtained growth crystal is shown. The terrace width is indicated by an arrow.
(実施例2−2)
Si−C溶液の表面中央部における温度を1950℃以上2000℃未満の温度として、この温度範囲で25回結晶成長を行ったこと以外は、実施例2−1と同じ条件でSiC単結晶を成長させて回収した。
(Example 2-2)
A SiC single crystal is grown under the same conditions as in Example 2-1, except that the temperature at the center of the surface of the Si—C solution is set to a temperature of 1950 ° C. or more and less than 2000 ° C., and crystal growth is performed 25 times in this temperature range. And recovered.
得られた25個の成長結晶の4H率は68%であった。 The obtained 25 grown crystals had a 4H ratio of 68%.
(実施例2−3)
Si−C溶液の表面中央部における温度を2000℃以上2050℃未満の温度として、この温度範囲で10回結晶成長を行ったこと以外は、実施例2−1と同じ条件でSiC単結晶を成長させて回収した。
(Example 2-3)
A SiC single crystal was grown under the same conditions as in Example 2-1, except that the temperature at the center of the surface of the Si-C solution was set to a temperature of 2000 ° C. or higher and lower than 2050 ° C., and crystal growth was performed 10 times in this temperature range. And recovered.
得られた10個の成長結晶の4H率は70%であった。 The 10 grown crystals obtained had a 4H ratio of 70%.
(実施例2−4)
Si−C溶液の表面中央部における温度を2050℃以上2100℃未満の温度として、この温度範囲で18回結晶成長を行ったこと以外は、実施例2−1と同じ条件でSiC単結晶を成長させて回収した。
(Example 2-4)
A SiC single crystal is grown under the same conditions as in Example 2-1, except that the temperature at the center of the surface of the Si—C solution is set to a temperature of 2050 ° C. or higher and lower than 2100 ° C., and crystal growth is performed 18 times in this temperature range. And recovered.
得られた18個の成長結晶の4H率は100%であった。 The obtained 18 grown crystals had a 4H ratio of 100%.
(実施例3)
坩堝の周囲に8mm厚の断熱材を配置して、ΔTcを8℃/cmとし、ΔTaを4℃/cmとし、ΔTc/ΔTaを2.0として、11回結晶成長を行ったこと以外は、実施例1と同じ条件でSiC単結晶を成長させて回収した。
(Example 3)
Except that an 8 mm thick heat insulating material was placed around the crucible, ΔTc was 8 ° C./cm, ΔTa was 4 ° C./cm, ΔTc / ΔTa was 2.0, and crystal growth was performed 11 times. A SiC single crystal was grown and recovered under the same conditions as in Example 1.
得られた11個の成長結晶の4H率は100%であった。 The obtained 11 grown crystals had a 4H ratio of 100%.
(比較例1−1)
種結晶基板として直径が50.4mmのSiC単結晶及び内径が120mmの黒鉛坩堝を用いて、ΔTcを1.5℃/cmとし、ΔTaを3℃/cmとし、ΔTc/ΔTaを0.5として、10回結晶成長を行ったこと以外は、実施例1と同じ条件でSiC単結晶を成長させて回収した。
(Comparative Example 1-1)
Using a SiC single crystal having a diameter of 50.4 mm and a graphite crucible having an inner diameter of 120 mm as a seed crystal substrate, ΔTc is set to 1.5 ° C./cm, ΔTa is set to 3 ° C./cm, and ΔTc / ΔTa is set to 0.5. A SiC single crystal was grown and recovered under the same conditions as in Example 1 except that the crystal growth was performed 10 times.
得られた10個の成長結晶の4H率は0%であった。図11に、4H以外のポリタイプが発生した成長結晶のラマンスペクトルを示す。155cm−1に6Hのピークがみられたが、4Hのピークはみられなかった。図12に、得られた成長結晶の成長面から観察した外観写真を示す。この成長結晶の成長厚みは2.3mmであった。成長結晶の成長面の外周部から成長面の中心に向かって1mm、5mm、及び10mmの3箇所について、光学顕微鏡を用いて1.5mm角の範囲を10倍の倍率で観察したところ、この成長結晶の成長面のテラス幅は56.8μmであった。図13に、得られた成長結晶の成長面を拡大した光学顕微鏡写真を示す。テラス幅を矢印で挟んで示した。 The obtained 10 grown crystals had a 4H ratio of 0%. FIG. 11 shows a Raman spectrum of a grown crystal in which a polytype other than 4H is generated. A peak of 6H was observed at 155 cm −1 , but a peak of 4H was not observed. FIG. 12 shows an appearance photograph observed from the growth surface of the obtained grown crystal. The growth thickness of the grown crystal was 2.3 mm. When a 1.5 mm square area was observed at 10 times magnification using an optical microscope at three locations of 1 mm, 5 mm, and 10 mm from the outer peripheral portion of the growth surface of the growth crystal toward the center of the growth surface, this growth was observed. The terrace width of the crystal growth surface was 56.8 μm. FIG. 13 shows an optical microscope photograph in which the growth surface of the obtained grown crystal is enlarged. The terrace width is indicated by an arrow.
(比較例1−2)
Si−C溶液の表面中央部における温度を1950℃以上2000℃未満の温度として、この温度範囲で18回結晶成長を行ったこと以外は、比較例1−1と同じ条件でSiC単結晶を成長させて回収した。
(Comparative Example 1-2)
A SiC single crystal is grown under the same conditions as in Comparative Example 1-1 except that the temperature at the center of the surface of the Si—C solution is set to a temperature of 1950 ° C. or higher and lower than 2000 ° C., and crystal growth is performed 18 times in this temperature range. And recovered.
得られた18個の成長結晶の4H率は0%であった。 The obtained 18 grown crystals had a 4H ratio of 0%.
(比較例1−3)
Si−C溶液の表面中央部における温度を2000℃以上2050℃未満の温度として、この温度範囲で56回結晶成長を行ったこと以外は、比較例1−1と同じ条件でSiC単結晶を成長させて回収した。
(Comparative Example 1-3)
A SiC single crystal is grown under the same conditions as in Comparative Example 1-1 except that the temperature at the center of the surface of the Si—C solution is set to a temperature of 2000 ° C. or higher and lower than 2050 ° C., and the crystal is grown 56 times in this temperature range. And recovered.
得られた56個の成長結晶の4H率は0%であった。 The 4H ratio of the obtained 56 grown crystals was 0%.
(比較例1−4)
Si−C溶液の表面中央部における温度を2050℃以上2100℃未満の温度として、この温度範囲で26回結晶成長を行ったこと以外は、比較例1−1と同じ条件でSiC単結晶を成長させて回収した。
(Comparative Example 1-4)
A SiC single crystal is grown under the same conditions as in Comparative Example 1-1 except that the temperature at the center of the surface of the Si—C solution is set to a temperature of 2050 ° C. or higher and lower than 2100 ° C. and the crystal growth is performed 26 times in this temperature range. And recovered.
得られた26個の成長結晶の4H率は0%であった。 The obtained 26 grown crystals had a 4H ratio of 0%.
(比較例2)
坩堝の周囲に4mm厚の断熱材を配置して、ΔTcを8℃/cmとし、ΔTaを8℃/cmとし、ΔTc/ΔTaを1.0として、28回結晶成長を行ったこと以外は、実施例1と同じ条件でSiC単結晶を成長させて回収した。
(Comparative Example 2)
Except that a 4 mm thick heat insulating material was arranged around the crucible, ΔTc was 8 ° C./cm, ΔTa was 8 ° C./cm, ΔTc / ΔTa was 1.0, and crystal growth was performed 28 times. A SiC single crystal was grown and recovered under the same conditions as in Example 1.
得られた28個の成長結晶の4H率は35.7%であった。 The obtained 28 grown crystals had a 4H ratio of 35.7%.
実施例1、2−1〜2−4、及び3、並びに比較例1−1〜1−4及び2の、ΔTc、ΔTa、ΔTc/ΔTa、及び4H率を表1に示す。図14に、全実施例及び比較例の、ΔTc/ΔTaによる4H率を表すグラフを示す。図15に、実施例1、実施例2−1〜2−4、及び比較例1−1〜1−4の、Si−C溶液の表面中央部の温度と4H率との関係を表すグラフを示す。 Table 1 shows ΔTc, ΔTa, ΔTc / ΔTa, and 4H ratios of Examples 1, 2-1, 2-4, and 3 and Comparative Examples 1-1, 1-4, and 2. In FIG. 14, the graph showing 4H rate by (DELTA) Tc / (DELTA) Ta of all the Examples and comparative examples is shown. FIG. 15 is a graph showing the relationship between the temperature at the center of the surface of the Si—C solution and the 4H ratio in Example 1, Examples 2-1 to 2-4, and Comparative Examples 1-1 to 1-4. Show.
100 単結晶製造装置
10 坩堝
12 種結晶保持軸
14 種結晶基板
18 断熱材
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si−C溶液
26 石英管
28 坩堝上部の開口部
34 メニスカス
DESCRIPTION OF SYMBOLS 100 Single crystal manufacturing apparatus 10 Crucible 12 Seed crystal holding shaft 14 Seed crystal substrate 18 Heat insulating material 22 High frequency coil 22A Upper high frequency coil 22B Lower high frequency coil 24 Si-C solution 26 Quartz tube 28 Opening part of crucible upper part 34 Meniscus
Claims (4)
前記種結晶基板が4H−SiCであり、
前記種結晶基板の(000−1)面を成長面とすること、
前記Si−C溶液の表面のうち前記種結晶基板の成長面が接触する領域の中央部の温度を1900℃以上にすること、及び
前記中央部と前記中央部から鉛直方向下方に10mmの位置との間の温度勾配ΔTcと、前記中央部と前記中央部から水平方向に10mmの位置との間の温度勾配ΔTaとの比ΔTc/ΔTaを1.7以上とすること
を含む、SiC単結晶の製造方法。 A method for producing a SiC single crystal, wherein a SiC single crystal is grown by bringing a seed crystal substrate into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface,
The seed crystal substrate is 4H-SiC;
Making the (000-1) plane of the seed crystal substrate a growth plane;
The temperature of the central part of the region where the growth surface of the seed crystal substrate is in contact with the surface of the Si-C solution is set to 1900 ° C. or higher, and the central part and a position 10 mm vertically downward from the central part, The ratio ΔTc / ΔTa between the temperature gradient ΔTc between the central portion and the temperature gradient ΔTa between the central portion and a position 10 mm in the horizontal direction from the central portion is 1.7 or more. Production method.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170044381A KR101934189B1 (en) | 2016-05-10 | 2017-04-05 | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME |
US15/585,497 US20170327968A1 (en) | 2016-05-10 | 2017-05-03 | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME |
EP17169971.3A EP3243935A1 (en) | 2016-05-10 | 2017-05-08 | Sic single crystal and method for producing same |
CN201710319173.3A CN107354510A (en) | 2016-05-10 | 2017-05-09 | SiC monocrystalline and its manufacture method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016094721 | 2016-05-10 | ||
JP2016094721 | 2016-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017202969A true JP2017202969A (en) | 2017-11-16 |
Family
ID=60321926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017032311A Pending JP2017202969A (en) | 2016-05-10 | 2017-02-23 | SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017202969A (en) |
KR (1) | KR101934189B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102104751B1 (en) * | 2019-06-17 | 2020-04-24 | 에스케이씨 주식회사 | SiC INGOT AND PREPERATION METHOD FOR THE SAME |
KR102284879B1 (en) | 2019-10-29 | 2021-07-30 | 에스케이씨 주식회사 | SiC WAFER, PREPARATION METHOD OF SiC WAFER |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140267A (en) * | 2010-12-28 | 2012-07-26 | Toyota Motor Corp | APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL |
WO2013005347A1 (en) * | 2011-07-04 | 2013-01-10 | トヨタ自動車株式会社 | Sic single crystal and manufacturing process therefor |
JP2015101490A (en) * | 2013-11-21 | 2015-06-04 | トヨタ自動車株式会社 | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL |
-
2017
- 2017-02-23 JP JP2017032311A patent/JP2017202969A/en active Pending
- 2017-04-05 KR KR1020170044381A patent/KR101934189B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140267A (en) * | 2010-12-28 | 2012-07-26 | Toyota Motor Corp | APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL |
WO2013005347A1 (en) * | 2011-07-04 | 2013-01-10 | トヨタ自動車株式会社 | Sic single crystal and manufacturing process therefor |
JP2015101490A (en) * | 2013-11-21 | 2015-06-04 | トヨタ自動車株式会社 | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL |
Non-Patent Citations (2)
Title |
---|
HIRONORI DAIKOKUら: "Solution Growth on Concave Surface of 4H-SiC Crystal", CRYSTAL GROWTH & DESIGN, vol. vol. 16, no. 3, 28, JPN6019018938, 28 January 2016 (2016-01-28), pages 1256 - 1260, ISSN: 0004157447 * |
HUI DENG ら: "Damage-free and atomically-flat finishing of single crystal SiC by combination of oxidation and soft", PROCEDIA CIRP, vol. 13 (2014), JPN6019018939, 2014, pages 203 - 207, ISSN: 0004157448 * |
Also Published As
Publication number | Publication date |
---|---|
KR20170126789A (en) | 2017-11-20 |
KR101934189B1 (en) | 2018-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803519B2 (en) | Method and apparatus for producing SiC single crystal | |
JP5839117B2 (en) | SiC single crystal and method for producing the same | |
JP5434801B2 (en) | Method for producing SiC single crystal | |
JP5983772B2 (en) | Method for producing n-type SiC single crystal | |
JP5801730B2 (en) | Seed crystal holding shaft used in single crystal manufacturing apparatus and single crystal manufacturing method | |
JP2014019614A (en) | SiC SINGLE CRYSTAL INGOT AND METHOD FOR PRODUCING THE SAME | |
US9530642B2 (en) | Method for producing SiC single crystal | |
JP5890377B2 (en) | Method for producing SiC single crystal | |
JP2015067479A (en) | SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING THE SAME | |
JP6119732B2 (en) | SiC single crystal and method for producing the same | |
JP2017202969A (en) | SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF | |
JP6354615B2 (en) | Method for producing SiC single crystal | |
US20170327968A1 (en) | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME | |
JP6030525B2 (en) | Method for producing SiC single crystal | |
JP6380267B2 (en) | SiC single crystal and method for producing the same | |
JP2017226583A (en) | Production method for sic single crystal | |
JP2018150193A (en) | PRODUCTION METHOD OF SiC SINGLE CRYSTAL | |
JP2017202957A (en) | SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF | |
JP2018043898A (en) | PRODUCING METHOD OF SiC SINGLE CRYSTAL | |
JP2018043907A (en) | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL | |
JP2018048044A (en) | PRODUCTION METHOD OF SiC SINGLE CRYSTAL | |
JP6500828B2 (en) | Method of manufacturing SiC single crystal | |
JP2018095542A (en) | MANUFACTURING METHOD OF n-TYPE SiC SINGLE CRYSTAL | |
JP2019052074A (en) | Method of manufacturing SiC single crystal | |
JP2018048048A (en) | SiC SINGLE CRYSTAL PRODUCTION APPARATUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170309 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171012 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180827 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191126 |