JP2018048044A - PRODUCTION METHOD OF SiC SINGLE CRYSTAL - Google Patents
PRODUCTION METHOD OF SiC SINGLE CRYSTAL Download PDFInfo
- Publication number
- JP2018048044A JP2018048044A JP2016184830A JP2016184830A JP2018048044A JP 2018048044 A JP2018048044 A JP 2018048044A JP 2016184830 A JP2016184830 A JP 2016184830A JP 2016184830 A JP2016184830 A JP 2016184830A JP 2018048044 A JP2018048044 A JP 2018048044A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- solution
- seed crystal
- single crystal
- sic single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本開示は、SiC単結晶の製造方法に関する。 The present disclosure relates to a method for producing a SiC single crystal.
SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。 SiC single crystals are very thermally and chemically stable, excellent in mechanical strength, resistant to radiation, and have excellent physical properties such as higher breakdown voltage and higher thermal conductivity than Si single crystals. . Therefore, it is possible to realize high power, high frequency, withstand voltage, environmental resistance, etc. that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs single crystal, and power devices that enable high power control and energy saving. Expectations are growing as next-generation semiconductor materials in a wide range of materials, high-speed and large-capacity information communication device materials, in-vehicle high-temperature device materials, radiation-resistant device materials and the like.
従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び異種ポリタイプ(結晶多形)が生じやすい等の欠点を有するが、従来、SiCバルク単結晶の多くは昇華法により製造されており、成長結晶の欠陥を低減する試みも行われている。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。 Conventionally, as a method for growing a SiC single crystal, a gas phase method, an Acheson method, and a solution method are typically known. Among the vapor phase methods, for example, the sublimation method has drawbacks such as the formation of lattice defects such as hollow through defects called micropipe defects and stacking faults and heterogeneous polytypes (crystal polymorphism) in the grown single crystal. However, many of SiC bulk single crystals have been conventionally produced by a sublimation method, and attempts have been made to reduce defects in grown crystals. In the Atchison method, since silica and coke are used as raw materials and heated in an electric furnace, it is impossible to obtain a single crystal with high crystallinity due to impurities in the raw materials.
溶液法は、黒鉛坩堝中でSi融液またはSi以外の金属を融解したSi融液を形成し、その融液中にCを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が期待でき、異種ポリタイプも生じにくい。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されている(特許文献1)。 In the solution method, a Si melt formed by melting a Si melt or a metal other than Si in a graphite crucible, C is dissolved in the melt, and a SiC crystal layer is formed on a seed crystal substrate placed in a low temperature portion. It is a method of growing by precipitation. In the solution method, crystal growth is performed in a state close to thermal equilibrium as compared with the gas phase method, so that it is possible to reduce the number of defects and hardly produce different types of polytype. For this reason, several methods for producing SiC single crystals by the solution method have recently been proposed (Patent Document 1).
例えば、特許文献1には、4H−SiC単結晶を安定して平坦成長させることを目的として、Si融液に特定元素を添加して単結晶成長を行う方法が提案されている。しかしながら、特許文献1等の従来の方法においては、依然として、4H維持率を安定して高くすることが難しかった。 For example, Patent Document 1 proposes a method of growing a single crystal by adding a specific element to a Si melt for the purpose of stably flatly growing a 4H—SiC single crystal. However, in the conventional method such as Patent Document 1, it is still difficult to stably increase the 4H maintenance rate.
本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸に保持した種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、
種結晶基板が、4H−SiCであり、且つ(000−1)面及び(000−1)面の周囲の{1−10k}面(kは1〜4の整数)を有すること、並びに
(000−1)面及び{1−10k}面から結晶成長を行うこと、
を含む、SiC単結晶の製造方法を対象とする。
The present disclosure relates to a SiC single crystal in which a SiC single crystal is grown by bringing a seed crystal substrate held on a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface. A manufacturing method comprising:
The seed crystal substrate is 4H—SiC and has a (000-1) plane and a {1-10k} plane (k is an integer of 1 to 4) around the (000-1) plane, and (000 -1) crystal growth from the plane and {1-10k} plane,
The manufacturing method of the SiC single crystal containing is included.
本開示の方法によれば、成長させるSiC単結晶の4H維持率を高くすることができる。 According to the method of the present disclosure, the 4H maintenance rate of the SiC single crystal to be grown can be increased.
本明細書において、(000−1)面等の表記における「−1」は、本来、数字の上に横線を付して表記するところを「−1」と表記したものである。 In this specification, “−1” in the notation of the (000-1) plane or the like is a place where “−1” is originally written with a horizontal line on the number.
図1に、溶液法を用いたSiC単結晶の成長に一般的に用いられている円盤状の種結晶基板の外観模式図を示す。従来、図1に示す円盤状のSiC種結晶基板14を用いて、(000−1)面15(C面ともいう)から、口径が拡大するようにc軸方向に結晶成長させることが一般的に行われている。 FIG. 1 shows a schematic external view of a disc-shaped seed crystal substrate that is generally used for growing a SiC single crystal using a solution method. Conventionally, crystal growth is generally performed in the c-axis direction from the (000-1) plane 15 (also referred to as C plane) using the disc-shaped SiC seed crystal substrate 14 shown in FIG. Has been done.
しかしながら、SiC結晶にはさまざまなポリタイプがあり、自由エネルギーに差がほとんどないため、従来、ポリタイプが4HのSiC種結晶基板を用いても、6Hや15R等が結晶成長することがあり、4H−SiC単結晶を安定して得ることが難しかった。 However, since there are various polytypes of SiC crystals and there is almost no difference in free energy, 6H, 15R, and the like may grow crystal even when using a SiC seed crystal substrate with a polytype of 4H. It was difficult to stably obtain 4H—SiC single crystals.
本発明者は、4H−SiC単結晶を安定して得る方法について鋭意研究を行い、4Hを維持できている成長結晶は、成長端部に{1−10k}面(kは1〜4の整数)を有しており、4Hを維持できていない成長結晶は、成長端部に{1−10k}面を有していないことを発見した。 The present inventor has conducted intensive research on a method for stably obtaining a 4H—SiC single crystal. A grown crystal capable of maintaining 4H has a {1-10k} plane (k is an integer of 1 to 4) at the growth end. It has been found that a grown crystal that has 4H and cannot maintain 4H does not have a {1-10k} plane at the growth end.
本発明者はさらに、種結晶基板として、(000−1)面と(000−1)面の周囲の{1−10k}面(kは1〜4の整数)とが露出した4H−SiC単結晶を用い、(000−1)面及び{1−10k}面から結晶成長を行うことによって、4H以外のポリタイプの発生を抑制して4H−SiC単結晶を安定して成長させることができることを見出した。 The present inventor further used a 4H-SiC single-crystal substrate in which the (000-1) plane and the {1-10k} plane (k is an integer of 1 to 4) around the (000-1) plane are exposed. By using crystals to grow crystals from the (000-1) plane and the {1-10k} plane, it is possible to suppress the generation of polytypes other than 4H and stably grow 4H-SiC single crystals. I found.
本開示は、内部から液面に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸に保持した種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、種結晶基板が、4H−SiCであり、且つ(000−1)面及び(000−1)面の周囲の{1−10k}面(kは1〜4の整数)を有すること、並びに(000−1)面及び{1−10k}面から結晶成長を行うこと、を含む、SiC単結晶の製造方法を対象とする。 The present disclosure relates to a SiC single crystal in which a SiC single crystal is grown by bringing a seed crystal substrate held on a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface. In the manufacturing method, the seed crystal substrate is 4H—SiC, and {1-10k} planes (k is an integer of 1 to 4) around the (000-1) plane and the (000-1) plane. And a method for producing a SiC single crystal including crystal growth from a (000-1) plane and a {1-10k} plane.
本開示の方法においては、種結晶基板の(000−1)面と(000−1)面の周囲の{1−10k}面(kは1〜4の整数)とを成長面とすることによって、4H以外のポリタイプの発生を抑制して、成長させるSiC単結晶の4H率を従来よりも高めることができる。 In the method of the present disclosure, the (000-1) plane of the seed crystal substrate and the {1-10k} plane (k is an integer of 1 to 4) around the (000-1) plane are used as growth planes. Generation | occurrence | production of polytypes other than 4H can be suppressed, and the 4H rate of the SiC single crystal to grow can be made higher than before.
図2に、(000−1)面15及び{1−10k}面16を有する種結晶基板14から結晶成長する態様を表す断面模式図を示す。理論に束縛されるものではないが、図2に示すように、種結晶基板14の{1−10k}面16は、(000−1)面15に対して斜めの面であるため、成長結晶40の口径拡大部が{1−10k}面16’を有するように4H−SiC種結晶基板14の結晶構造を引き継ぐことができ、4Hを維持しながら結晶成長することができると考えられる。 FIG. 2 is a schematic cross-sectional view showing a mode of crystal growth from the seed crystal substrate 14 having the (000-1) plane 15 and the {1-10k} plane 16. Although not bound by theory, as shown in FIG. 2, since the {1-10k} plane 16 of the seed crystal substrate 14 is a plane oblique to the (000-1) plane 15, the grown crystal It is considered that the crystal structure of the 4H—SiC seed crystal substrate 14 can be inherited so that the 40-diameter enlarged portion has the {1-10k} plane 16 ′, and the crystal can be grown while maintaining 4H.
図3に、本開示の方法で用いられる種結晶基板の外観模式図を示す。種結晶基板14は、ポリタイプが4Hであり、図3に示すように、(000−1)面15(C面)を有し、さらに(000−1)面15の周囲に{1−10k}面16を有する。(000−1)面15及び{1−10k}面16から結晶成長を行うことによって、4H以外のポリタイプの発生を抑制して、成長させるSiC単結晶の4H率を従来よりも安定して高めることができる。さらに4H維持率を高める観点で、{1−10k}面のkは、好ましくは1または2であり、さらに好ましくは2である。すなわち、種結晶基板14は、(000−1)面の周囲に、好ましくは{1−101}面または{1−102}面を有し、より好ましくは{1−102}面を有する。 FIG. 3 shows a schematic external view of a seed crystal substrate used in the method of the present disclosure. The seed crystal substrate 14 has a polytype of 4H, has a (000-1) plane 15 (C plane), and further has a {1-10k around the (000-1) plane 15 as shown in FIG. } The surface 16 is provided. By performing crystal growth from the (000-1) plane 15 and the {1-10k} plane 16, the generation of polytypes other than 4H is suppressed, and the 4H rate of the SiC single crystal to be grown is more stable than before. Can be increased. Further, from the viewpoint of increasing the 4H maintenance rate, k on the {1-10k} plane is preferably 1 or 2, and more preferably 2. That is, seed crystal substrate 14 preferably has a {1-101} plane or a {1-102} plane around (000-1) plane, and more preferably has a {1-102} plane.
本開示の方法によれば、4H率が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは100%のSiC単結晶を得ることができる。 According to the method of the present disclosure, a SiC single crystal having a 4H ratio of preferably 80% or more, more preferably 90% or more, and further preferably 100% can be obtained.
本開示の方法においては、溶液法が用いられる。溶液法とは、内部(深部)から液面(表面)に向けて温度低下する温度勾配を有するSi−C溶液に、種結晶保持軸の下端面に保持したSiC種結晶基板を接触させてSiC単結晶を成長させる、SiC単結晶の製造方法である。Si−C溶液の内部からSi−C溶液の液面に向けて温度低下する温度勾配を形成することによって、Si−C溶液の表面領域を過飽和にして、Si−C溶液に接触させた種結晶基板から、SiC単結晶を成長させることができる。 In the method of the present disclosure, a solution method is used. In the solution method, an SiC seed crystal substrate held on the lower end face of the seed crystal holding shaft is brought into contact with an Si—C solution having a temperature gradient that decreases in temperature from the inside (deep part) toward the liquid level (surface), and SiC is added. This is a method for producing a SiC single crystal by growing a single crystal. By forming a temperature gradient in which the temperature decreases from the inside of the Si-C solution toward the surface of the Si-C solution, the surface region of the Si-C solution is supersaturated, and the seed crystal is brought into contact with the Si-C solution. A SiC single crystal can be grown from the substrate.
本開示の方法に用いる種結晶基板は、(000−1)面と(000−1)面の周囲に{1−10k}面とが露出した4H−SiC単結晶であればよく、SiC単結晶の製造に一般に用いられる品質の単結晶を種結晶基板として用いることができる。例えば、昇華法で一般的に作製した(000−1)面を有するSiC単結晶を用意して、鏡面研磨等の加工により(000−1)面の周囲に{1−10k}面を設けたものを、種結晶基板として用いることができる。 The seed crystal substrate used in the method of the present disclosure may be a 4H—SiC single crystal in which the {1-10k} plane is exposed around the (000-1) plane and the (000-1) plane. A single crystal of a quality generally used in the manufacture of can be used as a seed crystal substrate. For example, a SiC single crystal having a (000-1) plane generally prepared by a sublimation method was prepared, and a {1-10k} plane was provided around the (000-1) plane by processing such as mirror polishing. One can be used as a seed crystal substrate.
種結晶基板は、図3に示すように、略六角形の(000−1)面15の周囲に6回対称の{1−10k}面16が露出した形状を有し、種結晶基板14の側面は全て{1−10k}面16で構成されている。 As shown in FIG. 3, the seed crystal substrate has a shape in which a {1-10k} surface 16 that is six-fold symmetric is exposed around a substantially hexagonal (000-1) surface 15. All the side surfaces are constituted by {1-10k} planes 16.
図4に、本開示の製造方法に用いられ得るSiC単結晶製造装置の断面模式図の一例を示す。図示したSiC単結晶製造装置100は、SiまたはSi/X(XはSi以外の1種以上の金属)の融液中にCが溶解してなるSi−C溶液24を収容した坩堝10を備え、Si−C溶液の内部から溶液の液面に向けて温度低下する温度勾配を形成し、鉛直方向に昇降可能な種結晶保持軸12の先端に保持された種結晶基板14をSi−C溶液24に接触させて、種結晶基板14からSiC単結晶を成長させることができる。 In FIG. 4, an example of the cross-sectional schematic diagram of the SiC single crystal manufacturing apparatus which can be used for the manufacturing method of this indication is shown. The illustrated SiC single crystal manufacturing apparatus 100 includes a crucible 10 containing a Si-C solution 24 in which C is dissolved in a melt of Si or Si / X (X is one or more metals other than Si). The seed crystal substrate 14 held at the tip of the seed crystal holding shaft 12 that forms a temperature gradient that decreases in temperature from the inside of the Si—C solution toward the liquid surface of the solution and that can be moved up and down in the vertical direction is used as the Si—C solution. 24, the SiC single crystal can be grown from the seed crystal substrate 14.
種結晶基板14のSi−C溶液24への接触(以下、シードタッチともいう)は、種結晶基板14を保持した種結晶保持軸12をSi−C溶液24の液面に向かって降下させ、種結晶基板14の下面である(000−1)面15をSi−C溶液24の液面に対して平行にしてSi−C溶液24に接触させ、さらに(000−1)面15の周囲の{1−10k}面16もSi−C溶液24に接触させることによって行うことができる。そして、Si−C溶液24の液面に対して種結晶基板14を所定の位置に保持して、SiC単結晶を成長させることができる。 Contact of the seed crystal substrate 14 with the Si-C solution 24 (hereinafter also referred to as seed touch) causes the seed crystal holding shaft 12 holding the seed crystal substrate 14 to descend toward the liquid surface of the Si-C solution 24, The (000-1) plane 15, which is the lower surface of the seed crystal substrate 14, is brought into contact with the Si—C solution 24 in parallel with the liquid surface of the Si—C solution 24, and The {1-10k} surface 16 can also be formed by bringing it into contact with the Si—C solution 24. The SiC single crystal can be grown by holding the seed crystal substrate 14 at a predetermined position with respect to the liquid surface of the Si—C solution 24.
種結晶基板14の(000−1)面15及び{1−10k}面16がSi−C溶液に接触している限り、種結晶基板14の保持位置に関しては、種結晶基板14の下面である(000−1)面15の位置が、図5に示すようにSi−C溶液24の液面に一致するか、図6に示すようにSi−C溶液24の液面に対して上側にあるか、図7に示すようにSi−C溶液24の液面に対して下側にあってもよい。 As long as the (000-1) plane 15 and the {1-10k} plane 16 of the seed crystal substrate 14 are in contact with the Si—C solution, the holding position of the seed crystal substrate 14 is the lower surface of the seed crystal substrate 14. The position of the (000-1) plane 15 coincides with the liquid level of the Si-C solution 24 as shown in FIG. 5, or is above the liquid level of the Si-C solution 24 as shown in FIG. Alternatively, as shown in FIG. 7, it may be on the lower side with respect to the liquid surface of the Si—C solution 24.
図5及び6に示すように、種結晶基板14の(000−1)面15及びその周囲の{1−10k}面16とSi−C溶液24とが接触して、種結晶基板14とSi−C溶液24との間にメニスカス34を形成しながら、SiC単結晶を成長させてもよい。 As shown in FIGS. 5 and 6, the (000-1) plane 15 and the surrounding {1-10k} plane 16 of the seed crystal substrate 14 and the Si—C solution 24 come into contact with each other, so that the seed crystal substrate 14 and Si The SiC single crystal may be grown while forming the meniscus 34 between the -C solution 24.
メニスカスとは、図5及び6に示すように、表面張力によって種結晶基板14に濡れ上がったSi−C溶液24の液面(表面)に形成される凹状の曲面34をいう。図5及び6において、Si−C溶液24は、種結晶基板14の(000−1)面15だけでなく、その周囲の{1−10k}面16にも濡れ上がっている。 As shown in FIGS. 5 and 6, the meniscus refers to a concave curved surface 34 formed on the liquid surface (surface) of the Si—C solution 24 wetted on the seed crystal substrate 14 by surface tension. 5 and 6, the Si—C solution 24 wets not only the (000-1) plane 15 of the seed crystal substrate 14 but also the surrounding {1-10k} plane 16.
成長面の外周部に形成されるメニスカス部分は輻射抜熱により温度が低下しやすいので、メニスカスを形成することによって、結晶成長面の界面直下の中央部よりも外周部のSi−C溶液の温度が低くなる温度勾配を形成して、凹形状の成長面を有するSiC単結晶を成長させることができる。凹形状の成長面を有するようにSiC単結晶を成長させると、インクルージョンの発生を抑制して高品質のSiC単結晶を成長させることができる。 Since the temperature of the meniscus portion formed on the outer peripheral portion of the growth surface is likely to decrease due to radiation heat, the temperature of the Si-C solution in the outer peripheral portion is higher than the central portion immediately below the interface of the crystal growth surface by forming the meniscus. A SiC single crystal having a concave growth surface can be grown by forming a temperature gradient that lowers the temperature. When a SiC single crystal is grown so as to have a concave growth surface, it is possible to grow a high-quality SiC single crystal while suppressing the occurrence of inclusion.
種結晶基板の下面である(000−1)面15をSi−C溶液24の液面に対して上方の位置に保持する場合、シードタッチした後、種結晶基板の下面である(000−1)面15の位置を、Si−C溶液24の液面に対して0.5〜3mm上方の位置に保持することが好ましい。種結晶基板の下面をこのような位置に保持することによって、メニスカスを安定して形成することができ、また、種結晶保持軸にSi−C溶液が接触することを防止して、多結晶の発生を防止することができる。 When the (000-1) plane 15 which is the lower surface of the seed crystal substrate is held at a position above the liquid surface of the Si-C solution 24, the seed crystal is touched and then the lower surface of the seed crystal substrate (000-1). ) It is preferable to hold the surface 15 at a position 0.5 to 3 mm above the liquid surface of the Si—C solution 24. By holding the lower surface of the seed crystal substrate in such a position, the meniscus can be stably formed, and the Si—C solution can be prevented from coming into contact with the seed crystal holding shaft. Occurrence can be prevented.
種結晶基板14の下面である(000−1)面15の位置を、図7に示すようにSi−C溶液24の液面よりも下側にしてもよいが、多結晶の発生を防止するために、種結晶保持軸12にSi−C溶液24が接触しないようにすることが好ましい。 Although the position of the (000-1) plane 15 which is the lower surface of the seed crystal substrate 14 may be lower than the liquid level of the Si-C solution 24 as shown in FIG. 7, the generation of polycrystals is prevented. Therefore, it is preferable that the Si—C solution 24 does not contact the seed crystal holding shaft 12.
本開示の方法において、Si−C溶液24とは、SiまたはSi/X(XはSi以外の1種以上の金属)の融液を溶媒とするCが溶解した溶液をいう。Xは一種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe等が挙げられる。 In the method of the present disclosure, the Si—C solution 24 refers to a solution in which C is dissolved using a melt of Si or Si / X (X is one or more metals other than Si) as a solvent. X is one or more kinds of metals, and is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase). Examples of suitable metals X include Ti, Mn, Cr, Ni, Ce, Co, V, Fe and the like.
Si−C溶液24は、Si/Cr/X(XはSi及びCr以外の1種以上の金属)の融液を溶媒とするSi−C溶液が好ましい。原子組成百分率でSiが30〜80、Crが20〜60、及びXが0〜10(Si:Cr:X=30〜80:20〜60:0〜10)の融液を溶媒とするSi−C溶液が、Cの溶解量の変動が少なくさらに好ましい。例えば、坩堝内にSiに加えて、Cr、Ni等を投入し、Si−Cr溶液、Si−Cr−Ni溶液等を形成することができる。 The Si—C solution 24 is preferably an Si—C solution using a melt of Si / Cr / X (X is one or more metals other than Si and Cr) as a solvent. Si- with a melt of 30 to 80, Cr of 20 to 60, and X of 0 to 10 (Si: Cr: X = 30 to 80:20 to 60: 0 to 10) in atomic composition percentage as a solvent The C solution is more preferable because the variation in the dissolved amount of C is small. For example, in addition to Si, Cr, Ni, or the like can be charged into the crucible to form a Si—Cr solution, a Si—Cr—Ni solution, or the like.
Si−C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSiまたはSi/Xの融液に、Cを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解によりCが融液中に溶解し、Si−C溶液24を形成することができる。こうすると、Si−C溶液24中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、または固体のC供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。 The Si-C solution 24 is prepared by charging a raw material into a crucible and dissolving C in a melt of Si or Si / X prepared by heating and melting. By making the crucible 10 a carbonaceous crucible such as a graphite crucible or a SiC crucible, C is dissolved in the melt by melting the crucible 10, and an Si—C solution 24 can be formed. In this way, undissolved C does not exist in the Si—C solution 24, and waste of SiC due to precipitation of the SiC single crystal in the undissolved C can be prevented. The supply of C may be performed by, for example, a method of injecting hydrocarbon gas or charging a solid C supply source together with the melt raw material, or combining these methods with melting of a crucible. Also good.
Si−C溶液24の温度は、通常、輻射等のためSi−C溶液24の内部よりも液面の温度が低い温度分布となるが、さらに、高周波コイル22の巻数及び間隔、高周波コイル22と坩堝10との高さ方向の位置関係、並びに高周波コイル22の出力を調整することによって、Si−C溶液24に種結晶基板14が接触する溶液上部が低温、溶液下部(内部)が高温となるようにSi−C溶液24の液面に垂直方向の温度勾配を形成することができる。例えば、下段コイル22Bの出力よりも上段コイル22Aの出力を小さくして、Si−C溶液24に溶液上部が低温、溶液下部が高温となる温度勾配を形成することができる。温度勾配は、例えば溶液の液面からの深さがおよそ1cmまでの範囲で10〜50℃/cmにすることができる。 The temperature of the Si-C solution 24 usually has a temperature distribution in which the temperature of the liquid surface is lower than the inside of the Si-C solution 24 due to radiation or the like. By adjusting the positional relationship with the crucible 10 in the height direction and the output of the high-frequency coil 22, the upper part of the solution where the seed crystal substrate 14 contacts the Si—C solution 24 becomes low temperature, and the lower part (inside) of the solution becomes high temperature. Thus, a temperature gradient in the vertical direction can be formed on the liquid surface of the Si—C solution 24. For example, the output of the upper coil 22A can be made smaller than the output of the lower coil 22B, and a temperature gradient can be formed in the Si—C solution 24 such that the upper part of the solution is cold and the lower part of the solution is hot. The temperature gradient can be 10 to 50 ° C./cm, for example, when the depth of the solution from the liquid surface is approximately 1 cm.
Si−C溶液24中に溶解したCは、拡散及び対流により分散される。種結晶基板14の下面近傍は、加熱装置の出力制御、Si−C溶液24の液面からの放熱、及び種結晶保持軸12を介した抜熱等によって、Si−C溶液24の内部よりも低温となる温度勾配が形成され得る。高温で溶解度の大きい溶液内部に溶け込んだCが、低温で溶解度の低い種結晶基板付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板14上にSiC結晶を成長させることができる。 C dissolved in the Si-C solution 24 is dispersed by diffusion and convection. The vicinity of the lower surface of the seed crystal substrate 14 is more than the inside of the Si—C solution 24 due to output control of the heating device, heat radiation from the liquid surface of the Si—C solution 24, heat removal through the seed crystal holding shaft 12, and the like. A temperature gradient can be formed that results in a low temperature. When C dissolved in the solution having high solubility at high temperature reaches the vicinity of the seed crystal substrate having low solubility at low temperature, a supersaturated state is reached, and SiC crystals can be grown on the seed crystal substrate 14 using this supersaturation as a driving force. .
Si−C溶液24は、その液面(表面)温度が、Si−C溶液へのCの溶解量の変動が少ない1800〜2200℃が好ましい。 The liquid surface (surface) temperature of the Si—C solution 24 is preferably 1800 to 2200 ° C. with little variation in the amount of C dissolved in the Si—C solution.
Si−C溶液24の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン−レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。 The temperature measurement of the Si—C solution 24 can be performed using a thermocouple, a radiation thermometer, or the like. Regarding the thermocouple, from the viewpoint of high temperature measurement and prevention of impurity contamination, a thermocouple in which a tungsten-rhenium strand coated with zirconia or magnesia glass is placed in a graphite protective tube is preferable.
成長結晶における4H率は、成長結晶の成長面についてラマン分光分析を行うことによって、測定することができる。4H率の測定手順の具体例を、後述の実施例に記載する。 The 4H ratio in the grown crystal can be measured by performing Raman spectroscopic analysis on the growth surface of the grown crystal. A specific example of the procedure for measuring the 4H rate will be described in the examples described later.
坩堝10は、黒鉛坩堝などの炭素質坩堝またはSiC坩堝が好ましい。坩堝の形状は円筒形が好ましい。坩堝の内径は、使用する単結晶製造装置の大きさに応じて適宜に設定することができ、例えば、30〜200mm、40〜120mm等にすることができる。 The crucible 10 is preferably a carbonaceous crucible such as a graphite crucible or a SiC crucible. The crucible is preferably cylindrical. The inner diameter of the crucible can be appropriately set according to the size of the single crystal manufacturing apparatus to be used, and can be set to 30 to 200 mm, 40 to 120 mm, or the like, for example.
単結晶製造装置100への種結晶基板14の設置は、種結晶基板14の上面を種結晶保持軸12に保持させることによって行うことができる。種結晶基板14の種結晶保持軸12への保持には、カーボン接着剤を用いることができる。 The seed crystal substrate 14 can be installed in the single crystal manufacturing apparatus 100 by holding the upper surface of the seed crystal substrate 14 on the seed crystal holding shaft 12. A carbon adhesive can be used for holding the seed crystal substrate 14 on the seed crystal holding shaft 12.
種結晶保持軸12は、その端面に種結晶基板14を保持する軸であり、黒鉛の軸であることができ、円柱状、角柱状等の任意の形状を有することができる。 The seed crystal holding shaft 12 is an axis that holds the seed crystal substrate 14 on its end face, can be a graphite shaft, and can have any shape such as a columnar shape or a prismatic shape.
保温のために、坩堝10の外周は、断熱材18で覆われている。断熱材18に覆われた坩堝10は一括して、石英管26内に収容される。石英管26の外周には、加熱装置として高周波コイル22が配置される。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。 In order to keep warm, the outer periphery of the crucible 10 is covered with a heat insulating material 18. The crucibles 10 covered with the heat insulating material 18 are collectively accommodated in the quartz tube 26. On the outer periphery of the quartz tube 26, a high frequency coil 22 is disposed as a heating device. The high frequency coil 22 may be composed of an upper coil 22A and a lower coil 22B, and the upper coil 22A and the lower coil 22B can be independently controlled.
坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内の雰囲気調整を可能にするために、ガス導入口とガス排気口とを備える。 Since the crucible 10, the heat insulating material 18, the quartz tube 26, and the high frequency coil 22 become high temperature, they are disposed inside the water cooling chamber. The water cooling chamber includes a gas introduction port and a gas exhaust port in order to enable adjustment of the atmosphere in the apparatus.
以下の実施例及び比較例における4H率の算出は、以下の方法によって行った。 Calculation of the 4H ratio in the following examples and comparative examples was performed by the following method.
成長結晶の成長面を、均等に1mm間隔に区分けして、それぞれの区画の略中央部について、ラマン分光分析(フォトンデザイン製、PLIS−200TS)を行った。分析条件は次の通りである:励起波長532nm、20mW、レーザー照射径2.7μm、後方散乱配置、露光時間2秒、積算回数1回、回折格子1600gr/mm、共焦点ホール径10μm、室温、大気中。 The growth surface of the grown crystal was equally divided into 1 mm intervals, and Raman spectroscopic analysis (manufactured by Photon Design, PLIS-200TS) was performed on the approximate center of each section. The analysis conditions are as follows: excitation wavelength of 532 nm, 20 mW, laser irradiation diameter of 2.7 μm, backscattering arrangement, exposure time of 2 seconds, number of integrations, diffraction grating of 1600 gr / mm, confocal hole diameter of 10 μm, room temperature, in the air.
ラマン分光分析した成長面の全区画が4Hであった場合、成長結晶を4H−SiCと判定した。各区画における4Hかどうかの判定は、4Hのみのラマンピークが得られていれば4Hと判定し、4H以外のラマンピークがみられたら4Hではないと判定した。各実施例及び比較例において同条件で複数回結晶成長させて複数個の成長結晶を得て、前記複数個の成長結晶の成長面についてラマン分光法で分析を行い、4H−SiCと判定された成長結晶の数の、前記複数個の成長結晶の個数に対する割合を4H率とした。すなわち、4H率が100%とは、例えば10個の成長結晶のうち、10個の成長結晶のそれぞれの成長面の全区画が4H−SiCと判定される場合をいい、4H率が50%とは、例えば10個の成長結晶のうち、5個の成長結晶のそれぞれの成長面の全区画が4H−SiCと判定され、残りの5個の成長結晶が4H−SiCと判定されない場合をいう。成長面の全区画のうち一つでも4H−SiCと判定されない区画がある場合は、その成長結晶は4H−SiCではないと判定した。 When all the sections of the growth surface analyzed by Raman spectroscopy were 4H, the grown crystal was determined to be 4H—SiC. The determination of whether each block is 4H was determined to be 4H if a Raman peak of only 4H was obtained, and was determined not to be 4H if a Raman peak other than 4H was observed. In each example and comparative example, a plurality of grown crystals were obtained under the same conditions to obtain a plurality of grown crystals, and the growth surfaces of the plurality of grown crystals were analyzed by Raman spectroscopy, and determined to be 4H-SiC. The ratio of the number of grown crystals to the number of the plurality of grown crystals was 4H rate. That is, the 4H rate is 100%, for example, when 10 growth crystals, all the sections of each growth surface of 10 growth crystals are determined to be 4H-SiC, and the 4H rate is 50%. For example, among the 10 grown crystals, all the sections on the growth surface of each of the 5 grown crystals are determined to be 4H—SiC, and the remaining 5 grown crystals are not determined to be 4H—SiC. When at least one of all the sections of the growth surface was not determined to be 4H—SiC, it was determined that the grown crystal was not 4H—SiC.
(実施例1)
直径が50.8mm、厚みが700μmの円盤状4H−SiC単結晶であって、下面が(000−1)面を有する昇華法により作製したSiC単結晶を用意し、(000−1)面における対角線が50.0mmになるように(000−1)面の周囲に6回対称の{1−102}面を鏡面研磨により形成して、図3に示すような形状を有する種結晶基板を作製した。図8に、(000−1)面から観察した種結晶基板の外観写真を示す。
Example 1
A SiC single crystal having a diameter of 50.8 mm and a thickness of 700 μm, which is a disc-shaped 4H—SiC single crystal and having a lower surface having a (000-1) plane, is prepared. A 6-fold symmetrical {1-102} plane is formed by mirror polishing around the (000-1) plane so that the diagonal is 50.0 mm, and a seed crystal substrate having a shape as shown in FIG. 3 is produced. did. FIG. 8 shows a photograph of the appearance of the seed crystal substrate observed from the (000-1) plane.
直径が12.7mmの円柱状の黒鉛の種結晶保持軸12を用意した。種結晶基板14の下面が(000−1)面になるようにして、種結晶基板14の上面を、種結晶保持軸12の端面の略中央部に、黒鉛の接着剤を用いて接着した。 A cylindrical graphite seed crystal holding shaft 12 having a diameter of 12.7 mm was prepared. The upper surface of the seed crystal substrate 14 was bonded to the substantially central portion of the end surface of the seed crystal holding shaft 12 using a graphite adhesive so that the lower surface of the seed crystal substrate 14 became the (000-1) plane.
図4に示す単結晶製造装置を用い、内径100mmの黒鉛坩堝に、Si、Cr、及びNiを、Si:Cr:Ni=55:40:5(at%)の原子組成比率で、Si−C溶液を形成するための融液原料として仕込んだ。 Using the single crystal manufacturing apparatus shown in FIG. 4, Si, Cr, and Ni are added to a graphite crucible having an inner diameter of 100 mm at an atomic composition ratio of Si: Cr: Ni = 55: 40: 5 (at%). The melt was prepared as a raw material for forming a solution.
単結晶製造装置の内部を1×10-3Paに真空引きした後、1気圧になるまでアルゴンガスを導入して、該単結晶製造装置の内部の空気をアルゴンで置換した。高周波コイルに通電して加熱により黒鉛坩堝内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そして、黒鉛坩堝からSi/Cr/Ni合金の融液に十分な量のCを溶解させて、Si−C溶液を形成した。 The inside of the single crystal manufacturing apparatus was evacuated to 1 × 10 −3 Pa, and then argon gas was introduced until the pressure became 1 atm. The air inside the single crystal manufacturing apparatus was replaced with argon. The raw material in the graphite crucible was melted by energizing and heating the high frequency coil to form a Si / Cr / Ni alloy melt. Then, a sufficient amount of C was dissolved in the melt of the Si / Cr / Ni alloy from the graphite crucible to form a Si—C solution.
上段コイル22A及び下段コイル22Bの出力を調節して黒鉛坩堝10を加熱し、Si−C溶液24の内部から溶液の液面に向けて温度低下する温度勾配を形成した。所定の温度勾配が形成されていることの確認は、昇降可能な熱電対を用いて、Si−C溶液24の温度を測定することによって行った。高周波コイル22A及び22Bの出力制御により、Si−C溶液24の液面における温度を1950℃まで昇温させ、並びに溶液の液面から1cmの範囲で溶液内部から溶液の液面に向けて温度低下する温度勾配が20℃/cmとなるように高周波コイル22の出力を調節した。 The graphite crucible 10 was heated by adjusting the outputs of the upper coil 22A and the lower coil 22B to form a temperature gradient in which the temperature decreased from the inside of the Si—C solution 24 toward the solution surface. Confirmation that the predetermined temperature gradient was formed was performed by measuring the temperature of the Si-C solution 24 using a thermocouple capable of moving up and down. By controlling the output of the high-frequency coils 22A and 22B, the temperature at the liquid level of the Si-C solution 24 is raised to 1950 ° C., and the temperature is lowered from the inside of the solution toward the liquid level of the solution within a range of 1 cm from the liquid level of the solution. The output of the high-frequency coil 22 was adjusted so that the temperature gradient to be performed was 20 ° C./cm.
種結晶保持軸12を鉛直下方向に移動させ、種結晶保持軸12に接着した種結晶基板の下面となる(000−1)面をSi−C溶液面に平行に保ちながらSi−C溶液に着液させ、さらに(000−1)面の周囲の{1−102}面の全体もSi−C溶液24に接触させるシードタッチを行った。シードタッチの直後に、種結晶基板の下面である(000−1)面の位置がSi−C溶液の液面よりも2.0mm上方に位置するように、鉛直方向上方に黒鉛軸を引き上げて図6に示すような形状のメニスカスを形成した。2.0mm引き上げた位置でメニスカスを形成しながら40時間保持してSiC単結晶を成長させた。 The seed crystal holding shaft 12 is moved vertically downward so that the (000-1) plane, which is the lower surface of the seed crystal substrate bonded to the seed crystal holding shaft 12, is kept parallel to the Si-C solution surface. The seed touch was performed so that the entire {1-102} plane around the (000-1) plane was brought into contact with the Si-C solution 24. Immediately after the seed touch, the graphite axis is pulled upward in the vertical direction so that the position of the (000-1) plane, which is the lower surface of the seed crystal substrate, is positioned 2.0 mm above the liquid level of the Si—C solution. A meniscus having a shape as shown in FIG. 6 was formed. A SiC single crystal was grown by holding for 40 hours while forming a meniscus at a position where it was lifted by 2.0 mm.
結晶成長の終了後、種結晶保持軸12を上昇させて、種結晶基板14及び種結晶基板から成長したSiC単結晶を、Si−C溶液24及び種結晶保持軸12から切り離して回収した。図9及び10に、成長結晶を側面及び成長面から観察した外観写真を示す。この成長結晶の成長厚みは4.4mmであった。次いで、同様の条件で、9回結晶成長を行い、合計10個の成長結晶を得た。 After the completion of the crystal growth, the seed crystal holding shaft 12 was raised, and the SiC single crystal grown from the seed crystal substrate 14 and the seed crystal substrate was separated from the Si—C solution 24 and the seed crystal holding shaft 12 and recovered. 9 and 10 show external appearance photographs of the grown crystal observed from the side surface and the growth surface. The growth thickness of the grown crystal was 4.4 mm. Next, crystal growth was performed 9 times under the same conditions, and a total of 10 grown crystals were obtained.
成長結晶のポリタイプをラマン分光分析により調べたところ、得られた10個の成長結晶の4H率は100%であった。4H率の算出は、上述の方法を用いて行った。 When the polytype of the grown crystal was examined by Raman spectroscopic analysis, the 4H ratio of the 10 grown crystals obtained was 100%. The 4H rate was calculated using the method described above.
(比較例1)
種結晶基板として図1に示す形状を有する直径が50.8mmの円盤状のSiC単結晶を用いて、10回結晶成長を行ったこと以外は、実施例1と同じ条件でSiC単結晶を成長させて回収した。この成長結晶の成長厚みは4.3mmであった。
(Comparative Example 1)
A SiC single crystal is grown under the same conditions as in Example 1 except that a disc-shaped SiC single crystal having a shape shown in FIG. And recovered. The growth thickness of the grown crystal was 4.3 mm.
成長結晶のポリタイプをラマン分光分析により調べたところ、得られた10個の成長結晶の4H率は40%であった。 When the polytype of the grown crystal was examined by Raman spectroscopic analysis, the 4H ratio of the 10 grown crystals obtained was 40%.
100 単結晶製造装置
10 坩堝
12 種結晶保持軸
14 種結晶基板
15 (000−1)面
16 種結晶基板の(1−10k)面
16’ 成長結晶の(1−10k)面
18 断熱材
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si−C溶液
26 石英管
34 メニスカス
40 成長結晶
DESCRIPTION OF SYMBOLS 100 Single crystal manufacturing apparatus 10 Crucible 12 Seed crystal holding shaft 14 Seed crystal substrate 15 (000-1) surface 16 (1-10k) surface of seed crystal substrate 16 '(1-10k) surface of grown crystal 18 Heat insulating material 22 High frequency Coil 22A Upper high frequency coil 22B Lower high frequency coil 24 Si-C solution 26 Quartz tube 34 Meniscus 40 Growth crystal
Claims (2)
前記種結晶基板が、4H−SiCであり、且つ(000−1)面及び前記(000−1)面の周囲の{1−10k}面(kは1〜4の整数)を有すること、並びに
前記(000−1)面及び前記{1−10k}面から結晶成長を行うこと、
を含む、SiC単結晶の製造方法。 A SiC single crystal manufacturing method in which a SiC single crystal is grown by bringing a seed crystal substrate held on a seed crystal holding shaft into contact with a Si-C solution having a temperature gradient that decreases from the inside toward the liquid surface. And
The seed crystal substrate is 4H—SiC, and has a (000-1) plane and a {1-10k} plane (k is an integer of 1 to 4) around the (000-1) plane; and Crystal growth from the (000-1) plane and the {1-10k} plane;
The manufacturing method of the SiC single crystal containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016184830A JP2018048044A (en) | 2016-09-21 | 2016-09-21 | PRODUCTION METHOD OF SiC SINGLE CRYSTAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016184830A JP2018048044A (en) | 2016-09-21 | 2016-09-21 | PRODUCTION METHOD OF SiC SINGLE CRYSTAL |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018048044A true JP2018048044A (en) | 2018-03-29 |
Family
ID=61765999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016184830A Pending JP2018048044A (en) | 2016-09-21 | 2016-09-21 | PRODUCTION METHOD OF SiC SINGLE CRYSTAL |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018048044A (en) |
-
2016
- 2016-09-21 JP JP2016184830A patent/JP2018048044A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5434801B2 (en) | Method for producing SiC single crystal | |
JP5803519B2 (en) | Method and apparatus for producing SiC single crystal | |
JP5839117B2 (en) | SiC single crystal and method for producing the same | |
JP6558394B2 (en) | Method and apparatus for producing SiC single crystal | |
JP5801730B2 (en) | Seed crystal holding shaft used in single crystal manufacturing apparatus and single crystal manufacturing method | |
US9702057B2 (en) | Method for producing an n-type SiC single crystal from a Si—C solution comprising a nitride | |
US9530642B2 (en) | Method for producing SiC single crystal | |
JP5890377B2 (en) | Method for producing SiC single crystal | |
JP6119732B2 (en) | SiC single crystal and method for producing the same | |
JP6354615B2 (en) | Method for producing SiC single crystal | |
JP2017202969A (en) | SiC SINGLE CRYSTAL, AND PRODUCTION METHOD THEREOF | |
JP6424806B2 (en) | Method of manufacturing SiC single crystal | |
JP6030525B2 (en) | Method for producing SiC single crystal | |
US20170327968A1 (en) | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME | |
JP2018048044A (en) | PRODUCTION METHOD OF SiC SINGLE CRYSTAL | |
JP2018150193A (en) | PRODUCTION METHOD OF SiC SINGLE CRYSTAL | |
JP2018043907A (en) | METHOD OF MANUFACTURING SiC SINGLE CRYSTAL | |
JP2017226583A (en) | Production method for sic single crystal | |
JP2018043898A (en) | PRODUCING METHOD OF SiC SINGLE CRYSTAL | |
JP6597113B2 (en) | Method for producing SiC single crystal | |
JP6500828B2 (en) | Method of manufacturing SiC single crystal | |
JP2018095542A (en) | MANUFACTURING METHOD OF n-TYPE SiC SINGLE CRYSTAL | |
JP2019099447A (en) | PRODUCTION METHOD OF SiC SINGLE CRYSTAL | |
JP2018048048A (en) | SiC SINGLE CRYSTAL PRODUCTION APPARATUS | |
JP2019014622A (en) | Method of manufacturing sic single crystal |