JP3251687B2 - Manufacturing method of semiconductor single crystal - Google Patents

Manufacturing method of semiconductor single crystal

Info

Publication number
JP3251687B2
JP3251687B2 JP01827293A JP1827293A JP3251687B2 JP 3251687 B2 JP3251687 B2 JP 3251687B2 JP 01827293 A JP01827293 A JP 01827293A JP 1827293 A JP1827293 A JP 1827293A JP 3251687 B2 JP3251687 B2 JP 3251687B2
Authority
JP
Japan
Prior art keywords
crystal
plane
single crystal
growth
hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01827293A
Other languages
Japanese (ja)
Other versions
JPH06227886A (en
Inventor
勉 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01827293A priority Critical patent/JP3251687B2/en
Publication of JPH06227886A publication Critical patent/JPH06227886A/en
Application granted granted Critical
Publication of JP3251687B2 publication Critical patent/JP3251687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は昇華法または溶液法によ
り製造されたヘキサゴナール型半導体単結晶の製造方法
に関する。
The present invention relates to a method for producing a hexagonal semiconductor single crystal produced by a sublimation method or a solution method.

【0002】[0002]

【従来の技術】SiCは熱的にも化学的にも非常に安定
であるために、高温高圧下でも耐え得る耐環境素子材料
として研究がされている。また一方ではSiCはエネル
ギーギャプが2.3eV以上あるために短波長発光素子
材料として注目を集めている。SiCにはヘキサゴナー
ル型(六法晶系)やキュウビック型(立方晶系)、ロン
ボヘドラル型(三方晶系)など幾つかの結晶構造が存在
する。その中で特に6H型(6分子を1周期とするヘキ
サゴナール型)や4H型(4分子を1周期とするヘキサ
ゴナール型)の単結晶はエネルギーギャップが約3eV
であるため、青色LEDの材料として期待されている。
2. Description of the Related Art Since SiC is very stable both thermally and chemically, it has been studied as an environment-resistant element material that can withstand high temperature and high pressure. On the other hand, SiC has attracted attention as a short-wavelength light emitting element material because of its energy gap of 2.3 eV or more. SiC has several crystal structures such as a hexagonal type (hexagonal system), a cubic type (cubic system), and a rhombohedral type (trigonal system). Among them, in particular, single crystal of 6H type (hexagonal type having six molecules in one cycle) and 4H type (hexagonal type having four molecules in one cycle) have an energy gap of about 3 eV.
Therefore, it is expected as a material for a blue LED.

【0003】そして、青色LEDの製造はジャーナル
オブ アプライド フィジクス 50(1979)pp
8215〜8225〔Journal of Applied Physic
s 50(1979)pp8215<8225 〕に報告されている様に液相エ
ピタキシャル法(LPE法)もしくはジャパニーズ ジ
ャーナル オブ アプライド フィジクス 19(19
80)ppL353〜L856〔Japanese Journal of
Applied Physics 19(1980)L353<L856 〕に報告されてい
る様に化学反応堆積法(CVD法)により行われてお
り、いずれの場合も6H型のSiC単結晶基板(0001)面
上にLEDが製造されている。
[0003] The manufacture of blue LEDs is a journal
Of Applied Physics 50 (1979) pp
8215-8225 [Journal of Applied Physic
s 50 (1979) pp 8215 <8225] or liquid phase epitaxial method (LPE method) or Japanese Journal of Applied Physics 19 (19
80) ppL353-L856 [Japanese Journal of
As reported in Applied Physics 19 (1980) L353 <L856], it is performed by a chemical reaction deposition method (CVD method), and in each case, an LED is placed on a 6H SiC single crystal substrate (0001) surface. Being manufactured.

【0004】この様にヘキサゴナール型SiC単結晶基
板は青色LEDの成長基板として重要な役割を果たして
いる。従来ヘキサゴナール型SiC単結晶基板の成長方
法としてSiC原料粉末を昇華させて低温側に析出させ
る昇華法が用いられている。例えばアプライドフィジク
スレター58(1991)pp56〜58〔AppliedPhy
sics Letter 58(1991)pp56<58〕に述べられている。本
願発明者らは昇華法で結晶径を大きくするためには結晶
成長長さとともに結晶径が大きくなることを利用して口
径の広い結晶を作成した。しかしながらこの方法では結
晶長が長くなるにつれて径の広がりが小さくなり大口径
の基板を得ることが難しい。また結晶長が長くなるにつ
れて成長面が凹型になってしまい高品質の基板を得るこ
とができないという問題点を見いだした。
As described above, the hexagonal SiC single crystal substrate plays an important role as a growth substrate for a blue LED. Conventionally, as a method for growing a hexagonal-type SiC single crystal substrate, a sublimation method in which a SiC raw material powder is sublimated and deposited on a low temperature side has been used. For example, Applied Physics Letter 58 (1991) pp. 56-58 [AppliedPhy
sics Letter 58 (1991) pp56 <58]. The inventors of the present invention have made a crystal having a large diameter by utilizing the fact that the crystal diameter increases with the crystal growth length in order to increase the crystal diameter by the sublimation method. However, in this method, as the crystal length becomes longer, the spread of the diameter becomes smaller, and it is difficult to obtain a large-diameter substrate. Further, the inventors have found that the growth surface becomes concave as the crystal length increases, and a high-quality substrate cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】上述したように昇華法
によりヘキサゴナール型単結晶のSiC単結晶を成長さ
せる場合、大口径の基板を得るためには成長を十分長く
しなければならなかった。しかしこの場合、成長長さを
長くすると、結晶の成長面は凹面になり、やがては結晶
の径の増大が止まるといった問題があった。また得られ
る結晶は結晶欠陥が多く品質面で信頼できないといった
問題があった。また、上記した課題は、SiC以外の様
々なヘキサゴナール型半導体単結晶に存在するものであ
る。
As described above, when growing a hexagonal-type single crystal SiC single crystal by the sublimation method, the growth must be sufficiently long to obtain a large-diameter substrate. However, in this case, when the growth length is increased, the growth surface of the crystal becomes concave, and there is a problem that the increase in the diameter of the crystal eventually stops. Further, the obtained crystal has a problem that it has many crystal defects and cannot be trusted in terms of quality. Further, the above-described problem exists in various hexagonal-type semiconductor single crystals other than SiC.

【0006】本発明は上記問題点に鑑みなされたもの
で、結晶面の成長面が凹面になることを防ぎ結晶欠陥が
少ない大口径のヘキサゴナール型半導体単結晶の製造方
法を提供を目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method for producing a large-diameter hexagonal-type semiconductor single crystal in which a crystal growth surface is prevented from becoming concave and crystal defects are reduced.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の半導体単結晶の製造方法は、バルク成長
法により、ヘキサゴナール型単結晶よりなる種結晶上に
ヘキサゴナール型単結晶を成長させる半導体単結晶の製
造方法において、前記種結晶の成長主面に接する側面は
(0001)面及び(1-100) 面のいずれの面からも傾いた面の
みを有する種結晶を用いることを特徴とするものであ
る。
In order to solve the above problems, a method for producing a semiconductor single crystal according to the present invention comprises growing a hexagonal single crystal on a seed crystal composed of a hexagonal single crystal by a bulk growth method. In the method for producing a semiconductor single crystal to be formed, a side surface in contact with a main growth surface of the seed crystal is
The present invention is characterized in that a seed crystal having only a plane inclined from both the (0001) plane and the (1-100) plane is used.

【0008】[0008]

【作用】本発明者らの研究の結果、成長面の凹面化の原
因としてもっとも重要な点は、ヘキサゴナール型結晶で
ある例えばα−SiCでは他の結晶に比べ結晶成長速度
の面方位依存性が強く、ファセットと呼ばれる平面が出
現することを見いだした。図11に(0001)面を成長主面
(1-100) 面をその側面にした場合のファセット111を
示す。本発明者らは、この現象は<0001>、または<1-100
> 方位の成長速度が非常に遅いため、成長主面の側面の
(0001)面或いは(1-100) 面に平行に延びようとしその結
果ファセットが表れると考えた。このファセット111
の出現する部分は成長主面よりも成長速度が早く、成長
する単結晶は中央部よりもその周辺部が盛り上がってく
る(112は周辺部の盛り上がり)。その結果得られる
単結晶の成長主面は、中央部がくぼんだ凹型になること
を見いだした。
As a result of the study of the present inventors, the most important point of the growth surface being concave is that hexagonal-type crystal, for example, α-SiC, has a lower crystal orientation rate depending on the plane orientation than other crystals. Strongly, I found that a plane called a facet appeared. Figure 11 shows the (0001) plane as the main growth plane.
The facet 111 when the (1-100) plane is the side surface is shown. We believe that this phenomenon is <0001>, or <1-100
> Since the growth rate of the azimuth is very slow,
I thought that facets would appear as a result of trying to extend parallel to the (0001) plane or the (1-100) plane. This facet 111
Appears at a growth rate faster than that of the main growth surface, and the growing single crystal has a bulge at its periphery rather than at the center (112 is a bulge at the periphery). The main growth surface of the resulting single crystal was found to be concave at the center.

【0009】上記ファセットの出現を防止するには、発
明者らは、種結晶の成長主面に接する側面を(0001)面及
び(1-100) 面のいずれの面からも傾けることにより達成
できることを見いだした。
In order to prevent the appearance of the facet, the present inventors can achieve the object by inclining the side surface in contact with the main growth surface of the seed crystal from any of the (0001) plane and the (1-100) plane. Was found.

【0010】[0010]

【実施例】以下に本発明の実施例を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.

【0011】本発明の第1の実施例を説明する。図1は
バルク成長法の1つである昇華法単結晶製造装置の概略
図である。11は種結晶、12はポーラスグラファイ
ト、13は坩堝、14は坩堝蓋、15は原料粉末であ
る。本実施例ではヘキサゴナール型SiC単結晶を成長
させた。
A first embodiment of the present invention will be described. FIG. 1 is a schematic diagram of a sublimation single crystal manufacturing apparatus which is one of the bulk growth methods. 11 is a seed crystal, 12 is porous graphite, 13 is a crucible, 14 is a crucible lid, and 15 is a raw material powder. In this embodiment, a hexagonal-type SiC single crystal was grown.

【0012】図2にヘキサゴナール型SiC種結晶11
の結晶型と成長主面の関係を示す。また図3にSiC種
結晶11の形状を表す図を示す。種結晶11の成長主面
は{000-1} 面((0001)の炭素面)とし、直径10mmの
円形に整形した。また、側面はすべて{000-1} 面に対
し、45°になる様、頭の潰れた円錐状に加工した。この
種結晶11の広い面の方を成長面として図1の装置を用
い種結晶11上に原料を昇華させ、SiC単結晶を成長
させた。成長条件としては、種結晶の温度2300℃、
原料温度2500℃、成長圧力50torrとした。成長時
間20時間で長さ約20mmのSiC単結晶を成長し
た。
FIG. 2 shows a hexagonal type SiC seed crystal 11.
Shows the relationship between the crystal type and the main growth surface. FIG. 3 is a diagram showing the shape of the SiC seed crystal 11. The growth main surface of the seed crystal 11 was a {000-1} plane ((0001) carbon plane), and was shaped into a circle having a diameter of 10 mm. In addition, all sides were machined into a conical shape with a crushed head so as to be at 45 ° to the {000-1} plane. The raw material was sublimated on the seed crystal 11 using the apparatus shown in FIG. 1 with the wider surface of the seed crystal 11 as the growth surface, to grow a SiC single crystal. The growth conditions were a seed crystal temperature of 2300 ° C.
The raw material temperature was 2500 ° C. and the growth pressure was 50 torr. A SiC single crystal having a length of about 20 mm was grown for a growth time of 20 hours.

【0013】図4に本発明により成長させたSiC単結
晶41と比較例として成長主面を{000-1} 面((0001)の
炭素面)とし側面の一部に(1-100) 面がでている円柱状
の種結晶42を用い第1の実施例と同じ条件で成長させ
たSiC単結晶43の断面図を示す。
FIG. 4 shows a SiC single crystal 41 grown according to the present invention as a comparative example, in which the main growth surface is a {000-1} plane ((0001) carbon plane) and a part of the side surface is a (1-100) plane. A cross-sectional view of an SiC single crystal 43 grown under the same conditions as in the first embodiment using a columnar seed crystal 42 of FIG.

【0014】比較例(図4(b))の場合成長させたS
iC単結晶43は樽型になり、やがて径が広がるのが止
まってしまった。また、成長面は中央部で約3mmくぼん
だ凹型となり、円周部の異常成長による応力により転
移、双晶等の結晶異常が起こってしまった。これに対
し、本発明(図4(a))ではSiC単結晶41は円錐
状に成長する。このため、本発明の方が結晶径が大きく
なり、大口径基板の製造を可能にすることができる。ま
た成長主面の凹面化はほぼなくなり、円周部の異常成長
による欠陥の増加を抑えることが可能となり結晶の品質
を向上することがでた。
In the case of the comparative example (FIG. 4B), the grown S
The iC single crystal 43 became barrel-shaped, and the diameter stopped expanding. In addition, the growth surface became concave with a recess of about 3 mm at the center, and a crystal abnormality such as transition and twinning occurred due to stress due to abnormal growth of the circumferential portion. On the other hand, in the present invention (FIG. 4A), the SiC single crystal 41 grows conically. For this reason, the present invention has a larger crystal diameter, and can manufacture a large-diameter substrate. In addition, the growth main surface was almost no concave, and it was possible to suppress an increase in defects due to abnormal growth of the circumferential portion, thereby improving the crystal quality.

【0015】図5に本発明の種結晶として成長主面を(0
001)面とした場合の側面の角度を示す。側面を(1-100)
面((0001)面に対して90゜)に対して少なくとも3゜
以上傾けることが望ましい(図中Aの領域)。この様な
種結晶を用いることによりファセットの発生を抑えるこ
とができ成長主面の凹面化を防ぐことが可能となる。従
って、大口径で結晶欠陥の少ないヘキサゴナール型単結
晶を成長させることができる。次に本発明の第2の実施
例を示す。本実施例では成長主面を(11-20) 面としたS
iC種結晶を用いてSiC単結晶を成長させた。使用す
る装置は図1に示すものを用い成長条件は第1の実施例
と同様に行った。
FIG. 5 shows the growth principal surface of the seed crystal of the present invention as (0
001) Indicates the angle of the side surface when the surface is set. Side (1-100)
It is desirable to incline at least 3 ° or more with respect to the plane (90 ° with respect to the (0001) plane) (region A in the figure). By using such a seed crystal, the generation of facets can be suppressed, and the growth main surface can be prevented from becoming concave. Therefore, a hexagonal single crystal having a large diameter and few crystal defects can be grown. Next, a second embodiment of the present invention will be described. In this embodiment, the growth principal plane is (11-20) plane,
An SiC single crystal was grown using an iC seed crystal. The apparatus used was the one shown in FIG. 1 and the growth conditions were the same as in the first embodiment.

【0016】図6に本実施例の種結晶のα−6HSiC
結晶型と成長主面である(11-20) 面の関係の図を示し、
図7に成長主面を(11-20) 面とした場合の側面の角度を
示す。成長主面を(11-20) 面とした場合側面に(1-100)
面及び(0001)面が表れるのは主面から30゜、90゜、
150゜でありこれらの面からそれぞれ3゜以上傾けれ
ば良い(図中Aの領域)。
FIG. 6 shows α-6HSiC of the seed crystal of this embodiment.
A diagram showing the relationship between the crystal type and the (11-20) plane, which is the main growth plane,
FIG. 7 shows the angles of the side surfaces when the principal growth surface is the (11-20) plane. When the main growth surface is the (11-20) plane, the side is (1-100)
The plane and the (0001) plane appear at 30 °, 90 °,
The angle is 150 °, and it is only necessary to incline 3 ° or more from each of these planes (region A in the figure).

【0017】本実施例では、成長主面を直径10mmの
円状に形成し、側面を成長主面から60゜傾けた頭の潰
れた円錐状の種結晶を用い、面の広い方を成長主面とし
て成長長さ20mmのSiC単結晶を成長させた。本実
施例においても第1の実施例と同様に円錐状にSiC単
結晶を成長させることができた。また、円周部のファセ
ットは表れず、成長面の凹面化は起こらなかった。次に
本発明の第3の実施例を示す。本実施例では成長主面を
(1-100) 面としたSiC種結晶を用いてSiC単結晶を
成長させた。使用する装置は図1に示すものを用い成長
条件は第1の実施例と同様に行った。
In this embodiment, the growth main surface is formed in a circular shape having a diameter of 10 mm, the side surface is inclined by 60 ° from the growth main surface, and a conical seed crystal whose head is crushed is used. A SiC single crystal having a growth length of 20 mm was grown as a plane. In this embodiment, the SiC single crystal could be grown conically in the same manner as in the first embodiment. In addition, no facets appeared in the circumferential portion, and no concave growth surface occurred. Next, a third embodiment of the present invention will be described. In this embodiment, the main growth surface is
A SiC single crystal was grown using the (1-100) plane SiC seed crystal. The apparatus used was the one shown in FIG. 1 and the growth conditions were the same as in the first embodiment.

【0018】図8に本実施例の種結晶のα−6HSiC
結晶型と成長主面である(1-100) 面の関係の図を示し、
図9に成長主面を(1-100) 面とした場合の側面の角度を
示す。成長主面を(1-100) 面とした場合側面に(1-100)
面及び(0001)面が表れるのは主面から60゜、90゜、
120゜でありこれらの面からそれぞれ3゜以上傾けれ
ば良い(図中Aの領域)。
FIG. 8 shows the α-6HSiC of the seed crystal of this embodiment.
A diagram showing the relationship between the crystal type and the (1-100) plane, which is the main growth surface,
FIG. 9 shows the angles of the side surfaces when the main growth surface is the (1-100) plane. When the main growth surface is (1-100), the side is (1-100)
Plane and (0001) plane appear at 60 °, 90 °,
The angle is 120 °, and it is only necessary to incline 3 ° or more from each of these planes (region A in the figure).

【0019】本実施例では、成長主面を直径10mmの
円状に形成し、側面を成長主面から45゜傾けた頭の潰
れた円錐状の種結晶を用い、面の広い方を成長主面とし
て成長長さ20mmのSiC単結晶を成長させた。本実
施例においても第1の実施例と同様に円錐状にSiC単
結晶を成長させることができた。また、円周部のファセ
ットは表れず、成長面の凹面化は起こらなかった。
In this embodiment, the growth principal surface is formed in a circular shape having a diameter of 10 mm, the side surface is inclined by 45 ° from the growth principal surface, and a conical seed crystal whose head is crushed is used. A SiC single crystal having a growth length of 20 mm was grown as a plane. In this embodiment, the SiC single crystal could be grown conically in the same manner as in the first embodiment. In addition, no facets appeared in the circumferential portion, and no concave growth surface occurred.

【0020】次に、本発明の第4の実施例を示す。本実
施例では上記第1、2、3の実施例で用いたSiC種結
晶の主面を更に研磨し、各主面から5゜ずらした面を成
長主面とする種結晶を用いてSiC単結晶を成長させ
た。成長装置は図1のものを使用し、成長条件は第1の
実施例と同じものとした。本実施例では成長主面と側面
の成長速度がほとんど変わらないため、結晶の形は種結
晶から自然な円錐形に広がり、良好な単結晶を得ること
ができる。
Next, a fourth embodiment of the present invention will be described. In this embodiment, the main surface of the SiC seed crystal used in the first, second, and third embodiments is further polished, and a SiC single crystal is used by using a seed crystal whose growth main surface is a plane shifted by 5 ° from each main surface. A crystal was grown. The growth apparatus shown in FIG. 1 was used, and the growth conditions were the same as in the first embodiment. In this embodiment, since the growth rates of the main growth surface and the side surface hardly change, the crystal shape spreads from the seed crystal to a natural conical shape, and a good single crystal can be obtained.

【0021】次に、本発明の第5の実施例を示す。本実
施例ではバルク成長法の1つである溶液法を用いてSi
の溶液からSiC種結晶上にSiC単結晶を析出し成長
させた。図10は本実施例で用いた成長装置である。C
またはSiCよりなる坩堝101中にSi溶媒102を
溜めて、溶媒中の最高温部を1800℃、種結晶103
の温度を1700℃として、100H成長を行う。るつ
ぼのCと溶媒のSiがSiC種結晶103上で析出し単
結晶が成長する。この場合種結晶は第1の実施例と同様
に、成長主面を(0001)面、側面を成長主面から45゜傾
けて頭の潰れた円錐状に加工した。この種結晶の面の広
い方を成長主面とし上記成長条件でSiC種結晶103
上に10mm前後のSiC単結晶を成長させた。本実施
例においても側面に(1-100) 面がでている種結晶を用い
たものに比べ大幅に結晶の径の拡大を図ることができ、
成長面の凹面化はみられなかった。
Next, a fifth embodiment of the present invention will be described. In the present embodiment, a solution method which is one of bulk growth methods
From the above solution, an SiC single crystal was deposited and grown on the SiC seed crystal. FIG. 10 shows a growth apparatus used in this embodiment. C
Alternatively, a Si solvent 102 is stored in a crucible 101 made of SiC, and the highest temperature part in the solvent is set to 1800 ° C.
Temperature is set to 1700 ° C., and 100H growth is performed. C in the crucible and Si as a solvent precipitate on the SiC seed crystal 103, and a single crystal grows. In this case, as in the first embodiment, the seed crystal was processed into a conical shape with its head crushed by tilting the main growth surface to the (0001) plane and the side surfaces by 45 ° from the main growth surface. The larger surface of the seed crystal is used as the main growth surface and the SiC seed crystal
A SiC single crystal of about 10 mm was grown thereon. Also in the present embodiment, it is possible to significantly increase the diameter of the crystal as compared with the case of using a seed crystal having a (1-100) plane on the side surface,
No growth surface was concave.

【0022】次に、本発明の第6の実施例を示す。本実
施例では昇華法を用いてヘキサゴナール型窒化ガリウム
の単結晶の成長を行った。現在窒化ガリウムは種結晶と
してあまり大きな結晶が得られないため、微小な結晶を
種として使用する必要がある。本実施例では、成長主面
を(0001)面とし、側面を成長主面から45゜傾いた頭の
つぶれた円錐状に加工した種結晶を用いた。この側面は
いずれも(1-100) 面からは傾いた面となっている。成長
装置は実施例1で使用したものとほぼ同じもので成長温
度は原料は1300℃、種結晶1200℃でN2 雰囲気
の圧力数Torrの条件で行った。本実施例においても大幅
に成長単結晶の径の増大が図られ、成長面の凹面化はみ
られず品質の向上が図られた。
Next, a sixth embodiment of the present invention will be described. In this embodiment, a single crystal of hexagonal gallium nitride was grown by the sublimation method. At present, gallium nitride cannot obtain a very large crystal as a seed crystal, so it is necessary to use a fine crystal as a seed. In this embodiment, a seed crystal was used in which the principal growth surface was a (0001) plane, and the side surface was machined into a conical shape with a squashed head inclined at 45 ° from the principal growth surface. Both sides are inclined from the (1-100) plane. The growth apparatus was almost the same as that used in Example 1. The growth temperature was 1300 ° C. for the raw material, the seed crystal was 1200 ° C., and the pressure was several Torr in an N 2 atmosphere. Also in this example, the diameter of the grown single crystal was significantly increased, and the growth surface was not concave, and the quality was improved.

【0023】尚、上述した各実施例において成長主面は
円形の種結晶を用いたが三角、四角、多角形、楕円形等
特に限定するものではない。三角、四角、多角形の場合
種結晶を柱状にしても成長主面に接する側面を(0001)面
及び(1-100) 面のいずれの面からも傾いた面のみにする
ことができる。また、上記した各実施例において結晶の
温度、温度勾配は自由に変更して使用することができ
る。
In each of the above embodiments, the growth principal surface is a circular seed crystal, but the growth surface is not particularly limited, such as a triangle, a square, a polygon, and an ellipse. In the case of a triangle, square, or polygon, even if the seed crystal is columnar, the side surface in contact with the main growth surface can be only a plane inclined from any of the (0001) plane and the (1-100) plane. In each of the above embodiments, the crystal temperature and the temperature gradient can be freely changed and used.

【0024】[0024]

【発明の効果】上述したように本発明を用いることによ
り、結晶面の成長面が凹面になることを防ぎ結晶欠陥が
少ない大口径のヘキサゴナール型半導体単結晶基板を製
造することがでる。またファセットがぶつかるところで
の異常成長による欠陥の増加を抑えることができ結晶の
品質を向上することがでる。
As described above, by using the present invention, it is possible to manufacture a hexagonal-type semiconductor single crystal substrate having a large diameter and having a small crystal defect by preventing the crystal growth surface from becoming concave. In addition, it is possible to suppress an increase in defects due to abnormal growth where the facet collides, thereby improving the quality of the crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1、2、3、4、6の実施例で用
いた昇華法単結晶製造装置の概略図
FIG. 1 is a schematic diagram of a sublimation single crystal manufacturing apparatus used in first, second, third, fourth and sixth embodiments of the present invention.

【図2】 ヘキサゴナール型結晶の(0001)面を表す図FIG. 2 is a diagram showing a (0001) plane of a hexagonal crystal.

【図3】 本発明の第1の実施例に用いた種結晶の形状
を表す図
FIG. 3 is a diagram showing a shape of a seed crystal used in the first embodiment of the present invention.

【図4】 本発明の第1の実施例で成長させたSiC単
結晶と従来例との比較図
FIG. 4 is a diagram showing a comparison between a SiC single crystal grown in the first embodiment of the present invention and a conventional example.

【図5】 成長主面を(0001)面としたときの種結晶の側
面の角度を表す図
FIG. 5 is a diagram showing an angle of a side surface of a seed crystal when a main growth surface is a (0001) plane.

【図6】 ヘキサゴナール型結晶の(11-20) 面を表す図FIG. 6 is a diagram showing a (11-20) plane of a hexagonal crystal.

【図7】 成長主面を(11-20) 面としたときの種結晶の
側面の角度を表す図
FIG. 7 is a diagram showing an angle of a side surface of a seed crystal when a growth main surface is a (11-20) plane.

【図8】 ヘキサゴナール型結晶の(1-100) 面を表す図FIG. 8 is a diagram showing a (1-100) plane of a hexagonal crystal.

【図9】 成長主面を(1-100) 面としたときの種結晶の
側面の角度を表す図
FIG. 9 is a diagram showing an angle of a side surface of a seed crystal when a growth main surface is a (1-100) plane.

【図10】 本発明の第5の実施例で用いた溶液法単結
晶製造装置の概略図
FIG. 10 is a schematic diagram of a solution-processed single crystal manufacturing apparatus used in a fifth embodiment of the present invention.

【図11】 成長主面を(0001)面その側面を(1-100) 面
としたときの円周部に出現するファセットを表す図
FIG. 11 is a diagram showing facets appearing in a circumferential portion when a main growth surface is a (0001) surface and side surfaces are a (1-100) surface.

【符号の説明】[Explanation of symbols]

11.種結晶 12.ポーラスグラファイト 13.坩堝 14.坩堝蓋 15.原料粉末 101.グラファイト坩堝 102.Si溶媒 103.種結晶 11. Seed crystal 12. Porous graphite 13. Crucible 14. Crucible lid 15. Raw material powder 101. Graphite crucible 102. Si solvent 103. Seed crystal

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バルク成長法により、ヘキサゴナール型
単結晶よりなる種結晶上にヘキサゴナール型単結晶を成
長させる半導体単結晶の製造方法において、前記種結晶
の成長主面に接する側面(0001)面及び(1−1
00)面のいずれの面からも傾いた面のみを有するよう
に該側面を加工した種結晶を用いることを特徴とする半
導体単結晶の製造方法。
1. A method for producing a semiconductor single crystal in which a hexagonal-type single crystal is grown on a seed crystal made of a hexagonal-type single crystal by a bulk growth method, wherein a side surface in contact with a growth main surface of the seed crystal has a (0001) plane. And (1-1
00) so that it has only a plane inclined from any plane
A method of manufacturing a semiconductor single crystal, characterized by using a seed crystal whose side surface is processed .
【請求項2】 前記ヘキサゴナール型単結晶はSiC単2. The method according to claim 1, wherein the hexagonal type single crystal is a SiC single crystal.
結晶又は窒化ガリウム単結晶であることを特徴とする請Crystal or gallium nitride single crystal
求項1記載の半導体単結晶の製造方法。The method for producing a semiconductor single crystal according to claim 1.
【請求項3】 前記ヘキサゴナール型単結晶はSiC単3. The method according to claim 1, wherein the hexagonal single crystal is SiC single crystal.
結晶であり、前記種結晶の成長主面は(0001)面、A crystal, wherein the main growth surface of the seed crystal is a (0001) plane;
(1−100)面、又は(11−20)面であり、前記(1-100) plane or (11-20) plane,
側面は(0001)面及び(1−100)面からそれぞThe sides are from (0001) plane and (1-100) plane, respectively.
れ3゜以上傾いた面のみを有することを特徴とする請求Characterized by having only a surface inclined by 3 mm or more.
項1記載の半導体単結晶の製造方法。Item 2. The method for producing a semiconductor single crystal according to Item 1.
【請求項4】 前記種結晶は頭の潰れた円錐状に加工し4. The seed crystal is processed into a conical shape with a crushed head.
たことを特徴とする請求項1乃至3のいずれかに記載のThe method according to any one of claims 1 to 3, wherein
半導体単結晶の製造方法。A method for manufacturing a semiconductor single crystal.
JP01827293A 1993-02-05 1993-02-05 Manufacturing method of semiconductor single crystal Expired - Fee Related JP3251687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01827293A JP3251687B2 (en) 1993-02-05 1993-02-05 Manufacturing method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01827293A JP3251687B2 (en) 1993-02-05 1993-02-05 Manufacturing method of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH06227886A JPH06227886A (en) 1994-08-16
JP3251687B2 true JP3251687B2 (en) 2002-01-28

Family

ID=11967021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01827293A Expired - Fee Related JP3251687B2 (en) 1993-02-05 1993-02-05 Manufacturing method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3251687B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065625B2 (en) * 1997-10-30 2012-11-07 住友電気工業株式会社 Manufacturing method of GaN single crystal substrate
JP4110875B2 (en) 2002-08-09 2008-07-02 株式会社デンソー Silicon carbide semiconductor device
EP1639158A4 (en) 2003-06-16 2009-01-14 Showa Denko Kk Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
KR100975957B1 (en) * 2008-01-11 2010-08-13 동의대학교 산학협력단 The SiC single crystal growth equipment for enlargement of SiC diameter
CN104246026B (en) 2012-04-20 2017-05-31 丰田自动车株式会社 SiC single crystal and its manufacture method
JP5668724B2 (en) 2012-06-05 2015-02-12 トヨタ自動車株式会社 SiC single crystal ingot, SiC single crystal, and manufacturing method
JP5936191B2 (en) * 2012-08-26 2016-06-15 京セラ株式会社 Crystal production method
JP5854013B2 (en) 2013-09-13 2016-02-09 トヨタ自動車株式会社 Method for producing SiC single crystal
JP6060863B2 (en) * 2013-09-13 2017-01-18 トヨタ自動車株式会社 SiC single crystal and method for producing the same
JP5905864B2 (en) * 2013-09-27 2016-04-20 トヨタ自動車株式会社 SiC single crystal and method for producing the same
WO2018062224A1 (en) * 2016-09-27 2018-04-05 トヨタ自動車株式会社 METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SEED CRYSTAL
JP6839526B2 (en) * 2016-11-25 2021-03-10 昭和電工株式会社 SiC single crystal growth device, SiC single crystal growth method and SiC single crystal

Also Published As

Publication number Publication date
JPH06227886A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
Powell et al. SiC materials-progress, status, and potential roadblocks
KR100496900B1 (en) SINGLE-CRYSTAL GaN SUBSTRATE AND ITS GROWING METHOD AND ITS MANUFACTURING METHOD
US6153166A (en) Single crystal SIC and a method of producing the same
US8936682B2 (en) Method of manufacturing homogeneous silicon carbide single crystal with low potential of generating defects
JP3251687B2 (en) Manufacturing method of semiconductor single crystal
US6488771B1 (en) Method for growing low-defect single crystal heteroepitaxial films
JP3888374B2 (en) Manufacturing method of GaN single crystal substrate
US7449065B1 (en) Method for the growth of large low-defect single crystals
US5843590A (en) Epitaxial wafer and method of preparing the same
US6053973A (en) Single crystal SiC and a method of producing the same
JP5638198B2 (en) Laser diode orientation on miscut substrates
JP4603386B2 (en) Method for producing silicon carbide single crystal
US6461944B2 (en) Methods for growth of relatively large step-free SiC crystal surfaces
CN102337587A (en) Method of growing SiC single crystal and SiC single crystal grown by same
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
EP0921214A1 (en) Single crystal silicon carbide and process for preparing the same
JP2003277193A (en) SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
EP1122341A1 (en) Single crystal SiC
JP3757339B2 (en) Method for manufacturing compound semiconductor device
Porowski High pressure crystallization of III-V nitrides
JP3142312B2 (en) Crystal growth method for hexagonal semiconductor
JP2006306722A (en) MANUFACTURING METHOD OF GaN SINGLE CRYSTAL SUBSTRATE, AND GaN SINGLE CRYSTAL SUBSTRATE
JP4479706B2 (en) GaN free-standing substrate manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees