JPH08148177A - 高純度バナジウム電解液の製造法 - Google Patents

高純度バナジウム電解液の製造法

Info

Publication number
JPH08148177A
JPH08148177A JP6283694A JP28369494A JPH08148177A JP H08148177 A JPH08148177 A JP H08148177A JP 6283694 A JP6283694 A JP 6283694A JP 28369494 A JP28369494 A JP 28369494A JP H08148177 A JPH08148177 A JP H08148177A
Authority
JP
Japan
Prior art keywords
vanadium
compound
producing
trivalent
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6283694A
Other languages
English (en)
Other versions
JP3085634B2 (ja
Inventor
Masato Nakajima
正人 中島
Toshiaki Akaboshi
俊明 赤星
Masatoshi Sawahata
政利 澤幡
Yutaka Nomura
豊 野村
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP06283694A priority Critical patent/JP3085634B2/ja
Priority to US08/554,570 priority patent/US5587132A/en
Priority to AU37775/95A priority patent/AU697422B2/en
Priority to EP95117964A priority patent/EP0713257B1/en
Priority to DE69525422T priority patent/DE69525422T2/de
Publication of JPH08148177A publication Critical patent/JPH08148177A/ja
Application granted granted Critical
Publication of JP3085634B2 publication Critical patent/JP3085634B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】 【目的】 不純物を多く含む五酸化バナジウムやメタバ
ナジン酸アンモニウムを原料として、経済的に高純度バ
ナジウム電解液を製造する。 【構成】 (1)バナジウム化合物をアルカリ又は中性
条件下で溶媒に溶解し、ついで酸性条件下でバナジウム
イオンを加熱重合させてポリバナジウム酸化合物を析
出、分離する工程; (2)前記ポリバナジウム酸化合物の1部を、不活性ガ
ス又は酸化性雰囲気で焼成してアンモニウムを除去する
工程; (3)前記ポリバナジウム酸化合物の少なくとも他の1
部を、還元性ガス雰囲気下に処理して3価のバナジウム
化合物を生成させる工程; (4)前記3価バナジウム化合物を酸溶液に溶解して3
価のバナジウム電解液を生成する工程;および (5)前記脱アンモニア工程からの五酸化バナジウムと
前記3価バナジウム溶液の1部とを混合して反応させ、
4+とV3+の混合電解液を生成する工程からなる方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、レドックス電池の電解
液、特に高純度の3価バナジウム電解液と4価バナジウ
ム電解液及び/又は3価/4価混合バナジウム電解液と
を製造する方法に関すものである。
【0002】
【従来の技術】近年、酸性雨、フロンのオゾン層破壊、
大気中の炭酸ガスの増加による温室化現象など地球環境
問題が人類全体の問題としてクローズアップされてきて
いる。この様な状況下、地球環境に優しい無尽蔵な太陽
エネルギーを積極的に利用しようとする動きが盛んであ
る。例えば太陽電池、太陽熱を利用した発電や熱回収、
風力発電、波力発電(波のエネルギー、海水の温度差を
利用した発電)などがそれである。
【0003】中でも、技術革新の著しい太陽電池が効率
の向上と価格の大幅引下げにより電力用として本格的な
実用期を迎えそうな気配にある。太陽電池の現状は道路
標識、通信中継基地の電源など比較的小規模な利用にと
どまっているが、太陽エネルギー都市構想や砂漠や海洋
に太陽電池を並べる構想の実現にともない急速に発展す
ることが期待されている。しかし、これらの太陽エネル
ギーを使ういずれの発電方法も発電量が天候に左右さ
れ、安定した信頼性の高い電力を生産することは不可能
であり、信頼性が高く、しかも効率の高い電池との併用
が不可欠でありその出現が待たれている。
【0004】また、電力は各種のエネルギーへの変換が
容易で制御し易く、消費時の環境汚染がないので、エネ
ルギー消費に占める割合が年々増加している。電力供給
の特異な点は、生産と消費が同時に行われ貯蔵ができな
い事にある。そのため、効率の高い、原子力発電や新鋭
火力発電をなるべく最高効率の定格で運転し、昼間の大
きな電力需要の増加を電力消費の変動に応じて発電を行
うのに適している小型の火力発電や水力発電等でまかな
っており、夜間に余剰電力が発生しているのが現状であ
る。この夜間の余剰電力を貯蔵し昼間において効率的に
使用可能とする技術の開発が電力業界の悲願でもある。
【0005】以上のような実状から、環境汚染がなく、
しかも汎用性の高いエネルギーである電力を貯蔵する方
法として、各種の二次電池が研究され、なかでも常温、
常圧で操作が可能で大容量の据置型電池であるレドック
ス電池が注目されている。レドックス電池は液状の正、
負極の電池活物質を液透過型の電解槽に流通させ、酸化
還元反応を利用して充放電を行うものであり、従来の二
次電池に比較して寿命が長い、自己放電が少ない、信頼
性及び安全性が高い、酸化還元反応を行う電池セルと電
気を貯蔵するタンクが分離しているため電気容量を自由
に変えることができるなどの利点を有しており、特に
正、負極ともにバナジウムを使用するバナジウムレドッ
クスフロー電池は出力が大きく、イオン交換膜を介して
の正、負電解液の相互混合に対しても電池内で簡単に再
生できるため、実用化に最も近いものとして注目されて
いる。
【0006】バナジウムレドックスフロー電池は、硫酸
溶液に溶解したバナジウムの4価/5価と3価/2価の
イオン対を正、負極液としたレドックス電池であり、豪
州のニュウサウスウェールズ大学のカザコス教授によっ
て提案されている[特開昭62−186473号公報;
E.SUM “Journal of Power Sources",15(1985),179
-190及び同 16(1985) 85-95]。この電池は、出力電
圧が1.4〜1.5Vと高く、高効率で電解液の濃度も高
くできる為、レドックスフロー電池のエネルギー密度が
低いという欠点も克服できるが、バナジウムの価格が高
く実用性に乏しいとされてきた。
【0007】このため、本発明者らは、先に、例えば重
質油燃料を燃焼した際に発生する燃焼媒から回収される
バナジウム化合物を出発物質とし無機酸の存在下で還元
操作を付すことにより、安価にバナジウム電解液を製造
する方法、硫酸溶媒中で硫黄で化学的に還元する3価と
4価バナジウム電解液の同時製造法等を提案した(特開
平4−149965号、特開平5−303973号公
報)。
【0008】レドックス電池はイオン交換膜からなる隔
膜とその両側に設けられたカーボンクロス電極(正極及
び負極)と、更にその外側に設けられたエンドプレート
からなり、正極液タンクに4価のバナジウム、負極液タ
ンクに3価のバナジウム電解液を入れ、それぞれポンプ
により正極と負極に送られる。充電において、正極液の
4価のバナジウムは漸次5価のバナジウムに変わり、負
極液の3価のバナジウムは漸次2価のバナジウムに変わ
る。正極、負極のタンク内の電解液がそれぞれ5価、2
価になった時点で放電を開始する。正極液及び負極液は
4価と3価が当量含まれていれば4価と3価の混合液で
も構わない。例えば、正極液と負極液がそれぞれ4価と
3価の1:1混合液であっても、正極液が4価と3価の
2:1混合液、負極液が4価と3価の1:2混合液など
であってもよい。従って、電解還元よりも経済的な方法
により、3価を含むバナジウム電解液を製造する方法の
開発が望まれていた。
【0009】バナジウムレドックスフロー電池の工業化
に当たって克服しなければならない。大きな技術的問題
点はイオン交換膜の劣化である。既に、本発明者等は5
価のバナジウム電解液の酸化に対して耐性があり、膜抵
抗の低いイオン交換膜としてポリスルホン系のイオン交
換膜やフッ素系のイオン交換膜を見いだし、高電流密度
バナジウム電池の制作を可能にした(特開平4−404
3号公報)。しかしながら、イオン交換膜の耐久性は、
イオン交換膜の材質のみに依存するだけでなく、電解液
中に含まれる不純物、特にアルカリ土類金属類や珪素化
合物の影響を強く受けることが明らかになってきた。一
方、高純度バナジウム原料は価格も高く、量的確保も難
しい。従って、バナジウムレドックスフロー電池の事業
化においては、価格も安く、量も十分に確保できる低純
度バナジウム原料の精製と還元を連続的に行うバナジウ
ム電解液の製造法の開発が必須となってきた。
【0010】バナジウム化合物の精製法としては、バナ
ジウム化合物をメタバナジン酸アンモニウムに変えて、
水に加熱溶解し、濾過した後、晶析する方法が一般的で
ある。高純度のメタバナジン酸アンモニウムを得るため
には、この晶析を何回も繰り返さなければならず工業的
に実施することは不可能である。これ以外に、原料バナ
ジウム化合物をオキシ塩化バナジウムに変えて蒸留によ
り精製する方法もあるが工程が複雑で経済的なバナジウ
ム電解液の製造プロセスにはなり得ない。特に重質油燃
焼媒等から回収した低純度バナジウム化合物を電解液原
料として使用する場合、Siの除去が困難であり、精製
と還元を効率良く行う高純度バナジウム電解液製造法は
未だ提案されておらず、高純度バナジウム電解製造法の
開発は、バナジウムレドックスフロー電池の工業化のた
めには、緊急の課題となってきた。
【0011】
【発明が解決しようとする課題】本発明は、不純物を多
く含む五酸化バナジウムやメタバナジン酸アンモニウム
を原料として、精製工程と還元工程を組み合わせたプロ
セスにより、イオン交換膜の耐久性に悪影響を与えな
い、経済的な高純度バナジウム電解液を製造しようとす
るものである。
【0012】
【課題を解決するための手段】本発明は、バナジウムを
正、負極活物質とするバナジウムレドックスフロー電池
用電解液の製造方法において、 (1)不純物を含む五酸化バナジウム及びメタバナジン
酸アンモニウムからなる群から選ばれたバナジウム化合
物をアルカリ又は中性条件下で溶媒に溶解し、ついで酸
性条件下でバナジウムイオンを加熱重合させてポリバナ
ジウム酸化合物を析出させ、該ポリバナジウム酸化合物
を不純物を含有する濾液から分離する工程[精製工
程]; (2)前記工程で得られたポリバナジウム酸化合物の1
部を、不活性又は酸化性ガス雰囲気で400〜690℃
の温度範囲で焼成してアンモニウムを除去する工程[脱
アンモニア工程]; (3)前記精製工程から得られたポリバナジウム酸化合
物の少なくとも他の1部を、還元性雰囲気下に処理して
3価のバナジウム化合物を生成させる工程[3価バナジ
ウム化合物生成工程];および (4)前記3価バナジウム化合物を酸溶液に溶解して3
価のバナジウム電解液を生成する工程[V3+電解液生成
工程] (5)前記脱アンモニア工程から得られる五酸化バナジ
ウムと前記V3+電解液生成工程で得られる3価のバナジ
ウム溶液とを混合して反応させ、種々の混合比のV4+
3+の混合電解液を生成する工程[V4+/V3+混合電解
液生成工程] を含むことを特徴とするバナジウム電解液の製造法であ
る。この方法によれば、容易に3価バナジウム電解液と
3価/4価混合バナジウム電解液が得られる。
【0013】本発明の他の態様によれば、 (1)不純物を含む五酸化バナジウム及びメタバナジン
酸アンモニウムからなる群から選ばれたバナジウム化合
物をアルカリ又は中性条件下で溶媒に溶解し、ついで酸
性条件下でバナジウムイオンを加熱重合させてポリバナ
ジウム酸化合物を析出させ、該ポリバナジウム酸化合物
を不純物を含有する濾液から分離する工程[精製工
程]; (2)前記工程で得られたポリバナジウム酸化合物の1
部を、不活性又は酸化性ガス雰囲気で400〜690℃
の温度範囲で焼成してアンモニウムを除去する工程[脱
アンモニア工程]; (3)前記脱アンモニア工程から生ずる五酸化バナジウ
ムを、酸性溶媒に懸濁させ、還元剤を用いて加熱し、4
価の電解液を生成する工程[V4+電解液生成工程]; (4)前記精製工程から得られたポリバナジウム酸化合
物の少なくとも他の1部を、還元性雰囲気下に処理して
3価のバナジウム化合物を生成させる工程[3価バナジ
ウム化合物生成工程];および (5)前記3価バナジウム化合物を酸溶液に溶解して3
価のバナジウム電解液を生成する工程[V3+電解液生成
工程] を含むことを特徴とするバナジウム電解液の製造法が提
供される。この方法によれば、3価バナジウム電解液と
4価バナジウム電解液とが得られる。
【0014】本発明のさらに他の態様によれば、必要に
応じ、上記(1)〜(5)の工程からなる上記方法にお
いて、さらに、(6)前記脱アンモニア工程から得られ
る五酸化バナジウムと前記V3+電解液生成工程で得られ
る3価のバナジウム溶液とを混合して反応させ、種々の
混合比のV4+とV3+の混合電解液を生成する工程[V4+
/V3+混合電解液生成工程]を付加することにより、3
価バナジウム電解液、4価バナジウム電解液および3価
/4価混合電解液を製造することができる。
【0015】本発明において出発原料として用いられる
バナジウム化合物は不純物を含む五酸化バナジウム及び
メタバナジン酸アンモニウムである。具体的な不純物と
しては、主にSi、Na、K、Ca、Mg、Fe等があ
げられる。出発原料として五酸化バナジウムを選んだ場
合には、 V25+2NH3+H2O=2NH4VO3 の反応により、アンモニア水に溶解し、メタバナジン酸
アンモニウムに変えてから精製工程に供される。以下
に、各工程について詳細に説明する。
【0016】(i)精製工程 この工程において、所定量のメタバナジン酸アンモニウ
ムをアルカリ性又は中性条件下に溶媒、通常は水に加
え、60〜100℃の温度範囲で完全に溶解する。不純
物として珪素化合物、例えば珪酸ナトリウム(Na2Si
O3)が含まれている場合には、得られる溶液中に存在す
る珪素化合物の量が、そのイオン濃度として1000p
pm以下、より好ましくは500ppm以下になるよう
に溶解量を調整することが好ましい。該イオン濃度が1
000ppmを越えると、酸性条件下でゲル化して析出
し、ポリバナジウム酸化合物中に混じってしまうので好
ましくない。メタバナジン酸アンモニウムが完全に溶解
したことを確認してから、溶液に、例えば硫酸を加えて
をPHが1〜3、好ましくは1.8近辺の酸性条件に維
持して、60〜100℃の温度に加熱してバナジウムイ
オンを重合させる。直ちに赤褐色のポリバナジウム酸化
合物が析出するが、約1時間ほど良く撹拌しながら反応
させることが好ましい。反応終了後、ポリバナジウム酸
化合物を含む析出物を1〜0.45μmのフィルターで
加熱濾過を行い、析出したバナジウム化合物を回収す
る。不純物の大部分は濾液中に残り、得られるバナジウ
ム化合物はアンモニウムイオン以外の不純物をほとんど
含まない高純度品である。
【0017】バナジウムイオンの重合反応は、次のよう
に進むと言われている。 2nNH4VO3+nH2SO4=H(VO32n↓+n
(NH42SO4 H(VO32nを書き直すとnH2O・V25となり、湿
式反応で五酸化バナジウムの水和物が合成され、アンモ
ニウムイオンは含まないはずであるが、実際の析出物を
分析すると3〜5%程のアンモニウムイオンを含むこと
が分かった。これは上記以外に次のような副反応が起こ
っているためであると考えられる。 10NH4VO3+4H2SO4 =(NH42(V
1026)↓+4(NH42SO4 + 4H2O 酸性条件下で、メタバナジン酸アンモニウムを重合させ
ると不純物の金属類は溶液中に溶解され、析出するポリ
バナジウム酸化合物中には入らない。通常、可溶性の珪
酸塩類、例えば(SiO32-などは、酸性条件下では
次のような反応によりゲル化する。 Na2SiO3+H2SO4=H2SiO3↓+Na2SO4 しかしながら、本発明者は可溶性の珪酸塩類の濃度を1
000ppm、望ましくは500ppm以下に抑えるこ
とによって、酸性条件下でもゲル化が起きないことを見
いだし、これにより珪素化合物は濾液に留どまり、析出
するポリバナジウム酸化合物から完全に分離され、高純
度バナジウム化合物の製造が可能となった。
【0018】(ii)脱アンモニア工程 この工程は、高純度の4価バナジウム電解液を製造する
ために必要な工程である。上記精製工程で得られたポリ
バナジウム酸化合物は、金属や珪素化合物等の不純物は
綺麗に除かれているが、該精製工程では約5%程度のア
ンモニウムイオンは除くことができない。アンモニウム
はバナジウムの析出の原因となり、アンモニウムイオン
を除かなければ、電解液の原料として使用できない。そ
こで、高純度の4価バナジウム電解液を調製するには、
アンモニアを除去する必要がある。ポリバナジウム酸化
合物からのアンモニアの除去は、不活性ガス(通常は窒
素ガス)又は酸化性ガス(通常は空気)雰囲気で400
〜690℃の温度に、1〜4時間程度、該化合物を加熱
することにより行われる。400℃未満ではアンモニア
の除去に長時間を要し、690℃超過では該化合物の表
面が融解して処理装置に付着するので好ましくない。本
工程における処理は、トンネル炉、ロータリーキルン
炉、棚段式の電気炉等の装置を用いて行うことができ
る。
【0019】(iii)4価(V4+)電解液生成工程 前工程によりアンモニアが除去されたバナジウム化合物
を硫酸水溶液のごとき酸性溶媒に懸濁させ、室温〜18
0℃の温度で還元することにより、V4+電解液が調製さ
れる。還元は通常、常圧または加圧下に行われる。4価
への還元は、水素、亜硫酸ガス、硫黄、硫化水素等の無
機系還元剤;有機酸、アルコール、糖類等の有機系還元
剤などを用いて行うことができる。有機系還元剤の中で
も、特に蓚酸は、次式: V25+(COOH)2+2H2SO4=2VOSO4+2
CO2+3H2O によりバナジウム化合物の還元が進行し、生成炭酸ガス
が系外に抜けるために有機系の不純物を電解液中に残さ
ず、廃ガス処理装置を必要としないので、特に好まし
い。
【0020】(iv)3価バナジウム化合物生成工程 3価のバナジウム化合物を得る方法として、電解還元法
や本発明者等が先に提案した硫黄による還元法(特開平
5−303973号公報)があるが、これらの還元方法
では、精成工程で合成されたV25・H2O中に含まれ
るアンモニウムイオンを除去することができない。アン
モニウムイオンが電解液中に含まれると、バナジウムの
析出の原因となり望ましくない。また、R.B.HESLOP 及
び P.L.ROBINSON“Inorganic Chemistry”(Maruzen As
ian Edition(1965)には、5価のバナジウムを還元する
方法として、つぎの方法が記載されている。 V25→H2(heat)→V23+2H2O V25→CS2(heat)→V2325→Zn(in H2SO4)→V2(SO4)3
【0021】これらの方法の中で工業的規模でバナジウ
ム電解液を製造することを考えると、公害物質発生せ
ず、電解液中に望ましくない金属が混存しない水素還元
法が適当である。3価バナジウム化合物の水素による還
元反応は、以下のように進む。 V25+2H2=V23+2H2O 特に、精製工程で得られたバナジウム化合物は水分やア
ンモニアを含有しているが、これらは水素還元反応の過
程で除けるために、予め除去することなくそのままこの
工程に使用することができる。
【0022】精製工程から得られたポリバナジウム酸化
合物は還元性ガス雰囲気、特に好ましくは水素ガス雰囲
気下で加熱する。特に好ましい方法は、該化合物を50
0〜690℃の温度範囲で前還元し、その後690℃よ
り高い温度に上げて還元することである。前還元をする
とV25の表面が3価のバナジウム化合物に還元されそ
の融点が上がるため、その後はV25の融点を越えて昇
温しても、容器に付着せずに還元することができる。従
って、このような前還元を行った後は、一酸化炭素、水
素/一酸化炭素混合ガス、炭素粉末と空気又は酸素など
を還元剤として使用し、1000℃以上の高い温度で還
元処理を実施することもできる。還元剤に一酸素炭素や
炭素粉末を使用した場合は、還元炉内部で燃焼させて反
応温度を上げることも可能である。このような方法によ
り、アンモニアが除去された高純度の3価バナジウム化
合物を得ることができる。
【0023】(v)3価バナジウム(V3+)電解液生成
工程 3価のバナジウム化合物であるV23は、黒色の固体で
空気中に取り出しても比較的安定で貯蔵も可能である。
23は硫酸溶液中で常圧及び加圧下、60〜150℃
の温度範囲で溶解して、3価の電解液が調製される。
【0024】(vi)3価/4価混合バナジウム(V3+
4+)電解液生成工程 また、バナジウム電池の電解液は4価と3価の混合液で
も良いため、上記脱アンモニア工程から得られる高純度
25を上記3価バナジウム電解液の中に加えて、次の
ような反応式で4価バナジウム化合物とすることによ
り、3価/4価混合バナジウム電解液を調製することも
できる。 V2(SO43+V25+H2SO4=4VOSO4+H2
O この反応は温室で容易に進むので、連続生産化し易い。
【0025】本発明の方法は、バッチ及び連続法いずれ
も可能であり、需要の合わせて高純度五酸化バナジウム
及び三酸化バナジウムを容易に製造および貯蔵すること
ができ、耐酸性の電解液貯蔵タンク等を最小限に抑える
ことができ非常に経済的なプロセスである。
【0026】
【発明の効果】本発明によれば、安価で量的にも確実に
確保できる低純度バナジウム原料を使用して、高純度の
3価、4価およびその混合バナジウム電解液を任意に且
つ容易に製造することが可能である。
【0027】
【実施例】次に本発明を実施例をもって具体的に説明す
る。 実施例1 5リットル容量の三ッ口フラスコに、純水5リットルと
回収メタバナジン酸アンモニウム(鹿島北共同発電社
製)150g(1.282mol)を入れ、撹拌しながら80℃
で完全に溶解させる。濃硫酸60mlを少しずつ加えて
溶液のpHを2近辺まで下げ、激しく撹拌しながら1時
間重合反応を行う。酸を加えると直ちに赤褐色のポリバ
ナジウム酸化合物が生成する。生じた結晶を取り出し、
純水で洗浄しながら吸引濾過し、110℃で乾燥した後
の収量は120gであった。分析結果を表−1に示す。
比較のために試薬特級V25の分析結果も示した。表−
1から明らかなように、得られたバナジウム化合物は、
アンモニウムイオン以外は、特級試薬のV25よりも綺
麗である。
【0028】
【表1】
【0029】このバナジウム化合物を500℃で4時間
焼成し、アンモニウムと水分を飛ばしV25に変えた。
このV25 5リットル4M硫酸溶液500mlに懸濁
させ、蓚酸63gを加えて105℃で4時間還元反応を
行い4価バナジウム電解液を製造した。4価バナジウム
電解液の物性値を表−2に示す。
【0030】
【表2】
【0031】実施例2 実施例1で精製したバナジウムV化合物60gを水素還
元用の電気炉に入れ、1リットル/分の流速で水素を流
しながら、600℃で4時間還元した。還元生成物とし
て黒色のV23が得られた。還元反応後の重量は47g
であった。このV23 45g(0.5mol)を150mlの
4M硫酸溶液に入れ窒素シールをしながら、105℃で
6時間加熱し完全に溶解させた後、水を加えて2Mの3
価バナジウム電解液を調製した。得られた3価バナジウ
ム電解液の物性値を表−3に示した。UVスペクトルか
ら3価のバナジウム溶液であることを確認した。
【0032】
【表3】
【0033】実施例3 回収メタバナジン酸アンモニウム(鹿島北共同発電社
製)を200g用いた他は、実施例1と同様に行った。
硫酸を添加して重合させたバナジウム化合物を濾過し
て、そのまま密閉性のボックス炉へ入れ、窒素を流しな
がら600℃で2時間焼成し、約1/4を抜き出した。
不純物を分析した結果を表−4に示した。
【0034】
【表4】
【0035】残りのバナジウム化合物は、雰囲気を水素
に変えて600℃でさらに4時間還元を行い黒色のV2
3を製造した。このV23のアンモニウムを分析した
結果、40ppm以下であった。このV23 112g(0.7
5mol)を1000mlの4M硫酸溶液に105℃で溶解
し、1.5MV3+バナジウム電解液を調製した。この電
解液に、一部抜き出した約45g(0.25mol)のV25
室温で加え反応させた。得られた電解液の分析結果を表
−5に示す。
【0036】
【表5】
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 豊 茨城県鹿島郡神栖町大字東和田16番地 鹿 島北共同発電株式会社技術開発グループ内 (72)発明者 佐藤 完二 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 バナジウムを正、負極活物質とするバナ
    ジウムレドックス電池用電解液の製造方法において、 (1)不純物を含む五酸化バナジウム及びメタバナジン
    酸アンモニウムからなる群から選ばれたバナジウム化合
    物をアルカリ又は中性条件下で溶媒に溶解し、ついで酸
    性条件下でバナジウムイオンを加熱重合させてポリバナ
    ジウム酸化合物を析出させ、該ポリバナジウム酸化合物
    を不純物を含有する濾液から分離する工程[精製工
    程]; (2)前記工程で得られたポリバナジウム酸化合物の1
    部を、不活性又は酸化性ガス雰囲気で400〜690℃
    の温度範囲で焼成してアンモニウムを除去する工程[脱
    アンモニア工程]; (3)前記精製工程から得られたポリバナジウム酸化合
    物の少なくとも他の1部を、還元性雰囲気下に処理して
    3価のバナジウム化合物を生成させる工程[3価バナジ
    ウム化合物生成工程]; (4)前記3価バナジウム化合物を酸溶液に溶解して3
    価のバナジウム電解液を生成する工程[V3+電解液生成
    工程];および (5)前記脱アンモニア工程から得られる五酸化バナジ
    ウムと前記V3+電解液生成工程で得られる3価のバナジ
    ウム溶液の1部とを混合して反応させ、種々の混合比の
    4+とV3+の混合電解液を生成する工程[V4+/V3+
    合電解液生成工程] を含むことを特徴とするバナジウム電解液の製造法。
  2. 【請求項2】 バナジウムを正、負極活物質とするバナ
    ジウムレドックス電池用電解液の製造方法において、 (1)不純物を含む五酸化バナジウム及びメタバナジン
    酸アンモニウムからなる群から選ばれたバナジウム化合
    物をアルカリ又は中性条件下で溶媒に溶解し、ついで酸
    性条件下でバナジウムイオンを加熱重合させてポリバナ
    ジウム酸化合物を析出させ、該ポリバナジウム酸化合物
    を不純物を含有する濾液から分離する工程[精製工
    程]; (2)前記工程で得られたポリバナジウム酸化合物の1
    部を、不活性又は酸化性ガス雰囲気で400〜690℃
    の温度範囲で焼成してアンモニウムを除去する工程[脱
    アンモニア工程]; (3)前記脱アンモニア工程から生ずる五酸化バナジウ
    ムを、酸性溶媒に懸濁させ、還元剤を用いて加熱し、4
    価の電解液を生成する工程[V4+電解液生成工程]; (4)前記精製工程から得られたポリバナジウム酸化合
    物の少なくとも他の1部を、還元性雰囲気下に処理して
    3価のバナジウム化合物を生成させる工程[3価バナジ
    ウム化合物生成工程];および (5)前記3価バナジウム化合物を酸溶液に溶解して3
    価のバナジウム電解液を生成する工程[V3+電解液生成
    工程] を含むことを特徴とするバナジウム電解液の製造法。
  3. 【請求項3】 さらに、(6)前記脱アンモニア工程か
    ら得られる五酸化バナジウムと前記V3+電解液生成工程
    で得られる3価のバナジウム溶液とを混合して反応さ
    せ、種々の混合比のV4+とV3+の混合電解液を生成する
    工程[V4+/V3+混合電解液生成工程]を含む請求項2
    記載の方法。
  4. 【請求項4】 前記精製工程における溶媒が水であり、
    不純物が水に可溶性の金属塩、珪酸塩及び/またはコロ
    イダルシリカである請求項1または2記載の方法。
  5. 【請求項5】 前記精製工程の酸が硫酸であり、アルカ
    リがアンモニアである請求項1または2記載の方法。
  6. 【請求項6】 前記精製工程において、不純物として珪
    素化合物を含有するバナジウム化合物を溶媒に溶解した
    とき、得られる溶液中に存在する珪素化合物の量をその
    イオン濃度として1000ppm以下に維持する請求項
    1または2記載の方法。
  7. 【請求項7】 前記ポリバナジウム酸化合物がH(VO
    32nで示される化合物である請求項1または2記載の
    方法。
  8. 【請求項8】 前記還元性雰囲気が水素ガス、一酸化炭
    素又はこれらの混合ガス、あるいは炭素粉末と適量の空
    気又は酸素である請求項1または2記載の方法。
  9. 【請求項9】 前記還元剤が蓚酸である請求項2記載の
    方法。
JP06283694A 1994-11-17 1994-11-17 高純度バナジウム電解液の製造法 Expired - Fee Related JP3085634B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP06283694A JP3085634B2 (ja) 1994-11-17 1994-11-17 高純度バナジウム電解液の製造法
US08/554,570 US5587132A (en) 1994-11-17 1995-11-06 Method for producing high purity vanadium electrolytic solution
AU37775/95A AU697422B2 (en) 1994-11-17 1995-11-09 Method for producing high purity vanadium electrolytic solution
EP95117964A EP0713257B1 (en) 1994-11-17 1995-11-14 Method for producing high purity vanadium electrolytic solution
DE69525422T DE69525422T2 (de) 1994-11-17 1995-11-14 Verfahren zur Herstellung von hochreiner Vanadium-Elektrolytlösung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06283694A JP3085634B2 (ja) 1994-11-17 1994-11-17 高純度バナジウム電解液の製造法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23465497A Division JPH10114525A (ja) 1997-08-29 1997-08-29 高純度五酸化バナジウムの製造法

Publications (2)

Publication Number Publication Date
JPH08148177A true JPH08148177A (ja) 1996-06-07
JP3085634B2 JP3085634B2 (ja) 2000-09-11

Family

ID=17668875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06283694A Expired - Fee Related JP3085634B2 (ja) 1994-11-17 1994-11-17 高純度バナジウム電解液の製造法

Country Status (5)

Country Link
US (1) US5587132A (ja)
EP (1) EP0713257B1 (ja)
JP (1) JP3085634B2 (ja)
AU (1) AU697422B2 (ja)
DE (1) DE69525422T2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057223A (ja) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd 3価の硫酸バナジウムの製造方法及びバナジウム系電解液の製造方法
JP2002020123A (ja) * 2000-07-04 2002-01-23 Nippon Chem Ind Co Ltd 3価と4価の混合バナジウム化合物の製造方法およびバナジウム系電解液の製造方法
JP2002175831A (ja) * 2000-09-29 2002-06-21 Shinko Kagaku Kogyo Kk バナジウムレドックスフロー電池用電解液の製造方法
JP2002175830A (ja) * 2000-09-29 2002-06-21 Shinko Kagaku Kogyo Kk バナジウムレドックスフロー電池用電解液の製造方法
US6872376B2 (en) 2000-12-26 2005-03-29 Nippon Chemical Industrial Co., Ltd. Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method
JP2006520520A (ja) * 2003-03-14 2006-09-07 ニューサウス イノベーションズ ピューティーワイリミテッド 新規なハロゲン化バナジウム・レドックスフロー・バッテリ
US7258947B2 (en) 2001-06-07 2007-08-21 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery, and redox flow battery
JP5167450B1 (ja) * 2012-08-03 2013-03-21 株式会社ギャラキシー バナジウム電解液の製造方法
WO2013054921A1 (ja) * 2011-10-14 2013-04-18 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
KR101367618B1 (ko) * 2013-08-26 2014-03-12 (주) 뉴웰 바나듐산화물을 이용한 바나듐 레독스 흐름전지용 전해액 제조방법
WO2014203408A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
WO2014203410A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
WO2014203409A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
JPWO2016017393A1 (ja) * 2014-08-01 2017-04-27 住友電気工業株式会社 レドックスフロー電池用電解液、及びレドックスフロー電池システム
JP2017514287A (ja) * 2014-05-26 2017-06-01 ロッテ ケミカル コーポレーション レドックスフロー電池用正極電解質の製造方法およびレドックスフロー電池
JP6153100B1 (ja) * 2016-07-26 2017-06-28 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム
RU2691058C1 (ru) * 2016-01-28 2019-06-10 Инститьют Оф Процесс Инжиниринг, Чайнис Академи Оф Сайнсис Система и способ получения ванадиевого электролита высокой чистоты
CN110255616A (zh) * 2019-07-03 2019-09-20 陕西科技大学 一种超高压制备超薄纳米片状nh4v3o8纳米材料的方法
WO2019181982A1 (ja) * 2018-03-20 2019-09-26 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507219C1 (de) * 1995-03-02 1996-05-15 Daimler Benz Ag Verfahren und Vorrichtung zum Nachbeschichten einer deaktivierten Katalysatorbeschichtung bei einem Katalysator
JPH09223513A (ja) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
CN1171342C (zh) * 1999-07-01 2004-10-13 斯奎勒尔控股有限公司 隔膜式双极多元电化学反应器
JP4768116B2 (ja) * 2000-12-15 2011-09-07 千代田化工建設株式会社 バナジウムを含有する炭素質残渣から高純度のバナジウム化合物を製造する方法
US20040241552A1 (en) * 2001-05-18 2004-12-02 Maria Skyllas-Kazacos Vanadium redox battery electrolyte
AU784479B2 (en) * 2001-07-16 2006-04-13 Vanchem Vanadium Products (Pty) Limited Process
AU2003902298A0 (en) * 2003-05-12 2003-05-29 Clean Teq Pty Ltd A method for producing an electrolytic solution containing vanadium
US7265456B2 (en) * 2004-01-15 2007-09-04 Vrb Bower Systems Inc. Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator
US8277964B2 (en) 2004-01-15 2012-10-02 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
US7353083B2 (en) * 2004-01-15 2008-04-01 Vrb Power Systems Inc. Vanadium redox battery energy storage and power generation system incorporating and optimizing diesel engine generators
US7227275B2 (en) * 2005-02-01 2007-06-05 Vrb Power Systems Inc. Method for retrofitting wind turbine farms
US7707131B2 (en) 2005-03-08 2010-04-27 Microsoft Corporation Thompson strategy based online reinforcement learning system for action selection
US7885817B2 (en) 2005-03-08 2011-02-08 Microsoft Corporation Easy generation and automatic training of spoken dialog systems using text-to-speech
US7734471B2 (en) 2005-03-08 2010-06-08 Microsoft Corporation Online learning for dialog systems
US20070072067A1 (en) * 2005-09-23 2007-03-29 Vrb Power Systems Inc. Vanadium redox battery cell stack
WO2008075101A2 (en) * 2006-12-19 2008-06-26 Siltech Limited Improvements relating to laser marking
US7687193B2 (en) 2007-08-17 2010-03-30 Jd Holding Inc. Electrochemical battery incorporating internal manifolds
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8709629B2 (en) 2010-12-22 2014-04-29 Jd Holding Inc. Systems and methods for redox flow battery scalable modular reactant storage
CN102531054A (zh) * 2010-12-27 2012-07-04 邓时胜 偏钒酸铵的提纯方法以及高纯度五氧化二钒的制备方法
EP2664017A4 (en) 2011-01-13 2015-10-21 Imergy Power Systems Inc STACK OF FLOW CELLS
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
WO2013027076A1 (en) * 2011-08-23 2013-02-28 Squirrel Holdings Ltd. "in situ" production of electrolyte solution from vanadium pentoxide for use in a flow redox battery storage system
US10141594B2 (en) 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
CN102978647B (zh) * 2012-12-05 2014-08-27 湖南汇锋高新能源有限公司 用于制备钒电池电池液的电解系统和电解方法
US8993183B2 (en) 2012-12-31 2015-03-31 Enervault Corporation Operating a redox flow battery with a negative electrolyte imbalance
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes
KR101491784B1 (ko) 2013-11-05 2015-02-23 롯데케미칼 주식회사 화학흐름전지의 운전 방법
PT107816A (pt) * 2014-07-31 2016-02-01 Inst Superior Técnico Processo simplificado de preparação de eletrólito para pilha redox de vanádio
CN105984898B (zh) 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种生产高纯四氧化二钒粉体的系统及方法
CN105984899B (zh) 2015-01-30 2017-05-17 中国科学院过程工程研究所 一种提纯五氧化二钒的系统及方法
CN105984900B (zh) 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种制备高纯五氧化二钒粉体的系统及方法
CN105984896B (zh) 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种提纯制备高纯五氧化二钒粉体的系统及方法
CN105984897B (zh) 2015-01-30 2017-05-17 中国科学院过程工程研究所 一种生产高纯五氧化二钒粉体的系统及方法
EP3523851A4 (en) 2016-10-07 2020-07-15 VionX Energy Corporation ELECTROCHEMICAL-BASED PURIFICATION OF ELECTROLYTE SOLUTIONS AND RELATED SYSTEMS AND METHODS
CN107910578A (zh) * 2017-10-26 2018-04-13 成都先进金属材料产业技术研究院有限公司 一种钒电解液中镍离子的去除方法
CN108134122A (zh) * 2018-01-17 2018-06-08 大连博融新材料有限公司 可移动、模块化、集成化的钒电解液生产装置及方法
CN111200147A (zh) * 2018-11-19 2020-05-26 大连融科储能技术发展有限公司 一种用于抑制电解液析氢的全钒液流电池电解液及其制备方法
CN111200148A (zh) * 2018-11-19 2020-05-26 大连融科储能技术发展有限公司 一种用于抑制电解液强析氢的全钒液流电池电解液及其制备方法
AT525774B1 (de) 2021-12-15 2023-09-15 Enerox Gmbh Reinigungsverfahren für eine Elektrolytflüssigkeit einer Redox-Durchflussbatterie

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1070154B (ja) * 1957-05-24
DE3402357A1 (de) * 1984-01-25 1985-08-01 GfE Gesellschaft für Elektrometallurgie mbH, 4000 Düsseldorf Verfahren zur herstellung von vanadiumverbindungen aus vanadiumhaltigen rueckstaenden
JP2724817B2 (ja) * 1986-02-11 1998-03-09 ユニサーチ・リミテッド 全バナジウムのレドツクス電池
US4786567A (en) * 1986-02-11 1988-11-22 Unisearch Limited All-vanadium redox battery
IT1196515B (it) * 1986-07-17 1988-11-16 Ente Minerario Siciliano Procedimento per il recupero con alte rese del vanadio da residui della combustione del petrolio
WO1989005363A1 (en) * 1987-12-10 1989-06-15 Unisearch Limited Vanadium compound dissolution processes
WO1990003666A1 (en) * 1988-09-23 1990-04-05 Unisearch Limited State of charge of redox cell
AU649272B2 (en) * 1990-10-15 1994-05-19 Director-General Of Agency Of Industrial Science And Technology Method for producing vanadium electrolytic solution
JPH04149965A (ja) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol バナジウム系電解液の製造方法
JP3001659B2 (ja) * 1991-03-29 2000-01-24 工業技術院長 バナジウム系電解液の製造法
US5318865A (en) * 1991-06-06 1994-06-07 Director-General, Agency Of Industrial Science And Technology Redox battery
JPH05290871A (ja) * 1992-04-09 1993-11-05 Kashima Kita Kyodo Hatsuden Kk バナジウム系電解液の製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646358B2 (ja) * 1999-06-09 2011-03-09 関西電力株式会社 3価の硫酸バナジウムの製造方法及びバナジウム系電解液の製造方法
JP2001057223A (ja) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd 3価の硫酸バナジウムの製造方法及びバナジウム系電解液の製造方法
US6613298B2 (en) 2000-07-04 2003-09-02 Kansai Electric Power Co., Inc. Trivalent and tetravalent mixed vanadium compound producing method and vanadium electrolyte producing method
JP2002020123A (ja) * 2000-07-04 2002-01-23 Nippon Chem Ind Co Ltd 3価と4価の混合バナジウム化合物の製造方法およびバナジウム系電解液の製造方法
JP2002175830A (ja) * 2000-09-29 2002-06-21 Shinko Kagaku Kogyo Kk バナジウムレドックスフロー電池用電解液の製造方法
JP4567254B2 (ja) * 2000-09-29 2010-10-20 新興化学工業株式会社 バナジウムレドックスフロー電池用電解液の製造方法
JP2002175831A (ja) * 2000-09-29 2002-06-21 Shinko Kagaku Kogyo Kk バナジウムレドックスフロー電池用電解液の製造方法
US6872376B2 (en) 2000-12-26 2005-03-29 Nippon Chemical Industrial Co., Ltd. Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method
US7258947B2 (en) 2001-06-07 2007-08-21 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery, and redox flow battery
JP2006520520A (ja) * 2003-03-14 2006-09-07 ニューサウス イノベーションズ ピューティーワイリミテッド 新規なハロゲン化バナジウム・レドックスフロー・バッテリ
JP4728217B2 (ja) * 2003-03-14 2011-07-20 ニューサウス イノベーションズ ピューティーワイリミテッド 新規なハロゲン化バナジウム・レドックスフロー・バッテリ
WO2013054921A1 (ja) * 2011-10-14 2013-04-18 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
JP5363691B2 (ja) * 2011-10-14 2013-12-11 株式会社ギャラキシー バナジウム電解液、その製造方法及びその製造装置
JP5167450B1 (ja) * 2012-08-03 2013-03-21 株式会社ギャラキシー バナジウム電解液の製造方法
WO2014021203A1 (ja) * 2012-08-03 2014-02-06 株式会社ギャラキシー バナジウム電解液の製造方法
WO2014203408A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
CN105283996B (zh) * 2013-06-21 2018-03-30 住友电气工业株式会社 氧化还原液流电池用电解液及氧化还原液流电池
WO2014203410A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
WO2014203409A1 (ja) * 2013-06-21 2014-12-24 住友電気工業株式会社 レドックスフロー電池用電解液、およびレドックスフロー電池
US9331356B2 (en) 2013-06-21 2016-05-03 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9391340B2 (en) 2013-06-21 2016-07-12 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
US9647290B2 (en) 2013-06-21 2017-05-09 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery
KR101367618B1 (ko) * 2013-08-26 2014-03-12 (주) 뉴웰 바나듐산화물을 이용한 바나듐 레독스 흐름전지용 전해액 제조방법
US9972859B2 (en) 2014-05-26 2018-05-15 Lotte Chemical Corporation Method for preparing cathode electrolyte for redox flow batteries, and redox flow battery
JP2017514287A (ja) * 2014-05-26 2017-06-01 ロッテ ケミカル コーポレーション レドックスフロー電池用正極電解質の製造方法およびレドックスフロー電池
JPWO2016017393A1 (ja) * 2014-08-01 2017-04-27 住友電気工業株式会社 レドックスフロー電池用電解液、及びレドックスフロー電池システム
US9985311B2 (en) 2014-08-01 2018-05-29 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery system
RU2691058C1 (ru) * 2016-01-28 2019-06-10 Инститьют Оф Процесс Инжиниринг, Чайнис Академи Оф Сайнсис Система и способ получения ванадиевого электролита высокой чистоты
JP6153100B1 (ja) * 2016-07-26 2017-06-28 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム
WO2018020786A1 (ja) * 2016-07-26 2018-02-01 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム
JP2018018640A (ja) * 2016-07-26 2018-02-01 住友電気工業株式会社 電解液流通型電池用電解液、及び電解液流通型電池システム
WO2019181982A1 (ja) * 2018-03-20 2019-09-26 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
CN110255616A (zh) * 2019-07-03 2019-09-20 陕西科技大学 一种超高压制备超薄纳米片状nh4v3o8纳米材料的方法
CN110255616B (zh) * 2019-07-03 2021-06-15 陕西科技大学 一种超高压制备超薄纳米片状nh4v3o8纳米材料的方法

Also Published As

Publication number Publication date
JP3085634B2 (ja) 2000-09-11
AU3777595A (en) 1996-05-23
US5587132A (en) 1996-12-24
EP0713257B1 (en) 2002-02-13
DE69525422D1 (de) 2002-03-21
EP0713257A1 (en) 1996-05-22
AU697422B2 (en) 1998-10-08
DE69525422T2 (de) 2002-09-19

Similar Documents

Publication Publication Date Title
JP3085634B2 (ja) 高純度バナジウム電解液の製造法
JPH05290871A (ja) バナジウム系電解液の製造方法
CN102460812B (zh) 由原料制备流通电池电解质
CN102884662B (zh) 用于制备铬-铁氧化还原液流电池的电解液的方法
CN104037439A (zh) 一种化学与电化学结合制钒液流电池电解液的方法
CN111187913A (zh) 一种选择性回收废旧磷酸铁锂电池中锂和铜的方法
CN103606694A (zh) 一种商用钒电池电解液的制备方法
CN111115662B (zh) 一种锂电池材料回收方法
WO2023173645A1 (zh) 一种以钛白副产物硫酸亚铁制备磷酸铁锂的方法
CN113036198B (zh) 全钒液流电池电解液的制备方法和设备
JP3001659B2 (ja) バナジウム系電解液の製造法
JPH09180745A (ja) バナジウム系電解液の製造方法
JPH1179748A (ja) 高純度バナジウム電解液の連続的製造法
JP2000247645A (ja) バナジウム系電解液の製造方法
CN116259811B (zh) 一种钒酸钠溶液制备钒电解液的方法
JPH10125345A (ja) バナジウム系電解液の製造方法
JP3610473B2 (ja) レドックスフロー電池用電解液の製造方法
JPH07211346A (ja) バナジウム系レドックスフロー型電池の電解液の製造方法およびバナジウム系レドックスフロー型電池の製造方法
JP2002175831A (ja) バナジウムレドックスフロー電池用電解液の製造方法
CN107732236A (zh) 利用菱铁矿水热合成锂离子电池正极材料的方法
JP6535696B2 (ja) オキシ水酸化バナジウム及びバナジウム電解液の製造方法
JP4646358B2 (ja) 3価の硫酸バナジウムの製造方法及びバナジウム系電解液の製造方法
JP2000247643A (ja) バナジウム系電解液の製造方法
CN112551493A (zh) 一种失效钒电池电解液制备氮化钒的方法
JP3692422B2 (ja) バナジウム系電解液からのバナジウムの回収方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees