JPH046083B2 - - Google Patents
Info
- Publication number
- JPH046083B2 JPH046083B2 JP59088128A JP8812884A JPH046083B2 JP H046083 B2 JPH046083 B2 JP H046083B2 JP 59088128 A JP59088128 A JP 59088128A JP 8812884 A JP8812884 A JP 8812884A JP H046083 B2 JPH046083 B2 JP H046083B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- tio
- tic
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 45
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 29
- 238000005245 sintering Methods 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052596 spinel Inorganic materials 0.000 claims description 11
- 239000011029 spinel Substances 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 9
- 238000005452 bending Methods 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 229910034327 TiC Inorganic materials 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 150000003609 titanium compounds Chemical class 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 18
- 239000000395 magnesium oxide Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 15
- 238000003754 machining Methods 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000001513 hot isostatic pressing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
〔技術分野〕
本発明は薄膜磁気ヘツド(スライダ)用基板用
材料及びその製造法に関する。 〔背景〕 従来、コンピユータ用のデイスクヘツドスライ
ダはフエライトのブロツク材料を加工して製造さ
れていたが、フエライト材では高周波透磁率が低
く、近年ではデイスクヘツドのインダクタンスを
小さくしてより高周波領域で動作させるように
し、またギヤツプ幅を小さくしてデータの高速転
送と記録密度の向上が図られている。 現状では、酸化アルミニウムと炭化チタンを主
成分としたものや炭化チタンに対して窒化チタン
を一部固溶させた複合材料が開発されている。ま
た上記主成分の他に材料の焼結性をよくする為に
酸化アルミニウムに対して効果的なMgO,CaO,
NiOなどが添加されている。 薄膜磁気ヘツドではその基板を超精密鏡面仕上
げした時に基板表面に微細な気孔さえも存在しな
いこと及びその基板の精密機械加工性が容易なこ
とが特に要求されている。そこで超精密鏡面仕上
げされた基板に微細な気孔が存在しない様にする
には、そのセラミツク混合粉末を殆ど理論密度と
なるまで焼結し、しかもセラミツク結晶粒子内の
結合が強く微細な組織を有しているものでなけれ
ばならない。しかし一方その様なセラミツク焼結
体の機械加工性は非常に困難となる。そこでこの
問題を解消するために例えば、酸化アルミニウム
と炭化チタン主成分に快削性付与剤としてMgO,
NiO、等を主成分100重量部に対し5重量部以下
添加した材料が開発されている。(特開昭57−
135772) 〔従来技術の問題点及び目的〕 しかしこれらの従来のセラミツク基板材料は、
本来の酸化アルミニウム結晶粒子の成長を抑制す
る手段としてMgO,NiOおよびCr2O3の1種若し
くは2種以上を約1.0重量%以下添加するのに比
べて快削性付与剤の添加量が多い。そのため混合
の際に、酸化マグネシウムの水酸化物の生成など
により均一に分散することなく凝固しやすくその
結果、セラミツク焼結体の組織が不均一になり易
く、その場合しかもデイスクヘツドスライダのト
ラツク幅に合わせて精密機械加工する際にエツジ
部の欠けが生じ易いという問題がある。 本願発明は、上記諸問題を解消する磁気ヘツド
(スライダ)用基板を製造する為のセラミツク材
料を提供せんとする。 〔発明の構成概要〕 本発明のアルミナ系磁気ヘツド用基板材料は、
TiO2/(TiC+TiO2)の百分率が5〜15重量%
であるチタニウム化合物30〜40重量%及び残部
Al2O3から成る基本成分100重量部と、所定重量
部の下記A,B,C成分(但しA,B成分の配合
比は第1図のKLMNで囲まれる範囲内)と、全
組成に対し0.2重量部以下の酸化物系不純物とか
ら成り、平均結晶粒径1.3μm以下、面積気孔率0.5
%以下、曲げ強さ70Kg/mm2以上、硬さHRR93.0以
上である緻密焼結体から成ることを特徴とする: A成分=RO・Al2O3(R=Mg、Mn、Ni、Co
の1種以上)で表わされるスピネルの1種以上
2.0〜17.5重量部、 B成分=ZrO2精密加工性付与剤0.2〜2.0重量
部、 C成分=Y2O3 0.05〜2重量部。 この緻密焼結体中には、Al2O3、TiC、TiO2、
Y2O3、ZrO2、スピネルが均一分散し平均結晶粒
径が0.7〜1.3μmでありかつ全焼焼結体の構成結晶
粒子数の90%以上が0.7〜1.3μmの範囲内にあるこ
とが好ましい。 上記緻密焼結体からなる基板材料は、平均粒径
1.5μm以下のTiC、TiO2、平均粒径1.0μm以下の
Al2O3、平均粒径各1μm以下の前記A,B,C成
分を前記緻密焼結体の組成比に配合して成る混合
粉末を焼結することにより得られる。なお出発物
質の平均粒径が上記より大きくなると、均一分散
が困難となり、焼結体の結晶粒径が規定値をこえ
る。 なお、前記スピネル/ZrO2比(A/B比)は、
第1図KLMNに囲まれた範囲にする必要がある。 焼結は、加圧焼結により、例えばホツトプレス
又は熱間静水圧加圧焼結(HIP)で行うことがで
き、焼結温度は1350〜1650℃、圧力は凡そ150〜
300Kg/cm2(HIP法による場合は500Kg/cm2以上)に
て所定時間焼結することにより、所定焼結体を得
ることができる。上記焼結条件では、例えば0.5
〜2時間の焼結が好ましい。本発明の基板材料
は、アルミナ系セラミツク焼結体を基に所定の緻
密性を付与すると共におもに精密加工性、易加工
性、靭性及び耐摩耗性を改善したものである。 〔好適な実施の態様〕 以下本発明を実験に基づいて説明する。 <実験 1> (a) 実験方法及び結果 純度99.9%、平均粒子径0.3μmのα−Al2O3、
純度99.50%、平均粒子径0.5μmのTiC、TiO2
及びY2O3並びびにMgO・Al2O3、MnO・
Al2O3、NiO・Al2O3、CoO・Al2O3、などのス
ピネルとZrO2を各種配合したものをボールミ
ル混合機により、20時間湿式混合粉砕を行なつ
た後、これを充分に乾燥して焼結用原料とし、
50×50mm角、高さ60mmの黒鉛型内に上記各種焼
結用原料を充填すると共に、高周波コイルに挿
入し、非酸化性雰囲気にて1350℃〜1810℃の範
囲内で各所定温度にて200Kg/cm2の圧力を加え60
分間保持し、次いで圧力を抜いた後、室温まで
放冷し、50×50×5.5mmの目的の焼結体を得た。
〔TiO2/(TiC+TiO2〕×100=10重量%で
MgO・Al2O33.5重量部と一定とし、Y2O3添加
量による影響を、第1表に示す。第1表は焼結
体の相対理論密度を99.5%以上とするに必要な
(最低)焼結温度を示す。 第2表は第1表中焼結体においてY2O30.25重
量部の各焼結体を50×50×4.5mmに研削仕上げし
て、その研削性能試験を行なつた。この場合の試
験条件は次の通りである。即ち、各種試験片を冶
具で固定し、これに滑車を介して0.95Kgの錘をつ
け、レジンダイヤモンド切断砥石にて錘の力によ
り50mm長さを切断するに要する時間を調べた。 次にY2O3=0.25重量部、TiO2/(TiC+TiO2)
=10重量%と一定にし、TiC+TiO2が20,30,
40,50、重量%時のMgO・Al2O3、CoO・
Al2O3、MnO・Al2O3、NiO・Al2O3を1.75〜19
重量部添加した第3表に示す混合粉末を1620℃以
下で200Kg/cm2、60分保持で相対理論密度99.5%以
上の50×50×5.5mmの焼結体を得た。 この焼結体を50×50×4.5mmに研削仕上げし、
第2表で求めた同一方法で各種焼結体の加工性
(切断時間)を求めその結果を第3表に示す。 第4表はY2O3=0.25重量部、TiO2/TiC+
TiO2=10重量%、TiC+TiO2=35重量%一定と
して、快削性付与剤としてのスピネルMgO・
Al2O3、CoO・Al2O3、MnO・Al2O3・NiO・
Al2O3の添加量と耐摩耗性及び精密加工性付与剤
としてのZrO2添加量の影響を調べた結果を示す。
試験片は第4表配合混合粉末を1620℃以下の焼結
温度にて、200Kg/cm2、60分保持のホツトプレス条
件で対理論密度99.5%以上となる様に焼結したも
ので、50×50×4.5mmに研削仕上げされた試験片
の加工性(切断時間)を第2表と同一条件で求め
たものである。 <考察> 配合原料の組成、量比がホツトプレス焼結に及
ぼす関係は、第1表よりY2O3については、Y2O3
を添加するにつれ、ホツトプレス焼結温度が低く
なつて行く傾向があり、その効果は0.05重量部以
上からみられる。しかしながらY2O3が2重量部
を越えると、焼結体の組織に結晶粒が部分的に異
常粒成長した異常部がみられるところから、2重
量部以下とする必要がある。TiO2+TiCの配合
については、TiO2/(TiC+TiO2)の百分率が
15重量%を超えると黒鉛型との反応が著しくなり
正常な焼結体を得ることが困難となる。また5重
量%未満ではAl2O3−TiC−TiO2系の焼結が充分
に行なわれない傾向がある。これは15重量%位ま
ではTiC原料中のフリーカーボンと反応及び他成
分との反応で焼結性に有意義であるが、TiO2/
(TiC+TiO2)の百分率があまり大きくなりすぎ
るとTiCを酸化させTiC結晶粒が粗大化する為で
あると思われる。 また焼結温度は1650℃を上回ると粒子の成長が
著しく増し、最終焼結生成物中の粒度が平均粒度
で1.3μmを上回り、したがつて、焼結体を精密加
工する際、被成形品に劣化がみられるところか
ら、焼結温度は1650℃以下であることが必要であ
り、また焼結温度1350℃未満では焼結が不十分で
あり好ましくは1600℃以下とすることがよく、平
均結晶粒径が1μm以下でしかも超精密加工に適し
た材料を得ることができる。 第2表に示す研削性能(切断時間の調査)か
ら、(TiC+TiO2)の量が増えるに従い研削性能
の向上がみられる。特に30重量%以上でその効果
は大となる。 また第3表に示す各種の快削性付与剤は、一般
には粒成長抑制兼焼結促進剤と呼ばれる酸化物を
含むスピネルであり、これをTiO2/(TiC+
TiO2)×100を10重量%一定とし、(TiC+TiO2)
配合割合を研削性能が優れている範囲)20,30,
40重量%とし、かつY2O30.25重量部一定、ZrO2
=0.3重量部一定の条件のもとに快削性付与剤の
添加量を変化させた場合の研削性をみた場合、
MgO・Al2O3、CoO・Al2O3、MnO・Al2O3、
NiO・Al2O3が各々2.0重量部以上になると急に研
削性がよくなることがわかる。また添加量が17.5
重量部を越えると研削性はよくなるが切断面に欠
けを生じ易くなる。これは焼結粒子形が大きくな
り結晶粒子間の結合力が弱くなる為と考えられ
る。そこでこれらの快削性付与剤は2.0〜17.5重
量部(より好ましくは2.0〜10.5重量部)添加す
ることが望ましい。(TiC+TiO2)20%ではその
効果は余りみられず30重量%〜40重量%で効果が
大きい。 第4表は〔TiO2/(TiC+TiO2)〕×100を10重
量%一定、(TiO2+TiC)=35重量%一定、Y2O3
を0.25重量部一定にし、快削性付与剤とZrO2量を
変化させた場合の研削性を示す。第4表におい
て、ZrO2量が増加するに従い研削性が悪くなつ
て行くことがわかる。しかしこの傾向も快削性付
与剤量との関係があり、スピネル/ZrO2の配合
比が第1図のKLMNで囲まれる範囲で添加され
れば、快削性能に大きな影響を及ぼすことがない
事がわかつた。 また第4表に示した各種配合成分の材料におい
て、本発明範囲外のZrO2が0.1重量部でかつスピ
ネルが1.75及び19重量部の研削性は本発明範囲の
材料より優れた研削性を示し(特に19重量部)て
いるが、これらはいづれも平均結晶粒径が比較的
に大であり、かつ曲げ強さ及び硬さ(HRA)が
本発明範囲の材料より劣るために研削性において
は優れている。しかしながらこれら範囲外品はい
づれも精密加工性が劣りまた気孔率も比較的に大
であるため本発明の用途を満足しない場合が多く
なる。 なお研削性が100秒未満であれば精密加工する
場合の加工コストが経済的範囲内であるが、100
秒をオーバーすると加速度的に加工コストが上昇
することが判明した。 即ちRO・Al2O3とZrO2配合量を限定した第1
図のKLMNでかこまれる範囲内の材料(K、L、
M、N点を含む)の精密加工性を調査した結果、
いづれも第2図aの本発明材料と同等以上のシヤ
ープなエツヂを示したが、KLMN枠外の材料に
ついて第2図aの本発明材料より劣り、エツヂ部
の状態が第2図bの状態に近づく事を確かめた。
なお、K、L、M、N点の座標は次の通りであ
る。 K (0.2、10.5) L (0.2、2.0) M (2.0、7.0) N (2.0、17.5) 平均結晶粒径は1.3μmを越えて大きくなる程、
材料強度が低下する傾向があり、かつ結晶粒成長
と共に組織内に含まれるマイクロポアが集まり比
較的に大きなポアを与える傾向があるため、精密
加工時の割れや微少欠け等が発生しやすく超精密
加工製品が得られなくなる他比較的大きなポアに
よる欠点が発生する。 比較的大きなポアの存在は微少欠け発生により
精密加工が困難となるばかりでなく、磁気記録媒
体との摺動により庇発生の恐れがあり、又ポア内
に蓄積された磁性粉により磁気記録データがドロ
ツプアウトする可能もあり、さけなければならな
い。 また結晶粒径は均一微細である程好ましいが、
結晶粒の均一性については少なくとも90%が0.5
〜1.3μmの範囲にそろつているのが良く、特に
1.3μmを超える粗大粒が多くなり10%を超えると
精密加工時に粗大粒の脱落あるいは微少欠けの発
生原因となり好ましくない。 材料強度は、曲げ強さで70Kg/mm2以上あること
が切断及び超精密加工を行なう際に割れやエツジ
部の欠け防止、或いは組織のプールアウト(脱
落)の防止等のため必要である。面積気孔率は
0.5%をこえるとポアの数が多くなり材料強度が
低下する一方精密加工性が劣ることになるので
0.5%以下、好ましくは0.4%以下とする。曲げ強
さは、70Kg/mm2より低いと精密加工時の割れや微
少欠け、エツジ欠け等が生じ易いので70Kg/mm2以
上、好ましくは75Kg/mm2以上とする。硬さHRAは
93.0より低いと耐摩耗性が不足し、磁気記録媒体
との摺動により庇が生じ易くなるので93.0以上が
必要であり、好ましくは93.5以上とする。 <実験 > 純度99.9重量%、平均粒子0.3μmのα−Al2O3、
純度99.5重量%、平均粒子径0.5μmのTiC、TiO2
及びY2O3、ZrO2並びにMgO・Al2O3等の焼結促
進剤及び快削性付与剤をそれぞれ各種配合したも
のをボールミル混合機により20時間湿式混合粉砕
を行つた後、これを充分に乾燥して焼結用原料と
し、50×50mm角、高さ60mmの黒鉛型内に上記各種
焼結用原料を充填すると共に、高周波コイルに挿
入し、非酸化性雰囲気で1350℃〜1600℃の温度範
囲内で各所定温度にて200Kg/cm2の圧力を加え60分
間保持し、次いで圧力を抜いて放冷する事により
50×50×5.5mmの目的の焼結体を得た。なお
TiO2/(TiC+TiO2)×100=10重量%でホツト
プレス法によつて相対理論密度を少なくとも99.5
%以上となる様にした。 また配合は(TiC+TiO2)=35重量%とAl2O3
=65重量%との100重量部に対し、Y2O3、
MgO・Al2O3、ZrO2等を第5表に示すように配
合添加した。 次いでこの様にして得た焼結体をダイヤモンド
砥石にて、第3図に示す形状に成形した。 一方φ45−φ10×10mmに成形されたドーナツ型
デイスクのフエライトと組み合わせて、ピン−デ
イスク方式の摩擦試験を行なつた。第4図にその
試験方法を示す。第4図において、(Al2O3−TiC
系)を本発明の実施例及び比較例試験片(Al2O3
−TiC系)をデイスク表面に当接して固定し、デ
スクを回転させ互いに接触した状態で荷重(W)
を加え、その時の摩耗量と摩擦係数を測定した。 試験条件を次に示す。 荷 重 0.95Kg 摩擦速度 191.7m/min 第5表に12000m後のその結果を示す。 <実験 > 次に実験の方法にて得られた焼結体 100〔35(TiC+TiO2)−65Al2O3〕−3.5MgO・
Al2O3−0.25Y2O3−0.3ZrO2と 100〔35(TiC+TiO2)−65Al2O3〕−1.0MgO−
0.25Y2O3 を#400ダイヤモンド砥石を用いて50×50×4.5mm
の寸法に研削仕上げを行ない、次にレジンダイヤ
モンド切断砥石を用いて5mm/minの条件で切断
した時の試料切断角部の状態を第2図に示す。 〔考察〕 TiO2/(TiC+TiO2)百分率を10重量%とし
て、〔(TiC+TiO2)35重量%+Al2O365重量%)〕
100重量部に対しY2O3量0.25重量部一定にして快
削性付与剤としてMgO・Al2O3とMgOを添加し
たもの、更にZrO2を添加したものとフエライト
と接した場合の耐摩耗性を比較するとMgO・
Al2O3とZrO2を添加したものが優れていることが
わかる。また摩擦係数も小さい。このことは磁気
ヘツドスライダ材料の要求される重要な特性の1
つである。 次に、TiC−TiO2−Al2O3焼結体をダイヤモン
ド切断砥石で切断した時の状態を2図に示すが切
断部の角部はMgO・Al2O3−ZrO2を添加したも
のはシヤープな形状をしており、精密加工性に優
れている事がわかる。 <実験 > 純度99.9重量%、平均粒子径0.3μmのα−
Al2O3、純度99.5重量%、平均粒子径0.5μmの
TiC、TiO2、Y2O3、MgO、MgO・Al2O3、ZrO2
の焼結促進剤及び快削性付与剤、摩耗特性改善付
与剤をそれぞれ各配配合したものをボールミル混
合機により20時間湿式混合粉砕を行つた後、これ
を充分に乾燥して焼結用原料とし、50×50mm角、
高さ60mmの黒鉛型に上記各種焼結用原料を充填す
ると共に、高周波コイルに挿入し、非酸化性雰囲
気にて1350℃〜1600℃の温度にて200Kg/cm2の圧力
を加え60分間保持し、次いで圧力を抜いて放冷す
る事により相対理論密度が99.5%以上の50×50×
5.5mmの目的の焼結体を得た。尚TiO2/(TiC+
TiO2)×100=10重量%一定、Y2O3量0.25重量部
一定とした。 次に焼結体を4×8×25mmに切断研摩し、第6
表に示す諸特性を測定した。尚試料番号6はホツ
トプレスにて相対理論密度が95%になるまで焼結
した後熱間等方加圧焼結法(HIP)にて、1450
℃、1800Kg/cm2アルゴンガス雰囲気中にて焼結し
たものである。 次に試料No.4,14の試料表面を研摩後表面の2
次電子像を第5図a及び第6図aに示し、次に同
表面のMg−Kα特性X線像をX線マイクロアナラ
イザーで観察した結果を第5図b及び第6図bに
夫々示す。 〔考察〕 試料4の組織は、平均粒子径が0.8μmと小さく
均一である。また第5図にみられる様に試料No.4
のMgは均一に分散していることがわかる。一方
試料No.14は第6図bで明らかな如くMgOが局部
的に凝集し、不均一である。これはMgOが水溶
性のものであり粉末混合後乾燥時に凝集する傾向
があるものと思われる。尚第6図aSEIに於いて
星状マーク3つは試料測定個所を固定するために
ビツカース圧子を用いて圧コンをつけたものであ
る。
材料及びその製造法に関する。 〔背景〕 従来、コンピユータ用のデイスクヘツドスライ
ダはフエライトのブロツク材料を加工して製造さ
れていたが、フエライト材では高周波透磁率が低
く、近年ではデイスクヘツドのインダクタンスを
小さくしてより高周波領域で動作させるように
し、またギヤツプ幅を小さくしてデータの高速転
送と記録密度の向上が図られている。 現状では、酸化アルミニウムと炭化チタンを主
成分としたものや炭化チタンに対して窒化チタン
を一部固溶させた複合材料が開発されている。ま
た上記主成分の他に材料の焼結性をよくする為に
酸化アルミニウムに対して効果的なMgO,CaO,
NiOなどが添加されている。 薄膜磁気ヘツドではその基板を超精密鏡面仕上
げした時に基板表面に微細な気孔さえも存在しな
いこと及びその基板の精密機械加工性が容易なこ
とが特に要求されている。そこで超精密鏡面仕上
げされた基板に微細な気孔が存在しない様にする
には、そのセラミツク混合粉末を殆ど理論密度と
なるまで焼結し、しかもセラミツク結晶粒子内の
結合が強く微細な組織を有しているものでなけれ
ばならない。しかし一方その様なセラミツク焼結
体の機械加工性は非常に困難となる。そこでこの
問題を解消するために例えば、酸化アルミニウム
と炭化チタン主成分に快削性付与剤としてMgO,
NiO、等を主成分100重量部に対し5重量部以下
添加した材料が開発されている。(特開昭57−
135772) 〔従来技術の問題点及び目的〕 しかしこれらの従来のセラミツク基板材料は、
本来の酸化アルミニウム結晶粒子の成長を抑制す
る手段としてMgO,NiOおよびCr2O3の1種若し
くは2種以上を約1.0重量%以下添加するのに比
べて快削性付与剤の添加量が多い。そのため混合
の際に、酸化マグネシウムの水酸化物の生成など
により均一に分散することなく凝固しやすくその
結果、セラミツク焼結体の組織が不均一になり易
く、その場合しかもデイスクヘツドスライダのト
ラツク幅に合わせて精密機械加工する際にエツジ
部の欠けが生じ易いという問題がある。 本願発明は、上記諸問題を解消する磁気ヘツド
(スライダ)用基板を製造する為のセラミツク材
料を提供せんとする。 〔発明の構成概要〕 本発明のアルミナ系磁気ヘツド用基板材料は、
TiO2/(TiC+TiO2)の百分率が5〜15重量%
であるチタニウム化合物30〜40重量%及び残部
Al2O3から成る基本成分100重量部と、所定重量
部の下記A,B,C成分(但しA,B成分の配合
比は第1図のKLMNで囲まれる範囲内)と、全
組成に対し0.2重量部以下の酸化物系不純物とか
ら成り、平均結晶粒径1.3μm以下、面積気孔率0.5
%以下、曲げ強さ70Kg/mm2以上、硬さHRR93.0以
上である緻密焼結体から成ることを特徴とする: A成分=RO・Al2O3(R=Mg、Mn、Ni、Co
の1種以上)で表わされるスピネルの1種以上
2.0〜17.5重量部、 B成分=ZrO2精密加工性付与剤0.2〜2.0重量
部、 C成分=Y2O3 0.05〜2重量部。 この緻密焼結体中には、Al2O3、TiC、TiO2、
Y2O3、ZrO2、スピネルが均一分散し平均結晶粒
径が0.7〜1.3μmでありかつ全焼焼結体の構成結晶
粒子数の90%以上が0.7〜1.3μmの範囲内にあるこ
とが好ましい。 上記緻密焼結体からなる基板材料は、平均粒径
1.5μm以下のTiC、TiO2、平均粒径1.0μm以下の
Al2O3、平均粒径各1μm以下の前記A,B,C成
分を前記緻密焼結体の組成比に配合して成る混合
粉末を焼結することにより得られる。なお出発物
質の平均粒径が上記より大きくなると、均一分散
が困難となり、焼結体の結晶粒径が規定値をこえ
る。 なお、前記スピネル/ZrO2比(A/B比)は、
第1図KLMNに囲まれた範囲にする必要がある。 焼結は、加圧焼結により、例えばホツトプレス
又は熱間静水圧加圧焼結(HIP)で行うことがで
き、焼結温度は1350〜1650℃、圧力は凡そ150〜
300Kg/cm2(HIP法による場合は500Kg/cm2以上)に
て所定時間焼結することにより、所定焼結体を得
ることができる。上記焼結条件では、例えば0.5
〜2時間の焼結が好ましい。本発明の基板材料
は、アルミナ系セラミツク焼結体を基に所定の緻
密性を付与すると共におもに精密加工性、易加工
性、靭性及び耐摩耗性を改善したものである。 〔好適な実施の態様〕 以下本発明を実験に基づいて説明する。 <実験 1> (a) 実験方法及び結果 純度99.9%、平均粒子径0.3μmのα−Al2O3、
純度99.50%、平均粒子径0.5μmのTiC、TiO2
及びY2O3並びびにMgO・Al2O3、MnO・
Al2O3、NiO・Al2O3、CoO・Al2O3、などのス
ピネルとZrO2を各種配合したものをボールミ
ル混合機により、20時間湿式混合粉砕を行なつ
た後、これを充分に乾燥して焼結用原料とし、
50×50mm角、高さ60mmの黒鉛型内に上記各種焼
結用原料を充填すると共に、高周波コイルに挿
入し、非酸化性雰囲気にて1350℃〜1810℃の範
囲内で各所定温度にて200Kg/cm2の圧力を加え60
分間保持し、次いで圧力を抜いた後、室温まで
放冷し、50×50×5.5mmの目的の焼結体を得た。
〔TiO2/(TiC+TiO2〕×100=10重量%で
MgO・Al2O33.5重量部と一定とし、Y2O3添加
量による影響を、第1表に示す。第1表は焼結
体の相対理論密度を99.5%以上とするに必要な
(最低)焼結温度を示す。 第2表は第1表中焼結体においてY2O30.25重
量部の各焼結体を50×50×4.5mmに研削仕上げし
て、その研削性能試験を行なつた。この場合の試
験条件は次の通りである。即ち、各種試験片を冶
具で固定し、これに滑車を介して0.95Kgの錘をつ
け、レジンダイヤモンド切断砥石にて錘の力によ
り50mm長さを切断するに要する時間を調べた。 次にY2O3=0.25重量部、TiO2/(TiC+TiO2)
=10重量%と一定にし、TiC+TiO2が20,30,
40,50、重量%時のMgO・Al2O3、CoO・
Al2O3、MnO・Al2O3、NiO・Al2O3を1.75〜19
重量部添加した第3表に示す混合粉末を1620℃以
下で200Kg/cm2、60分保持で相対理論密度99.5%以
上の50×50×5.5mmの焼結体を得た。 この焼結体を50×50×4.5mmに研削仕上げし、
第2表で求めた同一方法で各種焼結体の加工性
(切断時間)を求めその結果を第3表に示す。 第4表はY2O3=0.25重量部、TiO2/TiC+
TiO2=10重量%、TiC+TiO2=35重量%一定と
して、快削性付与剤としてのスピネルMgO・
Al2O3、CoO・Al2O3、MnO・Al2O3・NiO・
Al2O3の添加量と耐摩耗性及び精密加工性付与剤
としてのZrO2添加量の影響を調べた結果を示す。
試験片は第4表配合混合粉末を1620℃以下の焼結
温度にて、200Kg/cm2、60分保持のホツトプレス条
件で対理論密度99.5%以上となる様に焼結したも
ので、50×50×4.5mmに研削仕上げされた試験片
の加工性(切断時間)を第2表と同一条件で求め
たものである。 <考察> 配合原料の組成、量比がホツトプレス焼結に及
ぼす関係は、第1表よりY2O3については、Y2O3
を添加するにつれ、ホツトプレス焼結温度が低く
なつて行く傾向があり、その効果は0.05重量部以
上からみられる。しかしながらY2O3が2重量部
を越えると、焼結体の組織に結晶粒が部分的に異
常粒成長した異常部がみられるところから、2重
量部以下とする必要がある。TiO2+TiCの配合
については、TiO2/(TiC+TiO2)の百分率が
15重量%を超えると黒鉛型との反応が著しくなり
正常な焼結体を得ることが困難となる。また5重
量%未満ではAl2O3−TiC−TiO2系の焼結が充分
に行なわれない傾向がある。これは15重量%位ま
ではTiC原料中のフリーカーボンと反応及び他成
分との反応で焼結性に有意義であるが、TiO2/
(TiC+TiO2)の百分率があまり大きくなりすぎ
るとTiCを酸化させTiC結晶粒が粗大化する為で
あると思われる。 また焼結温度は1650℃を上回ると粒子の成長が
著しく増し、最終焼結生成物中の粒度が平均粒度
で1.3μmを上回り、したがつて、焼結体を精密加
工する際、被成形品に劣化がみられるところか
ら、焼結温度は1650℃以下であることが必要であ
り、また焼結温度1350℃未満では焼結が不十分で
あり好ましくは1600℃以下とすることがよく、平
均結晶粒径が1μm以下でしかも超精密加工に適し
た材料を得ることができる。 第2表に示す研削性能(切断時間の調査)か
ら、(TiC+TiO2)の量が増えるに従い研削性能
の向上がみられる。特に30重量%以上でその効果
は大となる。 また第3表に示す各種の快削性付与剤は、一般
には粒成長抑制兼焼結促進剤と呼ばれる酸化物を
含むスピネルであり、これをTiO2/(TiC+
TiO2)×100を10重量%一定とし、(TiC+TiO2)
配合割合を研削性能が優れている範囲)20,30,
40重量%とし、かつY2O30.25重量部一定、ZrO2
=0.3重量部一定の条件のもとに快削性付与剤の
添加量を変化させた場合の研削性をみた場合、
MgO・Al2O3、CoO・Al2O3、MnO・Al2O3、
NiO・Al2O3が各々2.0重量部以上になると急に研
削性がよくなることがわかる。また添加量が17.5
重量部を越えると研削性はよくなるが切断面に欠
けを生じ易くなる。これは焼結粒子形が大きくな
り結晶粒子間の結合力が弱くなる為と考えられ
る。そこでこれらの快削性付与剤は2.0〜17.5重
量部(より好ましくは2.0〜10.5重量部)添加す
ることが望ましい。(TiC+TiO2)20%ではその
効果は余りみられず30重量%〜40重量%で効果が
大きい。 第4表は〔TiO2/(TiC+TiO2)〕×100を10重
量%一定、(TiO2+TiC)=35重量%一定、Y2O3
を0.25重量部一定にし、快削性付与剤とZrO2量を
変化させた場合の研削性を示す。第4表におい
て、ZrO2量が増加するに従い研削性が悪くなつ
て行くことがわかる。しかしこの傾向も快削性付
与剤量との関係があり、スピネル/ZrO2の配合
比が第1図のKLMNで囲まれる範囲で添加され
れば、快削性能に大きな影響を及ぼすことがない
事がわかつた。 また第4表に示した各種配合成分の材料におい
て、本発明範囲外のZrO2が0.1重量部でかつスピ
ネルが1.75及び19重量部の研削性は本発明範囲の
材料より優れた研削性を示し(特に19重量部)て
いるが、これらはいづれも平均結晶粒径が比較的
に大であり、かつ曲げ強さ及び硬さ(HRA)が
本発明範囲の材料より劣るために研削性において
は優れている。しかしながらこれら範囲外品はい
づれも精密加工性が劣りまた気孔率も比較的に大
であるため本発明の用途を満足しない場合が多く
なる。 なお研削性が100秒未満であれば精密加工する
場合の加工コストが経済的範囲内であるが、100
秒をオーバーすると加速度的に加工コストが上昇
することが判明した。 即ちRO・Al2O3とZrO2配合量を限定した第1
図のKLMNでかこまれる範囲内の材料(K、L、
M、N点を含む)の精密加工性を調査した結果、
いづれも第2図aの本発明材料と同等以上のシヤ
ープなエツヂを示したが、KLMN枠外の材料に
ついて第2図aの本発明材料より劣り、エツヂ部
の状態が第2図bの状態に近づく事を確かめた。
なお、K、L、M、N点の座標は次の通りであ
る。 K (0.2、10.5) L (0.2、2.0) M (2.0、7.0) N (2.0、17.5) 平均結晶粒径は1.3μmを越えて大きくなる程、
材料強度が低下する傾向があり、かつ結晶粒成長
と共に組織内に含まれるマイクロポアが集まり比
較的に大きなポアを与える傾向があるため、精密
加工時の割れや微少欠け等が発生しやすく超精密
加工製品が得られなくなる他比較的大きなポアに
よる欠点が発生する。 比較的大きなポアの存在は微少欠け発生により
精密加工が困難となるばかりでなく、磁気記録媒
体との摺動により庇発生の恐れがあり、又ポア内
に蓄積された磁性粉により磁気記録データがドロ
ツプアウトする可能もあり、さけなければならな
い。 また結晶粒径は均一微細である程好ましいが、
結晶粒の均一性については少なくとも90%が0.5
〜1.3μmの範囲にそろつているのが良く、特に
1.3μmを超える粗大粒が多くなり10%を超えると
精密加工時に粗大粒の脱落あるいは微少欠けの発
生原因となり好ましくない。 材料強度は、曲げ強さで70Kg/mm2以上あること
が切断及び超精密加工を行なう際に割れやエツジ
部の欠け防止、或いは組織のプールアウト(脱
落)の防止等のため必要である。面積気孔率は
0.5%をこえるとポアの数が多くなり材料強度が
低下する一方精密加工性が劣ることになるので
0.5%以下、好ましくは0.4%以下とする。曲げ強
さは、70Kg/mm2より低いと精密加工時の割れや微
少欠け、エツジ欠け等が生じ易いので70Kg/mm2以
上、好ましくは75Kg/mm2以上とする。硬さHRAは
93.0より低いと耐摩耗性が不足し、磁気記録媒体
との摺動により庇が生じ易くなるので93.0以上が
必要であり、好ましくは93.5以上とする。 <実験 > 純度99.9重量%、平均粒子0.3μmのα−Al2O3、
純度99.5重量%、平均粒子径0.5μmのTiC、TiO2
及びY2O3、ZrO2並びにMgO・Al2O3等の焼結促
進剤及び快削性付与剤をそれぞれ各種配合したも
のをボールミル混合機により20時間湿式混合粉砕
を行つた後、これを充分に乾燥して焼結用原料と
し、50×50mm角、高さ60mmの黒鉛型内に上記各種
焼結用原料を充填すると共に、高周波コイルに挿
入し、非酸化性雰囲気で1350℃〜1600℃の温度範
囲内で各所定温度にて200Kg/cm2の圧力を加え60分
間保持し、次いで圧力を抜いて放冷する事により
50×50×5.5mmの目的の焼結体を得た。なお
TiO2/(TiC+TiO2)×100=10重量%でホツト
プレス法によつて相対理論密度を少なくとも99.5
%以上となる様にした。 また配合は(TiC+TiO2)=35重量%とAl2O3
=65重量%との100重量部に対し、Y2O3、
MgO・Al2O3、ZrO2等を第5表に示すように配
合添加した。 次いでこの様にして得た焼結体をダイヤモンド
砥石にて、第3図に示す形状に成形した。 一方φ45−φ10×10mmに成形されたドーナツ型
デイスクのフエライトと組み合わせて、ピン−デ
イスク方式の摩擦試験を行なつた。第4図にその
試験方法を示す。第4図において、(Al2O3−TiC
系)を本発明の実施例及び比較例試験片(Al2O3
−TiC系)をデイスク表面に当接して固定し、デ
スクを回転させ互いに接触した状態で荷重(W)
を加え、その時の摩耗量と摩擦係数を測定した。 試験条件を次に示す。 荷 重 0.95Kg 摩擦速度 191.7m/min 第5表に12000m後のその結果を示す。 <実験 > 次に実験の方法にて得られた焼結体 100〔35(TiC+TiO2)−65Al2O3〕−3.5MgO・
Al2O3−0.25Y2O3−0.3ZrO2と 100〔35(TiC+TiO2)−65Al2O3〕−1.0MgO−
0.25Y2O3 を#400ダイヤモンド砥石を用いて50×50×4.5mm
の寸法に研削仕上げを行ない、次にレジンダイヤ
モンド切断砥石を用いて5mm/minの条件で切断
した時の試料切断角部の状態を第2図に示す。 〔考察〕 TiO2/(TiC+TiO2)百分率を10重量%とし
て、〔(TiC+TiO2)35重量%+Al2O365重量%)〕
100重量部に対しY2O3量0.25重量部一定にして快
削性付与剤としてMgO・Al2O3とMgOを添加し
たもの、更にZrO2を添加したものとフエライト
と接した場合の耐摩耗性を比較するとMgO・
Al2O3とZrO2を添加したものが優れていることが
わかる。また摩擦係数も小さい。このことは磁気
ヘツドスライダ材料の要求される重要な特性の1
つである。 次に、TiC−TiO2−Al2O3焼結体をダイヤモン
ド切断砥石で切断した時の状態を2図に示すが切
断部の角部はMgO・Al2O3−ZrO2を添加したも
のはシヤープな形状をしており、精密加工性に優
れている事がわかる。 <実験 > 純度99.9重量%、平均粒子径0.3μmのα−
Al2O3、純度99.5重量%、平均粒子径0.5μmの
TiC、TiO2、Y2O3、MgO、MgO・Al2O3、ZrO2
の焼結促進剤及び快削性付与剤、摩耗特性改善付
与剤をそれぞれ各配配合したものをボールミル混
合機により20時間湿式混合粉砕を行つた後、これ
を充分に乾燥して焼結用原料とし、50×50mm角、
高さ60mmの黒鉛型に上記各種焼結用原料を充填す
ると共に、高周波コイルに挿入し、非酸化性雰囲
気にて1350℃〜1600℃の温度にて200Kg/cm2の圧力
を加え60分間保持し、次いで圧力を抜いて放冷す
る事により相対理論密度が99.5%以上の50×50×
5.5mmの目的の焼結体を得た。尚TiO2/(TiC+
TiO2)×100=10重量%一定、Y2O3量0.25重量部
一定とした。 次に焼結体を4×8×25mmに切断研摩し、第6
表に示す諸特性を測定した。尚試料番号6はホツ
トプレスにて相対理論密度が95%になるまで焼結
した後熱間等方加圧焼結法(HIP)にて、1450
℃、1800Kg/cm2アルゴンガス雰囲気中にて焼結し
たものである。 次に試料No.4,14の試料表面を研摩後表面の2
次電子像を第5図a及び第6図aに示し、次に同
表面のMg−Kα特性X線像をX線マイクロアナラ
イザーで観察した結果を第5図b及び第6図bに
夫々示す。 〔考察〕 試料4の組織は、平均粒子径が0.8μmと小さく
均一である。また第5図にみられる様に試料No.4
のMgは均一に分散していることがわかる。一方
試料No.14は第6図bで明らかな如くMgOが局部
的に凝集し、不均一である。これはMgOが水溶
性のものであり粉末混合後乾燥時に凝集する傾向
があるものと思われる。尚第6図aSEIに於いて
星状マーク3つは試料測定個所を固定するために
ビツカース圧子を用いて圧コンをつけたものであ
る。
【表】
【表】
【表】
【表】
かめた。
【表】
【表】
また試料No.6にみられる様に本発明組織の焼結
法としてHIP法も有効であり、他の快削性付与剤
としてMnO・Al2O3、NiO・Al2O3、CoO・
Al2O3を配合した材料についても本発明組成範囲
のHIP品を調査した結果、平均結晶粒子径は
1.3μm以下であり、磁気ヘツド(スライダ)用基
板材料として有効であることを確認した。第7図
は試料4の破断面組織写真を示す。
法としてHIP法も有効であり、他の快削性付与剤
としてMnO・Al2O3、NiO・Al2O3、CoO・
Al2O3を配合した材料についても本発明組成範囲
のHIP品を調査した結果、平均結晶粒子径は
1.3μm以下であり、磁気ヘツド(スライダ)用基
板材料として有効であることを確認した。第7図
は試料4の破断面組織写真を示す。
第1図はB成分(ZrO2、横軸)と、A成分
(スピネル、縦軸)との重量割合を示すグラフ、
第2図a,bは、夫々本発明の一実施例及び比較
例の切断面を示す写真(200倍)、第3図は、摩耗
量、摩擦係数測定のための試験片の形状を示す斜
視図、第4図は、第3図の試験片を用いた測定試
験装置の概略図、第5図は、本発明の一実施例
(第6表試料No.4)の研摩後試料表面の2次電子
像写真a、及び同一部のMg特性X線像写真bを
示す。第6図は、比較例(第6表試料No.14)の研
摩後試料表面のSEI2次電子像写真a、及び同一
部のMg特性X線像を示す。第7図は、本発明の
実施例(試料No.4)の走査型電子顕微鏡による破
断面組織写真を示す。
(スピネル、縦軸)との重量割合を示すグラフ、
第2図a,bは、夫々本発明の一実施例及び比較
例の切断面を示す写真(200倍)、第3図は、摩耗
量、摩擦係数測定のための試験片の形状を示す斜
視図、第4図は、第3図の試験片を用いた測定試
験装置の概略図、第5図は、本発明の一実施例
(第6表試料No.4)の研摩後試料表面の2次電子
像写真a、及び同一部のMg特性X線像写真bを
示す。第6図は、比較例(第6表試料No.14)の研
摩後試料表面のSEI2次電子像写真a、及び同一
部のMg特性X線像を示す。第7図は、本発明の
実施例(試料No.4)の走査型電子顕微鏡による破
断面組織写真を示す。
Claims (1)
- 【特許請求の範囲】 1 TiO2/(TiC+TiO2)の百分率が5〜15重
量%であるチタニウム化合物30〜40重量%及び残
部Al2O3から成る基本成分100重量部と、所定重
量部の下記A,B,C成分(但しA,B成分の配
合比は第1図のKLMNで囲まれる範囲内)と、
全組成に対し0.2重量部以下の酸化物系不純物と
から成り、平均結晶粒径1.3μm以下、面積気孔率
0.5%以下、曲げ強さ70Kg/mm2以上、硬さHRA93.0
以上である緻密焼結体から成るアルミナ系磁気ヘ
ツド用基板材料: A成分=RO・Al2O3(R=Mg,Mn,Ni,Co
の1種以上)で表わされるスピネルの1種以上
2.0〜17.5重量部、 B成分=ZrO2 0.2〜2.0重量部、 C成分=Y2O3 0.05〜2重量部。 2 Al2O3、TiC、TiO2、Y2O3、ZrO2、スピネ
ルが均一に分散し平均結晶粒径が0.5〜1.3μmであ
りかつ全焼結体の構成結晶粒子数の90%以上が
0.7〜1.3μmの範囲内にある特許請求の範囲第1項
記載の基板材料。 3 平均粒径1.5μm以下のTiC、TiO230〜40重量
%〔但しTiO2/(TiC+TiO2)の百分率が5〜
15重量%〕及び残部平均粒径1.0μm以下のAl2O3
から成る基本成分粉末100重量部と、下記A,B,
C成分粉末(但しA,B成分の配合比は第1図の
KLMNで囲まれる範囲内)各所定重量部とから
成る混合物(但し、全混合物中の酸化物系不純物
が0.2重量%以下)から成る出発原料を焼結する
ことを特徴とするアルミナ系磁気ヘツド用基板材
料の製造方法: A成分=RO・Al2O3(R=Mg,Mn,Ni,Co
の1種以上)で表わされるスピネルの1種以上
2.0〜17.5重量部、 B成分=ZrO2 0.2〜2.0重量部、 C成分=Y2O3 0.05〜2重量部。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59088128A JPS60231308A (ja) | 1984-05-01 | 1984-05-01 | アルミナ系磁気ヘッド用基板材料及びその製造方法 |
US06/728,223 US4598052A (en) | 1984-05-01 | 1985-04-29 | Alumina base substrate of recording head and process for the production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59088128A JPS60231308A (ja) | 1984-05-01 | 1984-05-01 | アルミナ系磁気ヘッド用基板材料及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60231308A JPS60231308A (ja) | 1985-11-16 |
JPH046083B2 true JPH046083B2 (ja) | 1992-02-04 |
Family
ID=13934275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59088128A Granted JPS60231308A (ja) | 1984-05-01 | 1984-05-01 | アルミナ系磁気ヘッド用基板材料及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US4598052A (ja) |
JP (1) | JPS60231308A (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752850A (en) * | 1984-06-06 | 1988-06-21 | Hitachi, Ltd. | Multi-track magnetic thin film heads |
JPS6174103A (ja) * | 1984-09-20 | 1986-04-16 | Hitachi Metals Ltd | 磁気記録装置 |
JPS6222411A (ja) * | 1985-07-22 | 1987-01-30 | Hitachi Metals Ltd | 非磁性基板材料及び磁気ヘツド |
US4777074A (en) * | 1985-08-12 | 1988-10-11 | Sumitomo Special Metals Co., Ltd. | Grooved magnetic substrates and method for producing the same |
JPS6288137A (ja) * | 1985-10-14 | 1987-04-22 | Sumitomo Special Metals Co Ltd | 磁気ディスク用基板の製造方法 |
JPH0622053B2 (ja) * | 1986-04-23 | 1994-03-23 | 住友特殊金属株式会社 | 基板材料 |
JPS62278164A (ja) * | 1986-05-26 | 1987-12-03 | 住友特殊金属株式会社 | 磁気ヘツド・スライダ用材料 |
US4902651A (en) * | 1986-06-20 | 1990-02-20 | Sumitomo Special Metals, Co. | Material for magnetic head substrate member |
JPH062617B2 (ja) * | 1986-06-25 | 1994-01-12 | ティーディーケイ株式会社 | 磁気ヘッドスライダ用セラミック材料 |
JPS6339115A (ja) * | 1986-08-04 | 1988-02-19 | Tohoku Metal Ind Ltd | 薄膜磁気ヘツド用基板材料 |
JPS6390016A (ja) * | 1986-10-01 | 1988-04-20 | Tokin Corp | 薄膜磁気ヘツド用基板材料 |
US5246893A (en) * | 1988-02-29 | 1993-09-21 | Kyocera Corporation | Ceramic sintered body and process for preparation thereof |
JP2591050B2 (ja) * | 1988-03-31 | 1997-03-19 | 日産自動車株式会社 | アンチスキッド制御装置 |
US5060098A (en) * | 1988-04-18 | 1991-10-22 | Hitachi, Ltd. | Magnetic recorder provided with a magnetic head slider having a non-magnetic oxide of spinel structure |
US5031064A (en) * | 1988-09-17 | 1991-07-09 | Tokin Corporation | Magnetic head having a slider member characterized by improved wear resistance |
JPH05117023A (ja) * | 1991-10-25 | 1993-05-14 | Nec Corp | 磁気ヘツド用非磁性基板および磁気ヘツド |
EP0540227A1 (en) * | 1991-10-29 | 1993-05-05 | Minnesota Mining And Manufacturing Company | Non-conductive aluminum oxide-titanium carbide (Al2O3-TiC), method of making same, and slider element incorporating same |
JP4765719B2 (ja) * | 2005-06-27 | 2011-09-07 | Tdk株式会社 | 焼結体、磁気ヘッドスライダ、及び焼結体の製造方法 |
JP5228850B2 (ja) * | 2008-11-28 | 2013-07-03 | Tdk株式会社 | 焼結体 |
JP5062152B2 (ja) * | 2008-11-28 | 2012-10-31 | Tdk株式会社 | 焼結体の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130847A (en) * | 1977-03-31 | 1978-12-19 | International Business Machines Corporation | Corrosion resistant thin film head assembly and method for making |
US4251841A (en) * | 1979-06-01 | 1981-02-17 | International Business Machines Corporation | Magnetic head slider assembly |
JPS56140069A (en) * | 1980-03-29 | 1981-11-02 | Nippon Tungsten | Ceramic sintered body and manufacture |
-
1984
- 1984-05-01 JP JP59088128A patent/JPS60231308A/ja active Granted
-
1985
- 1985-04-29 US US06/728,223 patent/US4598052A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60231308A (ja) | 1985-11-16 |
US4598052A (en) | 1986-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH046083B2 (ja) | ||
US4650774A (en) | Magnetic head slider material | |
JPH0622053B2 (ja) | 基板材料 | |
US4814915A (en) | Magnetic head slider and material therefor | |
US4902651A (en) | Material for magnetic head substrate member | |
US5302560A (en) | Process for the production of magnetic head sliders | |
JP3039908B2 (ja) | 低浮上性を有する磁気ヘッド用基板材料 | |
JP3039909B2 (ja) | 磁気ヘッド用基板材料 | |
US5432016A (en) | Magnetic head slider material | |
JPH04321556A (ja) | セラミックス材料及びその製造方法 | |
JP2968736B2 (ja) | 磁気ヘッドスライダ用セラミック材料 | |
JPH0262511B2 (ja) | ||
JP2554604B2 (ja) | 磁気ヘッドスライダ用セラミック材料 | |
JP2513260B2 (ja) | アルミナ基セラミックス製薄膜ヘッド基板 | |
JP2699104B2 (ja) | A1▲下2▼O▲下3▼‐TiC系セラミック材料 | |
JPH04321555A (ja) | セラミックス材料及びその製造方法 | |
JPH0255390B2 (ja) | ||
JP2949297B2 (ja) | 磁気ヘッド用磁器組成物 | |
JPH0543311A (ja) | セラミツクス材料及び薄膜磁気ヘツド用セラミツクス基板 | |
JPH062617B2 (ja) | 磁気ヘッドスライダ用セラミック材料 | |
JPS63134559A (ja) | 磁気ヘツド用非磁性セラミツクス | |
JP2699093B2 (ja) | 薄膜磁気ヘッド用セラミック材料 | |
JP3591791B2 (ja) | 磁気ヘッド用非磁性セラミックスの製造方法 | |
JPS6150906B2 (ja) | ||
JPH062618B2 (ja) | 磁気ヘッドスライダ用セラミック材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |