JP6901996B2 - 貫通型積層セラミックコンデンサ - Google Patents

貫通型積層セラミックコンデンサ Download PDF

Info

Publication number
JP6901996B2
JP6901996B2 JP2018100457A JP2018100457A JP6901996B2 JP 6901996 B2 JP6901996 B2 JP 6901996B2 JP 2018100457 A JP2018100457 A JP 2018100457A JP 2018100457 A JP2018100457 A JP 2018100457A JP 6901996 B2 JP6901996 B2 JP 6901996B2
Authority
JP
Japan
Prior art keywords
external electrode
sides
capacitor body
thickness
height direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018100457A
Other languages
English (en)
Other versions
JP2018152594A (ja
Inventor
知彦 財満
知彦 財満
伸 中安
伸 中安
隆 笹木
隆 笹木
不器男 木下
不器男 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of JP2018152594A publication Critical patent/JP2018152594A/ja
Application granted granted Critical
Publication of JP6901996B2 publication Critical patent/JP6901996B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は、貫通型積層セラミックコンデンサに関する。
前記貫通型積層セラミックコンデンサに関連し、後記特許文献1には、図1に示したような貫通型積層セラミックコンデンサ100(以下単に貫通型コンデンサ100と言う)が開示されている。
この貫通型コンデンサ100は、長さL11>幅W11>高さH11の条件を満足する略直方体状を成しており、これら長さL11、幅W11及び高さH11よりも僅かに小さな長さ、幅及び高さで規定された略直方体状のコンデンサ本体101と、コンデンサ本体101の長さ方向一端部に設けられた第1外部電極102と、コンデンサ本体101の長さ方向他端部に設けられた第2外部電極103と、コンデンサ本体101の幅方向一端部の略中央に設けられた第3外部電極104と、コンデンサ本体101の幅方向他端部の略中央に設けられた第4外部電極105とを有している。
また、コンデンサ本体101内には、複数の第1内部電極層(図示省略)と複数の第2内部電極層(図示省略)とが誘電体層(図示省略)を介して高さ方向に交互に積層された容量部が設けられている。複数の第1内部電極層の一端部は第1外部電極102に接続され、且つ、他端部は第2外部電極103に接続されており、複数の第2内部電極層の一端部は第3外部電極104に接続され、且つ、他端部は第4外部電極105に接続されている。
ところで、この種の貫通型積層セラミックコンデンサに対しては依然として小型化及び薄型化が要求されており、とりわけ薄型化に関しては回路基板に搭載するときの強度が懸念されている。以下に図1を用いてこの点について説明する。
図1に示した従前の貫通型コンデンサ100は、一般に、部品供給場所において高さ方向一面又は他面の中心(図1(A)の+印を参照)又はその近傍を吸着ノズルによって吸着された後に搬送され、搬送後に回路基板、例えば表面実装を可能とした回路基板(部品実装基板)や、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)等に搭載される。
しかしながら、図1に示した従前の貫通型コンデンサ100は前記搭載時において吸着ノズルから直接コンデンサ本体101に荷重が加わる構造にあるため、この荷重によってコンデンサ本体101に亀裂が生じる懸念がある。この亀裂は、その大小を問わず、コンデンサ本体101内への水分浸入を許容するものであるため、浸入した水分によって第1内部電極層と第2内部電極層が腐食して能力低下を生じる蓋然性が高くなると共に、第1内部電極層と第2内部電極層とが短絡して機能障害を生じる蓋然性が高くなる。
特開2008−294298号公報
本発明の課題は、回路基板に搭載するときの強度向上が図れる貫通型積層セラミックコンデンサを提供することにある。
前記課題を解決するため、本発明に係る貫通型積層セラミックコンデンサは、長さ、幅及び高さで規定された略直方体状のコンデンサ本体内に、複数の第1内部電極層と複数の第2内部電極層とが誘電体層を介して高さ方向に交互に積層された容量部が設けられた貫通型積層セラミックコンデンサであって、(1)前記コンデンサ本体の長さ方向一端部に該コンデンサ本体の長さ方向一面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向一端部が接続された第1外部電極と、(2)前記コンデンサ本体の長さ方向他端部に該コンデンサ本体の長さ方向他面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向他端部が接続された第2外部電極と、(3)前記コンデンサ本体の長さ方向中央部に前記第1外部電極及び前記第2外部電極と非接触下で該コンデンサ本体の高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記幅方向両面の一部を覆う部分の一方に前記複数の第2電極層の幅方向一端部が接続され、且つ、他方に前記複数の第2電極層の幅方向他端部が接続された4角筒状の第3外部電極と、を備えており、(4)前記貫通型積層セラミックコンデンサを高さ方向からみたときの前記第1外部電極の前記コンデンサ本体の長さに沿う寸法をE1とし、前記第2外部電極の前記コンデンサ本体の長さに沿う寸法をE2とし、前記第3外部電極の前記コンデンサ本体の長さに沿う寸法をE3としたとき、前記寸法E1と前記寸法E3はE1<E3の条件を満足し、且つ、前記寸法E2と前記寸法E3はE2<E3の条件を満足している。
本発明によれば、回路基板に搭載するときの強度向上が図れる貫通型積層セラミックコンデンサを提供することができる。
図1(A)は従前の貫通型積層セラミックコンデンサの高さ方向一面を示す図、図1(B)は同幅方向一面を示す図である。 図2(A)は本発明の第1実施形態に係る貫通型積層セラミックコンデンサの高さ方向一面を示す図、図2(B)は同幅方向一面を示す図である。 図3(A)はコンデンサ本体に内蔵された第1内部電極層の形状を示す図、図3(B)はコンデンサ本体に内蔵された第2内部電極層の形状を示す図である。 図4は図2(A)のS1−S1線に沿う拡大断面図である。 図5は図2(B)のS2−S2線に沿う拡大断面図である。 図6は図2(B)のS3−S3線に沿う拡大断面図である。 図7は図2(A)の拡大図である。 図8(A)は本発明の第2実施形態に係る貫通型積層セラミックコンデンサの高さ方向一面を示す図、図2(B)は同幅方向一面を示す図である。 図9(A)はコンデンサ本体に内蔵された第1内部電極層の形状を示す図、図9(B)はコンデンサ本体に内蔵された第2内部電極層の形状を示す図である。 図10はコンデンサ本体の高さ方向一面を示す図である。 図11は図8(B)のS4−S4線に沿う拡大断面図である。 図12(A)は図9(A)に示した第1内部電極層の形状変形例を示す図、図12(B)は図9(A)に示した第1内部電極層の代わりに図12(A)に示した第1内部電極層を用いたコンデンサ本体の高さ方向一面を示す図10対応図である。
《第1実施形態》
先ず、図2〜図7を用いて、本発明の第1実施形態に係る貫通型積層セラミックコンデンサ10-1(以下単に貫通型コンデンサ10-1と言う)の構造及び効果等について説明する。因みに、図4及び図6には後記第1内部電極層15を5層描き、且つ、後記第2内部電極層16を5層描いているが、これは図示の都合に依るものであって後記第1内部電極層15の層数と後記第2内部電極層16の層数を制限するものではない。
図2(A)及び図2(B)に示したように、貫通型コンデンサ10-1は、長さL1>幅W1>高さH1の条件を満足する略直方体状を成しており、これら長さL1、幅W1及び高さH1よりも僅かに小さな長さ、幅及び高さで規定された略直方体状のコンデンサ本体11と、コンデンサ本体11の長さ方向一端部(図2(A)及び図2(B)の左端部)に設けられた第1外部電極12と、コンデンサ本体11の長さ方向他端部(図2(A)及び図2(B)の右端部)に設けられた第2外部電極13と、コンデンサ本体11の長さ方向中央部(図2(A)及び図2(B)の左右中央部)に第1外部電極12及び第2外部電極13と非接触下で設けられた4角筒状の第3外部電極14とを備えている。また、コンデンサ本体11の高さ方向両面及び幅方向両面のうち、第1外部電極12と第3外部電極14の間の部分11aと、第2外部電極13と第3外部電極14の間の部分11bは、それぞれ露出している(以下露出部分11a及び露出部分11bと言う)。
図4に示したように、コンデンサ本体11は、誘電体製の第1保護部PP1と、複数の第1内部電極層15と複数の第2内部電極層16とが誘電体層17を介して高さ方向に交互に積層された容量部CPと、誘電体製の第2保護部PP2とが、同順序で高さ方向に層状に並ぶように有している。各第1内部電極層15は、図3(A)に示したような略矩形状を成していて、長さ方向一端部(図3(A)の左端部)と長さ方向他端部(図3(A)の右端部)のそれぞれに、長さ方向に延びる幅狭の引出部15aを一体に有している。一方、各第2内部電極層16は、図3(B)に示したような略矩形状を成していて、幅方向一端部(図3(B)の下端部)と幅方向他端部(図3(B)の上端部)のそれぞれに、幅方向に延びる幅狭の引出部16aを一体に有している。
図4〜図6から分かるように、各第1内部電極層15の長さ方向一端部、具体的には図3(A)の左側引出部15aの左端縁は第1外部電極12の後記部分12aに電気的に接続され、各第1内部電極層の長さ方向他端部、具体的には図3(A)の右側引出部15aの右端縁は第2外部電極13の後記部分13aに電気的に接続されている。一方、各第2内部電極層16の幅方向一端部、具体的には図3(B)の下側引出部16aの下端縁は第3外部電極14の後記部分14cに電気的に接続され、各第2内部電極層16の幅方向他端部、具体的には図3(B)の上側引出部16aの上端縁は第3外部電極14の後記部分14dに電気的に接続されている。
尚、第1保護部PP1と各誘電体層17と第2保護部PP2は、組成が略同じで誘電率も略同じ誘電体セラミックスから成り、各誘電体層17の厚さは略同じである。この誘電体セラミックスには、好ましくはチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、より好ましくはε>1000又はクラス2(高誘電率系)の誘電体セラミックスを使用できる。ここでの「組成が略同じで誘電率も略同じ誘電体セラミックス」は、組成と誘電率が全く同じ場合の他、焼結度合等の関係から組成と誘電率の少なくとも一方が許容範囲内で若干異なる場合をその意味として含み、「厚さは略同じ」は厚さが全く同じ場合の他、積層時の圧縮度合等の関係から厚さが許容範囲内や製造公差内で若干異なる場合をその意味として含む。
また、各第1内部電極層15と各第2内部電極層16は、組成が略同じ良導体から成り、各第1内部電極層15と各第2内部電極層16の厚さは略同じである。この良導体には、好ましくはニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体を使用できる。ここでの「組成が略同じ良導体」は組成が全く同じ場合の他、焼結度合等の関係から組成が許容範囲内で若干異なる場合をその意味として含み、「厚さは略同じ」は厚さが全く同じ場合の他、積層時の圧縮度合等の関係から厚さが許容範囲内や製造公差内で若干異なる場合をその意味として含む。
図4〜図6に示したように、第1外部電極12は、コンデンサ本体11の長さ方向一面(図4及び図5の左面)を覆う部分12aと、コンデンサ本体11の高さ方向一面(図4の上面)の一部を覆う部分12bと、コンデンサ本体11の高さ方向他面(図4の下面)の一部を覆う部分12cと、コンデンサ本体11の幅方向一面(図5の下面)の一部を覆う部分12dと、コンデンサ本体11の幅方向他面(図5の上面)の一部を覆う部分12eとを連続して有している。また、第1外部電極12は、コンデンサ本体11の長さ方向一面(図4及び図5の左面)の稜線(4本の稜線を指す)に近い部分12fの厚さが、部分12b〜12eの厚さよりも厚くなっている(以下厚肉部分12fと言う)。
部分12b〜12eのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分12b〜12eの厚さは、製造公差を含まない設計上の基準寸法において同じである。
図4〜図6に示したように、第2外部電極13は、コンデンサ本体11の長さ方向他面(図4及び図5の右面)を覆う部分13aと、コンデンサ本体11の高さ方向一面(図4の上面)の一部を覆う部分13bと、コンデンサ本体11の高さ方向他面(図4の下面)の一部を覆う部分13cと、コンデンサ本体11の幅方向一面(図5の下面)の一部を覆う部分13dと、コンデンサ本体11の幅方向他面(図5の上面)の一部を覆う部分13eとを連続して有している。また、第2外部電極13は、コンデンサ本体11の長さ方向他面(図4及び図5の右面)の稜線(4本の稜線を指す)に近い部分13fの厚さが、部分13b〜13eの厚さよりも厚くなっている(以下厚肉部分13fと言う)。
部分13b〜13eのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分13b〜13eの厚さは、製造公差を含まない設計上の基準寸法において同じである。
図4〜図6に示したように、第3外部電極14は、コンデンサ本体11の高さ方向一面(図4及び図6の上面)の一部を覆う部分14aと、コンデンサ本体11の高さ方向他面(図4及び図6の下面)の一部を覆う部分14bと、コンデンサ本体11の幅方向一面(図5の下面、図6の左面)の一部を覆う部分14cと、コンデンサ本体11の幅方向他面(図5の上面、図6の右面)の一部を覆う部分14dとを連続して有している。また、第3外部電極14は、コンデンサ本体11の高さ方向一面(図4及び図6の上面)の稜線(2本の稜線を指す)に近い部分14eの厚さと、コンデンサ本体11の高さ方向他面(図4及び図6の下面)の稜線(2本の稜線を指す)に近い部分14eの厚さが、部分14a〜14dの厚さよりも厚くなっている(以下厚肉部分14eと言う)。
部分14a〜14dのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分14a〜14dの厚さは、製造公差を含まない設計上の基準寸法において同じである。
尚、第1外部電極12と第2外部電極13と第3外部電極14は、コンデンサ本体11の外面に密着した下地膜と、この下地膜の外面に密着した表面膜との2層構造、或いは、下地膜と表面膜との間に少なくとも1つの中間膜を有する多層構造を有している。下地膜は例えば焼き付け膜から成り、この焼き付け膜には、好ましくはニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体を使用できる。表面膜は例えばメッキ膜から成り、このメッキ膜には、好ましくは銅、スズ、パラジウム、金、亜鉛、これらの合金等を主成分とした良導体を使用できる。中間膜は例えばメッキ膜から成り、このメッキ膜には、好ましくは白金、パラジウム、金、銅、ニッケル、これらの合金等を主成分とした良導体を使用できる。
前述の貫通型コンデンサ10-1は、図2(A)に示したように、貫通型コンデンサ10-1を高さ方向からみたときの第1外部電極12のコンデンサ本体11の長さに沿う寸法をE1とし、第2外部電極13のコンデンサ本体11の長さに沿う寸法をE2とし、第3外部電極14のコンデンサ本体11の長さに沿う寸法をE3としたとき、寸法E1と寸法E3はE1<E3の条件を満足し、且つ、寸法E2と寸法E3はE2<E3の条件を満足している。因みに、寸法E1と寸法E2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。
前掲のE1<E3の条件とE2<E3の条件は、「搭載時の強度向上」に有効であるため、以下にその有効性(効果)について説明する。
前述の貫通型コンデンサ10-1は、部品供給場所において高さ方向一面又は他面の中心(図2(A)の+印を参照)又はその近傍を吸着ノズルによって吸着された後に搬送され、搬送後に回路基板、例えば表面実装を可能とした回路基板(部品実装基板)や、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)等に搭載される。
図1に示した従前の貫通型コンデンサ100は、前記搭載時において吸着ノズルから直接コンデンサ本体101に荷重が加わる構造にあるため、この荷重によってコンデンサ本体101に亀裂が生じる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、コンデンサ本体11の長さ方向中央部に4角筒状の第3外部電極14が存在し、しかも、前掲のE1<E3の条件とE2<E3の条件を満足しているため、前記搭載時における吸着ノズルからの荷重を第3外部電極14で受けることができ、しかも、この荷重を4角筒状の第3外部電極14に分散して緩和することができ、これにより、前記搭載時にコンデンサ本体11に亀裂が生じることを防止して、搭載時の強度向上を図ることができる。第3外部電極14の寸法E3は可能な限り大きく設計することが望ましく、このようにすれば前記緩和作用をより確実に得られるし、第3外部電極14に対する吸着ノズルの接触位置がずれた場合でも前記同様の恩恵が得られる。
また、前述の貫通型コンデンサ10-1は、図7に示したように、貫通型コンデンサ10-1を高さ方向から見たときの平面輪郭の総面積をTARとし、第1外部電極12の平面輪郭の面積をAR1とし、第2外部電極13の平面輪郭の面積をAR2とし、第3外部電極14の平面輪郭の面積をAR3としたとき、総面積TARと面積AR1と面積AR2と面積AR3は0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している。因みに、面積AR1と面積AR2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。
前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件は、「接続時の信頼性向上」に有効であるため、以下にその有効性(効果)について説明する。
前述の貫通型コンデンサ10-1は、回路基板に搭載された後に各外部電極12〜14が導体パッド等に電気的に接続される。具体的には、表面実装を可能とした回路基板(部品実装基板)にあっては、各外部電極12〜14がハンダを用いて導体パッドに電気的に接続され、また、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)にあっては、各外部電極12〜14がハンダを用いて導体パッドに電気的に接続される他、各外部電極12〜14に導体ビアが電気的に接続される。
図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような第3外部電極14を有しておらず、しかも、貫通型コンデンサ100を高さ方向から見たときの平面輪郭の面積に対する第1外部電極102〜第4外部電極105の平面輪郭の面積和の占有割合が50%前後であるため、回路基板への搭載位置が僅かにずれるだけで導体パッドや導体ビアとの電気的接続の信頼性が低下する懸念がある。これに対し、前述の貫通型コンデンサ10-1は、コンデンサ本体11の長さ方向中央部に4角筒状の第3外部電極14が存在し、しかも、貫通型コンデンサ10-1を高さ方向からみたときの平面輪郭の面積に対する第1外部電極12〜第3外部電極14の平面輪郭の面積和の占有割合が60%以上であって前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足しているため、回路基板への搭載位置が僅かにずれても所期の電気的接続を的確に行って、接続時の信頼性向上を図ることができる。
尚、前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件における0.6は、前掲のE1<E3の条件とE2<E3の条件を満足して前記「搭載時の強度向上」が図れることを考慮した下限値である。また、同条件における0.9は、各外部電極12〜14と導体パッド又は導体ビアとを電気的に接続するときの、第1外部電極12と第3外部電極14との短絡、並びに、第2外部電極13と第3外部電極14との短絡を回避することを考慮した上限値である。
さらに、前述の貫通型コンデンサ10-1は、第1外部電極12の表面粗さと第2外部電極13の表面粗さと第3外部電極14の表面粗さが、コンデンサ本体11の露出部分11a及び11bの表面粗さよりも粗くなっている。因みに、第1外部電極12の表面粗さと第2外部電極13の表面粗さは、製造公差を含まない設計上の基準粗さにおいて同じであっても良いし、僅かに異なっていても良い。
前掲の粗さ関係は、「封止樹脂の剥離防止」に有効であるため、以下にその有効性(効果)について説明する。
前述の貫通型コンデンサ10-1は、回路基板の導体パッド等に電気的に接続された後に合成樹脂で封止されることがある。特に、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)にあっては、内部実装の貫通型コンデンサ10-1の殆どは合成樹脂で封止されて気密性が確保される。
図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような粗さ関係を有していないため、接続後の貫通型コンデンサ100を合成樹脂で封止すると、コンデンサ本体101に対する封止樹脂の密着力よりも各外部電極102〜105に対する封止樹脂の密着力が弱いが故に、各外部電極102〜105から封止樹脂が剥離して腐食等の発生原因となる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、各外部電極12〜14の表面粗さがコンデンサ本体11の露出部分11a及び11bの表面粗さよりも粗いため、各外部電極12〜14に対する封止樹脂の密着力を高めて、封止樹脂の剥離防止を図ることができる。
さらに、前述の貫通型コンデンサ10-1は、第1外部電極12におけるコンデンサ本体11の長さ方向一面の稜線に近い部分(厚肉部分12f)の厚さが部分12b〜12dの厚さよりも厚く、第2外部電極13におけるコンデンサ本体11の長さ方向他面の稜線に近い部分の厚さ(厚肉部分13f)が部分13b〜13dの厚さよりも厚く、第3外部電極14におけるコンデンサ本体11の高さ方向一面の稜線に近い部分(厚肉部分14e)の厚さとコンデンサ本体11の高さ方向他面の稜線に近い部分(厚肉部分14e)の厚さが部分14a〜14dの厚さよりも厚くなっている。
前掲の厚さ関係は、「接続不良の防止」に有効であるため、以下にその有効性(効果)について説明する。
前述の貫通型コンデンサ10-1は、部品収納凹部を有するテープ状梱包材に包装されて使用に供されることがある。テープ状梱包材に包装された貫通型コンデンサ10-1は、カバーテープをテープ本体から剥離した後、吸着ノズルによって部品収納凹部から取り出され、先に述べたような回路基板への搭載が行われる。
図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような厚さ関係(厚肉部分12f、13f及び14e)を有していないため、テープ状梱包材に包装すると、各外部電極102〜105の表面、特に電気的接続に利用される高さ方向両側の表面がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触して各々の表面に摩擦による変質や汚れ等が生じ、これらが原因となって各外部電極102〜105の電気的な接続に不良を生じる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、各外部電極12〜14におけるコンデンサ本体11の稜線に近い部分に厚肉部分12f、13f及び14eが設けられているため、テープ状梱包材に包装しても、各外部電極12〜14の表面、特に電気的接続に利用される高さ方向両側の表面(部分12b、12c、13b、13c、14a及び14bの表面)がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触することを抑制して、各々の表面に摩擦による変質や汚れ等を生じることを防止することができ、これにより、各外部電極12〜14と導体パッド又は導体ビアとを電気的に接続するときの接続不良の防止を図ることができる。
次に、前述の有効性(効果)を確認するために用意した、
・図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1
・図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2
の仕様について各図に記した符号を適宜用いて説明する。因みに、後記寸法値は何れも製造公差を含まない設計上の基準寸法である。
評価用サンプル1の仕様は以下のとおりである。
・全体の長さLが1000μm、幅Wが600μm、高さHが220μm
・コンデンサ本体11の長さが960μm、幅が560μm、高さが180μm
・コンデンサ本体11の第1保護部PP1の厚さと第2保護部PP2の厚さが30μm、容量部CPの厚さが120μm
・容量部CPに含まれる第1内部電極層15の厚さと第2内部電極層16の厚さが0.7μm、誘電体層17の厚さが0.8μm、第1内部電極層15の層数が40層、第2内部電極層16の層数が40層
・第1保護部PP1と各誘電体層17と第2保護部PP2がチタン酸バリウムを主成分とした誘電体セラミックス、各第1内部電極層15と各第2内部電極層16がニッケルを主成分とした良導体
・第1外部電極12の部分12b〜12eの厚さと第2外部電極13の部分13b〜13eの厚さと第3外部電極14の部分14a〜14dの厚さが15μm、第1外部電極12の部分12aの厚さと第2外部電極13の部分13aの厚さが20μm、各外部電極12〜14の厚肉部分12f、13f及び14eの厚さが20μm
・第1外部電極12と第2外部電極13と第3外部電極14がニッケルを主成分とした下地膜と銅を主成分とした表面膜の2層構造
・第1外部電極12の寸法E1と第2外部電極13の寸法E2が200μm、第3外部電極14の寸法E3が350μm
・第1外部電極12の表面粗さRaと第2外部電極13の表面粗さRaと第3外部電極14の表面粗さRaが0.31μm以上、コンデンサ本体11の露出部分11a及び11bの表面粗さRaが0.08μm以下
ここで、評価用サンプル1の製法を簡単に紹介する。製造に際しては、先ず、チタン酸バリウム粉末とエタノール(溶剤)とポリビニルブチラール(バインダ)と分散剤等の添加剤等とを含むセラミックスラリーを用意すると共に、ニッケル粉末とターピネオール(溶剤)とエチルセルロース(バインダ)と分散剤等の添加剤とを含む金属ペーストを用意する。
続いて、ダイコータやグラビアコータ等の塗工装置と乾燥装置とを用いて、キャリアフィルムの表面にセラミックスラリーを塗工し乾燥して、第1グリーンシートを作製する。また、スクリーン印刷機やグラビア印刷機等の印刷装置と乾燥装置とを用いて、第1グリーンシートの表面に金属ペーストをマトリクス状又は千鳥状に印刷し乾燥して、第1内部電極層15用パターン群が形成された第2グリーンシートを作製すると共に、第1グリーンシートの表面に金属ペーストをマトリクス状又は千鳥状に印刷し乾燥して、第2内部電極層16用パターン群が形成された第3グリーンシートを作製する。
続いて、打ち抜き刃及びヒータを有する可動式吸着ヘッド等の積層装置を用いて、第1グリーンシートから打ち抜いた単位シートを所定枚数に達するまで積み重ねて熱圧着して第2保護部PP2に対応した部位を作製する。続いて、前記同様の積層装置を用いて、第3グリーンシートから打ち抜いた単位シート(第2内部電極層16用パターン群を含む)の上に第2グリーンシートから打ち抜いた単位シート(第1内部電極層15用パターン群を含む)を積み重ねて熱圧着する作業を繰り返して容量部CPに対応した部位を作製する。続いて、前記同様の積層装置を用いて、第1グリーンシートから打ち抜いた単位シートを所定枚数に達するまで積み重ねて熱圧着して第1保護部PP1に対応した部位を作製する。続いて、熱間静水圧プレス機や機械式又は油圧式プレス機等の本圧着装置を用いて、前記各部位を積み重ねたものを本熱圧着して、未焼成積層シートを作製する。
続いて、ブレードダイシング機やレーザーダイシング機等の切断装置を用いて、未焼成積層シートを格子状に切断して、コンデンサ本体11に対応した未焼成チップを作製する。続いて、トンネル型焼成炉や箱型焼成炉等の焼成装置を用いて、多数の未焼成チップを還元性雰囲気下、或いは、低酸素分圧雰囲気下で、チタン酸バリウム及びニッケルに応じた温度プロファイルにて焼成(脱バインダ処理と焼成処理を含む)を行って、コンデンサ本体11を作製する。
続いて、ローラ塗布機やディップ塗布機等の塗布装置と乾燥装置とを用いて、コンデンサ本体11の長さ方向両端部に金属ペースト(前記の金属ペーストを流用)を塗布し乾燥して、前記同様の雰囲気下で焼き付け処理を行って下地膜を形成した後、下地膜を覆う表面膜を電解メッキ等のメッキ処理で形成して、第1外部電極12及び第2外部電極13を作製する。また、前記同様の塗布装置と乾燥装置とを用いて、コンデンサ本体11の長さ方向中央部分に金属ペースト(前記の金属ペーストを流用)を塗布し乾燥して、前記同様の雰囲気下で焼き付け処理を行って下地膜を形成した後、下地膜を覆う表面膜を電解メッキ等のメッキ処理で形成して、第3外部電極14を作製する。続いて、第1外部電極12の表面と第2外部電極13の表面と第3外部電極14の表面に化学エッチング処理を施して各々の表面を荒らす。
一方、評価用サンプル2の仕様は、以下の点においてのみ、評価用サンプル1の仕様と異なる。因みに、評価用サンプル2の製法は、最後の化学エッチング処理を除き、評価用サンプル1の製法と同様である。
・第1外部電極102の厚さと第2外部電極103の厚さと第3外部電極104の厚さと第4外部電極105の厚さが20μm
・第3外部電極104の寸法E13と第4外部電極105の寸法E14が350μm、第3外部電極104の寸法E15と第4外部電極105の寸法E16が150μm(寸法E13〜E16は図1(A)を参照)
・第1外部電極102の表面粗さRaと第2外部電極103の表面粗さRaと第3外部電極104の表面粗さRaと第4外部電極105の表面粗さRaが0.06μm以下、コンデンサ本体101の露出部分の表面粗さRaが0.08μm以下
次に、前述の有効性(効果)を、前記評価用サンプル1及び2を用いて確認した結果等について説明する。
評価用サンプル1は、第1外部電極12の寸法E1と第2外部電極13の寸法E2が何れも200μmで、第3外部電極14の寸法E3が350μmであることから、E1<E3の条件とE2<E3の条件を満足している。一方、評価用サンプル2は、評価用サンプル1のような4角筒状の第3外部電極14を有しないため、前記両条件を満足しない。搭載時の強度向上に係り、計5個の評価用サンプル1の抗折強度と計5個の評価用サンプル2の抗折強度を測定したところ、評価用サンプル1の抗折強度は180gf以上、評価用サンプル2の抗折強度は110gf以下であった。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「搭載時の強度向上」に有効であると言える。
また、評価用サンプル1は、評価用サンプル1を高さ方向から見たときの(第1外部電極12の平面輪郭の面積AR1+第2外部電極13の平面輪郭の面積AR2+第3外部電極14の平面輪郭の面積AR3)/評価用サンプル1の平面輪郭の総面積TAR)の算出値(計5個の平均値)が0.77であることから、0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している。一方、評価用サンプル2は、評価用サンプル2を高さ方向から見たときの(第1外部電極102の平面輪郭の面積+第2外部電極103の平面輪郭の面積+第3外部電極104の平面輪郭の面積+第4外部電極105の平面輪郭の面積)/評価用サンプル2の平面輪郭の総面積)の算出値(計5個の平均値)が0.50であることから、前記条件を満足していない。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応する評価用サンプル2に比べて、前記「接続時の信頼性向上」に有効であると言える。
さらに、評価用サンプル1は、第1外部電極12の表面粗さRaと第2外部電極13の表面粗さRaと第3外部電極14の表面粗さRaが0.31μm以上、コンデンサ本体11の露出部分11a及び11bの表面粗さRaが0.08μm以下であるから、第1外部電極12と第2外部電極13と第3外部電極14の各々の表面粗さがコンデンサ本体11の露出部分の表面粗さよりも粗いといった粗さ関係を満足している。一方、評価用サンプル2は、第1外部電極102の表面粗さRaと第2外部電極103の表面粗さRaと第3外部電極104の表面粗さRaと第4外部電極105の表面粗さRaが0.06μm以下、コンデンサ本体101の露出部分の表面粗さRaが0.08μm以下であるから、前記粗さ関係を満足していない。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「封止樹脂の剥離防止」に有効であると言える。
さらに、評価用サンプル1は、第1外部電極12の部分12b〜12eの厚さと第2外部電極13の部分13b〜13eの厚さと第3外部電極14の部分14a〜14dの厚さが15μmで、各外部電極12〜14の厚肉部分12f、13f及び14eの厚さが20μmであり、両者の間には5μmのギャップがある。つまり、評価用サンプル1を部品収納凹部を有するテープ状梱包材に包装しても、各外部電極102〜105の表面、特に電気的接続に利用される高さ方向両側の表面がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触し難い。一方、評価用サンプル2は、評価用サンプル1のようなギャップが存在しない。そのため、評価用サンプル2を部品収納凹部を有するテープ状梱包材に包装すると、各外部電極102〜105の表面、特にハンダ接続やビア接続に利用される高さ方向両側面の表面がテープ状梱包材の部品収納凹部の内面やカバーテープの凹部閉塞面に接触して、各々の表面に摩擦による変質や汚れ等を生じ易い。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「接続不良の防止」に有益であると言える。
〈第1実施形態の変形例〉
(1)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、第1外部電極12の高さ方向両面部分の最大厚さ(厚肉部分12fの厚さ)と、第2外部電極13の高さ方向両面部分の最大厚さ(厚肉部分13fの厚さ)と、第3外部電極14の高さ方向両面部分の最大厚さ(厚肉部分14eの厚さ)が略同じものを示したが、第1外部電極12の高さ方向両面部分の最大厚さ並びに第2外部電極13の高さ方向両面部分の最大厚さよりも第3外部電極14の高さ方向両面部分の最大厚さを薄くすれば、貫通型コンデンサ10-1を回路基板に搭載した後の「安定性の向上」に有効である。
つまり、前述の貫通型コンデンサ10-1にあっては、第3外部電極14の高さ方向両面部分の最大厚さが、第1外部電極12の高さ方向両面部分の最大厚さ並びに第2外部電極13の高さ方向両面部分の最大厚さよりも厚くなると、回路基板に搭載された貫通型コンデンサ10-1に傾きを生じたり、第1外部電極12又は第2外部電極13に浮き上がりを生じたりして、その後の電気的接続に支障を生じる懸念がある。けれども、第1外部電極12の高さ方向両面部分の最大厚さをT1maxとし、第2外部電極13の高さ方向両面部分の最大厚さをT2maxとし、第3外部電極14の高さ方向両面部分の最大厚さをT3maxとしたときに、最大厚さT1maxと最大厚さT3maxがT1max>T3maxの条件を満足し、且つ、最大厚さT2maxと最大厚さT3maxがT2max>T3maxの条件を満足するようにすれば、前記の傾きや浮き上がりを防止して、前記「安定性の向上」を図ることができる。
(2)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、コンデンサ本体11の露出部分11a及び11bに特段の間隔制限を設けていないものを示したが、これら露出部分11a及び11bの間隔を第3外部電極14の高さ方向両面部分の平均厚さに基づいて定めれば、イオンマイグレーションを原因とした「短絡の防止」に有効である。
つまり、前述の貫通型コンデンサ10-1にあっては、第3外部電極14は4角筒状を成していて高さ方向両面部分の面積が広いため、この高さ方向両面部分の平均厚さが厚くなると、濃度勾配を原因とし、金属イオンが第3外部電極14からセラミック本体11を介して第1外部電極12及び第2外部電極13に移動する現象(イオンマイグレーション)が生じ、第3外部電極14と第1外部電極12及び第2外部電極13に短絡が生じる懸念がある。けれども、第3外部電極14の高さ方向両面部分の平均厚さをT3aveとし、コンデンサ本体11の露出部分11aの間隔をI1とし、コンデンサ本体11の露出部分11bの間隔をI2としたときに(I1及びI2は図2(A)を参照)、平均厚さT3aveと間隔I1がT3ave≦I1/2の条件を満足し、且つ、平均厚さT3aveと間隔I2がT3ave≦I2/2の条件を満足するようにすれば、前記のイオンマイグレーションを抑制して、前記「短絡の防止」を図ることができる。
この「短絡の防止」に係る有効性(効果)を確認するために、前記評価用サンプル1の第3外部電極14の寸法E1を増加して間隔I1と間隔I2の両方を40μmとし、且つ、第3外部電極14の高さ方向両面部分の平均厚さT3aveを前記評価用サンプル1に合わせて17.5μmとしたサンプルA1と、サンプルA1の第3外部電極14の高さ方向両面部分の平均厚さT3aveを20μmとしたサンプルA2と、サンプルA1の第3外部電極14の高さ方向両面部分の平均厚さT3aveを22.5μmとしたサンプルA3を用意した。そして、各100個のサンプルA1〜A3を温度85℃で湿度85%の雰囲気下で500時間放置した後、ハイレジスタンスメータ(アジレント社製、4329A)を利用して、第3外部電極14と第1外部電極12との短絡発生率並びに第3外部電極14と第2外部電極13との短絡発生率を調べたところ、サンプルA1の短絡発生率は0%、サンプルA2の短絡発生率は0%、サンプルA3の短絡発生率は5%であった。即ち、前掲のT3ave≦I1/2の条件とT3ave≦I2/2の条件を満足するサンプルA1及びA2は、同条件を満足しないサンプルA3に比べて、前記「短絡の防止」に有効であることが確認できた。
(3)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、コンデンサ本体11の露出部分11a及び11bに特段の間隔制限を設けていないものを示したが、これら露出部分11a及び11bの間隔を貫通型コンデンサ10-1の長さL1に基づいて定めれば、「ESL(等価直列インダクタンス)の低減」に有効である。
つまり、前述の貫通型コンデンサ10-1にあっては、第1内部導体層15と第2内部電極層16との実質的な電流距離が長くなるとESLが増加する。けれども、貫通型コンデンサ10-1の長さをL1とし、コンデンサ本体11の露出部分11aの間隔をI1とし露出部分11bの間隔をI2としたときに(L1、I1及びI2は図2(A)を参照)、間隔I1と長さL1がI1≦0.15×L1の条件を満足し、且つ、間隔I2と長さL1がI2≦0.15×L1の条件を満足するようすれば、前記「ESLの低減」を図ることができる。因みに、間隔I1と間隔I2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。
この「ESLの低減」に係る有効性(効果)を確認するために、前記評価用サンプル1(長さL1が1000μm、間隔I1及びI2の両方が125μm)と同じサンプルB1と、サンプルB1の第3外部電極14の寸法E1を減少して間隔I1と間隔I2の両方を150μmとしたサンプルB2と、サンプルB1の第3外部電極14の寸法E1を減少して間隔I1と間隔I2の両方を175μmとしたサンプルB3を用意した。そして、各100個のサンプルB1〜B3のESL値を、ネットワークアナライザ(アジレント社製、8753D)を利用して調べたところ、サンプルB1のESL値(平均値)は15pF、サンプルB2のESL値(平均値)は18pF、サンプルB3のESL値(平均値)は20pFであった。即ち、前掲のI1≦0.15×L1の条件とI2≦0.15×L1の条件の満足するサンプルB1及びB2は、同条件を満足しないサンプルB3に比べて、前記「ESLの低減」に有効であることが確認できた。
《第2実施形態》
先ず、図8〜図11を用いて、本発明の第2実施形態に係る貫通型積層セラミックコンデンサ10-2(以下単に貫通型コンデンサ10-2と言う)の構造及び効果等について説明する。
この貫通型コンデンサ10-2が構造上で前述の貫通型コンデンサ10-1と相違するところは、図3(A)に示した第1内部電極層15の代わりに、これと形状が異なる第1内部電極層18(図9(A)を参照)を用いた点にある。この相違点以外の構造は前述の貫通型コンデンサ10-1と同じであり、この相違点に基づいて得られる効果以外の効果は前述の貫通型コンデンサ10-1で得られる効果と同等であるため、各々の説明を省略する。
各第1内部電極層18は、図9(A)に示したようなI字形状を成していて、長さ方向一端部(図9(A)の左端部)の幅方向両側(図9(A)の上下側)と長さ方向他端部(図9(A)の右端部)の幅方向両側(図9(A)の上下側)のそれぞれに、幅方向に延びる幅狭の引出部18aを一体に有している。各第1内部電極層18の引出部18aは、第2内部電極層16の引出部16aと同様に幅方向に延びるものであるため、図10から分かるように、コンデンサ本体10の高さ方向一面に第1内部電極層18と第2内部電極層16を平行投影すると、図10の左下と引出部18aと中央下の引出部16aの間、並びに、左上の引出部18aと中央上の引出部16aの間に間隔I3が形成され、図10の右下の引出部18aと中央下の引出部16aの間、並びに、右下の引出部18aと中央下の引出部16aの間に間隔I4が形成される。
図11から分かるように、各第1内部電極層18の長さ方向一端部、具体的には図9(A)の左下と左上の引出部18aの下端縁と上端縁は第1外部電極12の部分12dと部分12eにそれぞれ電気的に接続され、各第1内部電極層18の長さ方向他端部、具体的には図9(A)の2個の右側引出部18aの下端縁と上端縁は第2外部電極13の部分13dと部分13eにそれぞれ電気的に接続されている。
前述の貫通型コンデンサ10-2は、図10に示したように、コンデンサ本体11の長さをL2とし、コンデンサ本体11の高さ方向一面に平行投影された第1内部電極層18の長さ方向一方の引出部18aと第2内部電極層16の引出部16aの間隔をI3とし、第1内部電極層18の長さ方向他方の引出部18aと第2内部電極層16の引出部16aの間隔をI4としたとき、間隔I3と長さL2はI3≦0.35×L2の条件を満足し、且つ、間隔I4と長さL2はI4≦0.35×L2の条件を満足している。因みに、間隔I3と間隔I4は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。
前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件は、「ESL(等価直列インダクタンス)の低減」に有効である。つまり、前述の貫通型コンデンサ10-2にあっては、第1内部導体層18と第2内部電極層16との実質的な電流距離が長くなるとESLが増加する。けれども、前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件を満足するようにすれば、前記「ESLの低減」を図ることができる。
この「ESLの低減」に係る有効性(効果)を確認するため、前記評価用サンプル1(長さL2が960μm)の第1内部電極層15を図9(A)に示した第1内部電極層18に変え、且つ、引出部18aの位置を変えて間隔I3と間隔I4を306μmとしたサンプルC1と、サンプルC1の第1内部電極層18の引出部18aの位置を変えて間隔I3と間隔I4を336μmとしたサンプルC2と、サンプルC1の第1内部電極層18の引出部18aの位置を変えて間隔I3と間隔I4を366μmとしたサンプルC3を用意した。因みに、サンプルC1〜C3における引出部18a及び16aの幅(図10の長さL2に沿う方向の寸法)は90μmで統一した。そして、各100個のサンプルC1〜C3のESL値を、ネットワークアナライザ(アジレント社製、8753D)を利用して調べたところ、サンプルC1のESL値(平均値)は13pF、サンプルC2のESL値(平均値)は15pF、サンプルC3のESL値(平均値)は17pFであった。即ち、前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件を満足するサンプルC1及びC2は、同条件を満足しないサンプルC3に比べて、前記「ESLの低減」に有効であることが確認できた。
〈第2実施形態の変形例〉
(1)前述の貫通型コンデンサ10-2(サンプルC1及びC2を含む)として、図9(A)に示した第1内部電極層18を用いたものを示したが、この第1内部電極層18の代わりに図12(A)に示した第1内部電極層19を用いても良い。この第1内部電極層19は、図12(B)にも示したように、コンデンサ本体11の長さ方向一端から長さ方向他端に及ぶ長さを有している点で図9(A)に示した第1内部電極層18と形状が異なる。図12(B)から分かるように、この第1内部電極層19を用いた場合でも、第1内部電極層18を用いた場合と同様に、コンデンサ本体10の高さ方向一面に第1内部電極層19と第2内部電極層16を平行投影すると、図12(B)の左下の引出部19aと中央下の引出部16aの間、並びに、左上と引出部19aと中央上の引出部16aの間に間隔I3が形成され、図12(B)の右下の引出部19aと中央下の引出部16aの間、並びに、右下の引出部19aと中央下の引出部16aの間に間隔I4が形成される。
(2)前述の貫通型コンデンサ10-2(サンプルC1及びC2を含む)には、前記〈第1実施形態の変形例〉の(1)〜(3)で説明した条件、即ち、「T1max>T3maxの条件とT2max>T3maxの条件」と、「T3ave≦I1/2の条件とT3ave≦I2/2」と、「I1≦0.15×L1の条件とI2≦0.15×L1の条件」を適宜採用することができ、採用することによって同様の効果を得ることができる。
10-1…貫通型積層セラミックコンデンサ、11…コンデンサ本体、11a,11b…コンデンサ本体の露出部分、12…第1外部電極、12a…第1外部電極におけるコンデンサ本体の長さ方向一面を覆う部分、12b…第1外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、12c…第1外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、12d…第1外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、12e…第1外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、12f…第1外部電極の厚肉部分、13…第2外部電極、13a…第2外部電極におけるコンデンサ本体の長さ方向他面を覆う部分、13b…第2外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、13c…第2外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、13d…第2外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、13e…第2外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、13f…第2外部電極の厚肉部分、14…第3外部電極、14a…第3外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、14bc…第3外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、14c…第3外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、14d…第3外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、14e…第4外部電極の厚肉部分、15…第1内部電極層、15a…第1内部電極層の引出部、16…第2内部電極層、16a…第2内部電極層の引出部、17…誘電体層、CP…容量部、PP1…第1保護部、PP2…第2保護部、10-2…貫通型積層セラミックコンデンサ、18…第1内部電極層、18a…第1内部電極層の引出部、19…第1内部電極層、19a…第1内部電極層の引出部。

Claims (7)

  1. 長さ、幅及び高さで規定された略直方体状を成し、誘電体製の第1保護部と、複数の第1内部電極層と複数の第2内部電極層とが誘電体層を介して高さ方向に交互に積層された容量部と、誘電体製の第2保護部とを、同順序で高さ方向に層状に並ぶように有するコンデンサ本体と、
    前記コンデンサ本体の長さ方向一端部に該コンデンサ本体の長さ方向一面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向一端部が接続された第1外部電極と、
    前記コンデンサ本体の長さ方向他端部に該コンデンサ本体の長さ方向他面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向他端部が接続された第2外部電極と、
    前記コンデンサ本体の長さ方向中央部に前記第1外部電極及び前記第2外部電極と非接触下で該コンデンサ本体の高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記幅方向両面の一部を覆う部分の一方に前記複数の第2内部電極層の幅方向一端部が接続され、且つ、他方に前記複数の第2内部電極層の幅方向他端部が接続された4角筒状の第3外部電極と、を備えた貫通型積層セラミックコンデンサであって、
    前記コンデンサ本体の前記第1保護部と前記第2保護部は内部電極層を有しておらず、
    前記貫通型積層セラミックコンデンサを高さ方向からみたときの前記第1外部電極の前記コンデンサ本体の長さに沿う寸法をE1とし、前記第2外部電極の前記コンデンサ本体の長さに沿う寸法をE2とし、前記第3外部電極の前記コンデンサ本体の長さに沿う寸法をE3としたとき、前記寸法E1と前記寸法E3はE1<E3の条件を満足し、且つ、前記寸法E2と前記寸法E3はE2<E3の条件を満足しており、
    前記第1外部電極は、前記コンデンサ本体の長さ方向一面を覆う部分の厚さが前記コンデンサ本体の高さ方向両面の一部を覆う部分と前記コンデンサ本体の幅方向両面の一部を覆う部分の厚さよりも厚く、かつ前記コンデンサ本体の長さ方向一面と高さ方向両面が交わる稜線部分と前記コンデンサ本体の長さ方向一面と幅方向両面とが交わる稜線部分の高さ方向の厚さ及び幅方向の厚さがそれぞれ前記コンデンサ本体の高さ方向両面の一部を覆う部分の厚さ及び幅方向両面を覆う部分の厚さよりも厚く、
    前記第2外部電極は、前記コンデンサ本体の長さ方向他面を覆う部分の厚さが前記コンデンサ本体の高さ方向両面の一部を覆う部分と前記コンデンサ本体の幅方向両面の一部を覆う部分の厚さよりも厚く、かつ前記コンデンサ本体の長さ方向他面と高さ方向両面が交わる稜線部分と前記コンデンサ本体の長さ方向他面と幅方向両面とが交わる稜線部分の高さ方向の厚さ及び幅方向の厚さがそれぞれ前記コンデンサ本体の高さ方向両面の一部を覆う部分の厚さ及び幅方向両面を覆う部分の厚さよりも厚く、
    前記第3外部電極は、前記コンデンサ本体の高さ方向一面の稜線に近い部分の厚さのみと前記コンデンサ本体の高さ方向他面の稜線に近い部分の厚さのみが他の部分の厚さよりも厚く、
    前記貫通型積層セラミックコンデンサを高さ方向から見たときの平面輪郭の総面積をTARとし、前記第1外部電極の平面輪郭の面積をAR1とし、前記第2外部電極の平面輪郭の面積をAR2とし、前記第3外部電極の平面輪郭の面積をAR3としたとき、前記総 面積TARと前記面積AR1と前記面積AR2と前記面積AR3は0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している、
    貫通型積層セラミックコンデンサ。
  2. 長さ、幅及び高さで規定された略直方体状を成し、誘電体製の第1保護部と、複数の第1内部電極層と複数の第2内部電極層とが誘電体層を介して高さ方向に交互に積層された容量部と、誘電体製の第2保護部とを、同順序で高さ方向に層状に並ぶように有するコンデンサ本体と、
    前記コンデンサ本体の長さ方向一端部に該コンデンサ本体の長さ方向一面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向一端部が接続された第1外部電極と、
    前記コンデンサ本体の長さ方向他端部に該コンデンサ本体の長さ方向他面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向他端部が接続された第2外部電極と、
    前記コンデンサ本体の長さ方向中央部に前記第1外部電極及び前記第2外部電極と非接触下で該コンデンサ本体の高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記幅方向両面の一部を覆う部分の一方に前記複数の第2内部電極層の幅方向一端部が接続され、且つ、他方に前記複数の第2内部電極層の幅方向他端部が接続された4角筒状の第3外部電極と、を備えた貫通型積層セラミックコンデンサであって、
    前記コンデンサ本体の前記第1保護部と前記第2保護部は内部電極層を有しておらず、
    前記貫通型積層セラミックコンデンサを高さ方向からみたときの前記第1外部電極の前記コンデンサ本体の長さに沿う寸法をE1とし、前記第2外部電極の前記コンデンサ本体の長さに沿う寸法をE2とし、前記第3外部電極の前記コンデンサ本体の長さに沿う寸法をE3としたとき、前記寸法E1と前記寸法E3はE1<E3の条件を満足し、且つ、前記寸法E2と前記寸法E3はE2<E3の条件を満足しており、
    前記第1外部電極は、前記コンデンサ本体の長さ方向一面と高さ方向両面が交わる稜線部分と前記コンデンサ本体の長さ方向一面と幅方向両面とが交わる稜線部分の高さ方向の厚さ及び幅方向の厚さがそれぞれ前記コンデンサ本体の高さ方向両面の一部を覆う部分の厚さ及び幅方向両面を覆う部分の厚さよりも厚く、
    前記第2外部電極は、前記コンデンサ本体の長さ方向他面を覆う部分の厚さが前記コンデンサ本体の高さ方向両面の一部を覆う部分と前記コンデンサ本体の幅方向両面の一部を覆う部分の厚さよりも厚く、かつ前記コンデンサ本体の長さ方向他面と高さ方向両面が交わる稜線部分と前記コンデンサ本体の長さ方向他面と幅方向両面とが交わる稜線部分の高さ方向の厚さ及び幅方向の厚さがそれぞれ前記コンデンサ本体の高さ方向両面の一部を覆う部分の厚さ及び幅方向両面を覆う部分の厚さよりも厚く、
    前記第3外部電極は、前記コンデンサ本体の高さ方向一面の稜線に近い部分の厚さと前記コンデンサ本体の高さ方向他面の稜線に近い部分の厚さが他の部分の厚さよりも厚く、
    前記貫通型積層セラミックコンデンサを高さ方向から見たときの平面輪郭の総面積をTARとし、前記第1外部電極の平面輪郭の面積をAR1とし、前記第2外部電極の平面輪郭の面積をAR2とし、前記第3外部電極の平面輪郭の面積をAR3としたとき、前記総 面積TARと前記面積AR1と前記面積AR2と前記面積AR3は0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している、
    貫通型積層セラミックコンデンサ。
  3. 前記貫通型積層セラミックコンデンサの高さは250μm以下である、
    請求項1または2に記載の貫通型積層セラミックコンデンサ。
  4. 前記複数の第1内部電極層は長さ方向両端部に長さ方向に延びる幅狭の引出部を有する形状を成し、前記複数の第2内部電極層は幅方向両端部に幅方向に延びる幅狭の引出部を有する形状を成している、
    請求項1〜3のいずれか1項に記載の貫通型積層セラミックコンデンサ。
  5. 前記複数の第1内部電極層は長さ方向両端部の幅方向両側に幅方向に延びる幅狭の引出部を有する形状を成し、前記複数の第2内部電極層は幅方向両端部に幅方向に延びる幅狭の引出部を有する形状を成している、
    請求項1〜3のいずれか1項に記載の貫通型積層セラミックコンデンサ。
  6. 前記コンデンサ本体の長さをL2とし、前記コンデンサ本体の高さ方向一面に平行投影された前記複数の第1内部電極層における長さ方向一方の引出部と前記複数の第2内部電極層の引出部との間隔をI3とし、前記複数の第1内部電極層における長さ方向他方の引出部と前記複数の第2内部電極層の引出部との間隔をI4としたとき、前記間隔I3と前記長さL2はI3≦0.35×L2の条件を満足し、且つ、前記間隔I4と前記長さL2はI4≦0.35×L2の条件を満足している、
    請求項5に記載の貫通型積層セラミックコンデンサ。
  7. 前記第1外部電極の表面粗さと前記第2外部電極の表面粗さと前記第3外部電極の表面粗さは、
    前記コンデンサ本体の高さ方向両面及び幅方向両面のうち、前記第1外部電極と前記第3外部電極の間において露出した部分の表面粗さと、前記第2外部電極と前記第3外部電極の間において露出した部分の表面粗さよりも粗い、
    請求項1〜6のいずれか1項に記載の貫通型積層セラミックコンデンサ。
JP2018100457A 2014-12-26 2018-05-25 貫通型積層セラミックコンデンサ Active JP6901996B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014265701 2014-12-26
JP2014265701 2014-12-26
JP2015203774A JP2016127262A (ja) 2014-12-26 2015-10-15 貫通型積層セラミックコンデンサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015203774A Division JP2016127262A (ja) 2014-12-26 2015-10-15 貫通型積層セラミックコンデンサ

Publications (2)

Publication Number Publication Date
JP2018152594A JP2018152594A (ja) 2018-09-27
JP6901996B2 true JP6901996B2 (ja) 2021-07-14

Family

ID=56359804

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015203774A Withdrawn JP2016127262A (ja) 2014-12-26 2015-10-15 貫通型積層セラミックコンデンサ
JP2018100457A Active JP6901996B2 (ja) 2014-12-26 2018-05-25 貫通型積層セラミックコンデンサ
JP2018100456A Active JP6929245B2 (ja) 2014-12-26 2018-05-25 貫通型積層セラミックコンデンサ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015203774A Withdrawn JP2016127262A (ja) 2014-12-26 2015-10-15 貫通型積層セラミックコンデンサ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018100456A Active JP6929245B2 (ja) 2014-12-26 2018-05-25 貫通型積層セラミックコンデンサ

Country Status (4)

Country Link
JP (3) JP2016127262A (ja)
KR (1) KR101736718B1 (ja)
HK (1) HK1222038A1 (ja)
TW (1) TWI581284B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540069B2 (ja) * 2015-02-12 2019-07-10 Tdk株式会社 積層貫通コンデンサ
JP6476954B2 (ja) * 2015-02-12 2019-03-06 Tdk株式会社 積層貫通コンデンサ
US10734159B2 (en) 2016-12-22 2020-08-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP6935707B2 (ja) * 2016-12-22 2021-09-15 株式会社村田製作所 積層セラミックコンデンサ
JP6930114B2 (ja) * 2017-01-20 2021-09-01 Tdk株式会社 電子部品装置
JP6841121B2 (ja) * 2017-03-29 2021-03-10 Tdk株式会社 貫通コンデンサ
JP2019062023A (ja) 2017-09-25 2019-04-18 Tdk株式会社 電子部品装置
JP7231340B2 (ja) * 2018-06-05 2023-03-01 太陽誘電株式会社 セラミック電子部品およびその製造方法
JP7231703B2 (ja) * 2018-09-13 2023-03-01 太陽誘電株式会社 積層セラミックコンデンサ
JP7006879B2 (ja) 2018-09-13 2022-02-10 太陽誘電株式会社 積層セラミックコンデンサ及び回路基板
JP7361465B2 (ja) 2018-11-08 2023-10-16 株式会社村田製作所 積層セラミックコンデンサ
JP7156914B2 (ja) 2018-11-13 2022-10-19 株式会社村田製作所 積層セラミックコンデンサ、及び、積層セラミックコンデンサの製造方法
JP7289677B2 (ja) 2019-03-13 2023-06-12 太陽誘電株式会社 多端子コンデンサ、多端子コンデンサの製造方法、ならびに、多端子コンデンサ実装回路基板
JP2021114584A (ja) * 2020-01-21 2021-08-05 太陽誘電株式会社 積層セラミック電子部品及びその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048230U (ja) * 1983-09-11 1985-04-04 株式会社村田製作所 積層コンデンサ
JPH0373422U (ja) * 1989-11-22 1991-07-24
JP2982539B2 (ja) * 1993-02-19 1999-11-22 株式会社村田製作所 チップ型貫通コンデンサ
JP2000058376A (ja) * 1998-08-04 2000-02-25 Tdk Corp セラミックコンデンサ
JP3903757B2 (ja) * 2001-09-05 2007-04-11 株式会社村田製作所 チップ状電子部品の製造方法およびチップ状電子部品
JP2004235377A (ja) * 2003-01-29 2004-08-19 Kyocera Corp セラミック電子部品
JP3850398B2 (ja) * 2003-08-21 2006-11-29 Tdk株式会社 積層コンデンサ
JP2006100708A (ja) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd 3端子型積層コンデンサ実装回路基板および3端子型積層コンデンサ
WO2006104613A2 (en) * 2005-03-01 2006-10-05 X2Y Attenuators, Llc Conditioner with coplanar conductors
JP2007035848A (ja) * 2005-07-26 2007-02-08 Taiyo Yuden Co Ltd 積層セラミックコンデンサ及びその製造方法
JP4983400B2 (ja) * 2007-05-25 2012-07-25 株式会社村田製作所 貫通型三端子コンデンサ
JP4924490B2 (ja) * 2008-03-10 2012-04-25 Tdk株式会社 貫通型積層コンデンサ
JP4725629B2 (ja) * 2008-10-14 2011-07-13 Tdk株式会社 積層貫通コンデンサの製造方法
JP5062237B2 (ja) * 2009-11-05 2012-10-31 Tdk株式会社 積層コンデンサ、その実装構造、及びその製造方法
JP5246215B2 (ja) * 2010-07-21 2013-07-24 株式会社村田製作所 セラミック電子部品及び配線基板
JP5267583B2 (ja) * 2011-01-21 2013-08-21 株式会社村田製作所 積層セラミック電子部品
JP2012156315A (ja) * 2011-01-26 2012-08-16 Murata Mfg Co Ltd 積層セラミック電子部品
JP5620938B2 (ja) * 2012-03-30 2014-11-05 太陽誘電株式会社 積層セラミックコンデンサ
JP5811152B2 (ja) * 2012-11-05 2015-11-11 株式会社村田製作所 積層セラミック電子部品、その製造方法、テーピング電子部品連、その製造方法、および積層セラミック電子部品の方向識別方法
KR101452058B1 (ko) * 2012-12-06 2014-10-22 삼성전기주식회사 적층 세라믹 전자부품
JP5689143B2 (ja) * 2013-03-19 2015-03-25 太陽誘電株式会社 低背型積層セラミックコンデンサ
JP6142650B2 (ja) * 2013-05-08 2017-06-07 Tdk株式会社 積層貫通コンデンサ
JP2014220527A (ja) * 2014-08-13 2014-11-20 株式会社村田製作所 積層コンデンサ

Also Published As

Publication number Publication date
TW201628033A (zh) 2016-08-01
KR101736718B1 (ko) 2017-05-17
JP6929245B2 (ja) 2021-09-01
KR20160079636A (ko) 2016-07-06
JP2018152593A (ja) 2018-09-27
JP2016127262A (ja) 2016-07-11
TWI581284B (zh) 2017-05-01
HK1222038A1 (zh) 2017-06-16
JP2018152594A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6901996B2 (ja) 貫通型積層セラミックコンデンサ
CN110010349B (zh) 贯通型层叠陶瓷电容器
JP7116139B2 (ja) 積層セラミックキャパシター及びその実装基板
KR101843182B1 (ko) 적층 세라믹 전자부품
JP5206440B2 (ja) セラミック電子部品
JP2019062100A (ja) セラミック電子部品およびその製造方法
KR20180072555A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
KR102061507B1 (ko) 적층 세라믹 전자부품 및 적층 세라믹 전자부품 실장 기판
KR20140002992A (ko) 적층 세라믹 전자부품 및 이의 제조방법
JP2015053526A (ja) 積層セラミックコンデンサ
KR20190116134A (ko) 적층 세라믹 전자 부품
JP2017143130A (ja) 電子部品
KR102527062B1 (ko) 세라믹 전자 부품 및 그 제조 방법
JP2015029152A (ja) 積層セラミックコンデンサ
JP2023071577A (ja) キャパシタ部品
KR101933426B1 (ko) 적층 세라믹 전자부품
CN115602446A (zh) 多层陶瓷电容器
JP7312525B2 (ja) 積層セラミックコンデンサおよびその製造方法
WO2024075470A1 (ja) 積層セラミックコンデンサとその製造方法
WO2024024451A1 (ja) 積層セラミックコンデンサ
EP4345855A2 (en) Multilayered capacitor
WO2022210642A1 (ja) 積層セラミックコンデンサ
JP5501392B2 (ja) 積層セラミックコンデンサ
KR101556859B1 (ko) 적층 세라믹 콘덴서
JP5827358B2 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191222

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200203

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200204

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200616

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201104

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210427

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210601

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R150 Certificate of patent or registration of utility model

Ref document number: 6901996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150