WO2024024451A1 - 積層セラミックコンデンサ - Google Patents

積層セラミックコンデンサ Download PDF

Info

Publication number
WO2024024451A1
WO2024024451A1 PCT/JP2023/025254 JP2023025254W WO2024024451A1 WO 2024024451 A1 WO2024024451 A1 WO 2024024451A1 JP 2023025254 W JP2023025254 W JP 2023025254W WO 2024024451 A1 WO2024024451 A1 WO 2024024451A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cells
length
high concentration
multilayer ceramic
Prior art date
Application number
PCT/JP2023/025254
Other languages
English (en)
French (fr)
Inventor
啓輔 荒木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024024451A1 publication Critical patent/WO2024024451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a multilayer ceramic capacitor.
  • the device includes a laminate in which a plurality of dielectric layers and internal electrode layers are alternately laminated, and an external electrode provided on the surface of the laminate and electrically connected to the internal electrode layer drawn out to the surface of the laminate.
  • Multilayer ceramic capacitors are known. In recent years, while the applications for multilayer ceramic capacitors have expanded, the environments in which they are used have become increasingly harsh, and they are increasingly being used in high-temperature environments. There is a problem in that insulation resistance decreases when a high electric field is applied in a high temperature environment.
  • Patent Document 1 describes a multilayer ceramic capacitor in which a dielectric layer includes a plurality of crystal grains containing barium titanate as a main component and solid solution of magnesium, manganese, and rare earth elements as oxides.
  • an object of the present invention is to provide a multilayer ceramic capacitor that has a good balance between improved reliability and improved temperature characteristics.
  • a multilayer ceramic capacitor includes a multilayer body in which a plurality of dielectric layers and internal electrode layers are alternately laminated, and an internal electrode layer provided on the surface of the multilayer body and electrically connected to the internal electrode layer drawn out to the surface of the multilayer body.
  • the dielectric layer contains at least Ti
  • the length in the width direction is 800 nm in the lamination direction of the dielectric layer and the center part in the width direction orthogonal to the lamination direction
  • the dielectric layer is laminated.
  • a region with a length in the direction of 1 nm is divided into 800 cells, each cell having a length in the width direction of 1 nm and a length in the stacking direction of 1 nm, and the molar ratio of the rare earth element is determined. If a cell in which Ti is 5 mol % or more with respect to 100 mol of Ti is defined as a high concentration cell, 75% or more but less than 100% of the 800 cells in the region are high concentration cells.
  • the multilayer ceramic capacitor includes a multilayer body in which a plurality of dielectric layers and internal electrode layers are alternately stacked, and an electrical connection between the internal electrode layer provided on the surface of the multilayer body and drawn out to the surface of the multilayer body.
  • an external electrode connected to the dielectric layer, the dielectric layer contains at least Ti, and has a length of 800 nm in the width direction in the lamination direction of the dielectric layer and in the center portion in the width direction orthogonal to the lamination direction.
  • a region with a length of 800 nm in the stacking direction, the size of one cell is 1 nm in the width direction, and 1 nm in the stacking direction, 800 cells in the width direction, and 800 cells in the stacking direction.
  • the cell is divided into 800 cells, the cells are arranged in the width direction as rows, the cells are arranged in the stacking direction as columns, and a cell in which the molar ratio of rare earth is 5 mol % or more with respect to 100 mol of Ti is a high concentration cell, If a row in which 75% or more of high concentration cells exist among the 800 cells in the same row is defined as a high concentration row, then of the 800 rows in the area, 9% or more and 43% or less of the high concentration rows exist.
  • FIG. 1 is a perspective view of a multilayer ceramic capacitor of the present invention.
  • FIG. 2 is a sectional view taken along the line II in FIG. 1; 2 is a sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 is a diagram showing how to divide into cells.
  • FIG. 3 is a diagram showing the distribution of high concentration cells.
  • FIG. 3 is a diagram showing how to count the number of high concentration cells.
  • FIG. 7 is a diagram showing another distribution of high concentration cells.
  • FIG. 7 is a diagram showing another distribution of high concentration cells.
  • FIG. 3 is a diagram showing the characteristics of a multilayer ceramic capacitor.
  • FIG. 1 is a perspective view showing a multilayer ceramic capacitor 1 of this embodiment.
  • the multilayer ceramic capacitor 1 includes a multilayer body 2 and an external electrode 20.
  • the external electrode 20 includes a first external electrode 20a and a second external electrode 20b.
  • FIGS. 1 to 8 an L direction, a W direction, and a T direction are shown.
  • the L direction is the length direction L of the multilayer ceramic capacitor 1.
  • the W direction is the width direction W of the multilayer ceramic capacitor 1.
  • the T direction is the lamination direction T of the multilayer ceramic capacitor 1.
  • the cross section shown in FIG. 2 is referred to as the LT cross section, and the cross section shown in FIG. 3 is referred to as the WT cross section.
  • the length direction L, the width direction W, and the lamination direction T do not necessarily have to be perpendicular to each other.
  • the length direction L, the width direction W, and the lamination direction T may intersect with each other.
  • the laminate 2 has a substantially rectangular parallelepiped shape.
  • the laminate has two main faces M, two end faces E, and two side faces S.
  • the main surface M is a surface facing the stacking direction T.
  • the end surface E is a surface facing the length direction L.
  • the side surface S is a surface facing in the width direction W.
  • the two main surfaces M are referred to as a first main surface M1 and a second main surface M2.
  • the two end faces E are referred to as a first end face E1 and a second end face E2.
  • the two side surfaces S are referred to as a first side surface S1 and a second side surface S2.
  • the ridgeline portion is a portion where two sides of the laminate 2 intersect.
  • a corner is a portion where three sides of the laminate 2 intersect.
  • the size of the laminate 2 is not particularly limited.
  • the length of the laminate 2 in the longitudinal direction L can be 0.05 mm or more and 1.00 mm or less.
  • the length of the laminate 2 in the stacking direction T can be 0.10 mm or more and 0.50 mm or less.
  • the length of the laminate 2 in the width direction W can be 0.10 mm or more and 0.50 mm or less.
  • the length of each part of the laminate 2 can be measured with a micrometer or an optical microscope. Note that the length in the length direction L does not necessarily have to be longer than the length in the width direction W.
  • FIG. 2 is a sectional view taken along line II of the multilayer ceramic capacitor shown in FIG.
  • Laminated body 2 includes a plurality of dielectric layers 4 and a plurality of internal electrode layers 10.
  • the plurality of dielectric layers 4 and the plurality of internal electrode layers 10 are stacked on each other in the stacking direction T.
  • the laminate 2 has an inner layer part IL and an outer layer part OL in the stacking direction T.
  • the outer layer portion OL includes a first outer layer portion OL1 and a second outer layer portion OL2.
  • the first outer layer portion OL1 and the second outer layer portion OL2 are arranged to sandwich the inner layer portion IL in the stacking direction T.
  • the inner layer portion IL includes a portion of the plurality of dielectric layers 4 and the plurality of internal electrode layers 10.
  • a plurality of internal electrode layers 10 are arranged facing each other with the dielectric layer 4 interposed therebetween.
  • the inner layer portion IL is a portion where electrostatic capacitance is formed, and is a portion that substantially functions as a capacitor. Therefore, the inner layer part IL is also called an effective part.
  • the first outer layer portion OL1 is arranged on the first main surface M1 side of the laminate 2.
  • the second outer layer portion OL2 is arranged on the second main surface M2 side of the laminate 2.
  • the first outer layer portion OL1 is arranged between the internal electrode layer 10 closest to the first main surface M1 among the plurality of internal electrode layers 10 and the first main surface M1.
  • the second outer layer portion OL2 is arranged between the internal electrode layer 10 closest to the second main surface M2 among the plurality of internal electrode layers 10 and the second main surface M2.
  • the first outer layer portion OL1 and the second outer layer portion OL2 do not include the internal electrode layer 10.
  • the first outer layer portion OL1 and the second outer layer portion OL2 include the remaining dielectric layers 4 among the plurality of dielectric layers 4 except for the dielectric layer 4 for the inner layer portion IL.
  • the first outer layer portion OL1 and the second outer layer portion OL2 function as a protective layer for the inner layer portion IL.
  • the dielectric layer 4 includes an outer dielectric layer 5 and an inner dielectric layer 6.
  • the outer dielectric layer 5 is the dielectric layer 4 that constitutes the first outer layer portion OL1 and the second outer layer portion OL2 among the dielectric layers 4.
  • the outer dielectric layer 5 is arranged between the first main surface M1 and the internal electrode layer 10 closest to the first main surface M1, and between the second main surface M2 and the inner electrode layer 10 closest to the second main surface M2. It is arranged between the internal electrode layer 10 and the adjacent internal electrode layer 10 .
  • the inner dielectric layer 6 is the dielectric layer 4 that is located between the internal electrode layers 10 and forms the inner layer portion IL together with the internal electrode layers 10.
  • the inner dielectric layer 6 is arranged between a first internal electrode layer 10a and a second internal electrode layer 10b, which will be described below.
  • the number of dielectric layers 4 stacked on the laminate 2 can be, for example, 10 or more and 2000 or less.
  • the thickness of the outer dielectric layer 5 of the dielectric layer 4 can be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the inner dielectric layer 6 can be, for example, 0.8 ⁇ m or more and 3.0 ⁇ m or less.
  • the material of the dielectric layer 4 can be, for example, a dielectric ceramic containing BaTiO 3 , CaTiO 3 , SrTiO 3 , CaZrO 3 or TiO 2 .
  • the material of the dielectric layer 4 may be the above dielectric ceramic to which a Mn compound, Fe compound, Cr compound, Co compound, Ni compound, etc. is added in a smaller amount than the main component.
  • the internal electrode layer 10 includes a first internal electrode layer 10a and a second internal electrode layer 10b.
  • the first internal electrode layer 10a is the internal electrode layer 10 connected to the first external electrode 20a.
  • the second internal electrode layer 10b is the internal electrode layer 10 connected to the second external electrode 20b.
  • the first internal electrode layer 10a extends from the first end surface E1 toward the second end surface E2.
  • the second internal electrode layer 10b extends from the second end surface E2 toward the first end surface E1.
  • the first internal electrode layer 10a and the second internal electrode layer 10b each have a counter electrode section 11 and an extraction electrode section 12.
  • the counter electrode portion 11 is a portion of the internal electrode layer 10 where the first internal electrode layer 10a and the second internal electrode layer 10b face each other in the stacking direction T.
  • the extraction electrode portion 12 is a portion of the internal electrode layer 10 that is extracted from the counter electrode portion 11 to the end surface E1 or end surface E2 of the laminate 2.
  • the counter electrode portion 11 of the first internal electrode layer 10a is referred to as a first counter electrode portion 11a
  • the extraction electrode portion 12 of the first internal electrode layer 10a is referred to as a first extraction electrode portion 12a.
  • the first extraction electrode portion 12a is a portion extracted from the first opposing electrode portion 11a to the first end surface E1 of the stacked body 2.
  • the counter electrode portion 11 of the second internal electrode layer 10b is referred to as the second counter electrode portion 11b
  • the extraction electrode portion 12 of the second internal electrode layer 10b is referred to as the second extraction electrode portion 12b.
  • the second extraction electrode portion 12b is a portion extracted from the second opposing electrode portion 11b to the second end surface E2 of the stacked body 2.
  • the internal electrode layer 10 can have, for example, 10 or more layers and 1000 or less layers.
  • the number of layers of this internal electrode layer 10 is the number of layers including the first internal electrode layer 10a and the second internal electrode layer 10b.
  • the thickness of the internal electrode layer 10 can be, for example, 0.3 ⁇ m or more and 0.4 ⁇ m or less.
  • the material of the internal electrode layer 10 can be, for example, metals such as Ni, Cu, Ag, Pd, and Au, alloys of Ni and Cu, alloys of Ag and Pd, and the like.
  • the material of the internal electrode layer 10 may include dielectric particles having the same composition as the ceramic contained in the dielectric layer 4.
  • Sn may be placed at the interface between the internal electrode layer 10 and the dielectric layer 4. This Sn may be layered or scattered. Sn may be solidly dissolved on the internal electrode layer 10 side, or may be solidly dissolved in the dielectric grains on the dielectric layer 4 side.
  • the laminate 2 has an electrode facing portion LF and an end gap portion EG in the length direction L.
  • the end gap portion EG includes a first end gap portion EG1 and a second end gap portion EG2.
  • the electrode facing portion LF is a portion where the first internal electrode layer 10a and the second internal electrode layer 10b face each other in the stacking direction T. That is, the electrode opposing portion LF is a portion where the first opposing electrode portion 11a and the second opposing electrode portion 11b face each other in the stacking direction T.
  • the electrode facing portion LF is located at the center of the laminate 2 in the longitudinal direction L.
  • the electrode facing portion LF is a portion where electrostatic capacitance is formed, and is a portion that substantially functions as a capacitor. Therefore, the electrode facing portion LF is also referred to as an effective portion.
  • the end gap portion EG is a portion where the first internal electrode layer 10a and the second internal electrode layer 10b do not face each other in the stacking direction T. Specifically, in the stacking direction T, a portion where the first internal electrode layer 10a is arranged and where the second internal electrode layer 10b is not arranged is the first end gap portion EG1. Similarly, a portion where the second internal electrode layer 10b is placed and where the first internal electrode layer 10a is not placed is the second end gap portion EG2.
  • the first end gap part EG1 corresponds to the part where the first extraction electrode part 12a is arranged
  • the second end gap part EG2 corresponds to the part where the second extraction electrode part 12b is arranged. do.
  • the first end gap portion EG1 functions as an extraction electrode to the first end surface E1 of the first internal electrode layer 10a
  • the second end gap portion EG2 functions as a lead electrode to the first end surface E1 of the first internal electrode layer 10b. It functions as an extraction electrode to the end surface E2. Since the end gap portion EG is a division in the length direction L, it is also called an L gap.
  • the length of the end gap portion EG in the longitudinal direction L can be, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the external electrodes include a first external electrode 20a and a second external electrode 20b.
  • the first external electrode 20a is an external electrode arranged on the first end surface E1 of the stacked body 2.
  • the first external electrode 20a is electrically connected to the first internal electrode layer 10a.
  • the second external electrode 20b is an external electrode arranged on the second end surface E2 of the stacked body 2.
  • the second external electrode 20b is electrically connected to the second internal electrode layer 10b.
  • the external electrode 20 extends from the end surface E to part of the two main faces M and to part of the two side faces S.
  • a portion of the external electrode 20 disposed on the end surface E is referred to as an end surface external electrode 25.
  • a portion of the external electrode 20 disposed on a part of the main surface M is referred to as a main surface external electrode 26 .
  • a portion of the external electrode 20 disposed on a part of the side surface S is referred to as a side surface external electrode 27 .
  • the portion of the first external electrode 20a disposed on the first end surface E1 is the first end surface external electrode 25a.
  • a portion of the first external electrode 20a that is disposed on a part of the first main surface M1 or a part of the second main surface M2 is referred to as a first main surface external electrode 26a.
  • a portion disposed on a portion of the first side surface S1 or a portion of the second side surface S2 is referred to as a first side surface external electrode 27a.
  • the portion of the second external electrode 20b disposed on the second end surface E2 is the second end surface external electrode 25b.
  • a portion of the second external electrode 20b that is disposed on a part of the first main surface M1 or a part of the second main surface M2 is defined as a second main surface external electrode 26b.
  • a portion of the second external electrode 20b that is disposed on a portion of the first side surface S1 or a portion of the second side surface S2 is referred to as a second side surface external electrode 27b.
  • the layer structure of the external electrode 20 will be explained based on FIG. 2.
  • the external electrode 20 includes three layers: a base electrode layer 21 , an inner plating layer 23 , and a surface plating layer 24 . These layers are arranged in this order from the end surface E of the laminate 2: base electrode layer 21, inner plating layer 23, and surface plating layer 24.
  • the first external electrode 20a includes a first base electrode layer 21a, a first inner plating layer 23a, and a first surface plating layer 24a.
  • the second external electrode 20b includes a second base electrode layer 21b, a second inner plating layer 23b, and a second surface plating layer 24b. Note that in the description of the external electrode 20, the direction away from the end surface E of the laminate 2 is sometimes referred to as the top.
  • the first base electrode layer 21a is disposed on the first end surface E1 of the laminate 2, and covers the first end surface E1.
  • the first base electrode layer 21a extends from the first end surface E1 to a part of the first main surface M1, a part of the second main surface M2, a part of the first side surface S1, and a second side surface S2. It may extend to a part of the
  • the second base electrode layer 21b is arranged on the second end surface E2 of the laminate 2, and covers the second end surface E2.
  • the second base electrode layer 21b extends from the second end surface E2 to a part of the second main surface M1, a part of the second main surface M2, a part of the first side surface S1, and a second side surface S2. It may extend to a part of the
  • the base electrode layer 21 can be a fired layer containing metal and glass.
  • the fired layer is a layer obtained by applying a conductive paste containing metal and glass to the laminate by a dipping method and firing the applied conductive paste.
  • the fired layer may have multiple layers.
  • the metal contained in the fired layer contains Cu as a main component.
  • the metal may include at least one selected from Ni, Ag, Pd, or Au as a main component, or an alloy such as an Ag-Pd alloy, or it may be used as a component other than the main component. It may be included as
  • the glass included in the fired layer examples include a glass component containing at least one selected from B, Si, Ba, Mg, Al, Li, or the like.
  • borosilicate glass can be used.
  • the base electrode layer 21 may be a conductive resin layer containing conductive particles and a thermosetting resin.
  • the conductive resin layer may be formed on the above-described fired layer, or may be formed directly on the laminate without forming the fired layer.
  • the conductive resin layer is a layer obtained by applying a conductive paste containing conductive particles and a thermosetting resin to the laminate using a coating method, and then baking the layer. Note that the conductive resin layer may have multiple layers.
  • the thickness per layer of the base electrode layer 21 as a fired layer or a conductive resin layer is not particularly limited, and may be 1 ⁇ m or more and 10 ⁇ m or less.
  • the base electrode layer 21 may be formed by a thin film forming method such as a sputtering method or a vapor deposition method, and may be a thin film layer with a thickness of 1 ⁇ m or less on which metal particles are deposited.
  • the inner plating layer 23 is disposed on the base electrode layer 21 and covers at least a portion of the base electrode layer 21.
  • the inner plating layer 23 includes, for example, at least one selected from metals such as Cu, Ni, Ag, Pd, and Au, and alloys such as an Ag-Pd alloy.
  • the surface plating layer 24 is disposed on the inner plating layer 23 and covers at least a portion of the inner plating layer 23.
  • the surface plating layer 24 contains, for example, metal such as Sn.
  • the inner plating layer 23 is preferably a Ni plating layer
  • the surface plating layer 24 is preferably a Sn plating layer.
  • the Ni plating layer can prevent the base electrode layer from being eroded by solder when mounting the ceramic electronic component.
  • the Sn plating layer improves the wettability of solder when mounting ceramic electronic components, and can facilitate mounting. By using the Sn plating layer as the surface plating layer 24, the wettability of the solder to the external electrode 20 can be improved.
  • the external electrode 20 may be a plating layer provided directly on the laminate 2 and directly connected to the internal electrode layer 10. Further, a catalyst may be provided on the laminate 2 as a pretreatment for plating.
  • the plating layer preferably includes a first plating layer and a second plating layer provided on the first plating layer.
  • the first plating layer and the second plating layer are, for example, plating of one metal selected from the group consisting of Cu, Ni, Sn, Pb, Au, Ag, Pd, Bi, and Zn, or an alloy containing the metal. It is preferable to include.
  • Ni is used as the internal electrode layer 10
  • Cu which has good bonding properties with Ni
  • the second plating layer it is preferable to use Sn or Au, which has good solder wettability.
  • Ni which has solder barrier properties, as the first plating layer.
  • the second plating layer is formed as necessary. Therefore, the external electrode 20 may be composed only of the first plating layer. Further, the second plating layer may be provided as the outermost layer of the plating layers, or another plating layer may be provided on the second plating layer. Moreover, it is preferable that the metal ratio per unit volume of the plating layer is 99% by volume or more. Further, the plating layer may have grains grown along the lamination direction T, or may have a columnar shape.
  • FIG. 3 is a sectional view taken along line II-II of the multilayer ceramic capacitor shown in FIG.
  • the laminate 2 has, in the width direction W, an electrode facing portion WF and a side gap portion SG where the internal electrode layer 10 faces.
  • the side gap portion SG includes a first side gap portion SG1 and a second side gap portion SG2.
  • the first side gap portion SG1 and the second side gap portion SG2 are arranged to sandwich the electrode facing portion WF.
  • the first side gap portion SG1 is located between the electrode facing portion WF and the first side surface S1
  • the second side gap portion SG2 is located between the electrode facing portion WF and the second side surface S2. do.
  • the first side gap portion SG1 is located between the end of the internal electrode layer 10 on the first side surface S1 side and the first side surface S1
  • the second side gap portion SG2 is located between the inner electrode layer 10 and the first side surface S1. It is located between the end of the electrode layer 10 on the second side surface S2 and the second side surface S2.
  • the first side gap portion SG1 and the second side gap portion SG2 do not include the internal electrode layer 10 but only include the dielectric layer 4.
  • the first side gap portion SG1 and the second side gap portion SG2 function as a protective layer for the internal electrode layer 10. Since the side gap portion SG is a division in the width direction W, it is also called a W gap.
  • the length of the side gap portion SG in the width direction W can be, for example, one-tenth of the length of the laminate 2 in the width direction W, or 5 ⁇ m or more and 30 ⁇ m or less.
  • the length in the longitudinal direction L of the entire multilayer ceramic capacitor 1 including the multilayer body 2 and the external electrode 20 can be, for example, 0.2 mm or more and 2.0 mm or less.
  • the length of the entire multilayer ceramic capacitor 1 in the stacking direction T can be, for example, 0.1 mm or more and 1.2 mm or less.
  • the length of the entire multilayer ceramic capacitor 1 in the width direction W can be, for example, 0.1 mm or more and 1.2 mm or less.
  • the multilayer ceramic capacitor 1 is a two-terminal capacitor.
  • the multilayer ceramic capacitor 1 is not limited to two terminals, but can also be a multi-terminal capacitor having three or more terminals.
  • the multilayer ceramic capacitor 1 of this embodiment is characterized by the distribution of rare earth elements in the dielectric layer 4.
  • the dielectric layer 4 containing BaTiO 3 when a high temperature and high electric field load is applied to the ceramic grain boundaries, oxygen vacancies move and the insulation resistance deteriorates.
  • the solid solution of rare earth elements such as Re in BaTiO 3 suppresses the movement of oxygen vacancies. The more regions in which rare earth elements are dissolved in solid solution in the direction of the electric field, the more the movement of oxygen vacancies is suppressed and the reliability becomes higher.
  • rare earth elements are uniformly dissolved in solid solution at a high concentration in the direction of electrolysis. Specifically, by forming a region in which rare earth elements are uniformly dissolved in solid solution in the direction of the electric field, that is, in the stacking direction T, the movement of oxygen vacancies is inhibited and reliability is improved.
  • the following description will be made with reference to the drawings.
  • FIG. 4 is a WT cross-sectional view of the inner dielectric layer 6.
  • the region shown in FIG. 4 is a region in which the length in the width direction W is 800 nm and the length in the lamination direction T is 800 nm at the center part in the width direction W and the center part in the lamination direction T of the inner dielectric layer 6. .
  • a predetermined area at the center of the inner dielectric layer 6 in the width direction W and the center of the stacking direction T may be referred to as an evaluation area.
  • the grid shown in FIG. 4 has a length in the width direction W of 1 nm and a length in the stacking direction T of 1 nm. One square corresponds to one cell.
  • the arrangement of cells extending in the width direction W is referred to as a row
  • the arrangement of cells extending in the stacking direction T is referred to as a column.
  • the area shown in FIG. 4 is divided into a total of 640,000 cells of 800 rows x 800 columns.
  • Cell H in FIG. 4 indicates a high concentration cell
  • cell L in FIG. 4 indicates a low concentration cell
  • a high concentration cell means a cell in which the molar ratio of rare earth elements is 5 mol % or more with respect to 100 mol of Ti.
  • a low concentration cell means a cell in which the molar ratio of rare earth elements is less than 5 mol % with respect to 100 mol of Ti.
  • the rare earth element at least one of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y can be used, for example.
  • the multilayer ceramic capacitor 1 of this embodiment there are 600 or more and less than 800 high concentration cells among 800 cells that are continuous in the width direction W. That is, among the cells belonging to one row, 75% or more but less than 100% of the cells are high concentration cells. This improves reliability in the electrolysis direction, in other words, in the stacking direction T.
  • the multilayer ceramic capacitor 1 of this embodiment the high concentration cell H and the low concentration cell L coexist. Therefore, it is possible to provide a multilayer ceramic capacitor that has a good balance between improved reliability and improved temperature characteristics.
  • Dielectric layer 4 includes a plurality of dielectric grains.
  • the dielectric grain is a barium titanate ceramic such as a perovskite compound containing Ba and Ti, and is a ceramic layer containing a perovskite compound containing Ba and Ti and a rare earth element.
  • the rare earths are likely to form a solid solution in barium titanate or the like.
  • the movement of oxygen vacancies is likely to be suppressed in areas where rare earth elements are solidly dissolved.
  • a predetermined proportion or more of high concentration cells exist in the width direction W perpendicular to the electrolysis direction, in other words, in the row direction, the movement of oxygen vacancies is efficiently suppressed. As a result, the reliability of the multilayer ceramic capacitor 1 can be improved.
  • FIG. 5 is a diagram showing the distribution of the high concentration region H within the 800 nm ⁇ 800 nm in the aforementioned evaluation region.
  • 501 in FIG. 5 shows the distribution of the molar ratio of rare earth elements in the cell by TEM (Transmission Electron Microscope)-EDX (Energy Dispersive X-ray Spectroscopy).
  • 502 in FIG. 5 is a diagram showing the distribution of the binarized molar ratio of rare earth elements in each cell.
  • a cell in which the molar ratio of rare earth elements is 5 mol% or more with respect to 100 mol of Ti is defined as a high concentration cell H, and a cell in which the molar ratio of rare earth element is less than 5 mol% with respect to 100 mol of Ti is defined as a low concentration cell. It was set as L. 503 in FIG. 5 is a diagram showing the proportion of high concentration cells H in each row.
  • 601 in FIG. 6 is a diagram showing the distribution of the rare earth molar ratio of each cell after it is binarized.
  • 602 in FIG. 6 is an enlarged view of the rectangular box R of 601 in FIG.
  • the evaluation area is divided into 1 nm ⁇ 1 nm cells.
  • Analysis by TEM-EDX and binarization of the results are performed for each cell. Therefore, as shown at 602 in FIG. 6, the binarized result is output in a mosaic format of 1 nm units.
  • FIG. 7 and 8 are diagrams corresponding to FIG. 5 of other multilayer ceramic capacitors.
  • FIG. 7 shows an example in which the proportion occupied by high concentration cells H is higher than that of the multilayer ceramic capacitor 1 shown in FIG.
  • FIG. 8 shows an example in which the proportion occupied by high concentration cells H is lower than that of the multilayer ceramic capacitor 1 shown in FIG.
  • the proportion occupied by the high concentration cells H is 75% or more.
  • the proportion occupied by the high concentration cell H is lower than in 502 in FIG. Therefore, as shown at 803 in FIG. 8, there is no row in which the proportion of high concentration cells H is 75% or more.
  • ⁇ Distribution in stacking direction> the distribution of high concentration cells H in the column direction, that is, the stacking direction T will be explained.
  • a row in which 75% or more of high concentration cells exist is defined as a high concentration row.
  • high-density rows exist in 9% or more and 43% or less of the total number of rows included in the evaluation area.
  • the high density rows be 72 or more and 344 or less.
  • the presence of high concentration cells H at a predetermined ratio or more can improve the reliability of the multilayer ceramic capacitor 1.
  • the proportion of high concentration cells H is too high, the temperature characteristics will deteriorate. Therefore, by setting the proportion of high concentration lines to 9% or more and 43% or less of the total number of 800 lines included in the evaluation area, reliability can be improved while suppressing the deterioration of temperature characteristics. be able to.
  • the multilayer ceramic capacitor shown in FIG. 7 all 800 rows are high concentration rows, as shown at 703 in FIG. Therefore, the multilayer ceramic capacitor shown in FIG. 7 is inferior to the multilayer ceramic capacitor shown in FIG. 5 in terms of temperature characteristics.
  • the proportion of low concentration cells L is a cell in which the molar ratio of rare earth elements is less than 5 mol % with respect to 100 mol of Ti.
  • the number of low concentration cells L is preferably 71% or less of the total number of cells in the evaluation area. If the proportion of low concentration cells L exceeds a predetermined range, reliability cannot be guaranteed. If the area occupied by the low concentration cell L increases, there is a possibility that electrons will escape in the direction of the electric field. Therefore, reliability cannot be guaranteed.
  • FIG. 9 is a table showing characteristics of examples of the present invention and comparative examples. Note that the ratio of the high concentration region to one line shown in FIG. 9 means the ratio of high concentration cells to the cells belonging to one row. For example, if 200 cells out of 800 cells belonging to one row are high concentration cells, the ratio of the high concentration region to one line is 25%.
  • MTTF means mean time to failure.
  • the high concentration area ratio means the proportion of high concentration rows among the 800 rows, assuming that a row in which 75% or more of high concentration cells exist among the 800 cells belonging to the same row is defined as a high concentration row. For example, if there are 200 high density lines among 800 lines, the high density area ratio will be 25%.
  • the low concentration area ratio means the proportion of low concentration cells among all cells in the evaluation area. For example, if there are 320,000 low concentration cells among 640,000 cells arranged in 800 rows and 800 columns, the low concentration area ratio is 50%.
  • ⁇ MTTF> As shown in FIG. 9, in Examples 1 to 6 in which the proportion of the high concentration area in one line is 75% or more and less than 100%, the proportion of the high concentration area in one line is less than 75%. It showed a better MTTF than Comparative Example 2 and Comparative Example 3. Note that in Comparative Example 1 in which the proportion of the high concentration region in one line was 100%, although the MTTF was good, the temperature characteristics of the dielectric constant were poor. Similarly, in Examples 1 to 6 in which the high concentration area ratio was 9% or more and 43% or less, the MTTF was good as described above. Further, in Examples 1 to 6 in which the low concentration area ratio was 71% or less, the temperature characteristics were good. In addition, in Comparative Example 1 in which the low concentration area ratio was 0%, other characteristics deviated from the preferable range.
  • the dielectric constant is calculated by applying a voltage of 1 kHz and 0.8 kv/mm, measuring the capacitance, and then using the following formula.
  • Cap dielectric constant
  • ⁇ r dielectric constant of sample
  • ⁇ 0 dielectric constant of vacuum
  • S area of electrode
  • d thickness of dielectric layer.
  • the multilayer ceramic capacitor 1 of this embodiment can be manufactured by the same method as the conventional multilayer ceramic capacitor 1 in terms of the general flow of the manufacturing process.
  • the following method can be used, for example. That is, when producing a laminated block, the distribution of rare earth elements in the plane of the dielectric sheets to be laminated is adjusted. Furthermore, when laminating the dielectric sheets, the distribution of rare earth elements in the dielectric sheets to be laminated is adjusted so that the distribution of rare earth elements in the lamination direction becomes a desired distribution. Thereby, rare earth elements can be distributed in a desired manner in the width direction W, length direction L, and lamination direction T.
  • Multilayer ceramic capacitor 2 Laminated body 4 Dielectric layer 5 Outer dielectric layer 6 Inner dielectric layer 10 Internal electrode layer 11 Counter electrode section 12 Extracting electrode section 20 External electrode 21 Base electrode layer 23 Inner plating layer 24 Surface plating layer 25 End surface External electrode 26 Main surface external electrode 27 Side surface external electrode IL Inner layer part OL Outer layer part LF Electrode facing part EG End gap part WF Electrode facing part SG Side gap part M Main surface E End surface S Side surface T Lamination direction L Length direction W Width direction

Abstract

信頼性の向上と温度特性の向上とのバランスがとれた積層セラミックコンデンサを提供すること。積層セラミックコンデンサは、誘電体層は少なくともTiを含み、誘電体層の幅方向及び積層方向の中央部において、幅方向の長さが800nm、積層方向の長さが1nmの領域を、1つのセルの大きさが、幅方向の長さが1nmであり、積層方向の長さが1nmであるセルで、800セルに分割し、希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルとした場合、前記領域内の800セルのうち、高濃度セルが75%以上100%未満存在する。

Description

積層セラミックコンデンサ
 本発明は、積層セラミックコンデンサに関する。
 誘電体層及び内部電極層が交互に複数枚積層された積層体と、積層体の表面に設けられ、積層体の表面に引き出された内部電極層と電気的に接続された外部電極とを備えた積層セラミックコンデンサが知られている。
 近年、積層セラミックコンデンサの使用用途が拡大する一方で、その使用環境は厳しさを増しており、高温環境下で使用されることが多くなってきた。高温環境下において、高電界が加わると、絶縁抵抗が低下するという問題がある。
 特許文献1には、チタン酸バリウムを主成分とし、マグネシウム、マンガンおよび希土類元素が酸化物として固溶した複数の結晶粒子を誘電体層に含む積層セラミックコンデンサが記載されている。特許文献1に記載のセラミックコンデンサのように、誘電体層に含まれる結晶粒子を、コア部と、コア部の周囲のシェル部とからなるコアシェル構造とすることにより、高温環境下における絶縁抵抗の劣化を抑制することができる。
特開2008-10530号公報
 しかしながら、特許文献1に記載の積層セラミックコンデンサのように、誘電体層にコアシェル構造の結晶粒子を含む構成であっても、高温環境下における絶縁抵抗の劣化を十分に抑制することはできず、改善の余地がある。また、信頼性の向上と温度特性の向上とが相反する場合もある。
 そこで、本発明は、信頼性の向上と温度特性の向上とのバランスがとれた積層セラミックコンデンサを提供することを目的とする。
 積層セラミックコンデンサは、誘電体層と内部電極層とが交互に複数積層された積層体と、前記積層体の表面に設けられ、前記積層体の表面に引き出された前記内部電極層と電気的に接続された外部電極と、を備え、前記誘電体層は少なくともTiを含み、前記誘電体層の積層方向及び前記積層方向と直交する幅方向の中央部において、幅方向の長さが800nm、積層方向の長さが1nmの領域を、1つのセルの大きさが、幅方向の長さが1nmであり、積層方向の長さが1nmであるセルで、800セルに分割し、希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルとした場合、前記領域内の800セルのうち、高濃度セルが75%以上100%未満存在する。
 また、積層セラミックコンデンサは、誘電体層と内部電極層とが交互に複数積層された積層体と、前記積層体の表面に設けられ、前記積層体の表面に引き出された前記内部電極層と電気的に接続された外部電極と、を備え、前記誘電体層は少なくともTiを含み、前記誘電体層の積層方向及び前記積層方向と直交する幅方向の中央部において、幅方向の長さが800nm、積層方向の長さが800nmの領域を、1つのセルの大きさが、幅方向の長さが1nmであり、積層方向の長さが1nmであるセルで、幅方向に800セル、積層方向に800セルに分割し、幅方向のセルの配列を行とし、積層方向のセルの配列を列とし、希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルとし、同一行の800セルのうち、高濃度セルが75%以上存在する行を高濃度行とした場合、前記領域内の800行のうち、高濃度行が9%以上43%以下存在する。
 本発明によれば、信頼性の向上と温度特性の向上とのバランスがとれた積層セラミックコンデンサを提供することができる。
本発明の積層セラミックコンデンサの斜視図である。 図1のI-I線断面図である。 図1のII-II線断面図である。 セルへの分割の仕方を示す図である。 高濃度セルの分布を示す図である。 高濃度セルの個数の数え方を示す図である。 高濃度セルの他の分布を示す図である。 高濃度セルの他の分布を示す図である。 積層セラミックコンデンサの特性を示す図である。
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。
<積層セラミックコンデンサの外形>
 図1に基づいて、積層セラミックコンデンサ1の外観の概要を説明する。図1は、本実施形態の積層セラミックコンデンサ1を示す斜視図である。
 積層セラミックコンデンサ1は、積層体2及び外部電極20を備える。外部電極20は、第1の外部電極20a及び第2の外部電極20bを含む。
<方向の定義>
 図1から図8には、L方向、W方向及びT方向が示されている。L方向は、積層セラミックコンデンサ1の長さ方向Lである。W方向は、積層セラミックコンデンサ1の幅方向Wである。T方向は、積層セラミックコンデンサ1の積層方向Tである。
 これにより、図2に示す断面はLT断面と称され、図3に示す断面はWT断面と称される。
 長さ方向L、幅方向W及び積層方向Tは、必ずしも互いに直交する関係でなくてもよい。長さ方向L、幅方向W及び積層方向Tは、互いに交差する関係であってもよい。
<積層体の外形>
 積層体2は、図1に示すように、略直方体型の形状を有する。
 積層体は、2つの主面M、2つの端面E及び2つの側面Sを有する。主面Mは、積層方向Tに対向する面である。端面Eは、長さ方向Lに対向する面である。側面Sは、幅方向Wに対向する面である。
 2つの主面Mを、第1の主面M1及び第2の主面M2とする。2つの端面Eを、第1の端面E1及び第2の端面E2とする。2つの側面Sを、第1の側面S1及び第2の側面S2とする。
 積層体2の稜線部及び角部には、丸みがつけられていることが好ましい。稜線部とは、積層体2の2面が交る部分である。角部とは、積層体2の3面が交る部分である。
<積層体の大きさ>
 積層体2の大きさは特には限定されない。一例としては、積層体2の長さ方向Lの長さは、0.05mm以上1.00mm以下とすることができる。積層体2の積層方向Tの長さは、0.10mm以上0.50mm以下とすることができる。積層体2の幅方向Wの長さは、0.10mm以上0.50mm以下とすることができる。
 積層体2の各部の長さは、マイクロメータ又は光学顕微鏡で測定することができる。なお、長さ方向Lの長さは、幅方向Wの長さよりも必ずしも長くなくてもよい。
<積層体の内部構造>
 図2に基づいて、積層体2の内部構造について説明する。図2は、図1に示す積層セラミックコンデンサのI-I線断面図である。
 積層体2は、複数の誘電体層4及び複数の内部電極層10を含む。複数の誘電体層4及び複数の内部電極層10は、互いに積層方向Tに積層されている。
<内層部と外層部>
 積層体2は、積層方向Tにおいて、内層部IL及び外層部OLを有する。外層部OLは、第1の外層部OL1及び第2の外層部OL2を含む。第1の外層部OL1及び第2の外層部OL2は、内層部ILを積層方向Tにおいて挟み込むように配置されている。
 内層部ILは、複数の誘電体層4の一部と複数の内部電極層10とを含む。内層部ILでは、複数の内部電極層10が誘電体層4を介して対向して配置されている。
 内層部ILは、静電容量が形成される部分であり、実質的にコンデンサとして機能する部分である。これより、内層部ILは、有効部ともいわれる。
 第1の外層部OL1は、積層体2の第1の主面M1の側に配置されている。第2の外層部OL2は、積層体2の第2の主面M2の側に配置されている。
 具体的には、第1の外層部OL1は、複数の内部電極層10のうち第1の主面M1に最も近い内部電極層10と第1の主面M1との間に配置されている。第2の外層部OL2は、複数の内部電極層10のうち第2の主面M2に最も近い内部電極層10と第2の主面M2との間に配置されている。
 第1の外層部OL1及び第2の外層部OL2は内部電極層10を含まない。第1の外層部OL1及び第2の外層部OL2は、複数の誘電体層4のうち、内層部ILのための誘電体層4を除く残りの誘電体層4を含む。
 第1の外層部OL1及び第2の外層部OL2は、内層部ILの保護層として機能する。
<誘電体層>
 誘電体層4は、外層誘電体層5及び内層誘電体層6を含む。
<外層誘電体層>
 外層誘電体層5は、誘電体層4のうち、第1の外層部OL1及び第2の外層部OL2を構成する誘電体層4である。外層誘電体層5は、第1の主面M1と、第1の主面M1に最も近い内部電極層10との間、及び、第2の主面M2と、第2の主面M2に最も近い内部電極層10との間に配置されている。
<内層誘電体層>
 内層誘電体層6は、内部電極層10の間に位置し、内部電極層10とともに内層部ILを構成する誘電体層4である。
 内層誘電体層6は、以下に説明する第1の内部電極層10aと第2の内部電極層10bとの間に配置されている。
<誘電体層の層数>
 積層体2に積層される誘電体層4は、例えば、10層以上2000層以下とすることができる。
<誘電体層の厚さ>
 誘電体層4のうち、外層誘電体層5の厚さは、例えば、10μm以上100μm以下とすることができる。内層誘電体層6の厚さは、例えば、0.8μm以上3.0μm以下とすることができる。
<誘電体層の材料>
 誘電体層4の材料は、例えば、BaTiO、CaTiO、SrTiO3、CaZrO又はTiOなどを含む誘電体セラミックとすることができる。
 誘電体層4の材料は、前述の誘電体セラミックに、Mn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などを主成分よりも少ない含有量だけ添加したものであってもよい。
<内部電極層>
 内部電極層10は、第1の内部電極層10a及び第2の内部電極層10bを含む。第1の内部電極層10aは、第1の外部電極20aに接続された内部電極層10である。第2の内部電極層10bは、第2の外部電極20bに接続された内部電極層10である。
 第1の内部電極層10aは、第1の端面E1から、第2の端面E2に向かって延在する。第2の内部電極層10bは、第2の端面E2から、第1の端面E1に向かって延在する。
<対向部と引き出し部>
 第1の内部電極層10a及び第2の内部電極層10bは、それぞれ、対向電極部11及び引き出し電極部12を有する。
 対向電極部11は、内部電極層10において、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tにおいて対向する部分である。引き出し電極部12は、内部電極層10において、対向電極部11から、積層体2の端面E1又は端面E2まで引き出された部分である。
 第1の内部電極層10aの対向電極部11を第1の対向電極部11aとし、第1の内部電極層10aの引き出し電極部12を第1の引き出し電極部12aとする。第1の引き出し電極部12aは、第1の対向電極部11aから、積層体2の第1の端面E1まで引き出された部分である。
 同様に、第2の内部電極層10bの対向電極部11を第2の対向電極部11bとし、第2の内部電極層10bの引き出し電極部12を第2の引き出し電極部12bとする。第2の引き出し電極部12bは、第2の対向電極部11bから、積層体2の第2の端面E2まで引き出された部分である。
<内部電極層の層数>
 内部電極層10は、例えば、10層以上1000層以下とすることができる。この内部電極層10の層数は、第1の内部電極層10a及び第2の内部電極層10bを含む層数である。
<内部電極層の厚さ>
 内部電極層10の厚さは、例えば、0.3μm以上0.4μm以下とすることができる。
<内部電極層の材料>
 内部電極層10の材料は、例えば、Ni、Cu、Ag、Pd、及びAuなどの金属や、NiとCuの合金やAgとPdの合金などとすることができる。内部電極層10の材料は、それに加えて、誘電体層4に含まれるセラミックと同一組成系の誘電体粒子を含んでいてもよい。
 内部電極層10と誘電体層4との界面には、Snが配置されていてもよい。このSnは層状であってもよく、又は点在していてもよい。
 Snは、内部電極層10の側に固溶していても良く、又は誘電体層4の側の誘電体グレインに固溶していてもよい。
<電極対向部>
 積層体2の長さ方向Lの区分について説明する。
 積層体2は、長さ方向Lにおいて、電極対向部LF及びエンドギャップ部EGを有する。エンドギャップ部EGは、第1のエンドギャップ部EG1及び第2のエンドギャップ部EG2を含む。
 電極対向部LFは、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tにおいて対向する部分である。すなわち、電極対向部LFは、第1の対向電極部11aと第2の対向電極部11bとが積層方向Tにおいて対向する部分である。
 電極対向部LFは、積層体2の長さ方向Lにおいて中央部分に位置する。
 電極対向部LFは、静電容量が形成される部分であり、実質的にコンデンサとして機能する部分である。これより、電極対向部LFは、有効部ともいわれる。
<エンドギャップ部>
 エンドギャップ部EGは、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tにおいて対向しない部分である。
 具体的には、積層方向Tにおいて、第1の内部電極層10aが配置され、第2の内部電極層10bが配置されていない部分が、第1のエンドギャップ部EG1である。同様に、第2の内部電極層10bが配置され、第1の内部電極層10aが配置されていない部分が、第2のエンドギャップ部EG2である。
 第1のエンドギャップ部EG1は、第1の引き出し電極部12aが配置されている部分に対応し、第2のエンドギャップ部EG2は、第2の引き出し電極部12bが配置されている部分に対応する。
 第1のエンドギャップ部EG1は、第1の内部電極層10aの第1の端面E1への引出電極として機能し、第2のエンドギャップ部EG2は、第2の内部電極層10bの第2の端面E2への引出電極として機能する。
 エンドギャップ部EGは、長さ方向Lにおける区分であるため、Lギャップともいわれる。
 エンドギャップ部EGの長さ方向Lの長さは、例えば、5μm以上30μm以下とすることができる。
<外部電極>
 外部電極は、第1の外部電極20a及び第2の外部電極20bを含む。
<第1の外部電極>
 第1の外部電極20aは、積層体2の第1の端面E1に配置された外部電極である。第1の外部電極20aは、第1の内部電極層10aと電気的に接続されている。
<第2の外部電極>
 第2の外部電極20bは、積層体2の第2の端面E2に配置された外部電極である。第2の外部電極20bは、第2の内部電極層10bと電気的に接続されている。
<各面の外部電極>
 外部電極20は、端面Eから、2つの主面Mの一部まで及び2つの側面Sの一部まで延在する。
 外部電極20のうち、端面Eに配置された部分を端面外部電極25とする。外部電極20のうち、主面Mの一部に配置された部分を主面外部電極26とする。外部電極20のうち、側面Sの一部に配置された部分を側面外部電極27とする。
 具体的には、第1の外部電極20aのうち、第1の端面E1に配置された部分を第1の端面外部電極25aとする。第1の外部電極20aのうち、第1の主面M1の一部又は第2の主面M2の一部に配置された部分を第1の主面外部電極26aとする。第1の外部電極20aのうち、第1の側面S1の一部又は第2の側面S2の一部に配置された部分を第1の側面外部電極27aとする。
 また、第2の外部電極20bについても第1の外部電極20aと同様に、第2の外部電極20bのうち、第2の端面E2に配置された部分を、第2の端面外部電極25bとする。第2の外部電極20bのうち、第1の主面M1の一部又は第2の主面M2の一部に配置された部分を、第2の主面外部電極26bとする。第2の外部電極20bのうち、第1の側面S1の一部又は第2の側面S2の一部に配置された部分を、第2の側面外部電極27bとする。
<外部電極の層構成>
 外部電極20の層構成を、図2に基づいてについて説明する。
 外部電極20は、下地電極層21、内めっき層23及び表めっき層24の3層を含む。これらの層は、積層体2の端面Eから、下地電極層21、内めっき層23、表めっき層24の順に配置されている。
 具体的には、第1の外部電極20aは、第1の下地電極層21a、第1の内めっき層23a及び第1の表めっき層24aを含む。同様に、第2の外部電極20bは、第2の下地電極層21b、第2の内めっき層23b及び第2の表めっき層24bを含む。
 なお、外部電極20の説明において、積層体2の端面Eから離れる方向を上とする場合がある。
<下地電極層>
 第1の下地電極層21aは、積層体2の第1の端面E1の上に配置されており、第1の端面E1を覆う。第1の下地電極層21aは、第1の端面E1から、第1の主面M1の一部、第2の主面M2の一部、第1の側面S1の一部及び第2の側面S2の一部に延びていてもよい。
 同様に、第2の下地電極層21bは、積層体2の第2の端面E2の上に配置されており、第2の端面E2を覆う。第2の下地電極層21bは、第2の端面E2から、第2の主面M1の一部、第2の主面M2の一部、第1の側面S1の一部及び第2の側面S2の一部に延びていてもよい。
<焼成層>
 下地電極層21は、金属とガラスとを含む焼成層とすることができる。
 焼成層は、金属及びガラスを含む導電性ペーストをディップ法によって積層体に塗布して焼成した層である。焼成層は、複数層であってもよい。
 焼成層に含まれる金属は、Cuを主成分として含む。また、金属としては、例えばNi、Ag、Pd、又はAu等の金属、又はAg-Pd合金等の合金、から選ばれる少なくとも1つを主成分として含んでもよく、又はそれを主成分以外の成分として含んでもよい。
 焼成層に含まれるガラスとしては、B、Si、Ba、Mg、Al、又はLi等から選ばれる少なくとも1つを含むガラス成分が挙げられる。具体例として、ホウケイ酸ガラスを用いることができる。
 また、下地電極層21は、導電性粒子と熱硬化性樹脂とを含む導電性樹脂層であってもよい。導電性樹脂層は、上述した焼成層上に形成されてもよいし、焼成層を形成せずに積層体に直接形成されてもよい。
 導電性樹脂層は、導電性粒子と熱硬化性樹脂とを含む導電性ペーストを塗布法によって積層体に塗布して焼成した層である。なお、導電性樹脂層は、複数層であってもよい。
 焼成層または導電性樹脂層としての下地電極層21の一層あたりの厚さとしては、特に限定されず、1μm以上10μm以下であってもよい。
 また、下地電極層21は、スパッタ法又は蒸着法等の薄膜形成法により形成され、金属粒子が堆積された1μm以下の薄膜層であってもよい。
<内めっき層>
 内めっき層23は、下地電極層21の上に配置されており、下地電極層21の少なくとも一部を覆う。内めっき層23は、例えば、Cu、Ni、Ag、Pd及びAu等の金属、並びにAg-Pd合金等の合金の中から選ばれる少なくとも1つを含む。
<表めっき層>
 表めっき層24は、内めっき層23の上に配置されており、内めっき層23の少なくとも一部を覆う。表めっき層24は、例えば、Sn等の金属を含む。
 内めっき層23は、好ましくはNiめっき層であり、表めっき層24は、好ましくはSnめっき層である。
 Niめっき層は、下地電極層がセラミック電子部品を実装する際のはんだによって侵食されることを防止することができる。Snめっき層は、セラミック電子部品を実装する際のはんだの濡れ性を向上させ、実装を容易にすることができる。表めっき層24をSnめっき層とすることで、外部電極20に対するはんだの濡れ性を向上させることができる。
<外部電極の他の構成>
 外部電極20は、積層体2の上に直接設けられ、内部電極層10と直接接続されるめっき層とすることができる。また、めっきの前処理として積層体2の上に触媒を設けてもよい。
 めっき層は、第1のめっき層と、第1のめっき層の上に設けられた第2のめっき層とを含むことが好ましい。
 第1のめっき層及び第2のめっき層は、例えば、Cu、Ni、Sn、Pb、Au、Ag、Pd、Bi及びZnからなる群から選ばれる1種の金属又は当該金属を含む合金のめっきを含むことが好ましい。
 例えば、内部電極層10としてNiを用いた場合、第1のめっき層としては、Niと接合性のよいCuを用いることが好ましい。
 また、第2のめっき層としては、はんだ濡れ性のよいSnやAuを用いることが好ましい。一方、第1のめっき層としては、はんだバリア性能を有するNiを用いることが好ましい。
 第2のめっき層は、必要に応じて形成されるものである。そのため、外部電極20は、第1のめっき層のみから構成されたものであってもよい。
 また、第2のめっき層をめっき層の最外層として設けてもよく、又は、第2のめっき層上に他のめっき層を設けてもよい。
 また、めっき層の単位体積あたりの金属割合は99体積%以上であることが好ましい。
 また、めっき層は、積層方向Tに沿って粒成長したものであってもよく、また、柱状であってもよい。
<積層体の内部構造(WT断面)>
 図3に基づいて、積層体2の内部構造、特には、第2の端面E2から見た内部構造を説明する。図3は、図1に示す積層セラミックコンデンサのII-II線断面図である。
 積層体2は、幅方向Wにおいて、内部電極層10が対向する電極対向部WF及びサイドギャップ部SGを有する。サイドギャップ部SGは、第1のサイドギャップ部SG1及び第2のサイドギャップ部SG2を含む。第1のサイドギャップ部SG1及び第2のサイドギャップ部SG2は、電極対向部WFを挟み込むように配置されている。
 第1のサイドギャップ部SG1は、電極対向部WFと第1の側面S1との間に位置し、第2のサイドギャップ部SG2は、電極対向部WFと第2の側面S2との間に位置する。
 具体的には、第1のサイドギャップ部SG1は、内部電極層10の第1の側面S1側の端と第1の側面S1との間に位置し、第2のサイドギャップ部SG2は、内部電極層10の第2の側面S2側の端と第2の側面S2との間に位置する。
 第1のサイドギャップ部SG1及び第2のサイドギャップ部SG2は、内部電極層10を含まず、誘電体層4のみを含む。
 第1のサイドギャップ部SG1及び第2のサイドギャップ部SG2は、内部電極層10の保護層として機能する。
 サイドギャップ部SGは、幅方向Wおける区分であるため、Wギャップともいわれる。
 サイドギャップ部SGの幅方向Wの長さは、例えば、積層体2の幅方向Wの長さの10分の1又は5μm以上30μm以下とすることができる。
<積層セラミックコンデンサの大きさ>
 積層体2及び外部電極20を含めた積層セラミックコンデンサ1全体の長さ方向Lの長さは、例えば、0.2mm以上2.0mm以下とすることができる。積層セラミックコンデンサ1全体の積層方向Tの長さは、例えば、0.1mm以上1.2mm以下とすることができる。積層セラミックコンデンサ1全体の幅方向Wの長さは、例えば、0.1mm以上1.2mm以下とすることができる。
 なお、本実施形態では、積層セラミックコンデンサ1は、2端子のコンデンサとした。積層セラミックコンデンサ1は、2端子に限定されず、3端子以上の多端子のコンデンサとすることもできる。
<希土類の分布>
 誘電体層4における希土類の分布について説明する。
 本実施形態の積層セラミックコンデンサ1は、誘電体層4における希土類の分布に特徴がある。
 例えば、BaTiOを含有する誘電体層4において、セラミック粒界に高温・高電界負荷がかかった時、酸素空孔が移動し絶縁抵抗が劣化する。
 ここで、BaTiOにReなどの希土類が固溶することで、酸素空孔の移動が抑制される。そして、電界方向に希土類が固溶する領域が多い方が、酸素空孔の移動がより抑制され、信頼性が高くなる。
 本実施形態の積層セラミックコンデンサ1では、電解方向において、高い濃度で希土類が均一に固溶されている。具体的には、電界方向、すなわち積層方向Tに対して、希土類を均一に固溶させた領域を形成することで、酸素空孔の移動を阻害し、信頼性を向上させている。
 以下、図面を参考にしながら説明する。
 図4は、内層誘電体層6のWT断面図である。
 図4に示す領域は、内層誘電体層6の幅方向Wの中央部、及び積層方向Tの中央部における、幅方向Wの長さが800nm、積層方向Tの長さが800nmの領域である。以下、内層誘電体層6の幅方向Wの中央部、及び積層方向Tの中央部における所定の領域を評価領域という場合がある。
 図4に示すマス目は、幅方向Wの長さが1nmであり、積層方向Tの長さが1nmであるマス目である。このマス目1つがセル1つに対応する。
 また、幅方向Wに延伸するセルの配列を行とし、積層方向Tに延伸するセルの配列を列とする。
 図4に示す領域は、800行×800列の合計640000セルに分割されている。
<高濃度セルと低濃度セル>
 図4におけるセルHは、高濃度セルを示し、図4におけるセルLは、低濃度セルを示す。
 ここで、高濃度セルとは、セル内において、希土類のモル比がTi100モルに対して5モル%以上であるセルを意味する。一方、低濃度セルとは、セル内において、希土類のモル比がTi100モルに対して5モル%未満であるセルを意味する。
 また、希土類としては、例えば、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びYのうち少なくとも1種とすることができる。
 本実施形態の積層セラミックコンデンサ1では、高濃度セルが、幅方向Wに連続する800セルの中で、600セル以上800セル未満存在している。すなわち、1つの行に属するセルの内で、75%以上100%未満のセルが高濃度セルである。
 これにより、電解方向、言い換えると積層方向Tにおける信頼性が向上する。
 一方、高濃度セルHの割合があまりに高すぎると温度特性が悪くなる。本実施形態の積層セラミックコンデンサ1では、高濃度セルHに低濃度セルLが併存している。
 そのため、信頼性の向上と温度特性の向上とのバランスがとれた積層セラミックコンデンサを提供することができる。
 誘電体層4は、複数の誘電体グレインを含む。誘電体グレインは、Ba、Tiを含むペロブスカイト型化合物などのチタン酸バリウム系セラミックであり、Ba、Tiを含むペロブスカイト型化合物と希土類を含むセラミック層である。ここで、希土類が所定量以上含まれている高濃度セルでは、チタン酸バリウムなどに希土類が固溶しやすい。希土類が固溶した部分では、酸素空孔の移動が抑制されやすい。
 ここで、電解方向と直交する幅方向W、言い換えると行方向において、所定の割合以上に高濃度セルが存在すると、酸素空孔の移動が効率良く抑制される。その結果、積層セラミックコンデンサ1の信頼性を向上させることができる。
 図5及び図6に基づいて具体的に説明する。
 図5は、前述の評価領域における、800nm×800nmの中の高濃度領域Hの分布を示す図である。
 図5の501は、TEM(Transmission Electron Microscope:透過電子顕微鏡)-EDX(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)による、セル内の希土類のモル比の分布を示す。
 図5の502は、各セルの希土類のモル比を二値化し、その分布を示す図である。二値化は、希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルHとし、希土類のモル比がTi100モルに対して5モル%未満であるセルを低濃度セルLとした。
 図5の503は、各行において高濃度セルHが占める割合を示す図である。
 図5に示すように、TEM-EDXによる分析結果を二値化することで、各行における高濃度セルHの割合を求めることができる。
 図6に基づいて各行における高濃度セルHの割合の求め方について具体的に説明する。
 図6の601は、図5の502と同様に、各セルの希土類のモル比を二値化した後の、その分布を示す図である。
 図6の602は、図6の601の四角囲みRを拡大した図である。
 前述のように、評価領域は、1nm×1nmのセルに分割されている。そして、TEM-EDXによる分析及びその結果の二値化は、セル毎に行われる。そのため、図6の602に示すように、二値化された結果は、1nm単位のモザイク型に出力される。
 そして、各行について、高濃度セルHの数を集計することで、図5の503に示すような各行における高濃度セルHが占める割合を求めることができる。
 また、同様にして、高濃度セルHが占める割合が、積層方向Tにおいてどのように分布しているかを求めることができる。
 図5に示す例では、行方向において、高濃度セルHが占める割合が75%以上100%未満である行が存在している。
 図7及び図8は他の積層セラミックコンデンサにおける、図5に対応する図である。
 図7は高濃度セルHが占める割合が、図5に示す積層セラミックコンデンサ1よりも高い例を示している。また、図8は高濃度セルHが占める割合が、図5に示す積層セラミックコンデンサ1よりも低い例を示している。
 図7に示す積層セラミックコンデンサでは、図7の702に示すように、図5の502と比べて高濃度セルHの占める割合が高くなっている。そのため、図7の703に示すように、積層方向Tのすべての行において、高濃度セルHが占める割合が75%以上となっている。
 一方、図8に示す積層セラミックコンデンサでは、図8の802に示すように、図5の502と比べて高濃度セルHの占める割合が低くなっている。そのため、図8の803に示すように、高濃度セルHが占める割合が75%以上である行が存在しない。
<積層方向の分布>
 次に、高濃度セルHの列方向、すなわち積層方向Tにおける分布について説明する。
 ここで、同一行の800セルのうち、高濃度セルが75%以上存在する行を高濃度行とする。
 高濃度行は、評価領域に含まれる行の総数のうち、9%以上43%以下存在することが好ましい。行の総数が800行である場合には、高濃度行は、72行以上344行以下であることが好ましい。
 高濃度セルHは、所定の割合以上存在することで、積層セラミックコンデンサ1の信頼
性を向上させることができる。
 しかしながら、高濃度セルHの割合があまりに高すぎると温度特性が悪くなる。
 そこで、高濃度行の割合を、評価領域に含まれる行の総数である800行のうち、9%以上43%以下とすることで、信頼性を向上させながらも、温度特性の低下を抑制することができる。
 先に示した図5の積層セラミックコンデンサでは、図5の503に示すように、800行のうち、281行が高濃度行となっている。高濃度行の割合は、35%である。
 そのため、図5に示す積層セラミックコンデンサでは、信頼性を向上させながらも、温度特性の低下を抑制することができる。
 一方、図7に示した積層セラミックコンデンサでは、図7の703に示すように、800行の全てが高濃度行となっている。そのため、図7に示した積層セラミックコンデンサは、温度特性において、図5の積層セラミックコンデンサに劣る。
<低濃度セル>
 次に、低濃度セルLの割合について説明する。
 前述のように、低濃度セルLは、希土類のモル比がTi100モルに対して5モル%未満のセルである。この低濃度セルLの個数は、評価領域内のセルの全数に対して、71%以下であることが好ましい。
 低濃度セルLの割合が所定の範囲よりも大きくなると、信頼性が担保できなくなる。低濃度セルLが占める領域が増えると、電界方向に電子の抜け道ができる可能性がある。そのため、信頼性を担保できなくなるというものである。
<特性>
 次に図9に基づいて、本発明の実施例及び比較例の特性を示す。図9は、本発明の実施例及び比較例の特性などを示す表である。
 なお、図9に記載された、1ラインに占める高濃度領域の割合は、1つの行に属するセルの中で、高濃度セルが占める割合を意味する。例えば、1つの行に属する800セルのなかで200セルが高濃度セルの場合には、1ラインに占める高濃度領域の割合は、25%となる。
MTTFは、平均寿命(Mean Time To Failure)を意味する。
 高濃度領域率とは、同一行に属する800セルのうち高濃度セルが75%以上存在する行を高濃度行とした場合に、800行のうちの高濃度行が占める割合を意味する。例えば、800行のなかに高濃度行が200行存在する場合には、高濃度領域率は25%になる。
 低濃度領域率とは、評価領域の中の全セルの内で、低濃度セルが占める割合を意味する。例えば、800行×800列の640000セルのなかに、低濃度セルの数が320000セル存在する場合には、低濃度領域率は50%となる。
<MTTF>
 図9に示すように、1ラインに占める高濃度領域の割合が75%以上100%未満である実施例1から実施例6では、1ラインに占める高濃度領域の割合が、75%未満である比較例2及び比較例3よりも優れたMTTFを示した。なお、1ラインに占める高濃度領域の割合が100%である比較例1は、MTTFは良好であるものの、比誘電率の温度特性が悪かった。
 同様に、高濃度領域率が9%以上43%以下である実施例1から実施例6では、前述のようにMTTFは良好であった。
 また、低濃度領域率が71%以下である実施例1から実施例6では、温度特性が良好であった。なお、低濃度領域率が0%である比較例1は、他の特性が好ましい範囲から逸脱していた。
<測定方法>
 なお、先に説明した、TEM-EDXに供するためのサンプルの作製は、積層体2を、その長手方向Lの中央部で、幅方向W及び積層方向Tが露出する面を断面研磨により露出させることで、得ることができる。そして、その断面の中央部を800nm×800nmで撮像する。
<誘電率の測定方法>
 次に、誘電率の測定方法について説明する。
 誘電率は、1khz、0.8kv/mmの電圧をかけて、静電容量を測定し、その後、以下の式から算出する。
 Cap=εr・ε0×S/d
 なお、Cap:誘電率、εr:試料の比誘電率、ε0:真空の誘電率、S:電極の面積、d:誘電体層厚み、である。
 <積層セラミックコンデンサの製造方法>
 本実施形態の積層セラミックコンデンサ1は、製造工程の大まかな流れとしては、従来の積層セラミックコンデンサ1と同様の方法で製造することができる。
 そして、誘電体層4において所望の希土類の分布を実現するためには、例えば、以下の方法を用いることができる。
 すなわち、積層ブロックを作製する際、積層する誘電体シートにおいて、誘電体シートの面内における希土類の分布を調整する。また、誘電体シートを積層する際、積層方向における希土類の分布が所望の分布になるように積層する誘電体シートの希土類の分布を調整する。
 これにより、幅方向W、長さ方向L及び積層方向Tにおいて、希土類を所望の態様に分布させることができる。
 以上本発明の実施形態について説明したが、本発明は前述した実施形態に限定されることなく、種々の変更及び変形が可能である。
 1   積層セラミックコンデンサ
 2   積層体
 4   誘電体層
 5  外層誘電体層
 6  内層誘電体層
 10   内部電極層
 11  対向電極部
 12  引き出し電極部
 20   外部電極
 21 下地電極層
 23  内めっき層
 24  表めっき層
 25  端面外部電極
 26  主面外部電極
 27  側面外部電極
 IL 内層部
 OL  外層部
 LF 電極対向部
 EG  エンドギャップ部
 WF 電極対向部
 SG  サイドギャップ部
 M   主面
 E   端面
 S   側面
 T  積層方向
 L  長さ方向
 W  幅方向

Claims (4)

  1.  誘電体層と内部電極層とが交互に複数積層された積層体と、
     前記積層体の表面に設けられ、前記積層体の表面に引き出された前記内部電極層と電気的に接続された外部電極と、を備え、
     前記誘電体層は少なくともTiを含み、
     前記誘電体層の積層方向及び前記積層方向と直交する幅方向の中央部において、
     幅方向の長さが800nm、積層方向の長さが1nmの領域を、
     1つのセルの大きさが、幅方向の長さが1nmであり、積層方向の長さが1nmであるセルで、800セルに分割し、
     希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルとした場合、
     前記領域内の800セルのうち、高濃度セルが75%以上100%未満存在することを特徴とする、
     積層セラミックコンデンサ。
  2.  誘電体層と内部電極層とが交互に複数積層された積層体と、
     前記積層体の表面に設けられ、前記積層体の表面に引き出された前記内部電極層と電気的に接続された外部電極と、を備え、
     前記誘電体層は少なくともTiを含み、
     前記誘電体層の積層方向及び前記積層方向と直交する幅方向の中央部において、
     幅方向の長さが800nm、積層方向の長さが800nmの領域を、
     1つのセルの大きさが、幅方向の長さが1nmであり、積層方向の長さが1nmであるセルで、幅方向に800セル、積層方向に800セルに分割し、
     幅方向のセルの配列を行とし、積層方向のセルの配列を列とし、
     希土類のモル比がTi100モルに対して5モル%以上であるセルを高濃度セルとし、
     同一行の800セルのうち、高濃度セルが75%以上存在する行を高濃度行とした場合、
     前記領域内の800行のうち、高濃度行が9%以上43%以下存在することを特徴とする、
     積層セラミックコンデンサ。
  3.  希土類のモル比がTi100モルに対して5モル%未満であるセルを低濃度セルとした場合、
     前記低濃度セルの数は、前記領域内のセルの総数の71%以下である、
     請求項2に記載の積層セラミックコンデンサ。
  4.  前記誘電体層の厚みは、0.8μm以上3.0μm以下である、
     請求項1から請求項3の何れか1項に記載の積層セラミックコンデンサ。
PCT/JP2023/025254 2022-07-29 2023-07-07 積層セラミックコンデンサ WO2024024451A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121485 2022-07-29
JP2022121485 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024451A1 true WO2024024451A1 (ja) 2024-02-01

Family

ID=89706139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025254 WO2024024451A1 (ja) 2022-07-29 2023-07-07 積層セラミックコンデンサ

Country Status (1)

Country Link
WO (1) WO2024024451A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274936A (ja) * 2001-03-19 2002-09-25 Murata Mfg Co Ltd 誘電体セラミック、その製造方法およびその評価方法ならびに積層セラミック電子部品
JP2018139261A (ja) * 2017-02-24 2018-09-06 京セラ株式会社 コンデンサ
WO2021131819A1 (ja) * 2019-12-23 2021-07-01 京セラ株式会社 コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274936A (ja) * 2001-03-19 2002-09-25 Murata Mfg Co Ltd 誘電体セラミック、その製造方法およびその評価方法ならびに積層セラミック電子部品
JP2018139261A (ja) * 2017-02-24 2018-09-06 京セラ株式会社 コンデンサ
WO2021131819A1 (ja) * 2019-12-23 2021-07-01 京セラ株式会社 コンデンサ

Similar Documents

Publication Publication Date Title
US10347421B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
US8773840B2 (en) Monolithic ceramic electronic component
US10170243B2 (en) Multilayer ceramic capacitor
JP2017199859A (ja) 積層セラミックコンデンサおよびその製造方法
JP2021103711A (ja) 積層セラミック電子部品
JP7363654B2 (ja) 積層セラミック電子部品
JP2019192895A (ja) 積層セラミック電子部品
JP2018022832A (ja) 電子部品
JP2022073955A (ja) 積層型キャパシター
US11424075B2 (en) Multilayer electronic component and method for manufacturing multilayer electronic component
JP7283440B2 (ja) 積層型電子部品および積層型電子部品の製造方法
JP6138434B2 (ja) アレイ型積層セラミック電子部品
WO2024024451A1 (ja) 積層セラミックコンデンサ
JP2018022831A (ja) 実装基板
JP2018022833A (ja) 電子部品
JP7167955B2 (ja) 積層セラミック電子部品
KR20230103058A (ko) 적층형 전자 부품
JP7274282B2 (ja) 積層セラミック電子部品及びその製造方法
KR20210120846A (ko) 적층 세라믹 전자부품
KR20220081633A (ko) 적층형 전자 부품 및 유전체 조성물
KR20220080289A (ko) 적층 세라믹 전자부품
JP2017108011A (ja) セラミックコンデンサ及びその製造方法
CN218351295U (zh) 层叠陶瓷电容器
CN217881193U (zh) 层叠陶瓷电容器
CN217544376U (zh) 层叠陶瓷电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846183

Country of ref document: EP

Kind code of ref document: A1