JP7006879B2 - 積層セラミックコンデンサ及び回路基板 - Google Patents

積層セラミックコンデンサ及び回路基板 Download PDF

Info

Publication number
JP7006879B2
JP7006879B2 JP2018171044A JP2018171044A JP7006879B2 JP 7006879 B2 JP7006879 B2 JP 7006879B2 JP 2018171044 A JP2018171044 A JP 2018171044A JP 2018171044 A JP2018171044 A JP 2018171044A JP 7006879 B2 JP7006879 B2 JP 7006879B2
Authority
JP
Japan
Prior art keywords
ceramic capacitor
external electrode
monolithic ceramic
electrode
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171044A
Other languages
English (en)
Other versions
JP2020043272A (ja
Inventor
隆 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018171044A priority Critical patent/JP7006879B2/ja
Priority to KR1020190108977A priority patent/KR20200031042A/ko
Priority to US16/566,185 priority patent/US10950388B2/en
Priority to CN201910852975.XA priority patent/CN110895992B/zh
Publication of JP2020043272A publication Critical patent/JP2020043272A/ja
Priority to JP2021206588A priority patent/JP7231703B2/ja
Application granted granted Critical
Publication of JP7006879B2 publication Critical patent/JP7006879B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/04Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode
    • H01G5/14Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode due to longitudinal movement of electrodes

Description

本発明は、積層セラミックコンデンサ及びそれが実装された回路基板に関する。
特許文献1及び2に記載されているような積層セラミックコンデンサが知られている。これらの積層セラミックコンデンサは、長さ方向両端部に設けられた第1外部電極及び第2外部電極に加えて、側面に第3外部電極が形成されており、3端子型とも称される。
特開2016-127262号公報 特開2017-28240号公報
近年、積層セラミックコンデンサに対しては、小型化及び高容量化が要求されている。小型化及び高容量化が進んだ場合、実装後の発熱量も大きくなりやすい。3端子型の側面の外部電極では、実装基板からの放射熱を受けやすく排熱しにくい構成のため、特に接続信頼性の高い構成が求められる。
以上のような事情に鑑み、本発明の目的は、外部電極の接続信頼性を高めることが可能な積層セラミックコンデンサ及びそれが実装された回路基板を提供することにある。
上記目的を達成するため、本発明の一形態に係る積層セラミックコンデンサは、セラミック素体と、第1外部電極と、第2外部電極と、第3外部電極と、を具備する。
上記セラミック素体は、第1方向に相互に対向する第1端面及び第2端面と、上記第1方向に直交する第2方向に相互に対向する第1側面及び第2側面と、を有し、上記第1端面及び上記第2端面に引き出された複数の第1内部電極と、上記第1側面及び、または上記第2側面に引き出された複数の第2内部電極と、が誘電体層を介して交互に積層される。
上記第1外部電極は、上記第1端面を被覆し上記第1側面及び上記第2側面の各々に延出する、上記複数の第1内部電極に接続される。
上記第2外部電極は、上記第2端面を被覆し上記第1側面及び上記第2側面の各々に延出し、上記複数の第1内部電極に接続される。
上記第3外部電極は、上記第1側面に形成された第1側面領域と、上記第2側面に形成された第2側面領域と、を有し、上記複数の第2内部電極に接続される。
上記第1側面領域と上記第2側面領域とは、上記第1方向に沿って相互にずれて形成され、かつ、少なくとも一部が上記第2方向に相互に対向している。
上記構成では、実装基板の接続電極に半田付けされる際に、まず最初に最も熱が伝わりやすい中央の第3外部電極下の半田が溶解する。第1側面領域と第2側面領域とが第1方向に沿って相互にずれて形成され、かつ、少なくとも一部が第2方向に相互に対向していることで、半田の表面張力によって積層セラミックコンデンサが積層方向を軸として回転しやすくなる。これにより、半田中のボイドが抜けやすくなり、接続信頼性を高めることができる。
より具体的には、上記第3外部電極の上記第1方向に沿った寸法をD3とし、上記第1側面領域の上記第1方向における中心線と上記第2側面領域の上記第1方向における中心線との間の上記第1方向におけるずらし量をGとしたときに、上記D3及び上記Gが0.03≦G/D3≦0.50の関係を満たすとよい。
これにより、積層セラミックコンデンサに対して、第3外部電極における半田の表面張力由来の回転モーメントを適度に与えることができる。すなわち、半田中のボイドの除去作用に加えて、積層セラミックコンデンサがリフロー時に過度に回転することを抑制し、設計上の実装位置に近い位置に実装させることができる。したがって、接続信頼性をさらに向上させることができる。
また、上記D3及び上記Gが0.04≦G/D3≦0.40の関係を満たすと接続信頼性はよりよくなり、0.06≦G/D3≦0.40の関係を満たすとさらによい。
さらに、上記第1外部電極の上記第1方向における寸法をD1とし、上記第2外部電極の上記第1方向における寸法をD2とし、上記第3外部電極の上記第1方向に沿った寸法をD3とし、上記第1側面領域の上記第1方向における中心線と上記第2側面領域の上記第1方向における中心線との間の上記第1方向におけるずらし量をGとしたときに、上記G、上記D1,上記D2及び上記D3が5.0≦(G×D3)/(D1+D2)≦400の関係を満たすとよい。
上記構成では、第3外部電極における半田の表面張力によって積層セラミックコンデンサ10が回転した場合、第1外部電極及び第2外部電極の下の半田がその後引き続き溶解して、その表面張力に基づく回転モーメントが第1外部電極及び第2外部電極に付与される。これにより、第3外部電極における半田の表面張力由来の回転モーメントとは逆向きの回転モーメントが付与されることとなる。つまり、積層セラミックコンデンサが設計上の実装位置から回転した場合でも、その後当該実装位置に戻す力が作用し、当該実装位置に近い位置に実装されることとなる。したがって、接続信頼性をさらに向上させることができる。
また、上記G、上記D1,上記D2及び上記D3が10.0≦(G×D3)/(D1+D2)≦250の関係を満たすと接続信頼性はよりよくなり、20.0≦(G×D3)/(D1+D2)≦100の関係を満たすと接続信頼性はさらによい。
また、上記セラミック素体の上記第2方向における寸法が、0.2mm以上1.0mm以下であることで、積層セラミックコンデンサの重量を好ましい範囲とし、適度な回転を付与することができる。
さらに、上記積層セラミックコンデンサは、23μF以上30μF未満の静電容量を有しているとよく、さらに30μF以上47μF以下の静電容量を有しているとよりよい。
これにより、積層セラミックコンデンサの大容量化を実現できる。
本発明の他の実施形態に係る回路基板は、
セラミック素体と、上記セラミック素体にそれぞれ形成された第1外部電極、第2外部電極及び第3外部電極と、を有する積層セラミックコンデンサと、
第1半田を介して上記第1外部電極に接続された第1接続電極と、第2半田を介して上記第2外部電極に接続された第2接続電極と、第3半田を介して上記第3外部電極に接続された第3接続電極と、を有する実装基板と、
を具備する。
上記セラミック素体は、
第1方向に相互に対向する第1端面及び第2端面と、上記第1方向に直交する第2方向に相互に対向する第1側面及び第2側面と、を含み、上記第1端面及び上記第2端面に引き出された複数の第1内部電極と、上記第1側面及びまたは上記第2側面に引き出された複数の第2内部電極と、が誘電体層を介して交互に積層される。
上記第1外部電極は、
上記第1端面を被覆し上記第1側面及び上記第2側面の各々に延出し、かつ上記複数の第1内部電極に接続される。
上記第2外部電極は、
上記第2端面を被覆し上記第1側面及び上記第2側面の各々に延出し、かつ上記複数の第1内部電極に接続される。
上記第3外部電極は、
上記第1側面に形成された第1側面領域と、上記第2側面に形成された第2側面領域と、を有し、上記複数の第2内部電極に接続される。
上記第1側面領域と上記第2側面領域とは、上記第1方向に沿って相互にずれて形成され、かつ、少なくとも一部が上記第2方向に相互に対向している。
以上のように、本発明によれば、外部電極の接続信頼性を高めることが可能な積層セラミックコンデンサ及びそれが実装された回路基板を提供することができる。
本発明の一実施形態に係る積層セラミックコンデンサの斜視図である。 上記積層セラミックコンデンサの図1のA-A'線に沿った断面図である。 上記積層セラミックコンデンサの図1のB-B'線に沿った断面図である。 上記積層セラミックコンデンサのセラミック素体の分解斜視図である。 上記積層セラミックコンデンサの製造方法を示すフローチャートである。 上記積層セラミックコンデンサの製造過程を示す斜視図である。 上記積層セラミックコンデンサの上面図である。 上記積層セラミックコンデンサの側面図である。 上記積層セラミックコンデンサを実装した回路基板の側面図である。 上記積層セラミックコンデンサを実装した回路基板の上面図である。 上記積層セラミックコンデンサを実装した回路基板の上面図である。 本発明の他の実施形態に係る積層セラミックコンデンサの斜視図である。
以下、図面を参照しながら、本発明の実施形態を説明する。
図面には、相互に直交するX軸、Y軸、及びZ軸が適宜示されている。X軸、Y軸、及びZ軸は全図において共通である。
[積層セラミックコンデンサ10の構成]
図1~3は、本発明の第1実施形態に係る積層セラミックコンデンサ10を示す図である。図1は、積層セラミックコンデンサ10の斜視図である。図2は、積層セラミックコンデンサ10の図1のA-A'線に沿った断面図である。図3は、積層セラミックコンデンサ10の図1のB-B'線に沿った断面図である。
積層セラミックコンデンサ10は、セラミック素体11と、第1外部電極14と、第2外部電極15と、第3外部電極16と、を具備する3端子型の積層セラミックコンデンサである。
積層セラミックコンデンサ10では、例えば、外部電極14,15がスルー電極として構成され、外部電極16がグランド電極として構成される。第1外部電極14及び第2外部電極15を端面外部電極14,15とも称し、第3外部電極16を側面外部電極16とも称する。
セラミック素体11は、全体として直方体形状で構成される。セラミック素体11は、X軸方向に対向する2つの端面11a,11bと、Y軸方向に対向する2つの側面11c,11dと、Z軸方向に対向する2つの主面11e,11fと、を有する。セラミック素体11の各面を接続する稜部は面取りされているが、これに限定されない。なお、図1では外部電極14,15,16に覆われたセラミック素体11の構成を破線で示している。
セラミック素体11は、X軸方向における長さ寸法Lと、Y軸方向における幅寸法Wと、Z軸方向における高さ寸法Tと、を有する。長さ寸法L、幅寸法W及び高さ寸法Tは、セラミック素体11のX軸方向、Y軸方向及びZ軸方向に沿った寸法のうち、それぞれ最も大きい寸法とする。
セラミック素体11の幅寸法Wは、0.2mm以上1.6mm以下とすることができる。これにより、積層セラミックコンデンサ10を小型化でき、後述するように半田付け時における積層セラミックコンデンサ10の回転を容易にすることができる。
また、セラミック素体11のX軸方向における長さ寸法Lは、例えば0.4mm以上3.2mm以下とすることができ、セラミック素体11のZ軸方向における高さ寸法Tは、例えば0.2mm以上1.6mm以下とすることができる。
端面外部電極14,15は、X軸方向に相互に対向し、端面11a,11bを覆うように形成される。端面外部電極14,15は、いずれも後述する第1内部電極12に接続され、同一の極性を有する。端面外部電極14,15は、本実施形態において、端面11a,11bから主面11e,11f及び側面11c,11dにも延出している。端面外部電極14,15の主面11f側の領域は、後述するように外部の回路基板に接続され得る領域であり、それぞれ接続領域14f,15fと称する。
側面外部電極16は、セラミック素体11の側面11cに形成された第1側面領域16aと、他方の側面11dに形成された第2側面領域16bと、を有する。各側面領域16a,16bは、それぞれ一方の主面11eから他方の主面11fまでZ軸方向に延びる帯状に形成される。本実施形態では、各側面領域16a,16bが主面11e,11f上で離間して、別の電極として構成されている。側面外部電極16の主面11f側の領域は、後述するように外部の回路基板に接続され得る領域であり、接続領域16fと称する。
各側面領域16a,16bは、いずれも後述する第2内部電極13に接続され、同一の極性を有するともに、端面外部電極14,15とは異なる極性を有する。
また、第1側面領域16a及び第2側面領域16bは、X軸方向に相互にずれて配置される。詳細については、後述する。
外部電極14,15,16は、電気の良導体により形成されている。外部電極14,15,16を形成する電気の良導体としては、例えば、銅(Cu)、ニッケル(Ni)、錫(Sn)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)などを主成分とする金属又は合金が挙げられる。
図4は、セラミック素体11を示す分解斜視図である。セラミック素体11は、実際には分解できないが、図4では説明のため分解して示している。
セラミック素体11は、積層部18と、カバー部19と、を有する。積層部18は、内部電極12,13がセラミック層17を介してZ軸方向に交互に積層された構成を有する。カバー部19は、積層部18のZ軸方向上下面をそれぞれ覆っている。
内部電極12,13は、電気の良導体であって、金属導体により形成されている。内部電極12,13を形成する材料としては、例えばニッケル(Ni)を主成分とする金属又は合金が挙げられる。
第1内部電極12は、セラミック素体11のX軸方向全長にわたって延びる帯状に形成される。第1内部電極12は、端面11a,11bに引き出され、端面外部電極14,15に接続される。
第2内部電極13は、セラミック素体11のXY平面内の中央部に形成される。第2内部電極13は、側面11c,11dに引き出され側面外部電極16に接続される引出部13a,13bを有する。引出部13a,13bは、X軸方向に相互にずれていてもよいし、ずれていなくてもよい。なお、第1内部電極12のY軸方向の幅寸法と第2内部電極13の引出部13a,13bを除くY軸方向の幅寸法とはほぼ同一に形成される。
積層セラミックコンデンサ10では、端面外部電極14,15と側面外部電極16の間に電圧が印加されると、第1内部電極12と第2内部電極13との間の複数のセラミック層17に電圧が加わる。これにより、積層セラミックコンデンサ10では、端面外部電極14,15と側面外部電極16との間の電圧に応じた電荷が蓄えられる。
積層セラミックコンデンサ10は、例えば、23μF以上30μF未満の静電容量を有していてもよく、さらに30μF以上47μF以下の静電容量を有していてもよい。このように比較的高容量の製品は通電稼働時に発熱量も大きくなるが、良好に半田実装できるので効率よく廃熱することができる。積層セラミックコンデンサ10の静電容量は、セラミック層17の材料、内部電極12,13の層数及びセラミック層17のZ軸方向における厚み寸法等で調整できる。
高誘電率を実現できるセラミック層17の材料としては、例えば、チタン酸バリウム(BaTiO)に代表される、バリウム(Ba)及びチタン(Ti)を含むペロブスカイト構造の材料が挙げられる。あるいは、セラミック層17は、チタン酸ストロンチウム(SrTiO)系、チタン酸カルシウム(CaTiO)系、チタン酸マグネシウム(MgTiO)系、ジルコン酸カルシウム(CaZrO)系、チタン酸ジルコン酸カルシウム(Ca(Zr,Ti)O)系、ジルコン酸バリウム(BaZrO)系、酸化チタン(TiO)系などで構成してもよい。
なお、カバー部19も、誘電体セラミックスによって形成されている。カバー部19を形成する材料は、絶縁性セラミックスであればよいが、セラミック層17と同様の誘電体セラミックスを用いることによりセラミック素体11における内部応力が抑制される。
内部電極12,13の層数は、例えば数十~数百程度とすることができる。
また、内部電極12,13間のセラミック層17のZ軸方向に沿った厚み寸法は、所望の静電容量、内部電極12,13の層数やセラミック層17の材料、セラミック素体11のサイズ等を考慮して設定でき、例えば0.3μm~2.0μm程度とすることができる。
[積層セラミックコンデンサ10の製造方法]
図5は、積層セラミックコンデンサ10の製造方法を示すフローチャートである。図6は積層セラミックコンデンサ10の製造過程を模式的に示す図である。以下、積層セラミックコンデンサ10の製造方法について、図5及び図6を適宜参照しながら説明する。
(ステップS11:未焼成のセラミック素体111作製)
ステップS11では、セラミック層17に対応するセラミックグリーンシートに、未焼成の内部電極12,13を形成し、図4に示すように積層することで、図6に示す未焼成のセラミック素体111を作製する。
セラミックグリーンシートは、誘電体セラミックスを主成分とする未焼成の誘電体グリーンシートとして構成される。未焼成の内部電極12,13が形成されたセラミックグリーンシートの積層体は、未焼成の積層部18に対応する。未焼成の積層部18のZ軸方向上下面には、内部電極が形成されないセラミックグリーンシートが積層され、未焼成のカバー部19が形成される。
積層されたセラミックグリーンシートは、圧着され一体化される。これにより、図6に示す未焼成のセラミック素体111が作製される。この圧着には、例えば、静水圧加圧や一軸加圧などが用いられる。
図6に示すように、セラミック素体111では、端面111a,111bに第1内部電極12が露出しており、側面111c,111dに第2内部電極13が露出している。
なお、以上では1つのセラミック素体11に相当する未焼成のセラミック素体111について説明したが、実際には、個片化されていない大判のシートとして構成された積層シートが形成され、セラミック素体111ごとに個片化される。
(ステップS12:焼成)
ステップS12では、ステップS11で得られた未焼成のセラミック素体111を焼結させることにより、図1~4に示すセラミック素体11を作製する。焼成は、例えば、還元雰囲気、又は低酸素分圧雰囲気で行うことができる。なお、未焼成のセラミック素体111を焼成した後、バレル研磨等で面取りしてもよい。
(ステップS13:外部電極14,15,16形成)
ステップS13では、セラミック素体11に外部電極14,15,16を形成する。外部電極14,15,16は、セラミック素体11に導電性ペーストを塗布し、当該導電性ペーストを焼き付けることにより形成される。セラミック素体11への導電性ペーストの塗布は、例えば、ディップ法、印刷法などの任意の方法で行うことができる。
なお、未焼成のセラミック素体111に外部電極14,15,16形成用の導電性ペーストを塗布し、セラミック素体11及び導電性ペーストを同時に焼成してもよい。
以下、外部電極14,15,16の構成を詳細に説明する。
[外部電極14,15,16の詳細な構成]
図7は、積層セラミックコンデンサ10の上面図であり、図8は積層セラミックコンデンサ10の側面図である。
側面外部電極16の第1側面領域16aと第2側面領域16bとは、X軸方向に相互にずれて形成され、かつ、少なくとも一部がY軸方向に相互に対向している。つまり、第1側面領域16aと第2側面領域16bとは、完全にはオフセットされておらず、X軸方向において一部が重なるように形成されている。これにより、後述するように、積層セラミックコンデンサ10が回路基板に実装された際の接続信頼性を高めることができる。
より具体的に説明すると、本実施形態の積層セラミックコンデンサ10は、ずらし量G及び側面外部電極16の側面電極幅D3が、0.03≦G/D3≦0.50、好ましくは0.04≦G/D3≦0.40、より好ましくは0.06≦G/D3≦0.40の関係を満たすように構成される。
ずらし量Gは、第1側面領域16aのX軸方向における中心線Laと第2側面領域16bのX軸方向における中心線Lbとの間のX軸方向における距離とする。
中心線Laは、第1側面領域16aをX軸方向に2等分するようにZ軸方向に延びる線であって、セラミック素体11の高さ寸法Tの1/2の位置におけるX軸方向の中心点Caを通る線である。同様に、中心線Lbは、第2側面領域16bをX軸方向に2等分するようにZ軸方向に延びる線であって、セラミック素体11の高さ寸法Tの1/2の位置におけるX軸方向の中心点Cbを通る線である。
側面電極幅D3は、側面外部電極16のX軸方向に沿った寸法であり、セラミック素体11の高さ寸法Tの1/2の位置における第1側面領域16a及び第2側面領域16bのX軸方向に沿った寸法の平均値とする。
さらに、積層セラミックコンデンサ10の基板実装後の接続信頼性を高める観点から、ずらし量G及び側面電極幅D3、並びに端面外部電極14,15の電極幅D1,D2は、以下の関係を満たすことが好ましい。すなわち、第1外部電極14のX軸方向における寸法を端面電極幅D1とし、第2外部電極15のX軸方向における寸法を端面電極幅D2とする。このとき、G,D1,D2及びD3は、例えば、5.0≦(G×D3)/(D1+D2)≦400の関係を満たすとよく、好ましくは10.0≦(G×D3)/(D1+D2)≦250、より好ましくは20.0≦(G×D3)/(D1+D2)≦100の関係を満たすとよい。
端面電極幅D1,D2は、セラミック素体11の高さ寸法Tの1/2の位置における端面外部電極14,15のX軸方向に沿った寸法であり、Y軸方向に対向する領域各々の寸法の平均値とする。
積層セラミックコンデンサ10は、外部電極14,15,16が例えばリフロー方式によって半田付けされることで回路基板100に実装される。
[積層セラミックコンデンサ10を実装した回路基板100の構成]
図9~図11は、積層セラミックコンデンサ10を実装した回路基板100を示す図であり、図9は側面図、図10及び図11は上面図である。
回路基板100は、積層セラミックコンデンサ10と、実装基板110と、を備える。
実装基板110は、第1半田H1を介して第1外部電極14に接続された第1接続電極(ランド)121と、第2半田H2を介して第2外部電極15に接続された第2接続電極(ランド)122と、第3半田H3を介して第3外部電極16に接続された第3接続電極(ランド)123と、を有する。
積層セラミックコンデンサ10は、主面11fと実装基板110とがZ軸方向に対向するように、ランド121,122,123上に配置される。
ランド121,122はスルー電極端子として機能し、ランド123はグランド電極端子として機能する。
ランド121,122,123は、それぞれ、外部電極14,15,16の接続領域14f,15f,16fよりも大きな略矩形状であって、外縁の各辺が積層セラミックコンデンサ10のX軸方向及びY軸方向に平行となるような位置及び形状で設計されている。例えばランド123は、第1側面領域16a及び第2側面領域16bの双方の接続領域16fをカバーするように、Y軸方向に沿った寸法がセラミック素体11の幅寸法Wよりも大きな略矩形状となるように構成される。ランド121,122,123における設計上の接続領域14f,15f,16fの実装位置を、「設計位置」と称する。
半田H1,H2,H3は、それぞれ加熱され溶融し、その後冷却されて固化することで、外部電極14,15,16とランド121,122,123とを接続する。半田H1,H2,H3は、接続領域14f,15f,16fの全面を覆うように形成される。
リフロー時には、実装基板110からの放射熱及び伝導熱を受けやすい半田H3が、半田H1,H2よりも早く溶融する。このとき、溶融した半田H3の表面張力によって、側面外部電極16にY軸方向に沿った力が付加される。この表面張力は、図10に示すように、例えば中心点Ca及び中心点Cbに付加されるY軸方向の力F3と表すことができる。
力F3の作用点である第1側面領域16a及び第2側面領域16bは、相互にずれて形成されている。このため、第1側面領域16aの中心点Ca及び第2側面領域16bの中心点Cbを結ぶ直線と、力F3に平行なY軸方向に沿った直線とは、回転角αをなす。つまり、側面外部電極16には、力F3によって、以下の式(1)で表されるZ軸まわりの回転モーメントM3が付加されることになる。
M3=(W/2cosα)×(sinα・F3)=(W×F3×tanα)/2
M3=(F3×G)/2 ・・・(1)
上記式(1)から、ずらし量Gが大きいほど回転モーメントM3は大きくなる。その一方で、実際には、側面電極幅D3が大きいほど半田H3の量も多くなり、積層セラミックコンデンサ10の回転動作が妨げられる。このため、ずらし量Gを、側面外部電極16の側面電極幅D3に対して0.03≦G/D3≦0.50、好ましくは0.04≦G/D3≦0.40、より好ましくは0.06≦G/D3≦0.40の関係を満たすように規定することで、実装基板110に対して積層セラミックコンデンサ10の回転を適度に促すことができる。
積層セラミックコンデンサ10が回転することにより、溶融している半田H3が流動し、たとえば大気である外系と接触することによって、半田H3中のボイドが除去される。これにより、側面外部電極16とランド123との接続強度を高め、接続信頼性を高めることができるとともに、半田H3における放熱性を高めることができる。
半田H3が溶融した後、例えば少し遅れて半田H1,H2が溶融し始める。このとき、図11に示すように、半田H1,H2の表面張力によってX軸方向に沿った力F1が端面外部電極14,15に付加される。回転モーメントM3等によって積層セラミックコンデンサ10が設計位置から回転していた場合、力F1によってその回転を打ち消す逆方向の回転モーメントM1が付加され得る。つまり、半田H1,H2,H3の表面張力により、積層セラミックコンデンサ10が設計位置に配置されるように自動的に調整される。
このようないわゆるセルフアライメント作用は、上述の側面外部電極16に係るモーメントM3と端面外部電極14,15に係る力F1由来のモーメントM1とのバランスに基づいて発揮される。
力F1は、端面外部電極14,15の接続領域14f,15fとランド121,122との接続面積と相関を有するため、接続領域14f,15fのX軸方向の長さ寸法に相当する(D1+D2)とも相関を有する。
一方で、式(1)を参照し、回転モーメントM3は、ずらし量Gと力F3との積で表される。力F3は、接続領域16fとランド123との間の接続面積に相関を有するため、接続領域16fのX軸方向の長さ寸法に相当するD3とも相関を有する。これにより、(D1+D2)と(G×D3)のバランスを、例えば5.0≦(G×D3)/(D1+D2)≦400の関係を満たすとよく、好ましくは10.0≦(G×D3)/(D1+D2)≦250、より好ましくは20.0≦(G×D3)/(D1+D2)≦100の関係を満たすとよい。の関係を満たすように調整することで、ボイドの除去作用に加えて、上記セルフアライメント作用を発揮させることができる。
積層セラミックコンデンサ10がランド121,122,123上の設計位置に接続されることで、積層セラミックコンデンサ10と実装基板110との接続をより確実なものとでき、接続信頼性を高めることができる。さらに、実装基板110における積層セラミックコンデンサ10の実装スペースを最小化でき、回路基板100が搭載される電子部品の小型化に寄与できる。
[他の実施形態]
積層セラミックコンデンサ10の側面外部電極16は、例えば図12に示すように、セラミック素体11の主面11e,11f及び側面11c,11dを周回する構成でもよい。この場合は、側面外部電極16のうち、セラミック素体11の側面11cに形成された領域を第1側面領域16aとし、他方の側面11dに形成された領域を第2側面領域16bとする。このような構成でも、上述の実施形態と同様の作用効果を得ることができる。
[実施例及び比較例]
本実施形態の実施例及び比較例として、セラミック素体のサイズ、第3外部電極のずらし量及び外部電極幅を変更した積層セラミックコンデンサのサンプルを作製し、半田中のボイドの有無について確認した。
まず、X軸方向における長さ寸法Lが1.0mm、Y軸方向における幅寸法W及びZ軸方向における高さ寸法Tがそれぞれ0.5mmのセラミック素体を作製した。これらのセラミック素体に、ずらし量Gが15μm,100μm、端面電極幅D1,D2を70μm~270μm、側面電極幅D3を250~450μmとして、外部電極を形成し、積層セラミックコンデンサのサンプルを作製した。これらの各サンプルを実施例1~18とした。実施例1~9の具体的な端面電極幅を、表1及び表2に示す。
また、上記寸法のセラミック素体に、側面外部電極をずらさずに形成した(ずらし量Gは0)サンプルを作製し、比較例1とした。
また、上記寸法のセラミック素体に、側面外部電極の対向する領域が完全にオフセットした状態のサンプルを作製し、比較例2とした。このとき、側面外部電極の側面電極幅D3は350μm、ずらし量Gは350μmとした。
同様に、X軸方向における長さ寸法Lが1.2mm、Y軸方向における幅寸法W及びZ軸方向における高さ寸法Tがそれぞれ0.9mmのセラミック素体を作製した。これらのセラミック素体に、ずらし量Gが15μm、端面電極幅D1,D2を70μm~270μm、側面電極幅D3を250μm~450μmとして、外部電極を形成し、積層セラミックコンデンサのサンプルを作製した。これらの各サンプルを実施例19~36とした。実施例19~36の具体的な端面電極幅を、表1及び表2に示す。
また、上記寸法のセラミック素体に、側面外部電極をずらさずに形成した(ずらし量Gは0)サンプルを作製し、比較例3とした。
さらに、上記寸法のセラミック素体に、側面外部電極の対向する領域が完全にオフセットした状態のサンプルを作製し、比較例4とした。このとき、側面外部電極の側面電極幅D3は350μm、ずらし量Gは350μmとした。
同様に、X軸方向における長さ寸法Lが0.6mm、Y軸方向における幅寸法W及びZ軸方向における高さ寸法Tがそれぞれ0.3mmのセラミック素体を作製した。これらのセラミック素体に、ずらし量Gが15μm、端面電極幅D1,D2を70μm~270μm、側面電極幅D3を250μm~450μmとして、外部電極を形成し、積層セラミックコンデンサのサンプルを作製した。これらの各サンプルを実施例37~54とした。実施例37~54の具体的な端面電極幅を、表1及び表2に示す。
また、上記寸法のセラミック素体に、側面外部電極をずらさずに形成した(ずらし量Gは0)サンプルを作製し、比較例5とした。
さらに、上記寸法のセラミック素体に、側面外部電極の対向する領域が完全にオフセットした状態のサンプルを作製し、比較例6とした。このとき、側面外部電極の側面電極幅D3は350μm、ずらし量Gは350μmとした。
Figure 0007006879000001
Figure 0007006879000002
実施例1~54について、各電極幅D1,D2,D3及びずらし量Gの値から、G/D3、(G×D3)/(D1+D2)の値をそれぞれ算出した。前者の結果を表1に、後者の結果を表2に示す。実施例1~27では、いずれも、0.03≦G/D3≦0.50、及び5.0≦(G×D3)/(D1+D2)≦400の関係を満たしていた。
続いて、各積層セラミックコンデンサのサンプルを回路基板のランド上にリフロー方式により半田付けし、半田中のボイドの有無を確認した。
具体的には、半田付け後の回路基板において、積層セラミックコンデンサと基板本体との間にある半田を実装面に平行な1断面で観察した。観察は、800~1500倍の光学顕微鏡で、各実施例及び各比較例ごとに100個のサンプルについて行った。また、2.5μm以上のボイドが観察された場合に、ボイド有りと判定した。
その結果、実施例1~54では、いずれも半田中のボイドは観察されなかった。一方で、側面外部電極におけるずれのない比較例1,3,5では、半田中のボイドが観察された。また、側面外部電極が完全にオフセットされた比較例2,4,6では、半田中のボイドは観察されなかったものの、積層セラミックコンデンサがランドに対して斜めに実装されており、設計位置に実装されなかった。
以上より、本実施例1~54に係る積層セラミックコンデンサ及び回路基板は、半田中のボイドが無く、かつ設計位置に近い位置で実装されており、高い接続信頼性を実現できることが確認された。
以上、本発明の各実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
10…積層セラミックコンデンサ
11…セラミック素体
11a,11b…端面
11c,11d…側面
11e,11f…主面
14…第1外部電極
15…第2外部電極
16…第3外部電極
16a…第1側面領域
16b…第2側面領域
100…回路基板
110…実装基板

Claims (11)

  1. 第1方向に相互に対向する第1端面及び第2端面と、前記第1方向に直交する第2方向に相互に対向する第1側面及び第2側面と、を有し、前記第1端面及び前記第2端面に引き出された複数の第1内部電極と、前記第1側面及び前記第2側面の少なくとも一方に引き出された複数の第2内部電極と、が誘電体層を介して交互に積層されたセラミック素体と、
    前記第1端面を被覆し前記第1側面及び前記第2側面の各々に延出し、前記複数の第1内部電極に接続された第1外部電極と、
    前記第2端面を被覆し前記第1側面及び前記第2側面の各々に延出し、前記複数の第1内部電極に接続された第2外部電極と、
    前記第1側面に形成された第1側面領域と、前記第2側面に形成された第2側面領域と、を有し、前記複数の第2内部電極に接続された第3外部電極と、
    を具備し、
    前記第1側面領域と前記第2側面領域とは、前記第1方向に沿って相互にずれて形成され、かつ、少なくとも一部が前記第2方向に相互に対向している
    積層セラミックコンデンサ。
  2. 請求項1に記載の積層セラミックコンデンサであって、
    前記第3外部電極の前記第1方向に沿った寸法をD3とし、前記第1側面領域の前記第1方向における中心線と前記第2側面領域の前記第1方向における中心線との間の前記第1方向におけるずらし量をGとしたときに、前記D3及び前記Gが0.03≦G/D3≦0.50の関係を満たす
    積層セラミックコンデンサ。
  3. 請求項2に記載の積層セラミックコンデンサであって、
    前記D3及び前記Gが0.04≦G/D3≦0.40の関係を満たす
    積層セラミックコンデンサ。
  4. 請求項3に記載の積層セラミックコンデンサであって、
    前記D3及び前記Gが0.06≦G/D3≦0.40の関係を満たす
    積層セラミックコンデンサ。
  5. 請求項1から4のいずれか一項に記載の積層セラミックコンデンサであって、
    前記第1外部電極の前記第1方向における寸法をD1とし、前記第2外部電極の前記第1方向における寸法をD2とし、前記第3外部電極の前記第1方向に沿った寸法をD3とし、前記第1側面領域の前記第1方向における中心線と前記第2側面領域の前記第1方向における中心線との間の前記第1方向におけるずらし量をGとしたときに、前記G、前記D1,前記D2及び前記D3が5.0≦(G×D3)/(D1+D2)≦400の関係を満たす
    積層セラミックコンデンサ。
  6. 請求項5に記載の積層セラミックコンデンサであって、
    前記G、前記D1,前記D2及び前記D3が10.0≦(G×D3)/(D1+D2)≦250の関係を満たす
    積層セラミックコンデンサ。
  7. 請求項6に記載の積層セラミックコンデンサであって、
    前記G、前記D1,前記D2及び前記D3が20.0≦(G×D3)/(D1+D2)≦100の関係を満たす
    積層セラミックコンデンサ。
  8. 請求項1から7のいずれか一項に記載の積層セラミックコンデンサであって、
    前記セラミック素体の前記第2方向における寸法が、0.2mm以上1.0mm以下である
    積層セラミックコンデンサ。
  9. 請求項1から8のいずれか一項に記載の積層セラミックコンデンサであって、
    23μF以上30μF未満の静電容量を有する
    積層セラミックコンデンサ。
  10. 請求項1から8のいずれか一項に記載の積層セラミックコンデンサであって、
    30μF以上47μF以下の静電容量を有する
    積層セラミックコンデンサ。
  11. セラミック素体と、前記セラミック素体にそれぞれ形成された第1外部電極、第2外部電極及び第3外部電極と、を有する積層セラミックコンデンサと、
    第1半田を介して前記第1外部電極に接続された第1接続電極と、第2半田を介して前記第2外部電極に接続された第2接続電極と、第3半田を介して前記第3外部電極に接続された第3接続電極と、を有する実装基板と、
    を具備し、
    前記セラミック素体は、
    第1方向に相互に対向する第1端面及び第2端面と、前記第1方向に直交する第2方向に相互に対向する第1側面及び第2側面と、を含み、前記第1端面及び前記第2端面に引き出された複数の第1内部電極と、前記第1側面及び前記第2側面の少なくとも一方に引き出された複数の第2内部電極と、が誘電体層を介して交互に積層され、
    前記第1外部電極は、
    前記第1端面を被覆し前記第1側面及び前記第2側面の各々に延出し、かつ前記複数の第1内部電極に接続され、
    前記第2外部電極は、
    前記第2端面を被覆し前記第1側面及び前記第2側面の各々に延出し、かつ前記複数の第1内部電極に接続され、
    前記第3外部電極は、
    前記第1側面に形成された第1側面領域と、前記第2側面に形成された第2側面領域と、を有し、前記複数の第2内部電極に接続され、
    前記第1側面領域と前記第2側面領域とは、前記第1方向に沿って相互にずれて形成され、かつ、少なくとも一部が前記第2方向に相互に対向している
    回路基板。
JP2018171044A 2018-09-13 2018-09-13 積層セラミックコンデンサ及び回路基板 Active JP7006879B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018171044A JP7006879B2 (ja) 2018-09-13 2018-09-13 積層セラミックコンデンサ及び回路基板
KR1020190108977A KR20200031042A (ko) 2018-09-13 2019-09-03 적층 세라믹 콘덴서 및 회로 기판
US16/566,185 US10950388B2 (en) 2018-09-13 2019-09-10 Multi-layer ceramic capacitor and circuit board
CN201910852975.XA CN110895992B (zh) 2018-09-13 2019-09-10 层叠陶瓷电容器和电路板
JP2021206588A JP7231703B2 (ja) 2018-09-13 2021-12-21 積層セラミックコンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171044A JP7006879B2 (ja) 2018-09-13 2018-09-13 積層セラミックコンデンサ及び回路基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021206588A Division JP7231703B2 (ja) 2018-09-13 2021-12-21 積層セラミックコンデンサ

Publications (2)

Publication Number Publication Date
JP2020043272A JP2020043272A (ja) 2020-03-19
JP7006879B2 true JP7006879B2 (ja) 2022-02-10

Family

ID=69774353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171044A Active JP7006879B2 (ja) 2018-09-13 2018-09-13 積層セラミックコンデンサ及び回路基板

Country Status (4)

Country Link
US (1) US10950388B2 (ja)
JP (1) JP7006879B2 (ja)
KR (1) KR20200031042A (ja)
CN (1) CN110895992B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101069B2 (en) * 2018-10-11 2021-08-24 Murata Manufacturing Co., Ltd. Electronic component
JP2020167236A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 3端子型積層セラミックコンデンサおよび3端子型積層セラミックコンデンサの製造方法
JP2022149065A (ja) 2021-03-25 2022-10-06 太陽誘電株式会社 積層セラミック電子部品及び回路基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078664A (ja) 2006-09-22 2008-04-03 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
JP2011054864A (ja) 2009-09-04 2011-03-17 Murata Mfg Co Ltd コンデンサ実装構造
JP2015019084A (ja) 2014-08-13 2015-01-29 株式会社村田製作所 コンデンサ及びコンデンサの実装構造体
JP2016127262A (ja) 2014-12-26 2016-07-11 太陽誘電株式会社 貫通型積層セラミックコンデンサ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812377B2 (ja) * 2001-07-10 2006-08-23 株式会社村田製作所 貫通型三端子電子部品
JP4059181B2 (ja) * 2003-09-29 2008-03-12 株式会社村田製作所 多端子型積層セラミック電子部品の製造方法
JP4637674B2 (ja) * 2005-07-26 2011-02-23 京セラ株式会社 積層コンデンサ
US7961453B2 (en) * 2007-01-09 2011-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor
KR100887124B1 (ko) * 2007-08-06 2009-03-04 삼성전기주식회사 적층형 칩 커패시터
KR100956237B1 (ko) * 2008-05-08 2010-05-04 삼성전기주식회사 적층형 칩 커패시터
KR100983122B1 (ko) * 2008-08-08 2010-09-17 삼성전기주식회사 적층형 칩 커패시터
JP2012156315A (ja) * 2011-01-26 2012-08-16 Murata Mfg Co Ltd 積層セラミック電子部品
JP5708586B2 (ja) * 2012-07-26 2015-04-30 株式会社村田製作所 積層セラミック電子部品およびその製造方法
US9786434B2 (en) * 2013-10-22 2017-10-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and printed circuit board having the same
JP6390342B2 (ja) * 2014-10-24 2018-09-19 Tdk株式会社 電子部品
US9922770B2 (en) * 2014-12-26 2018-03-20 Taiyo Yuden Co., Ltd. Through-type multilayer ceramic capacitor
JP6373247B2 (ja) * 2015-07-27 2018-08-15 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
JP2017216331A (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 セラミックコンデンサ
JP2017216330A (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 セラミックコンデンサ
JP2018093164A (ja) * 2016-12-02 2018-06-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板
JP2018113300A (ja) * 2017-01-10 2018-07-19 株式会社村田製作所 積層電子部品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078664A (ja) 2006-09-22 2008-04-03 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
JP2011054864A (ja) 2009-09-04 2011-03-17 Murata Mfg Co Ltd コンデンサ実装構造
JP2015019084A (ja) 2014-08-13 2015-01-29 株式会社村田製作所 コンデンサ及びコンデンサの実装構造体
JP2016127262A (ja) 2014-12-26 2016-07-11 太陽誘電株式会社 貫通型積層セラミックコンデンサ

Also Published As

Publication number Publication date
US20200090872A1 (en) 2020-03-19
CN110895992A (zh) 2020-03-20
CN110895992B (zh) 2022-05-13
JP2020043272A (ja) 2020-03-19
US10950388B2 (en) 2021-03-16
KR20200031042A (ko) 2020-03-23

Similar Documents

Publication Publication Date Title
JP7103835B2 (ja) 積層セラミック電子部品及びその製造方法、並びに回路基板
KR101927731B1 (ko) 적층 세라믹 콘덴서
JP7006879B2 (ja) 積層セラミックコンデンサ及び回路基板
CN109559893B (zh) 层叠陶瓷电容器
JP7235388B2 (ja) 積層セラミック電子部品
KR101718307B1 (ko) 세라믹 전자 부품 및 그 제조 방법
WO2018146990A1 (ja) 積層セラミック電子部品
JP2018121011A (ja) 積層セラミック電子部品
JP2021015950A (ja) 積層セラミックコンデンサ
JP5694456B2 (ja) 積層セラミック電子部品及びその実装基板
CN111816445B (zh) 层叠陶瓷电子部件和电路板
JP2017103377A (ja) 積層セラミック電子部品
JP7065735B2 (ja) 積層セラミック電子部品
JPH10144561A (ja) 端子電極ペーストおよび積層セラミックコンデンサ
JP4677798B2 (ja) 電子機器
JP7231703B2 (ja) 積層セラミックコンデンサ
JP7307547B2 (ja) 積層セラミック電子部品及び回路基板
JP7359595B2 (ja) 積層セラミックコンデンサ、回路基板及び積層セラミックコンデンサの製造方法
CN111755248B (zh) 层叠陶瓷电容器
JP2022008696A (ja) 積層セラミック電子部品及びその実装基板
JP2021128969A (ja) 積層セラミック電子部品及び回路基板
KR20170065444A (ko) 적층 세라믹 전자부품
US20170154732A1 (en) Ceramic electronic component and method of producing the same
JP7353141B2 (ja) 積層セラミック電子部品及び電子部品実装基板
US20220310324A1 (en) Multi-layer ceramic electronic component and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 7006879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150