JP6737953B2 - 強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法 - Google Patents

強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法 Download PDF

Info

Publication number
JP6737953B2
JP6737953B2 JP2019511416A JP2019511416A JP6737953B2 JP 6737953 B2 JP6737953 B2 JP 6737953B2 JP 2019511416 A JP2019511416 A JP 2019511416A JP 2019511416 A JP2019511416 A JP 2019511416A JP 6737953 B2 JP6737953 B2 JP 6737953B2
Authority
JP
Japan
Prior art keywords
voltage
plate
sense node
digit line
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511416A
Other languages
English (en)
Other versions
JP2019530945A (ja
Inventor
ジェイ. ダーナー,スコット
ジェイ. ダーナー,スコット
ジェイ. カワムラ,クリストファー
ジェイ. カワムラ,クリストファー
Original Assignee
マイクロン テクノロジー,インク.
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク., マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2019530945A publication Critical patent/JP2019530945A/ja
Application granted granted Critical
Publication of JP6737953B2 publication Critical patent/JP6737953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2259Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2273Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2293Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/10Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2297Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Error Detection And Correction (AREA)

Description

[関連出願に対するクロスリファレンス]
本出願は、2016年8月31日に出願された米国特許仮出願番号62/381,900の出願日の利益を主張する。この出願は、その全体において、全ての目的のために本明細書に参照によって組み入れられる。
メモリデバイスは、コンピュータ、無線通信デバイス、カメラ、デジタルディスプレイなどの様々な電子デバイスに情報を格納するために広く用いられている。メモリデバイスの様々な状態をプログラムすることによって情報が格納される。例えば、バイナリデバイスは、論理“1”または論理“0”によってしばしば示される二つの状態を有する。他のシステムにおいては、三以上の状態が格納されてもよい。格納された情報にアクセスするために、電子デバイスは、メモリデバイスに格納された状態を読み出すか、または検知してもよい。情報を格納するために、電子デバイスは、メモリデバイスに状態を書き込むか、またはプログラムしてもよい。
メモリデバイスの様々なタイプが存在し、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ダイナミックRAM(DRAM)、同期式ダイナミックRAM(SDRAM)、強誘電体RAM(FeRAM)、磁気RAM(MRAM)、抵抗変化RAM(RRAM)、フラッシュメモリ他を含む。メモリデバイスは、揮発性または不揮発性であってもよい。不揮発性メモリ、例えば、フラッシュメモリは、外部電源がなくても長期間、データを格納することができる。揮発性メモリデバイス、例えば、DRAMは、外部電源によって周期的にリフレッシュされないと、時間の経過とともに、格納された状態を失うことがある。バイナリメモリデバイスは、例えば、充電または放電されたキャパシタを含み得る。充電されたキャパシタは、しかしながら、リーク電流を通じて時間と共に放電され得、その結果、格納された情報の喪失をもたらす。周期的なリフレッシュなしにデータを格納する性能などの不揮発性メモリの特徴が有利であり得る一方で、揮発性メモリの幾つかの特徴が、より高速な読み出しまたは書き込み速度などの性能の利点を提供し得る。
FeRAMは、揮発性メモリと類似したデバイスアーキテクチャを使用し得るが、記憶デバイスとして強誘電体キャパシタを使用することによって、不揮発性の特性を有することがある。FeRAMデバイスは、それゆえ、他の不揮発性および揮発性メモリデバイスと比較して、改善された性能を有し得る。しかしながら、FeRAMデバイスの動作を改良することが望まれている。例えば、FeRAMデバイスの動作のために、メモリセル検知中のノイズ抵抗性の改良、より小型の回路およびレイアウトサイズの縮小ならびにタイミングの向上を有することが望ましいことがある。
強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法が開示される。本開示の一態様においては、例示的一方法は、キャパシタの第二のセルプレート、第二のデジット線および第二のセンスノードの電圧を変化させるために、キャパシタの第一のセルプレートの電圧を増加させることを含む。第一のセルプレート、第一のデジット線および第一のセンスノードの電圧を変化させるために、第二のセルプレートおよび第二のデジット線の電圧は減少する。第一のノードは第一の電圧に駆動され、第二のノードは、第二のノードよりも大きい第一のノードの電圧に応じて、第二の電圧に駆動される。第一のノードは第二の電圧に駆動され、第二のノードは、第二のノードよりも小さい第一のノードの電圧に応じて、第一の電圧に駆動される。
本開示の別の態様においては、例示的一装置は、第一および第二のデジット線、強誘電体メモリセル、第一および第二のワード線、センスコンポーネントならびに第一および第二のドライバを含む。強誘電体メモリセルは、強誘電体キャパシタ、第一の選択コンポーネントおよび第二の選択コンポーネントを含む。第一の選択コンポーネントは、第一のデジット線と、強誘電体キャパシタの第一のプレートとの間に結合され、第二の選択コンポーネントは、第二のデジット線と強誘電体キャパシタの第二のプレートとの間に結合される。第一のワード線は、第一の選択コンポーネントのゲートに結合され、第二のワード線は、第二の選択コンポーネントのゲートに結合される。センスコンポーネントは、スイッチを通じて第一のデジット線に結合された第一のセンスノードを含み、絶縁スイッチを通じて第二のデジット線に結合された第二のセンスノードをさらに含む。センスコンポーネントは、第一および第二のセンスノードの電圧をラッチするように構成される。第一のドライバ回路は第一のデジット線に結合され、アクティブ化されたときに読み出し電圧を提供するように構成される。第二のドライバ回路は第二のデジット線に結合され、アクティブ化されたときにグランド電圧を提供するように構成される。
本開示の様々な実施形態による、強誘電体メモリをサポートする例示的メモリアレイのブロック図である。 本開示の一実施形態による、メモリセルの列を含む例示的回路の模式図である。 本開示の一実施形態による、センスコンポーネントの模式図である。 本開示の様々な実施形態による、強誘電体メモリセルに対する例示的非線形電気特性の図である。 本開示の様々な実施形態による、強誘電体メモリセルに対する例示的非線形電気特性の図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。 本開示の一実施形態による、書き込み動作中の様々な信号のタイミング図である。 本開示の一実施形態による、書き込み動作中の様々な信号のタイミング図である。 本開示の一実施形態による、メモリセルを示すメモリアレイの一部の断面側面図を図示する図である。 本開示の様々な実施形態による、強誘電体メモリをサポートするメモリアレイのブロック図である。 本開示の様々な実施形態による、強誘電体メモリをサポートするシステムのブロック図である。
本開示の実施形態の十分な理解を提供するために、ある詳細事項が以下に説明される。しかしながら、本開示の実施形態は、これらの具体的な詳細事項なしでも実施され得ることは当業者に明らかであろう。さらに、本明細書に記述された本開示の具体的実施形態は、例示として提供され、本開示の範囲をこれらの具体的実施形態に限定するために用いられるべきではない。他の例においては、既知の回路、制御信号、タイミングプロトコルおよびソフトウェア動作は、本開示を不必要に不明瞭にすることを防ぐために、詳細には示されていない。
図1は、本開示の様々な実施形態による、強誘電体メモリをサポートする例示的メモリアレイ100を図示する。メモリアレイ100は、また、電子メモリ装置とも称され得る。メモリアレイ100は、異なる状態を格納するようにプログラム可能なメモリセル105を含む。各状態は、異なる論理値を表し得る。例えば、二つの状態を格納するメモリに対して、論理値は、論理0および論理1として示され得る。幾つかの場合、メモリセル105は、三つ以上の論理状態を格納するように構成される。メモリセル105は、プログラム可能な状態を表す電荷を格納するためにキャパシタを含み得る。例えば、充電されたキャパシタおよび充電されていないキャパシタは、其々、二つの論理状態を表し得る。
強誘電体メモリセルは、誘電体材料として強誘電体を有するキャパシタを含み得る。強誘電体キャパシタの異なる電荷のレベルは、異なる論理状態を表し得る。強誘電体メモリセル105は、例えば、周期的なリフレッシュ動作の必要のない論理状態の持続的ストレージといった、他のメモリアーキテクチャに対して改善された性能をもたらし得る有利な特性を有し得る。
読み出しおよび書き込みなどの動作は、適切なアクセス線110およびデジット線115をアクティブ化、または選択することによって、メモリセル105で実施され得る。アクセス線110はワード線110とも称され得る。ワード線110またはデジット線115をアクティブ化、または選択することは、其々の線に電圧を印加することを含み得る。ワード線110およびデジット線115は導電性材料で製造される。例えば、ワード線110およびデジット線115は、金属(銅、アルミニウム、金、タングステンなど)、金属合金、ドープされた半導体、その他の導電性材料などで製造されてもよい。図1の実施例に従うと、メモリセル105の各行は、ワード線110 WL−CTおよびWL−CBに結合され、メモリセル105の各列は、デジット線115 BL−CTおよびBL−CBに結合される。其々のワード線110およびデジット線115をアクティブ化する(例えば、ワード線110またはデジット線115に電圧を印加する)ことによって、それらの交点でメモリセル105がアクセスされ得る。メモリセル105にアクセスすることは、メモリセル105を読み出すこと、または書き込むことを含み得る。ワード線110およびデジット線115の交点は、メモリセルのアドレスと称され得る。
幾つかのアーキテクチャにおいては、セルの論理格納デバイス、例えば、キャパシタは、選択コンポーネントによってデジット線から電気的に絶縁され得る。ワード線110は
、其々、選択コンポーネントに結合され得、選択コンポーネントを制御し得る。例えば、選択コンポーネントはトランジスタであってもよく、ワード線110は、トランジスタのゲートに結合されてもよい。ワード線110をアクティブ化することは、結果として、メモリセル105のキャパシタと、対応するデジット線115との間の電気的結合または閉回路をもたらす。デジット線は、その後、メモリセル105の読み出し、または書き込みの何れかのためにアクセスされ得る。
メモリセル105にアクセスすることは、行デコーダ120および列デコーダ130を通じて制御され得る。幾つかの実施例では、行デコーダ120は、行アドレスをメモリコントローラ140から受信し、受信された行アドレスに基づいて適切なワード線110をアクティブ化する。同様に、列デコーダ130は、メモリコントローラ140から列アドレスを受信し、適切なデジット線115をアクティブ化する。例えば、メモリアレイ100は、複数のワード線110および複数のデジット線115を含み得る。したがって、ワード線110 WL―CTおよびWL−CBと、デジット線115 BL−CTおよびBL−CBとをアクティブ化することによって、それらの交点におけるメモリセル105がアクセスされ得る。
アクセスすると、メモリセル105の格納された状態を判定するために、メモリセル105は、センスコンポーネント125によって読み出され得、または検知され得る。例えば、メモリセル105にアクセスした後、メモリセル105の強誘電体キャパシタは、対応するデジット線115上へ放電し得る。強誘電体キャパシタを放電することは、強誘電体キャパシタにバイアスをかけること、または電圧を印加することに基づき得る。放電することは、デジット線115の電圧に変化を生じさせ得、センスコンポーネント125は、メモリセル105の格納された状態を判定するために、それを基準電圧(図示せず)と比較し得る。例えば、デジット線115が基準電圧よりも高い電圧を有する場合、センスコンポーネント125は、メモリセル105中に格納された状態が論理1であると判定し得、逆もまた同様である。センスコンポーネント125は、信号における差を検出(例えば、比較)および増幅するための様々なトランジスタまたは増幅器を含み得、増幅された差をラッチすることを含み得る。個別のセンスコンポーネント125は、デジット線BL−CTおよびBL−CBの各対に対して提供されてもよい。メモリセル105の検出された論理状態は、その後、列デコーダ130を通じて出力135として出力され得る。
メモリセル105は、関連するワード線110およびデジット線115をアクティブ化することによってプログラムされ得、または書き込まれ得る。上で論じられたように、ワード線110をアクティブ化することは、メモリセル105の対応する行を、それらの其々のデジット線115に電気的に結合する。ワード線110がアクティブ化される間に、関連するデジット線115を制御することによって、メモリセル105は書き込まれ得る。例えば、メモリセル105中に論理値が格納され得る。列デコーダ130は、メモリセル105に書き込まれるデータ、例えば入力135を受け入れ得る。強誘電体メモリセル105は、強誘電体キャパシタにわたって電圧を印加することによって書き込まれ得る。このプロセスは、以下により詳細に論じられる。
幾つかのメモリアーキテクチャにおいては、メモリセル105にアクセスすることは、格納された論理状態を劣化または破壊することがあり、メモリセル105に元の論理状態を戻すために、書き換え(例えば、修復)動作が実施され得る。例えば、キャパシタは、センス動作中に部分的または完全に放電され得、格納された論理状態を破壊する。ゆえに、論理状態は、センス動作後に書き換えられることがある。追加的に、ワード線110をアクティブ化することは、結果として、その行における全てのメモリセルの放電をもたらし得る。したがって、その行における幾つかまたは全てのメモリセル105が書き換えられる必要があり得る。
メモリコントローラ140は、行デコーダ120、列デコーダ130、およびセンスコンポーネント125などの様々なコンポーネントを通じて、メモリセル105の動作(例えば、読み出し、書き込み、書き換えなど)を制御し得る。メモリコントローラ140は、所望のワード線110およびデジット線115をアクティブ化するために、行および列のアドレス信号を生成し得る。メモリコントローラ140は、また、メモリアレイ100の動作中に使用される様々な電位を生成および制御し得る。一般的に、本明細書で論じられる印加電圧の振幅、形状、または存続期間は、調整または変更され得、メモリアレイ100を動作させるための様々な動作に対して異なり得る。さらに、メモリアレイ100内の1つの、複数の、または全てのメモリセル105は同時にアクセスされ得る。例えば、メモリアレイ100の複数のまたは全てのセルは、全てのメモリセル105またはメモリセル105のグループが単一の論理状態に設定されるリセット動作中に同時にアクセスされ得る。
図2Aは、本開示の一実施形態による、メモリセルの列を含む例示的回路200を図示する。図2Aは、本開示の様々な実施形態による、メモリセル105を含む例示的回路200を図示する。回路200は、メモリセル105 MC(0)〜MC(n)を含み、ここで、“n”はアレイサイズに依存する。回路200は、ワード線WL−CT(0)〜WL−CT(n)およびWL−CB(0)〜WL−CB(n)と、デジット線BL−CTおよびBL−CBならびにセンスコンポーネント125をさらに含む。メモリセル、ワード線、デジット線およびセンスコンポーネントは、其々、図1を参照して記述されたメモリセル105、ワード線110、デジット線115およびセンスコンポーネント125の実施例であり得る。メモリセル105の一つの列およびn個の行が図2Aには図示されているが、メモリアレイは、図示されたようなメモリセルの多くの列および行を含み得る。
メモリセル105は、第一のプレート、セル上部230および第二のプレート、セル底部215を有するキャパシタ205などの論理格納コンポーネントを含み得る。セル上部230およびセル底部215は、それらの間に配置された強誘電体材料を通じて容量結合されてもよい。セル上部230およびセル底部215の方向付けは、メモリセル105の動作を変化させることなく、逆にされてもよい。メモリセル105は、選択コンポーネント220および224をさらに含み得る。選択コンポーネント220および224は、トランジスタ、例えば、n型電界効果トランジスタであり得る。このような実施例においては、メモリセル105の各々は、2つのトランジスタと1つのキャパシタ(例えば、2T1C)とを含む。
回路200は、また、絶縁スイッチ231および基準スイッチ233を含む。基準信号VBLREFは、基準スイッチ233に提供される。絶縁スイッチ231および基準スイッチ233は、センスコンポーネント125のセンスノードAに結合される。絶縁スイッチ231のアクティブ化は、信号ISOによって制御され、基準スイッチ233のアクティブ化は、信号ISOREFによって制御される。幾つかの実施形態においては、基準スイッチ233は回路200に含まれていない。例えば、実施形態においては、回路200は、メモリセル105によって格納された論理値を判定するためにそれ自体で基準電圧を提供する。このような実施形態においては、センスコンポーネント125に個別の基準電圧(例えば、VBLREF基準信号の電圧VREF)を提供することが必ずしも必要ではない。回路200は、また、スイッチ235と、ドライバ回路237および239とを含む。幾つかの実施例においては、絶縁スイッチ231、基準スイッチ233およびスイッチ235は、トランジスタ、例えば、n型電界効果トランジスタであってもよく、その閾値電圧以上の電圧を印加することによってアクティブ化されてもよい。スイッチ235のアクティブ化は、信号RESTOREによって制御される。ドライバ回路237は、アクティブ化されたときにVREAD電圧を提供し、ドライバ回路239は、アクティブ化されたときにグランド電圧(GND)を提供する。
メモリセル105は、デジット線BL−CTおよびデジット線BL−CBを通じて、センスコンポーネント125と電子通信し得る。スイッチ235は、センスコンポーネント125と、デジット線BL−CTと、ドライバ回路237との間に直列に結合され得る。スイッチ235は、メモリセル105およびドライバ回路237から、センスコンポーネント125を電気的に結合するか、または絶縁する。図2Aの実施例においては、セル上部230は、デジット線BL−CTを介してアクセスされ得、セル底部はデジット線BL−CBを介してアクセスされ得る。上述されたように、様々な状態がキャパシタ205を充電するか、または放電することによって格納され得る。
キャパシタ205の格納された状態は、回路200に表された様々な素子を動作させることによって読み出され得るか、または検知され得る。キャパシタ205は、デジット線BL−CBおよびBL−CTと電子通信し得る。例えば、選択コンポーネント220および224が非アクティブ化されたときには、キャパシタ205は、デジット線BL−CBおよびBL−CTから絶縁されることができ、選択コンポーネント220および224がアクティブ化されたときには、キャパシタ205は、デジット線BL−CBおよびBL−CTに結合されることができる。選択コンポーネント220および224をアクティブ化することは、メモリセル105を選択することと称され得る。幾つかの場合には、選択コンポーネント220および224はトランジスタであり、その動作は、トランジスタゲートに電圧を印加することによって制御され、その電圧の大きさは、トランジスタの閾値電圧よりも大きい。ワード線WL−CBは、選択コンポーネント220をアクティブ化し得、ワード線WL−CTは、選択コンポーネント224をアクティブ化し得る。例えば、ワード線WL−CBに印加される電圧は、選択コンポーネント220のトランジスタゲートに印加され、ワード線WL−CTに印加される電圧は、選択コンポーネント224のトランジスタゲートに印加される。結果として、其々のキャパシタ205がデジット線BL−CBおよびBL−CTに其々結合される。メモリセル105は、双方のワード線WL−CBおよびWL−CTが非アクティブ化されたときに、ストレージモードと考えられ得る。メモリセル105は、また、双方のワード線WL−CBおよびWL−CTがアクティブ化され、デジット線BL−CBおよびBL−CTの電圧が同一であるときにも、ストレージモードと考えられ得る。
ワード線WL−CB(0)〜WL−CB(n)およびWL−CT(0)〜WL−CT(n)が、メモリセル105 MC(0)〜MC(n)の選択コンポーネント220および224と其々電子通信する。したがって、其々のメモリセル105のワード線WL−CBおよびWL−CTをアクティブ化することは、メモリセル105をアクティブ化し得る。例えば、WL−CB(0)およびWL−CT(0)をアクティブ化することは、メモリセルMC(0)をアクティブ化し、WL−CB(1)およびWL−CT(1)をアクティブ化することは、メモリセルMC(1)をアクティブ化する、などである。幾つかの実施例においては、選択コンポーネント220がデジット線BL−CTとセル上部230との間に結合され、かつ、選択コンポーネント224がデジット線BL−CBとセル底部215との間に結合されるように、選択コンポーネント220および224の位置は入れ替えられてもよい。
キャパシタ205のプレート間の強誘電体材料に起因して、また、以下により詳細に論じられるように、キャパシタ205は、デジット線BL−CBおよびBL−CTに結合すると放電しないことがある。強誘電体キャパシタ205によって格納された論理状態を検知するために、ワード線WL−CBおよびWL−CTは、其々のメモリセル105を選択するためにバイアスされ得、電圧が、例えば、ドライバ回路237によってデジット線BL−CTに印加され得る。デジット線BL−CTバイアスは、選択コンポーネント224
をアクティブ化する前、またはその後に印加されてもよい。デジット線BL−CTをバイアスすることは、結果として、キャパシタ205にわたる電圧差を生じさせ得、それは、キャパシタ205における格納された電荷の変化を引き起こし得る。同様に、デジット線BL−CBをバイアスすることは、また、結果として、キャパシタ205にわたる電圧差を生じさせ得、それは、キャパシタ205に格納された電荷の変化を引き起こし得る。格納された電荷の変化の大きさは、各キャパシタ205の最初の状態、例えば、最初の状態が論理1を格納していたか、論理0を格納していたか、に依存し得る。選択コンポーネント220がワード線WL−CBによってアクティブ化されたとき、デジット線BL−CTをバイアスすることによる格納された電荷における変化は、キャパシタ205に格納された電荷に基づいて、デジット線BL−CBの電圧の変化を引き起こし得る。同様に、選択コンポーネント224がワード線WL−CTによってアクティブ化されたとき、デジット線BL−CBをバイアスすることによる格納された電荷の変化は、キャパシタ205に格納された電荷に基づいて、デジット線BL−CTの電圧の変化を引き起こし得る。デジット線BL−CBまたはBL−CTの電圧の変化は、絶縁スイッチ231およびスイッチ235が全て其々アクティブ化されたときに、センスノードAおよびBにおける変化を引き起こし得る。各メモリセル105の格納された状態によってあらわされる論理値を判定するために、デジット線BL−CBまたはデジット線BL−CTに結果として生じる電圧は、センスコンポーネント125によって、基準電圧と比較され得る。幾つかの実施形態においては、デジット線BL−CBまたはデジット線BL−CTに結果として生じる電圧は、センスコンポーネント125によって、基準電圧と比較され得、その基準電圧は、一定電圧、例えば、VBLREF信号のVREF電圧である。他の実施形態においては、デジット線BL−CBまたはデジット線BL−CTに結果として生じる電圧は、センスコンポーネント125によって、基準電圧と比較され得、その基準電圧は、自己供給され、例えば、アクセス動作中にデジット線BL−CBおよびBL−CTをバイアスする結果として生じる基準電圧である。
センスコンポーネント125は、信号の差を検出し、増幅するために、様々なトランジスタまたは増幅器を含み得、これらは、増幅された差をラッチすることを含み得る。センスコンポーネント125は、そのセンスノードのいずれか(例えば、センスノードAまたはB)の電圧と、基準電圧であり得る基準信号VBLREFの電圧とを受信して比較するセンス増幅器を含み得る。幾つかの実施形態においては、センスノードのいずれかの電圧は、自己供給された基準電圧と比較されてもよい。例えば、センスノードAがデジット線BL−CBに結合され、センスノードBがデジット線BL−CTに結合されるとき、センスノードAおよびBの電圧は、其々、デジット線BL−CBおよびBL−CTの電圧によって影響され得る。センス増幅器出力(例えば、センスノード)は、比較に基づいて、より高い(例えば、正の)またはより低い(例えば、負またはグランドの)供給電圧に駆動され得、他方のセンスノードは、相補的電圧に駆動され得る(例えば、正の供給電圧は、負またはグランド電圧に対して相補的であり、負またはグランド電圧は、正の供給電圧に対して相補的である)。例えば、センスノードBが基準信号VBLREFよりも高い電圧、または自己供給された基準電圧よりも高い電圧を有する場合、センス増幅器は、センスノードBを正の供給電圧に駆動し得、センスノードAを負またはグランド電圧に駆動し得る。センスコンポーネント125は、センス増幅器の状態(例えば、センスノードAおよび/またはセンスノードBの電圧、ならびに/あるいはデジット線BL−CBおよび/またはBL−CTの電圧)をラッチし得、これは、メモリセル105の格納された状態および論理値、例えば、論理1を判定するために用いられ得る。あるいは、センスノードBが基準信号VBLREFよりも低い電圧または自己供給された基準電圧よりも低い電圧を有する場合、センス増幅器は、センスノードBを負またはグランド電圧に駆動し得、センスノードAを正の供給電圧に駆動し得る。センスコンポーネント125は、また、メモリセル105の格納された状態および論理値、例えば論理0を判定するために、センス増幅器の状態をラッチし得る。格納された状態は、メモリセル105の論理値を表し得、これは
、例えば、図1を参照すると出力135として列デコーダ130を通じて、その後出力され得る。センスコンポーネント125が、また、デジット線BL−CBおよびBL−CTを相補的電圧に駆動する実施形態においては、相補的電圧は、読み出された元のデータ状態を修復するために、メモリセル105に印加され得る。データを修復することによって、個別の修復動作は不必要になる。
前述されたように、ワード線WL−CBおよびWL−CTならびに選択コンポーネント220および224は、キャパシタ205のセル底部215およびセル上部230の独立した制御を提供し、それゆえ、従来の強誘電体メモリで典型的な、共有されたセルプレートの必要性をなくし得る。結果として、セルは、例えば、セルプレート関連のパターンノイズといったディスターブ機構を受けにくくなり得る。さらに、セルプレートドライバ回路は、共有されるセルプレート設計では必要となるが、必要とされなくなり、これによって、回路の寸法を縮小することができる。メモリセルの複数の列のデジット線は、相互に独立して、電圧に駆動され得る。例えば、メモリセルの第一の列のデジット線BL−CT(セル底部の反対側にある、セル上部に、選択コンポーネントを通じて結合されたデジット線)は、メモリセルの第二の列のデジット線BL−CTに駆動される電圧とは関係なく、ある電圧に駆動され得る。
図2Bは、本開示の一実施形態による、センスコンポーネント125を図示する。センスコンポーネント125は、p型電界効果トランジスタ252および256と、n型電界効果トランジスタ262および266と、を含む。トランジスタ252およびトランジスタ262のゲートは、センスノードAに結合される。トランジスタ256およびトランジスタ266のゲートは、センスノードBに結合される。トランジスタ252および256と、トランジスタ262および266はセンス増幅器を表す。p型電界効果トランジスタ258は、電源(例えば、VREAD電圧電源)に結合されるように構成され、トランジスタ252および256の共通のノードに結合される。トランジスタ258は、アクティブPSA信号(例えば、負論理ロジック)によってアクティブ化される。n型電界効果トランジスタ268は、センス増幅器基準電圧(例えば、グランド)に結合されるように構成され、トランジスタ262および266の共通のノードに結合される。トランジスタ268は、アクティブNSA信号(例えば、正論理ロジック)によってアクティブ化される。センスノードAに結合された基準スイッチ233も図2Bに図示される。基準信号VBLREFは、基準スイッチ233に提供される。基準スイッチ233のアクティブ化は、信号ISOREFによって制御される。前述されたように、幾つかの実施形態においては、回路200がメモリセル105によって格納された論理値を判定するために、それ自体で基準電圧を提供する実施形態のように、基準スイッチ233は回路200に含まれない。このような実施形態においては、センスコンポーネント125に個別の基準電圧(例えば、VBLREF基準信号の電圧VREF)を提供することは、必要不可欠ではない。
動作においては、センス増幅器は、電源の電圧およびセンス増幅器基準電圧にセンス増幅器を結合するために、PSAおよびNSA信号をアクティブ化することによってアクティブ化される。アクティブ化されたとき、センス増幅器は、センスノードAおよびBの電圧を比較して、センスノードAおよびBを相補的電圧レベルに駆動することによって、電圧差を増幅する(例えば、センスノードAをVREADに駆動し、センスノードBをグランドに駆動する、またはセンスノードAをグランドに駆動し、センスノードBをVREADに駆動する)。センスノードAおよびBが相補的電圧レベルに駆動されたとき、センスノードAおよびBの電圧は、センス増幅器によってラッチされ、センス増幅器が非アクティブ化されるまでラッチされたままである。
図2Aを参照すると、メモリセル105に書き込むために、電圧がキャパシタ205にわたって印加され得る。様々な方法が使用され得る。幾つかの実施例においては、デジッ
ト線BL−CBおよびBL−CTにキャパシタ205を電気的に結合するために、選択コンポーネント220および224は、ワード線WL−CBおよびWL−CTを通じて、其々アクティブ化され得る。強誘電体キャパシタ205に対して、キャパシタ205にわたって正または負の電圧を印加するために、(デジット線BL−CTを通じて)セル上部230および(デジット線BL−CBを通じて)セル底部215を制御することによって、キャパシタ205にわたって電圧が印加され得る。
幾つかの実施例においては、検知の後、修復動作が実施され得る。以前に論じられたように、検知動作は、メモリセル105の元の格納された状態を劣化または破壊し得る。検知した後、状態は、メモリセル105にライトバックされ得る。例えば、センスコンポーネント125は、メモリセル105の格納された状態を判定し得、その後、例えば、絶縁スイッチ231およびスイッチ235を通じて同一の状態をライトバックし得る。
強誘電体材料は非線形の分極特性を有する。図3Aおよび図3Bは、本開示の様々な実施形態による、強誘電体メモリのためのメモリセルに対するヒステリシス曲線300−a(図3A)および300−b(図3B)で、非線形電気特性の例を図示する。ヒステリシス曲線300−aおよび300−bは、其々強誘電体メモリセルの書き込みおよび読み出しプロセスの一例を図示する。ヒステリシス曲線300は、強誘電体キャパシタ(例えば、図2Aのキャパシタ205)に格納された電荷Qを電圧差Vの関数として図示する。
強誘電体材料は、自発電気分極によって特徴づけられ、例えば、電界がなくても非ゼロ電気分極を維持する。例示的な強誘電体材料は、チタン酸バリウム(BaTiO )、チタン酸鉛(PbTiO )、チタン酸ジルコン酸鉛(PZT)およびタンタル酸ストロンチウムビスマス(SBT)を含む。本明細書に記述された強誘電体キャパシタは、これらの、または他の強誘電体材料を含んでもよい。強誘電体キャパシタ内の電気分極は、強誘電体材料表面に正味の電荷を生じさせ、キャパシタ端子を通じて逆の電荷を引き付ける。したがって、電荷は、強誘電体材料とキャパシタ端子との界面に格納される。電気分極は、比較的長時間、無期限にさえ、外部から印加される電界がなくても維持されることができるため、電荷の漏れは、例えば、揮発性メモリアレイで使用されるキャパシタと比較すると、顕著に減少し得る。これは、上述されたように、幾つかの揮発性メモリアーキテクチャについて、リフレッシュ動作を実施する必要性を減少させることがある。
ヒステリシス曲線300は、キャパシタの単一の端子を考えると理解されることがある。例示として、強誘電体材料が負の分極を有する場合には、正の電荷がその端子に集まる。同様に、強誘電体材料が正の分極を有する場合には、負の電荷がその端子に集まる。さらに、ヒステリシス曲線300における電圧は、キャパシタにわたる電圧差を表し、方向性を有することを理解されたい。例えば、問題の端子(例えば、セル上部230)に正の電圧を印加し、第二の端子(例えば、セル底部215)をグランド(または、ほぼゼロボルト(0V))に維持することによって、正の電圧が実現され得る。問題の端子をグランドに維持して、第二の端子に正の電圧を印加することによって、負の電圧が印加され得、例えば、正の電圧が問題の端子を負に分極させるために印加されてもよい。同様に、ヒステリシス曲線300に図示された電圧差を生成するために、二つの正の電圧、二つの負の電圧、または正の電圧と負の電圧との任意の組み合わせが、適切なキャパシタ端子に印加され得る。
ヒステリシス曲線300−aに図示されるように、強誘電体材料は、ゼロの電圧差で正または負の分極を維持することがあり、その結果、二つの可能な充電された状態を生じる。それは、電荷状態305と電荷状態310である。図3の実施例によれば、電荷状態305は論理0を表し、電荷状態310は論理1を表す。幾つかの実施例においては、其々の電荷状態の論理値は、理解を損なわずに逆にされ得る。
電圧を印加することにより強誘電体材料の電気分極を制御し、それによって、キャパシタ端子における電荷を制御することによって、メモリセルに論理0または1が書き込まれ得る。例えば、キャパシタに正味の正の電圧315を印加することは、結果として、電荷状態305−aに到達するまでの電荷の蓄積を生じる。電圧315を除去すると、電荷状態305−aは、ゼロ電位において電荷状態305に到達するまで、経路320に従う。同様に、電荷状態310は、正味の負の電圧325を印加することによって書き込まれ、結果として電荷状態310−aを生じる。負の電圧325を除去した後、電荷状態310−aは、ゼロ電圧において電荷状態310に到達するまで、経路330に従う。電荷状態305および310は、また、残留分極(Pr)値とも呼ばれることがあり、これは、外部バイアス(例えば、電圧)を除去しても保持する分極(または、電荷)である。
強誘電体キャパシタの格納された状態を読み出すか、または検知するために、電圧がキャパシタにわたって印加され得る。それに応じて、格納された電荷Qは変化し、その変化の程度は、最初の電荷状態に依存し、結果として、最終的に格納された電荷(Q)は、電荷状態305−bまたは310−bのいずれが最初に格納されていたかに依存する。例えば、ヒステリシス曲線300−bは、二つの可能な格納された電荷状態305−bおよび310−bを図示する。電圧335が、前に論じられたようにキャパシタにわたって印加され得る。正の電圧として図示されているが、電圧335は負であってもよい。電圧335に応じて、電荷状態305−bは経路340に従い得る。同様に、電荷状態310−bが最初に格納されていた場合には、それは経路345に従う。電荷状態305−cおよび電荷状態310−cの最終的な位置は、特定のセンシングスキームおよび回路を含む多数の要因に依存する。
幾つかの場合には、最終的な電荷は、メモリセルに結合されたデジット線の固有の静電容量に依存し得る。例えば、キャパシタが、デジット線に電気的に結合され、電圧335が印加される場合、デジット線の電圧は、その固有の静電容量によって上昇し得る。ゆえに、センスコンポーネントで測定される電圧は、電圧335と等しくなり得ず、その代わりにデジット線の電圧に依存し得る。ヒステリシス曲線300−bにおける最終的な電荷状態305−cおよび310−cの位置は、それゆえ、デジット線の静電容量に依存し得、load−line分析を通じて判定され得る。電荷状態305−cおよび310−cは、デジット線の静電容量について定義されてもよい。結果として、キャパシタの電圧、電圧350または電圧355は、異なってもよく、キャパシタの最初の状態に依存し得る。
デジット線電圧を基準電圧と比較することによって、キャパシタの最初の状態が判定され得る。デジット線電圧は、電圧335とキャパシタにおける最終的な電圧である電圧350または電圧355との間の差であり得、これは、例えば、(電圧335−電圧350)または例えば、(電圧335−電圧355)である。格納された論理状態を判定するために(例えば、デジット線電圧が基準電圧よりも高いか、または基準電圧よりも低いか)その大きさが二つの可能なデジット線電圧の間であるように、基準電圧が生成され得る。例えば、基準電圧は、二つの量(電圧335−電圧350)および(電圧335−電圧355)の平均であってもよい。別の実施例においては、センスコンポーネントの第一のセンスノードにおける電圧を絶縁し、その後、デジット線を通じてセンスコンポーネントの第二のセンスノードにおける電圧の変化を引き起こし、第一のセンスノードの絶縁された電圧と第二のセンスノードの結果として生じる電圧とを比較することによって、基準電圧が提供され得る。センスコンポーネントによる比較によって、検知されたデジット線電圧は、基準電圧よりも高いか、または低いかが判定され得、強誘電体メモリセルの格納された論理値(例えば、論理0または1)が判定され得る。
図4A−図4Eは、本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。図4A−図4Eは、図1および図2のメモリアレイ100および例示的回路200を参照して記述されるだろう。図4A−図4Eの例示的読み出し動作は、メモリセルの格納された状態(および対応する論理値)を判定するために用いられる基準電圧と比較すると、増加した電圧マージンを提供し得る。
時間T0の前に、デジット線BL−CBは、アクティブ化された絶縁スイッチ231を通じて、センスコンポーネント125のセンスノードAに結合される。デジット線BL−CTの電圧およびセンスノードBの電圧が相互に独立するように、スイッチ235が非アクティブ化される。デジット線BL−CBおよびセンスノードAならびにデジット線BL−CTおよびセンスノードBは、全て、グランドといった電圧にプレチャージされる。時間T0において、セル底部215をデジット線BL−CBに結合するために、選択コンポーネント220をアクティブ化するためにワード線WL−CBがアクティブ化される。時間T1において、ドライバ回路237は、デジット線BL−CT上に電圧VREADを駆動するために有効化される。セル上部230をデジット線BL−CTに結合するために、選択コンポーネント224をアクティブ化するために、時間T2においてワード線WL−CTがアクティブ化される(図4A)。
セル底部215に電圧変化を引き起こすために、アクティブ化された選択コンポーネント224を通じて、電圧VREADがセル上部230に印加される。前に論じられたように、セル底部215で引き起こされる電圧の変化の大きさは、キャパシタ205によって最初に格納された電荷状態に少なくとも部分的に基づく。最初の電圧から増加した電圧へのセル底部215における電圧変化は、また、同様に、デジット線BL−CBおよびセンスノードAの電圧を変化させる。最初の電荷状態が論理1を表す場合、センスノードA(図4CにおけるSENSEA−1)およびデジット線BL−CB(図4BにおけるBL−CB−1)は、グランド(例えば、最初の電圧)から第一の電圧(例えば、増加した電圧)に変化する(図4C)。最初の電荷状態が論理0を表す場合、センスノードA(図4EにおけるSENSEA−0)およびデジット線BL−CB(図4DにおけるBL−CB−0)は、グランド(例えば、最初の電圧)から第二の電圧(例えば、増加した電圧)に変化する。図4A−図4Eに図示された実施例においては、第一の電圧は第二の電圧よりも大きい。
時間T2において、スイッチ235は未だアクティブではないため、デジット線BL−CTおよびセンスノードBは、アクティブなスイッチ235を通じて結合されていない。それにもかかわらず、デジット線BL−CTおよびアクティブ化された選択コンポーネント224を通じて、時間T2でセル上部230に電圧VREADを結合することは、また、センスノードBの電圧の変化を引き起こす。最初の電荷状態が論理1を表す場合、センスノードB(図4CにおけるSENSEB−1)は、グランドから第三の電圧に変化する。最初の電荷状態が論理0を表す場合、センスノードB(図4EにおけるSENSEB−0)は、グランドから第四の電圧に変化する。図4に図示される実施例においては、第三の電圧は第四の電圧より大きく、第三および第四の電圧の双方は、第二の電圧未満である。センスノードA、センスノードBおよびデジット線BL−CBの電圧は、時間T2とT3との間に発達する。
時間T3において、センスノードAがデジット線BL−CB(図4A)から絶縁されるように絶縁スイッチ231が非アクティブ化され、センスノードBとデジット線BL−CTとの間の電圧を伝達するために、信号RESTOREによってスイッチ235がアクティブ化される。センスノードAに基準信号VBLREFの電圧VREFを提供するために、基準スイッチ233がその後アクティブ化される。基準信号VBLREFの電圧VREFは、一定(例えば、固定)電圧である。結果として、センスノードAの電圧は、第一または第二の電圧から、基準信号VBLREFによる電圧VREFに変化する(図4Cおよび図4E)。センスノードBは、アクティブ化されたスイッチ235を通じてデジット線BL−CTに結合され、これは、第三または第四の電圧から電圧VREADにセンスノードBの電圧を変化させ、これは、デジット線BL−CTの電圧である(図4Cおよび図4E)。
デジット線BL−CBをグランドに駆動するために、時間T4でドライバ回路239が有効化され、セル底部215もまたグランドに変化させる。デジット線BL−CBの電圧は、第一の電圧(論理1に対応するキャパシタ205の最初の電荷状態による)からグランド(図4B)に、または、第二の電圧(論理0に対応するキャパシタ205の最初の電荷状態による)からグランド(図4D)に変化し得る。電圧における第一の電圧からグランドへの変化は、第二の電圧からグランドへの電圧における変化よりも大きい。
デジット線BL−CBをグランドに駆動することによるセル底部215の電圧における変化はキャパシタ205にわたって結合され、セル上部230の電圧における変化を引き起こす。アクティブ化された選択コンポーネント224、デジット線BL−CTおよびアクティブ化されたスイッチ235を通じて、センスノードBがセル上部230に結合されると、電圧における変化は、同様に、センスノードBの電圧を変化させる。センスノードBの電圧における変化は、デジット線BL−CBの電圧における変化に依存するだろう。例えば、デジット線BL−CBの電圧における変化が第一の電圧からグランドへのものである場合、センスノードBの電圧は、VREAD電圧から、センスノードAに印加されるVBLREF信号の電圧VREF未満である第五の電圧(図4C)に変化する。デジット線BL−CBの電圧における変化が第二の電圧からグランドへのものである場合、センスノードBの電圧は、VREAD電圧から、センスノードAに印加されるVBLREF信号の電圧VREFより大きい第六の電圧(SENSEB−0)に変化する。
時間T5の前に、センスノードBをデジット線BL−CTから絶縁するために、信号RESTOREによってスイッチ235が非アクティブ化される。時間T5において、センスノードAをデジット線BL−CBに結合するために、センスコンポーネント125がアクティブ化され、絶縁スイッチ231がアクティブ化される。また、時間T5において、またはその直後に、センスノードBをデジット線BL−CTに結合するためにスイッチ235がアクティブ化される。センスコンポーネント125がアクティブ化されると、センスノードを相補的電圧(例えば、VREADおよびグランド)に駆動するために、センスノードAとセンスノードBとの間の電圧差が検出され、増幅される。デジット線BL−CBおよびBL−CTは、アクティブ化された絶縁スイッチ231およびアクティブ化されたスイッチ235を通じて、センスコンポーネント125によって相補的電圧に同様に駆動される。例えば、センスノードBの電圧がセンスノードAの電圧VREF未満である(例えば、センスノードBが第五の電圧(図4CにおけるSENSEB−1)である)場合、アクティブ化されたセンスコンポーネント125は、センスノードB(およびデジット線BL−CT)をグランドに、センスノードA(およびデジット線BL−CB)を電圧VREADに駆動する。対照的に、センスノードBの電圧がセンスノードAのVREF電圧より大きい(例えば、センスノードBが第六の電圧(図4EにおけるSENSEB−0)である)場合、アクティブ化されたセンスコンポーネント125は、センスノードB(およびデジット線BL−CT)を電圧VREADに、センスノードA(およびデジット線BL−CB)を図4Eにおけるグランドに駆動する。センスノードAおよびセンスノードBの電圧は、相補的電圧に駆動された後に、センスコンポーネント125によってラッチされる。センスノードAおよびBのラッチされた電圧は、対応する論理値を表し、これは、例えば、出力135(図1)として、列デコーダ130を通じて出力され得る。
また、時間T5において、または時間T5の後、センスノードAをデジット線BL−C
Bに結合するために、絶縁スイッチ231がアクティブ化される(図4A)。センスノードBは、アクティブ化されたスイッチ235を通じてデジット線BL−CTに結合される。結果として、センスコンポーネント125よってセンスノードAおよびBを相補的電圧に駆動することは、また、デジット線BL−CBおよびBL−CTを対応する相補的電圧に駆動する。同様に、デジット線BL−CBおよびBL−CTを駆動することは、また、セル底部215およびセル上部230を相補的電圧に駆動する。
例えば、センスノードBをグランドに、センスノードAを電圧VREAD(図4C)に駆動することは、また、デジット線BL−CTおよびセル上部230をグランドに駆動し、かつ、デジット線BL−CBおよびセル底部215を電圧VREAD(図4B)に駆動する。センスノードBを電圧VREADに、センスノードAをグランドに駆動する(図4E)ことは、また、デジット線BL−CTおよびセル上部230を電圧VREADに駆動し、かつ、デジット線BL−CBおよびセル底部215をグランド(図4D)に駆動する。セル上部230およびセル底部215に相補的電圧を駆動することは、キャパシタ205の元の電荷状態を修復することによって、読み出し動作がキャパシタ205の元の電荷状態を変化させないか、または劣化させないことを確実にする。
時間T6でセンスコンポーネント125が非アクティブ化され、センスノードAおよびBならびにデジット線BL−CBおよびBL−CTの電圧がグランドに駆動される。時間T7に、選択コンポーネント220および224を非アクティブ化するために、ワード線WL−CBおよびWL−CTが非アクティブ化され(図4A)、キャパシタ205をデジット線BL−CBおよびBL−CTから其々全て絶縁し、読み出し動作が完了する。
図5A−図5Eは、本開示の一実施形態による、読み出し動作中の様々な信号のタイミング図である。図5A−図5Eは、図1および図2のメモリアレイ100および例示的回路200を参照して記述されるだろう。以下により詳細に記述されるように、図5A−図5Eの読み出し動作は、メモリセルによって格納された論理値を判定するために自己供給される基準電圧に依存する。それゆえ、図5A−図5Eの例示的読み出し動作においては、この目的のために個別の基準電圧は必要とされず、これは、回路の複雑性を減らし得、回路密度を向上し得る。例えば、自己供給された(例えば、ローカルに作成された)基準電圧が、センスコンポーネントから二つのトランジスタの排除を可能にし得、基準増幅器および基準分散ネットワークの排除を可能にし得る。さらに、強誘電体メモリセルは一定の基準電圧に比べて、センスウインドウに影響を及ぼす温度変動の周期、インプリントおよび感度に左右されるため、自己供給された基準電圧は有利であり得る。
時間T0の前に、アクティブな絶縁スイッチ231を通じて、センスコンポーネント125のセンスノードAにデジット線BL−CBが結合される。デジット線BL−CBおよびセンスノードAならびにデジット線BL−CTおよびセンスノードBは、全て、グランドといった基準電圧にプレチャージされる。時間T0において、セル底部215にデジット線BL−CBを結合するために、選択コンポーネント220をアクティブ化するために、ワード線WL−CBがアクティブ化される。時間T1において、デジット線BL−CT上に電圧VREADを駆動するために、ドライバ回路237が有効化される。時間T2において、セル上部230にデジット線BL−CTを結合するために、選択コンポーネント224をアクティブ化するために、ワード線WL−CTがアクティブ化される(図5A)。
セル底部215に電圧変化を引き起こすために、アクティブ化された選択コンポーネント224を通じて、電圧VREADがセル上部230に印加される。前に論じられたように、セル底部215に引き起こされる電圧の変化の大きさは、キャパシタ205によって最初に格納された電荷状態に少なくとも部分的に基づく。セル底部215における電圧変
化は、また、デジット線BL−CBおよびセンスノードAの電圧も同様に変化させる。最初の電荷状態が論理1を表す場合、センスノードA(図5CにおけるSENSEA−1)およびデジット線BL−CB(図5BにおけるBL−CB−1)は、グランドから第一の電圧に変化する。最初の電荷状態が論理0を表す場合、センスノードA(図5EにおけるSENSEA−0)およびデジット線BL−CB(図5DにおけるBL−CB−0)は、グランドから第二の電圧に変化する。図5B−図5Eに図示される実施例においては、第一の電圧は第二の電圧より大きい。
スイッチ235は時間T2で未だアクティブではない。それゆえ、デジット線BL−CTおよびセンスノードBは、アクティブなスイッチ235を通じて結合されていない。それにもかかわらず、時間T2でデジット線BL−CTおよびアクティブ化された選択コンポーネント224を通じて、セル上部230に電圧VREADを結合することは、また、センスノードBの電圧を変化させる。最初の電荷状態が論理1を表す場合、センスノードB(図5CにおけるSENSEB−1)は、グランドから第三の電圧に変化する。最初の電荷状態が論理0を表す場合、センスノードB(図5EにおけるSENSEB−0)は、グランドから第四の電圧に変化する。図5に図示される実施例においては、第三の電圧は第四の電圧より大きく、第三および第四の電圧の双方は、第二の電圧未満である。センスノードA、センスノードBおよびデジット線BL−CBの電圧は、時間T2とT3との間に発達する。
時間T3において、センスノードAが図5Aにおけるデジット線BL−CBから絶縁されるように絶縁スイッチ231が非アクティブ化され、センスノードBとデジット線BL−CTとの間で電圧を伝達するために、スイッチ235が信号RESTOREによってアクティブ化される。結果として、センスノードAの電圧は、デジット線BL−CBの電圧を変化させることなく変化し得、その逆もまた成り立つ。センスノードBをデジット線BL−CTに結合するためにスイッチ235がアクティブ化されると、センスノードBの電圧は、第三または第四の電圧から電圧VREADに変化し、これは、デジット線BL−CTの電圧である(図5Cおよび図5E)。絶縁スイッチ231が非アクティブ化されると、デジット線BL−CBは第一または第二の電圧のままであり、センスノードAは、第一または第二の電圧に関して増加する(図5Cおよび図5E)。
デジット線BL−CBをグランドに駆動するために、時間T4でドライバ回路239が有効化され、これは、セル底部215もグランドに変化させる。デジット線BL−CBの電圧は、第一の電圧(論理1に対応するキャパシタ205の最初の電荷状態に起因する)からグランド(図5B)に変化し得、または、第二の電圧(論理0に対応するキャパシタ205の最初の電荷状態に起因する)からグランド(図5D)に変化し得る。第一の電圧からグランドへの電圧の変化は、第二の電圧からグランドへの電圧の変化よりも大きい。デジット線BL−CBの電圧における変化は、センスノードAの電圧もまた変化させる。センスノードAが第一の電圧と比較して増加した電圧にある場合、センスノードAの電圧(図5CにおけるSENSEA−1)は、デジット線BL−CBがグランドに駆動されることによって、第五の電圧に変化する。センスノードAが第二の電圧と比較して増加した電圧にある場合、センスノードAの電圧(図5EにおけるSENSEA−0)は、デジット線BL−CBがグランドに駆動されることによって第六の電圧に変化する。
デジット線BL−CBがグランドに駆動されることによる、セル底部215の電圧における変化は、セル上部230の電圧の変化を引き起こすために、キャパシタ205にわたって結合される。アクティブ化された選択コンポーネント224、デジット線BL−CTおよびアクティブ化されたスイッチ235を通じてセンスノードBがセル上部230に結合されると、電圧における変化は、同様にセンスノードBの電圧も変化させる。センスノードBの電圧における変化は、デジット線BL−CBの電圧における変化に依存するだろ
う。例えば、デジット線BL−CBの電圧における変化が第一の電圧からグランドへのものである場合、センスノードBの電圧は、VREAD電圧から第七の電圧(図5CにおけるSENSEB−1)へ変化し、第七の電圧は、センスノードAの第五の電圧(図5CにおけるSENSEA−1)未満である。デジット線BL−CBの電圧における変化が第二の電圧からグランドへのものである場合、センスノードBの電圧は、VREAD電圧から第八の電圧(図5EにおけるSENSEB−0)へ変化し、第八の電圧は、センスノードAの第六の電圧(図5EにおけるSENSEA−0)より大きい。
時間T5の前に、デジット線BL−CTからセンスノードBを絶縁するために、信号RESTOREによってスイッチ235が非アクティブ化される。時間T5において、センスコンポーネント125がアクティブ化され、センスノードを相補的電圧(例えば、VREADおよびグランド)に駆動するために、センスノードAとセンスノードBとの間の電圧差が検出され、増幅される。センスノードAにおける電圧は、センスノードBにおける電圧が比較される基準電圧を表す。センスノードAにおける基準電圧は自己供給され、セル底部215の電圧に基づき、時間T1でデジット線BL−CTを経由してセル上部230に電圧VREADを駆動した結果として生じたものである。センスノードBの電圧は、センスノードAの電圧未満である(例えば、センスノードBが第七の電圧(図5CにおけるSENSEB−1)で、センスノードAが第五の電圧(図5CにおけるSENSEA−1)である)場合、アクティブ化されたセンスコンポーネント125がセンスノードBをグランドに、センスノードAを電圧VREADに駆動する。対照的に、センスノードBの電圧がセンスノードAの電圧より大きい(例えば、センスノードBが第八の電圧(図5EにおけるSENSEB−0)で、センスノードAが第六の電圧(図5EにおけるSENSEA−0)である)場合、アクティブ化されたセンスコンポーネント125は、センスノードBを電圧VREADに、センスノードAをグランドに駆動する。センスノードAおよびセンスノードBの電圧は、相補的電圧に駆動された後でセンスコンポーネント125によってラッチされる。センスノードAおよびBのラッチされた電圧は、対応する論理値を表し、これらは、例えば、出力135(図1)として列デコーダ130を通じて出力され得る。
また、時間T5において、または時間T5の後、センスノードAをデジット線BL−CBに結合するために絶縁スイッチ231がアクティブ化され、センスノードBをデジット線BL−CTに結合するためにスイッチ235がアクティブ化される(図5A)。センスノードBは、アクティブ化されたスイッチ235を通じてデジット線BL−CTに結合される。その結果、センスコンポーネント125によってセンスノードAおよびBを相補的電圧に駆動することは、また、デジット線BL−CBおよびBL−CTを対応する相補的電圧に駆動する。同様に、デジット線BL−CBおよびBL−CTを駆動することは、また、セル底部215およびセル上部230を相補的電圧に駆動する。
例えば、センスノードBをグランドにセンスノードAを電圧VREADに駆動すること(図5C)は、また、デジット線BL−CTおよびセル上部230をグランドに駆動し、デジット線BL−CBおよびセル底部215を電圧VREADに駆動する(図5B)。センスノードBを電圧VREADにセンスノードAをグランドに駆動すること(図5E)は、また、デジット線BL−CTおよびセル上部230を電圧VREADに駆動し、デジット線BL−CBおよびセル底部215をグランドに駆動する(図5D)。セル上部230およびセル底部215に相補的電圧を駆動することは、キャパシタ205の元の電荷状態を修復することによって読み出し動作がキャパシタ205の元の電荷状態を変化させることがなく、劣化させることがないことを確実にする。
センスコンポーネント125は、時間T6において非アクティブ化され、センスノードAおよびBと、デジット線BL−CBおよびBL−CTの電圧はグランドに駆動される。
選択コンポーネント220および224を非アクティブ化するために、時間T7においてワード線WL−CBおよびWL−CTが非アクティブ化され(図5A)、デジット線BL−CBおよびBL−CTからキャパシタ205を全て其々絶縁して、読み出し動作を完了する。
読み出し動作の実施形態が開示されたが、例えば、図4A−図4Eおよび図5A−図5Eを参照して記述された読み出し動作は、強誘電体メモリセルを読み出すためのセンスウインドウを増加させ得、読み出し動作中にキャパシタプレートをより高い電圧に上昇させるためのさらなる電力消費を回避する。対照的に、キャパシタプレートを最初に(例えば、VREAD電圧に)駆動する上で使用される電力は、センスウインドウを増加させるために再利用され得る。
図6は、本開示の一実施形態による、書き込み動作中の様々な信号のタイミング図である。図6は、図1および図2のメモリアレイ100および例示的回路200を参照して記述されるだろう。図6の例示的書き込み動作においては、現在論理“1”を格納しているメモリセル105に論理“0”が書き込まれる。
時間TAの前に、選択コンポーネント220および224をアクティブ化するために、ワード線WL−CBおよびWL−CTが其々アクティブ化される。結果として、デジット線BL−CBはセル底部215に結合され、デジット線BL−CTは、キャパシタ205のセル上部230に結合される。デジット線BL−CBの電圧は、現在格納された論理“1”を表すVREAD電圧にあり、デジット線BL−CTの電圧は、基準電圧、例えばグランドにある。また、時間TAの前に、アクティブ化された絶縁スイッチ231を通じて、デジット線BL−CBはセンスコンポーネント125のセンスノードAに結合され、デジット線BL−CTは、アクティブ化されたスイッチ235を通じてセンスコンポーネント125のセンスノードBに結合される。したがって、時間TAの前に、センスノードAおよびBは、其々、セル底部215およびセル上部230に結合される。
時間TAにおいて、センスノードAおよびBに結合された書き込み増幅器(図示せず)は、センスノードAをVREAD電圧からグランドに駆動し、センスノードBをグランドからVREAD電圧に駆動する。センスノードAおよびBの電圧は、センスコンポーネント125によってラッチされる。書き込み増幅器によってセンスノードAおよびBが駆動されると、デジット線BL−CBの電圧はグランドに変化し、デジット線BL−CTの電圧はVREAD電圧に変化する。センスノードAおよびデジット線BL−CBのグランド電圧は、キャパシタ205に書き込まれた論理“0”を表す。デジット線BL−CBのグランド電圧と、デジット線BL−CTのVREAD電圧は、アクティブ化された選択コンポーネント220および224を通じて、セル底部215およびセル上部230に全て其々印加される。結果として、論理“1”を表すものから論理“0”を表すものに格納された状態のデータを変化させるために、キャパシタ205は、逆の分極で分極するようになる。
時間TBまでに、センスノードAおよびBの電圧は、センスコンポーネント125によってラッチされ、センスノードAおよびBの電圧は、書き込み増幅器によっては、もはや駆動されない。時間TBにおいて、センスコンポーネント125は非アクティブ化され、センスノードB(およびデジット線BL−CT)の電圧は、グランドに変化する。セル上部230およびセル底部215の双方が同一の電圧であると、時間TCにおいて、ワード線WL−CBおよびWL−CTが非アクティブ化され、書き込み動作が完了する。
図7は、本開示の一実施形態による、書き込み動作中の様々な信号のタイミング図である。図7は、図1および図2のメモリアレイ100および例示的回路200を参照して記
述されるだろう。図7の例示的書き込み動作においては、現在論理“0”を格納するメモリセル105に、論理“1”が書き込まれる。
時間TAの前に、選択コンポーネント220および224を其々アクティブ化するために、ワード線WL−CBおよびWL−CTがアクティブ化される。結果として、デジット線BL−CBがセル底部215に結合され、デジット線BL−CTがキャパシタ205のセル上部230に結合される。デジット線BL−CBの電圧は、現在格納された論理“0”を表すグランドにあり、デジット線BL−CTの電圧は、VREAD電圧にある。また、時間TAの前に、アクティブ化された絶縁スイッチ231を通じて、デジット線BL−CBはセンスコンポーネント125のセンスノードAに結合され、デジット線BL−CTは、アクティブ化されたスイッチ235を通じてセンスコンポーネント125のセンスノードBに結合される。したがって、時間TAの前に、センスノードAおよびBは、其々、セル底部215およびセル上部230に結合される。
時間TAにおいて、センスノードAおよびBに結合された書き込み増幅器(図示せず)は、センスノードAをグランドからVREAD電圧に駆動し、センスノードBをVREAD電圧からグランドに駆動する。センスノードAおよびBの電圧は、センスコンポーネント125によってラッチされる。書き込み増幅器によってセンスノードAおよびBが駆動されると、デジット線BL−CBの電圧はVREAD電圧に変化し、デジット線BL−CTの電圧はグランドに変化する。センスノードAおよびデジット線BL−CBのVREAD電圧は、キャパシタ205に書き込まれた論理“1”を表す。デジット線BL−CBのVREAD電圧と、デジット線BL−CTのグランド電圧は、アクティブ化された選択コンポーネント220および224を通じて、セル底部215およびセル上部230に全て其々印加される。結果として、論理“0”を表すものから論理“1”を表すものに格納された状態を変化させるために、キャパシタ205は、逆の分極で分極するようになる。
時間TBまでに、センスノードAおよびBの電圧は、センスコンポーネント125によってラッチされ、センスノードAおよびBの電圧は、書き込み増幅器によっては、もはや駆動されない。時間TBにおいて、センスコンポーネント125は非アクティブ化され、センスノードB(およびデジット線BL−CT)の電圧はグランドに変化する。セル上部230およびセル底部215の双方が同一の電圧であると、時間TCにおいて、ワード線WL−CBおよびWL−CTが非アクティブ化され、書き込み動作が完了する。
幾つかの実施形態においては、図6および図7を参照して記述された書き込み動作は、例えば、図4A−図4Eおよび図5A−図5Eを参照して記述された読み出し動作といった、読み出し動作と組み合わせて実施されてもよい。例えば、図4A−図4Eおよび図5A−図5Eの例示的読み出し動作を参照すると、メモリセル105が論理1を格納する(例えば、BL−CBおよびセル底部215が電圧VREADであって、BL−CTおよびセル上部230がグランドにある)とき、センスノードAおよびB、デジット線BL−CBおよびBL−CT、ならびにセル底部215およびセル上部230をセンスコンポーネント125が相補的電圧に駆動することに続いて(例えば、図4A−図4Eおよび図5A−図5Eの時間T5に続いて)、図6の例示的書き込み動作が実施されてもよい。別の実施例においては、図4A−図4Eおよび図5A−図5Eの例示的読み出し動作を参照すると、メモリセル105が論理0を格納する(例えば、BL−CBおよびセル底部215がグランドであって、BL−CTおよびセル上部230がVREAD電圧にある)とき、センスノードAおよびB、デジット線BL−CBおよびBL−CT、ならびにセル底部215およびセル上部230をセンスコンポーネント125が相補的電圧に駆動することに続いて(例えば、時間T5に続いて)、図7の例示的書き込み動作が実施されてもよい。図6および図7の例示的書き込み動作は、他の実施形態においては、異なる動作と組み合わせて実施されてもよい。
図4および図5を参照して前述されたように、論理“1”は、基準電圧(例えば、基準信号VBLREFのVREF電圧、自己供給された基準電圧など)よりも大きいセル底部における電圧によって表され、論理“0”は、基準電圧未満のセル底部における電圧によって表される。これもまた、図6および図7の例示的書き込み動作を参照して前述されたように、論理“1”は、セル底部にVREAD電圧を、セル上部にグランドを印加することによって書き込まれ、論理“0”は、セル底部にグランドを、セル上部にVREAD電圧を印加することによって書き込まれる。幾つかの実施例においては、基準電圧に関連する電圧に対応する論理値、およびその論理値を書き込むための正味の正/負の電圧の印加は、本開示の範囲から逸脱することなく、入れ替えられてもよい。
図4−図7の読み出し動作および書き込み動作を参照して記述された例示的な電圧および信号のタイミングは、例示的な目的で提供されるものであって、本開示の範囲を限定することを意図するものではない。電圧および関連する信号のタイミングは、本開示の範囲から逸脱することなく改変されてもよいことが理解されるだろう。
図8は、本開示による、メモリセル105の例示的一実施形態を含むメモリアレイ100の一部を図示する。
メモリアレイ100の図示された領域は、デジット線BL−CTおよびBL−CBを含む。デジット線BL−CTおよびBL−CBは、相互について垂直方向にずらされ、センスコンポーネント125によって接続され得る。一対の隣接するメモリセル105が図示され、その隣接するメモリセルは、メモリアレイ内で相互に共通の列にある(例えば、デジット線BL−CTおよびBL−CBによって表される共通の列に沿っている)。絶縁体材料48がメモリセル105の様々なコンポーネントを包囲するように図示される。幾つかの実施形態においては、メモリセル105は、メモリアレイの列に沿った実質的に同一のメモリセルを指すことがあり、用語“実質的に同一(substantially identical)”は、メモリセルが製造および計量の合理的な許容誤差の範囲内で相互に同一であることを意味する。
デジット線BL−CBは、ベース15の上にあり、ベース15によって支持されるように図示される。このようなベースは、半導体材料であり得る。メモリセル105は、選択コンポーネント220および224ならびに強誘電体キャパシタ205を各々含む。キャパシタ205は、メモリセル105の選択コンポーネント220および224の垂直方向の間にある。キャパシタ205は、第一のプレートであるセル上部230と、第二のプレートであるル底部215と、セル上部230およびセル底部215の間に配置された強誘電体材料232と、を含む。セル上部230が容器形状であるように図示され、セル底部215がこのような容器形状内に伸びるように図示されているが、他の実施形態においては、セル上部および底部は、他の構造を有してもよい。例えば、セル上部および底部は、平面状構造を有してもよい。ピラー212は、デジット線BL−CTからキャパシタ205のセル上部230に伸び、ピラー202は、デジット線BL−CBからキャパシタ205のセル底部215に伸びる。
選択コンポーネント224は、キャパシタ205のセル上部230に伸びるソース/ドレイン領域214を有し、デジット線BL−CTに伸びるソース/ドレイン領域216を有する。選択コンポーネント224は、また、ソース/ドレイン領域214とソース/ドレイン領域216との間にチャネル領域218も有する。ゲート211は、チャネル領域218に沿い、ゲート誘電体材料213によってチャネル領域からずらされる。ゲート211は、ワード線WL−CT内に含まれ得る。
選択コンポーネント220は、キャパシタ205のセル底部215に伸びるソース/ドレイン領域204を有し、デジット線BL−CBに伸びるソース/ドレイン領域206を有する。選択コンポーネント220は、また、ソース/ドレイン領域204とソース/ドレイン領域206との間にチャネル領域208も有する。ゲート201は、チャネル領域208に沿い、ゲート誘電体材料203によってチャネル領域からずらされる。ゲート201は、ワード線WL−CB内に含まれ得る。
図8の実施形態に図示されたように、メモリセル105の選択コンポーネント220および224ならびにキャパシタ205は、垂直方向に積み重ねられ、これは、高レベルの一体化でメモリセル105をパッケージ化することを可能にし得る。
幾つかの実施形態においては、デジット線BL−CTがベース15の上にあり、デジット線BL−CBがデジット線BL−CTの上にあるように、デジット線BL−CTおよびBL−CBの相対的な方向付けが逆にされる。このような他の実施形態においては、図示されたキャパシタ205は、図8の図示された構造に対して反転され、したがって、容器形状のセル上部230は、下方ではなく上方に開いているだろう。
図9は、本開示の様々な実施形態による、強誘電体メモリをサポートするメモリアレイ100を含むメモリ900の一部のブロック図を図示する。メモリアレイ100は、電子メモリ装置と呼ばれてもよく、メモリコントローラ140およびメモリセル105を含み、これらは、図1、図2または図4−図7を参照して記述されたメモリコントローラ140およびメモリセル105の実施例であってもよい。
メモリコントローラ140は、バイアシングコンポーネント905およびタイミングコンポーネント910を含み得、図1に記述されるようにメモリアレイ100を動作させ得る。メモリコントローラ140は、ワード線110、デジット線115およびセンスコンポーネント125と電子通信し得、これらは、図1、図2または図4−図7を参照して記述されたワード線110、デジット線115およびセンスコンポーネント125の実施例であってもよい。メモリコントローラ140は、基準スイッチ233、絶縁スイッチ231およびスイッチ235とも電子通信し得、これらは其々、図2または図4−図7を参照して記述された基準スイッチ233、絶縁スイッチ231およびスイッチ235の実施例であってもよい。幾つかの実施形態において、例えば、一定の基準電圧を用いる実施形態においては、メモリコントローラ140は、基準スイッチ233を通じて、センスコンポーネント125に基準信号VBLREFを提供し得る。メモリアレイ100のコンポーネントは、相互に電子通信し得、図1−図7を参照して記述された機能を実施し得る。
メモリコントローラ140は、ワード線およびデジット線に電圧を印加することによって、ワード線110またはデジット線115をアクティブ化するように構成され得る。例えば、バイアシングコンポーネント905は、上述されたように、メモリセル105を読み出すか、または書き込むために、メモリセル105を動作させるための電圧を印加するように構成され得る。幾つかの場合には、メモリコントローラ140は、図1を参照して記述されたように、行デコーダ、列デコーダまたはその双方を含み得る。これで、メモリコントローラ140が一つ以上のメモリセル105にアクセスすることを可能にし得る。バイアシングコンポーネント905は、また、幾つかの実施形態においては、センスコンポーネント125に基準信号VBLREFを提供し得る。さらに、バイアシングコンポーネント905は、センスコンポーネント125の動作のために電位を提供し得る。バイアシングコンポーネント905は、例えば、アクティブ化されたときに読み出し電圧VREADを提供するように構成されたドライバ回路237、および/または、アクティブ化されたときにデジット線BL−CBをグランドに駆動するように構成されたドライバ回路239を含み得る。
メモリコントローラ140は、強誘電体メモリセル105に対するアクセス動作要求を受信するのに基づいて、絶縁スイッチ231をアクティブ化し得る。すなわち、メモリコントローラ140は、センスコンポーネント125にメモリセル105を電気的に接続し得る。メモリコントローラ140は、センスコンポーネント125をアクティブ化するのに基づいて、強誘電体メモリセル105の論理状態をさらに判定し得、強誘電体メモリセル105に強誘電体メモリセル105の論理状態をライトバックし得る。
幾つかの場合には、メモリコントローラ140は、タイミングコンポーネント910を用いて、その動作を実施し得る。例えば、タイミングコンポーネント910は、本明細書に論じられるように、読み出しおよび書き込みなどのメモリ機能を実施するためのスイッチングおよび電圧印加のためのタイミングを含む、様々なワード線選択またはセル上部バイアスのタイミングを制御し得る。幾つかの場合には、タイミングコンポーネント910は、バイアシングコンポーネント905の動作を制御し得る。例えば、メモリコントローラ140は、メモリセル、デジット線BL−CB、センスコンポーネント125のセンスノードAの電圧を変化させるために、デジット線BL−CTに読み出し電圧VREADを提供するために、バイアシングコンポーネント905を制御し得る。メモリコントローラ140は、その後、メモリセル、デジット線BL−CTおよびセンスノードBの電圧を変化させるために、デジット線BL−CBをグランドに駆動するために、バイアシングコンポーネント905を制御し得る。デジット線BL−CBをグランドに駆動するのに続いて、メモリコントローラ140は、自己供給された基準電圧である、センスノードAの電圧と、センスノードBの電圧を比較するために、センスコンポーネント125を制御し得る。
センスコンポーネント125は、(デジット線115を通じた)メモリセル105からの信号を基準電圧と比較し得る。前に論じられたように、幾つかの実施形態においては、基準電圧は基準信号VBLREFの電圧であり得る。基準信号VBLREFは、図2、図4および図5を参照して前述されたように、二つのセンス電圧の間の値を有する電圧を有し得る。他の実施形態においては、基準電圧は、例えば、メモリセル105をバイアスした結果として生じた、センスノードの電圧を基準電圧として用いて、自己供給され得る。電圧差を判定して増幅すると、センスコンポーネント125は、その状態をラッチし得、その状態は、メモリアレイ100が一部である電子デバイスの動作に従って用いられ得る。
図10は、本開示の様々な実施形態による、強誘電体メモリをサポートするシステム1000を図示する。システム1000はデバイス1005を含み、これは、様々なコンポーネントを接続、または物理的に支持するためのプリント回路基板であってもよいし、このプリント回路基板を含んでもよい。デバイス1005は、コンピュータ、ノートブックコンピュータ、ラップトップ、タブレットコンピュータ、携帯電話などであってもよい。デバイス1005はメモリアレイ100を含み、これは、図1および図9を参照して記述されたようなメモリアレイ100の一実施例であってもよい。メモリアレイ100は、メモリコントローラ140とメモリセル105を含み得、これらは、図1及び図9を参照して記述されたメモリコントローラ140と、図1、図2、及び図4−図9を参照して記述されたメモリセル105の実施例であってもよい。デバイス1005は、また、プロセッサ1010、BIOSコンポーネント1015、周辺コンポーネント1020および入力/出力制御コンポーネント1025を含み得る。デバイス1005のコンポーネントは、バス1030を通じて相互に電子通信し得る。
プロセッサ1010は、メモリコントローラ140を通じて、メモリアレイ100を動作させるように構成され得る。幾つかの場合には、プロセッサ1010は、図1および図
9を参照して記述されたメモリコントローラ140の機能を実施し得る。他の場合には、メモリコントローラ140は、プロセッサ1010に一体化され得る。プロセッサ1010は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、ディスクリートゲートもしくはトランジスタ論理回路、ディスクリートハードウェアコンポーネントであってもよく、これらの種類のコンポーネントの組み合わせであってもよい。プロセッサ1010は、本明細書に記述されたように、様々な機能を実施し、メモリアレイ100を動作させ得る。プロセッサ1010は、例えば、様々な機能またはタスクをデバイス1005に実施させるために、メモリアレイ100に格納されたコンピュータ可読命令を実行するように構成され得る。
BIOSコンポーネント1015は、ファームウェアとして動作するベーシック入力/出力システム(BIOS)を含むソフトウェアコンポーネントであってもよく、これは、システム1000の様々なハードウェアコンポーネントを初期化し、実行し得る。BIOSコンポーネント1015は、また、プロセッサ1010と、様々なコンポーネント、例えば、周辺コンポーネント1020、入力/出力制御コンポーネント1025などとの間でのデータの流れを管理してもよい。BIOSコンポーネント1015は、リードオンリーメモリ(ROM)、フラッシュメモリ、または任意の他の不揮発性メモリに格納されたプログラムまたはソフトウェアを含み得る。
周辺コンポーネント1020は、入力もしくは出力デバイス、または、このようなデバイスに対するインタフェースの如何なるものであってもよく、これはデバイス1005に統合される。実施例は、ディスクコントローラ、サウンドコントローラ、グラフィクスコントローラ、イーサネットコントローラ、モデム、ユニバーサルシリアルバス(USB)コントローラ、シリアルもしくはパラレルポート、または、周辺コンポーネント相互接続(PCI)スロットやアクセラレーテッドグラフィクスポート(AGP)スロットなどの周辺カードスロットを含み得る。
入力/出力制御コンポーネント1025は、プロセッサ1010と、周辺コンポーネント1020、入力デバイス1035、または出力デバイス1040との間のデータ通信を管理し得る。入力/出力制御コンポーネント1025は、また、デバイス1005に統合されていない周辺機器も管理し得る。幾つかの場合には、入力/出力制御コンポーネント1025は、外部周辺機器に対する物理的接続またはポートを表し得る。
入力1035は、デバイス1005に対して外部のデバイスまたは信号であって、デバイス1005またはそのコンポーネントに対する入力を提供するものを表し得る。これは、ユーザインタフェースまたは他のデバイスとのインタフェース、もしくは他のデバイス間のインタフェースを含み得る。幾つかの場合には、入力1035は、周辺コンポーネント1020を介してデバイス1005とインタフェース接続する周辺機器であってもよく、または入力/出力制御コンポーネント1025によって管理されてもよい。
出力1040は、デバイス1005に対して外部のデバイスまたは信号であって、デバイス1005またはそのコンポーネントのうちの任意のものからの出力を受信するように構成されたものを表し得る。出力1040の実施例は、ディスプレイ、オーディオスピーカー、プリンティングデバイス、別のプロセッサまたはプリント回路基板などを含み得る。幾つかの場合には、出力1040は、周辺コンポーネント1020を介してデバイス1005とインタフェース接続する周辺機器であってもよく、または入力/出力制御コンポーネント1025によって管理されてもよい。
メモリコントローラ140、デバイス1005およびメモリアレイ100のコンポーネ
ントは、その機能を実行するように設計された回路で構成され得る。これは、本明細書に記述された機能を実行するように構成された様々な回路素子、例えば、導線、トランジスタ、キャパシタ、インダクタ、抵抗器、増幅器、または他のアクティブもしくは非アクティブな素子、を含み得る。
本開示の具体的実施形態が例示の目的で本明細書に記述されてきたが、本開示の趣旨および範囲から逸脱することなく、様々な改変が行われてもよいことは、前述から理解されるであろう。したがって、本開示は、添付された特許請求の範囲によって以外には限定されることはない。

Claims (30)

  1. キャパシタの第二のセルプレート、第二のデジット線および第二のセンスノードの電圧を変化させるために、前記キャパシタの第一のセルプレートの電圧を増加させることと、
    前記第一のセルプレート、第一のデジット線および第一のセンスノードの前記電圧を変化させるために、前記第二のセルプレートおよび前記第二のデジット線の前記電圧を減少させることと、
    前記第二のセンスノードの前記電圧よりも大きい前記第一のセンスノードの前記電圧に応じて、前記第一のセンスノードを第一の電圧に駆動し、前記第二のセンスノードを第二の電圧に駆動することと、
    前記第二のセンスノードの前記電圧未満の前記第一のセンスノードの前記電圧に応じて、前記第一のセンスノードを前記第二の電圧に駆動し、前記第二のセンスノードを前記第一の電圧に駆動することと、
    を含む、方法。
  2. 前記キャパシタが第一の分極を有するとき、前記第一のセンスノードの前記電圧は、前記第二のセンスノードの前記電圧よりも大きく、前記キャパシタが前記第一の分極とは異なる第二の分極を有するとき、前記第一のセンスノードの前記電圧は、前記第二のセンスノードの前記電圧未満である、請求項1に記載の方法。
  3. 前記第二のセンスノードに、基準電圧として一定電圧を提供することをさらに含む、請求項1に記載の方法。
  4. 前記第二のセルプレートおよび前記第二のデジット線の前記電圧を減少させることは、前記第二のセルプレートの前記電圧を前記一定電圧からグランドに減少させることを含む、請求項3に記載の方法。
  5. 前記キャパシタの第一の分極に対して、前記第一のセルプレートの前記電圧を増加させることに応じて、前記キャパシタの前記第二のセルプレートは、最初の電圧から第一の増加した電圧に変化し、前記キャパシタの第二の分極に対して前記第一のセルプレートの前記電圧を増加させることに応じて、前記キャパシタの前記第二のセルプレートは、前記最初の電圧から第二の増加した電圧に変化し、前記第一および第二の電圧は異なる、請求項1に記載の方法。
  6. 前記第二のセルプレートおよび前記第二のデジット線の前記電圧を減少させることは、前記第一または第二の増加した電圧から、前記最初の電圧に前記第二のセルプレートの前記電圧を減少させることを含む、請求項5に記載の方法。
  7. キャパシタの第二のプレートの電圧、前記キャパシタの前記第二のプレートに結合された第二のデジット線の電圧、およびセンスコンポーネントの第二のセンスノードの電圧を最初の電圧から増加した電圧に変化させるために、第一のデジット線および前記第一のデジット線に結合された前記キャパシタの第一のプレートに読み出し電圧を提供することであって、前記第二のセンスノードは前記第二のデジット線に結合される、ことと、
    前記第一のデジット線に前記センスコンポーネントの第一のセンスノードを結合することと、
    前記第二のデジット線から前記第二のセンスノードを分離することと、
    前記キャパシタの前記第一のプレートの電圧、前記第一のデジット線の電圧、および前記第一のセンスノードの電圧を変化させるために、前記増加した電圧から前記最初の電圧に、前記第二のデジット線および前記キャパシタの前記第二のプレートの前記電圧を駆動することと、
    前記第一のセンスノードの前記電圧を前記センスコンポーネントで基準電圧と比較することと、
    前記比較に基づいて、前記第一のセンスノード、第一のデジット線および前記キャパシタの第一のプレートを第一の電圧に駆動し、前記第二のセンスノード、第二のデジット線および前記キャパシタの第二のプレートを第二の電圧に駆動することであって、前記第二の電圧は、前記第一の電圧に対して相補的である、ことと、
    を含む、方法。
  8. 前記キャパシタの前記第一のプレートを前記第一のデジット線に結合し、前記キャパシタの前記第二のプレートを前記第二のデジット線に結合するために、選択コンポーネントをアクティブ化することをさらに含む、請求項7に記載の方法。
  9. 前記キャパシタの前記第一および第二のプレートの前記電圧を同一電圧に変化させることと、
    前記第一および第二のデジット線から前記キャパシタの前記第一のプレートおよび前記第二のプレートを其々絶縁するために、選択コンポーネントを非アクティブ化することと、をさらに含む請求項7に記載の方法。
  10. 前記最初の電圧がグランドである、請求項7に記載の方法。
  11. 前記第一のセンスノード、第一のデジット線および前記キャパシタの第一のプレートを第一の電圧に駆動し、前記第二のセンスノード、第二のデジット線および前記キャパシタの第二のプレートを第二の電圧に駆動することであって、前記第二の電圧は前記第一の電圧に対して相補的である、ことは、
    前記第一のセンスノードの前記電圧が前記基準電圧未満であることに応じて、前記第一のセンスノード、第一のデジット線および前記キャパシタの第一のプレートをグランドに駆動し、前記第二のセンスノード、第二のデジット線および前記キャパシタの第二のプレートを前記読み出し電圧に駆動することと、
    前記第一のセンスノードの前記電圧が前記基準電圧より大きいことに応じて、前記第一のセンスノード、第一のデジット線および前記キャパシタの第一のプレートを前記読み出し電圧に駆動し、前記第二のセンスノード、第二のデジット線および前記キャパシタの第二のプレートをグランドに駆動することと、
    を含む、請求項7に記載の方法。
  12. 前記基準電圧は一定電圧である、請求項7に記載の方法。
  13. 前記基準電圧は第一の増加した電圧に応じた第一の基準電圧であり、前記基準電圧は、第二の増加した電圧に応じた前記第一の基準電圧とは異なる第二の基準電圧である、請求項7に記載の方法。
  14. 第一のプレートから第二のプレートに、キャパシタにわたる電圧増加を結合し、センスコンポーネントに提供される前記第二のプレートにおいて結果として電圧が生じ、前記第二のプレートにおいて前記結果として生じる電圧は、前記キャパシタが第一の分極を有するのに応じて第一の電圧を有し、前記キャパシタが第二の分極を有するのに応じて第二の電圧を有する、ことと、
    前記第二のプレートから前記第一のプレートに、前記キャパシタにわたる電圧減少を結合することであって、前記第一のプレートで結果として生じる電圧は前記センスコンポーネントに提供されることと、
    前記第一のプレートで前記結果として生じる電圧と基準電圧との電圧差を前記センスコンポーネントでラッチすることと、
    を含む方法。
  15. 前記基準電圧は、前記第二のプレートで前記結果として生じる電圧である、請求項14に記載の方法。
  16. 前記基準電圧は一定電圧である、請求項14に記載の方法。
  17. 前記第一のプレートで前記結果として生じる電圧が前記基準電圧より大きいとき、第一の論理値を出力することと、
    前記第一のプレートで前記結果として生じる電圧が前記基準電圧未満であるとき、第二の論理値を出力することと、
    をさらに含む請求項14に記載の方法。
  18. 前記第二のプレートから前記第一のプレートに前記キャパシタにわたる電圧減少を結合することは、前記第二のプレートでの前記結果として生じる電圧からグランドに前記第二のプレートを駆動することを含む、請求項14に記載の方法。
  19. 第一のプレートから第二のプレートにキャパシタにわたる電圧増加を結合することは、前記第一のプレートをグランドから読み出し電圧に駆動することを含む、請求項14に記載の方法。
  20. 前記第一のプレートでの前記結果として生じる電圧と前記基準電圧との電圧差を前記センスコンポーネントでラッチすることは、
    前記第一のプレートでの前記結果として生じる電圧と前記基準電圧との間の前記電圧差を検出することと、
    前記第一のプレートでの前記結果として生じる電圧と前記基準電圧との前記電圧差を増幅することとを含む、請求項14に記載の方法。
  21. 前記ラッチされた電圧で、前記キャパシタの前記分極を修復することをさらに含む、請求項14に記載の方法。
  22. 強誘電体メモリセルの第二のプレートにおける電圧を変化させるために、前記強誘電体メモリセルの第一のプレートに読み出し電圧を提供することと、
    前記強誘電体メモリセルの前記第一のプレートにおける電圧を変化させるために、前記強誘電体メモリセルの前記第二のプレートをグランドに駆動することと、
    前記強誘電体メモリセルの前記第二のプレートをグランドに駆動した後、前記強誘電体メモリセルの前記第一のプレートにおける前記電圧をセンスノードにおいて基準電圧と比較することと、
    前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧未満であるのに応じて、前記センスノードに第一の電圧を提供することと、
    前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧より大きいのに応じて、前記センスノードに第二の電圧を提供することと、
    を含む、方法。
  23. 前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧未満であるのに応じて、前記第二の電圧を相補的センスノードに提供することと、
    前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧より大きいのに応じて、前記相補的センスノードに前記第一の電圧を提供することと、
    をさらに含む、請求項22に記載の方法。
  24. 前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧未満であるのに応じて、前記強誘電体メモリセルの前記第二のプレートに前記第一の電圧を提供することと、
    前記強誘電体メモリセルの前記第一のプレートにおける前記電圧が前記基準電圧より大きいのに応じて、前記強誘電体メモリセルの前記第二のプレートに前記第二の電圧を提供することと、
    をさらに含む、請求項22に記載の方法。
  25. 前記センスノードに基準信号を提供することをさらに含み、前記基準信号は前記基準電圧を有する、請求項22に記載の方法。
  26. 前記センスノードにおける前記基準電圧は、前記強誘電体メモリセルの前記第一のプレートに前記読み出し電圧を提供することの結果として生じる、前記強誘電体メモリセルの前記第二のプレートにおける前記電圧に基づく、請求項22に記載の方法。
  27. 前記センスノードにおける前記基準電圧は前記強誘電体メモリセルの第一の分極に応じた第一の基準電圧であり、前記センスノードにおける前記基準電圧は、前記強誘電体メモリセルの第二の分極に応じた第二の基準電圧である、請求項22に記載の方法。
  28. 第一のデジット線と、
    第二のデジット線と、
    強誘電体キャパシタ、第一の選択コンポーネントおよび第二の選択コンポーネントを含む強誘電体メモリセルであって、前記第一の選択コンポーネントは、前記第一のデジット線と前記強誘電体キャパシタの第一のプレートとの間に結合され、前記第二の選択コンポーネントは、前記第二のデジット線と前記強誘電体キャパシタの第二のプレートとの間に結合される、前記強誘電体メモリセルと、
    前記第一の選択コンポーネントのゲートに結合された第一のワード線と、
    前記第二の選択コンポーネントのゲートに結合された第二のワード線と、
    スイッチを通じて前記第一のデジット線に結合された第一のセンスノードを含み、絶縁スイッチを通じて前記第二のデジット線に結合された第二のセンスノードをさらに含むセンスコンポーネントであって、前記第一および第二のセンスノードの電圧をラッチするように構成された、前記センスコンポーネントと、
    前記第一のデジット線に結合され、アクティブ化されたときに読み出し電圧を提供するように構成された第一のドライバ回路と、
    前記第二のデジット線に結合され、アクティブ化されたときにグランド電圧を提供するように構成された第二のドライバ回路と、
    を含む装置。
  29. 前記第二のセンスノードに結合され、アクティブ化されたときに一定の基準電圧を前記第一のセンスノードに提供するように構成された基準スイッチをさらに含む、請求項28に記載の装置。
  30. 前記第一のデジット線を読み出し電圧に駆動し、前記第二の選択コンポーネントを非アクティブ化するために前記第一のドライバ回路を制御するように構成されたメモリコントローラをさらに含み、前記メモリコントローラは、前記第二のデジット線をグランドに駆動するために前記第二のドライバ回路を制御し、前記第一のセンスノードの前記電圧を前記第二のセンスノードの前記電圧と比較するために前記センスコンポーネントを制御するようさらに構成される、請求項28に記載の装置。
JP2019511416A 2016-08-31 2017-08-02 強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法 Active JP6737953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662381900P 2016-08-31 2016-08-31
US62/381,900 2016-08-31
PCT/US2017/045182 WO2018044487A1 (en) 2016-08-31 2017-08-02 Apparatuses and methods including ferroelectric memory and for accessing ferroelectric memory

Publications (2)

Publication Number Publication Date
JP2019530945A JP2019530945A (ja) 2019-10-24
JP6737953B2 true JP6737953B2 (ja) 2020-08-12

Family

ID=61240635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511416A Active JP6737953B2 (ja) 2016-08-31 2017-08-02 強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法

Country Status (8)

Country Link
US (3) US10127965B2 (ja)
EP (1) EP3507806B1 (ja)
JP (1) JP6737953B2 (ja)
KR (1) KR102188490B1 (ja)
CN (1) CN109643571A (ja)
SG (1) SG11201901211XA (ja)
TW (1) TWI668687B (ja)
WO (1) WO2018044487A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980006B2 (ja) 2016-08-31 2021-12-15 マイクロン テクノロジー,インク. 強誘電体メモリセル
EP3507807A4 (en) 2016-08-31 2020-04-29 Micron Technology, Inc. DEVICES AND METHOD WITH AND FOR ACCESS TO ITEMS
JP6777369B2 (ja) 2016-08-31 2020-10-28 マイクロン テクノロジー,インク. 強誘電体メモリを含み、強誘電体メモリを動作するための装置及び方法
SG11201901211XA (en) 2016-08-31 2019-03-28 Micron Technology Inc Apparatuses and methods including ferroelectric memory and for accessing ferroelectric memory
US10867675B2 (en) 2017-07-13 2020-12-15 Micron Technology, Inc. Apparatuses and methods for memory including ferroelectric memory cells and dielectric memory cells
US11062763B2 (en) 2019-04-09 2021-07-13 Micron Technology, Inc. Memory array with multiplexed digit lines
CN110428857B (zh) * 2019-07-09 2021-09-24 清华大学 一种基于滞回特性器件的存储器
DE102020100777B4 (de) * 2019-08-30 2024-09-19 Taiwan Semiconductor Manufacturing Co., Ltd. Analoge nichtflüchtige Speichervorrichtung unter Verwendung eines polyferroelektrischen Films mit zufälligen Polarisationsrichtungen
KR20210043235A (ko) * 2019-10-11 2021-04-21 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그의 동작 방법
CN111292782B (zh) * 2019-10-21 2021-11-02 北京潼荔科技有限公司 非易失性随机存取存储器及存取方法
WO2022222060A1 (en) * 2021-04-21 2022-10-27 Wuxi Petabyte Technologies Co., Ltd. Ferroelectric memory device and method for forming same

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103342A (en) 1976-06-17 1978-07-25 International Business Machines Corporation Two-device memory cell with single floating capacitor
US4853893A (en) 1987-07-02 1989-08-01 Ramtron Corporation Data storage device and method of using a ferroelectric capacitance divider
US4888733A (en) 1988-09-12 1989-12-19 Ramtron Corporation Non-volatile memory cell and sensing method
US5400275A (en) 1990-06-08 1995-03-21 Kabushiki Kaisha Toshiba Semiconductor memory device using ferroelectric capacitor and having only one sense amplifier selected
JP3169599B2 (ja) 1990-08-03 2001-05-28 株式会社日立製作所 半導体装置、その駆動方法、その読み出し方法
FR2667176B1 (fr) 1990-09-24 1993-08-06 France Etat Procede et circuit de codage d'un signal numerique pour determiner le produit scalaire de deux vecteurs et traitement tcd correspondant.
US5241503A (en) 1991-02-25 1993-08-31 Motorola, Inc. Dynamic random access memory with improved page-mode performance and method therefor having isolator between memory cells and sense amplifiers
US5218566A (en) 1991-08-15 1993-06-08 National Semiconductor Corporation Dynamic adjusting reference voltage for ferroelectric circuits
US5350705A (en) 1992-08-25 1994-09-27 National Semiconductor Corporation Ferroelectric memory cell arrangement having a split capacitor plate structure
US5309391A (en) 1992-10-02 1994-05-03 National Semiconductor Corporation Symmetrical polarization enhancement in a ferroelectric memory cell
JP3483210B2 (ja) 1992-10-12 2004-01-06 ローム株式会社 強誘電体不揮発性記憶装置
KR970000870B1 (ko) 1992-12-02 1997-01-20 마쯔시다덴기산교 가부시기가이샤 반도체메모리장치
US5539279A (en) 1993-06-23 1996-07-23 Hitachi, Ltd. Ferroelectric memory
US5381364A (en) 1993-06-24 1995-01-10 Ramtron International Corporation Ferroelectric-based RAM sensing scheme including bit-line capacitance isolation
US5373463A (en) 1993-07-06 1994-12-13 Motorola Inc. Ferroelectric nonvolatile random access memory having drive line segments
US5424975A (en) 1993-12-30 1995-06-13 Micron Technology, Inc. Reference circuit for a non-volatile ferroelectric memory
JP3745392B2 (ja) 1994-05-26 2006-02-15 株式会社ルネサステクノロジ 半導体装置
US5798964A (en) 1994-08-29 1998-08-25 Toshiba Corporation FRAM, FRAM card, and card system using the same
JP3591790B2 (ja) 1994-08-29 2004-11-24 東芝マイクロエレクトロニクス株式会社 強誘電体メモリおよびこれを用いたカードおよびカードシステム
JP3590115B2 (ja) 1994-12-20 2004-11-17 株式会社日立製作所 半導体メモリ
JP3186485B2 (ja) 1995-01-04 2001-07-11 日本電気株式会社 強誘電体メモリ装置およびその動作制御方法
US5675530A (en) 1995-08-02 1997-10-07 Matsushita Electric Industrial Co., Ltd. Ferroelectric memory device
US5598366A (en) 1995-08-16 1997-01-28 Ramtron International Corporation Ferroelectric nonvolatile random access memory utilizing self-bootstrapping plate line segment drivers
JPH09288891A (ja) 1996-04-19 1997-11-04 Matsushita Electron Corp 半導体メモリ装置
FR2759198B1 (fr) 1997-01-31 1999-03-26 Atochem Elf Sa Procede d'impregnation de condensateurs electriques
US5912846A (en) 1997-02-28 1999-06-15 Ramtron International Corporation Serial ferroelectric random access memory architecture to equalize column accesses and improve data retention reliability by mitigating imprint effects
JPH10270654A (ja) 1997-03-27 1998-10-09 Toshiba Corp 半導体記憶装置
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US5917746A (en) 1997-08-27 1999-06-29 Micron Technology, Inc. Cell plate structure for a ferroelectric memory
KR100268444B1 (ko) * 1997-08-30 2000-10-16 윤종용 강유전체 랜덤 액세스 메모리 장치
US5959878A (en) 1997-09-15 1999-09-28 Celis Semiconductor Corporation Ferroelectric memory cell with shunted ferroelectric capacitor and method of making same
JPH11110976A (ja) 1997-10-02 1999-04-23 Mitsubishi Electric Corp 不揮発性半導体記憶装置
US6028783A (en) 1997-11-14 2000-02-22 Ramtron International Corporation Memory cell configuration for a 1T/1C ferroelectric memory
US6072711A (en) 1997-12-12 2000-06-06 Lg Semicon Co., Ltd. Ferroelectric memory device without a separate cell plate line and method of making the same
EP0928004A3 (en) 1997-12-31 1999-12-15 Texas Instruments Inc. Ferroelectric memory
JP3495905B2 (ja) 1998-02-19 2004-02-09 シャープ株式会社 半導体記憶装置
JP4299913B2 (ja) 1998-04-13 2009-07-22 株式会社東芝 半導体記憶装置
JP3249470B2 (ja) 1998-06-05 2002-01-21 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
KR100282045B1 (ko) 1998-08-07 2001-03-02 윤종용 강유전체 커패시터를 구비한 불 휘발성 다이나믹 랜덤 엑세스메모리
US5995407A (en) * 1998-10-13 1999-11-30 Celis Semiconductor Corporation Self-referencing ferroelectric memory
JP2000187989A (ja) 1998-12-24 2000-07-04 Matsushita Electric Ind Co Ltd データ記憶装置
JP2000268581A (ja) 1999-03-17 2000-09-29 Fujitsu Ltd Romデータを保持する強誘電体メモリ装置
US6147895A (en) 1999-06-04 2000-11-14 Celis Semiconductor Corporation Ferroelectric memory with two ferroelectric capacitors in memory cell and method of operating same
JP4253734B2 (ja) * 1999-09-02 2009-04-15 Okiセミコンダクタ株式会社 強誘電体メモリ装置およびその装置からのデータ読み出し方法
DE19950581A1 (de) * 1999-10-20 2001-04-26 Infineon Technologies Ag Anordnung zur Selbstreferenzierung von ferroelektrischen Speicherzellen
KR100320435B1 (ko) 1999-11-22 2002-01-15 박종섭 불휘발성 강유전체 메모리 소자 및 그 제조방법
TWI240788B (en) 2000-05-04 2005-10-01 Koninkl Philips Electronics Nv Illumination system, light mixing chamber and display device
US6449184B2 (en) 2000-06-19 2002-09-10 Matsushita Electric Industrial Co., Ltd. Method for driving semiconductor memory
WO2002019341A2 (en) 2000-08-30 2002-03-07 Micron Technology, Inc. Semiconductor memory having dual port cell supporting hidden refresh
JP4047531B2 (ja) 2000-10-17 2008-02-13 株式会社東芝 強誘電体メモリ装置
US6720596B2 (en) 2000-10-17 2004-04-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for driving the same
TW536815B (en) * 2001-03-05 2003-06-11 Toshiba Corp Ferroelectric random access memory
SE519753C2 (sv) * 2001-08-23 2003-04-08 Metso Paper Inc Tätning vid pressvalsar
JP3688232B2 (ja) * 2001-09-04 2005-08-24 松下電器産業株式会社 強誘電体記憶装置
US7408218B2 (en) * 2001-12-14 2008-08-05 Renesas Technology Corporation Semiconductor device having plural dram memory cells and a logic circuit
JP2003197769A (ja) 2001-12-21 2003-07-11 Mitsubishi Electric Corp 半導体記憶装置
JP3770171B2 (ja) 2002-02-01 2006-04-26 ソニー株式会社 メモリ装置およびそれを用いたメモリシステム
JP3957520B2 (ja) 2002-02-07 2007-08-15 富士通株式会社 電圧生成回路
JP4035350B2 (ja) 2002-03-18 2008-01-23 富士通株式会社 半導体装置及び半導体装置製造方法
JP3650077B2 (ja) 2002-03-29 2005-05-18 沖電気工業株式会社 半導体記憶装置
US6538914B1 (en) 2002-04-01 2003-03-25 Ramtron International Corporation Ferroelectric memory with bit-plate parallel architecture and operating method thereof
US6704218B2 (en) * 2002-04-02 2004-03-09 Agilent Technologies, Inc. FeRAM with a single access/multiple-comparison operation
KR100474737B1 (ko) 2002-05-02 2005-03-08 동부아남반도체 주식회사 고집적화가 가능한 디램 셀 구조 및 제조 방법
US6809949B2 (en) * 2002-05-06 2004-10-26 Symetrix Corporation Ferroelectric memory
KR100456598B1 (ko) 2002-09-09 2004-11-09 삼성전자주식회사 서로 상보되는 데이터를 갖는 메모리 셀들이 배열되는메모리 장치
US6898104B2 (en) 2002-11-12 2005-05-24 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor memory with sense amplifier
US6804142B2 (en) 2002-11-12 2004-10-12 Micron Technology, Inc. 6F2 3-transistor DRAM gain cell
US20040095799A1 (en) 2002-11-20 2004-05-20 Michael Jacob 2T2C signal margin test mode using different pre-charge levels for BL and/BL
US20040119105A1 (en) 2002-12-18 2004-06-24 Wilson Dennis Robert Ferroelectric memory
KR100454254B1 (ko) 2002-12-30 2004-10-26 주식회사 하이닉스반도체 엠티피 구조의 강유전체 메모리 소자 및 그 제조 방법
JP4015968B2 (ja) * 2003-06-09 2007-11-28 株式会社東芝 強誘電体メモリ
US6967365B2 (en) 2003-07-15 2005-11-22 Texas Instruments Incorporated Ferroelectric memory cell with angled cell transistor active region and methods for fabricating the same
US7019352B2 (en) 2003-08-07 2006-03-28 Texas Instruments Incorporated Low silicon-hydrogen sin layer to inhibit hydrogen related degradation in semiconductor devices having ferroelectric components
JP3777611B2 (ja) * 2003-10-31 2006-05-24 セイコーエプソン株式会社 強誘電体メモリ装置及び電子機器
JP2005141833A (ja) 2003-11-06 2005-06-02 Seiko Epson Corp 強誘電体メモリ装置及び電子機器
JP2005223137A (ja) 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd 強誘電体メモリ装置
JP4364052B2 (ja) 2004-04-28 2009-11-11 Okiセミコンダクタ株式会社 半導体装置の製造方法
CN1812105A (zh) 2005-01-24 2006-08-02 鸿富锦精密工业(深圳)有限公司 铁电记忆体装置及其制造方法
KR100575005B1 (ko) 2005-03-23 2006-05-02 삼성전자주식회사 공유된 오픈 비트라인 센스 앰프 구조를 갖는 메모리 장치
US7957212B2 (en) 2005-03-31 2011-06-07 Hynix Semiconductor Inc. Pseudo SRAM
JP2007004839A (ja) 2005-06-21 2007-01-11 Matsushita Electric Ind Co Ltd 半導体記憶装置
KR100765872B1 (ko) 2005-08-02 2007-10-11 후지쯔 가부시끼가이샤 강유전체 메모리
JP4746390B2 (ja) 2005-09-15 2011-08-10 株式会社東芝 半導体記憶装置
JP2007266494A (ja) 2006-03-29 2007-10-11 Toshiba Corp 半導体記憶装置
JP4545133B2 (ja) 2006-11-09 2010-09-15 富士通株式会社 半導体記憶装置及びその製造方法
JP4493666B2 (ja) 2007-01-30 2010-06-30 株式会社ルネサステクノロジ 強誘電体メモリ
JP5163641B2 (ja) 2007-02-27 2013-03-13 富士通セミコンダクター株式会社 半導体記憶装置、半導体記憶装置の製造方法、およびパッケージ樹脂形成方法
KR100849794B1 (ko) * 2007-07-04 2008-07-31 주식회사 하이닉스반도체 강유전체 소자를 적용한 반도체 메모리 장치
WO2009025346A1 (ja) 2007-08-22 2009-02-26 Rohm Co., Ltd. データ保持装置
JP5162276B2 (ja) 2008-02-28 2013-03-13 ローム株式会社 強誘電体メモリ装置
JP4660564B2 (ja) 2008-03-11 2011-03-30 株式会社東芝 半導体記憶装置
US8130528B2 (en) 2008-08-25 2012-03-06 Sandisk 3D Llc Memory system with sectional data lines
JP2010062329A (ja) 2008-09-03 2010-03-18 Toshiba Corp 半導体装置及びその製造方法
US8009459B2 (en) 2008-12-30 2011-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit for high speed dynamic memory
JP5295991B2 (ja) 2010-02-15 2013-09-18 株式会社東芝 不揮発性半導体記憶装置、及び不揮発性半導体記憶装置の制御方法
US20120074466A1 (en) 2010-09-28 2012-03-29 Seagate Technology Llc 3d memory array with vertical transistor
JP5500051B2 (ja) 2010-11-22 2014-05-21 富士通セミコンダクター株式会社 強誘電体メモリ
US8508974B2 (en) 2010-12-30 2013-08-13 Texas Instruments Incorporated Ferroelectric memory with shunt device
US8477522B2 (en) * 2010-12-30 2013-07-02 Texas Instruments Incorporated Ferroelectric memory write-back
US20120307545A1 (en) 2011-06-01 2012-12-06 Texas Instruments Incorporated Interleaved Bit Line Architecture for 2T2C Ferroelectric Memories
CN103493140B (zh) 2011-07-15 2016-07-06 松下知识产权经营株式会社 驱动半导体存储装置的方法
JP2013065604A (ja) 2011-09-15 2013-04-11 Toshiba Corp 半導体装置およびその製造方法
JP6145972B2 (ja) 2012-03-05 2017-06-14 富士通セミコンダクター株式会社 不揮発性ラッチ回路及びメモリ装置
KR101994309B1 (ko) 2013-03-27 2019-09-30 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법, 이 반도체 장치를 포함하는 마이크로 프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템
US10216484B2 (en) 2014-06-10 2019-02-26 Texas Instruments Incorporated Random number generation with ferroelectric random access memory
US10134984B1 (en) 2014-12-31 2018-11-20 Crossbar, Inc. Two-terminal memory electrode comprising a non-continuous contact surface
US9514797B1 (en) 2016-03-03 2016-12-06 Cypress Semiconductor Corporation Hybrid reference generation for ferroelectric random access memory
SG11201901211XA (en) 2016-08-31 2019-03-28 Micron Technology Inc Apparatuses and methods including ferroelectric memory and for accessing ferroelectric memory
JP6980006B2 (ja) 2016-08-31 2021-12-15 マイクロン テクノロジー,インク. 強誘電体メモリセル
EP3507807A4 (en) 2016-08-31 2020-04-29 Micron Technology, Inc. DEVICES AND METHOD WITH AND FOR ACCESS TO ITEMS
JP6777369B2 (ja) 2016-08-31 2020-10-28 マイクロン テクノロジー,インク. 強誘電体メモリを含み、強誘電体メモリを動作するための装置及び方法
US10867675B2 (en) 2017-07-13 2020-12-15 Micron Technology, Inc. Apparatuses and methods for memory including ferroelectric memory cells and dielectric memory cells

Also Published As

Publication number Publication date
EP3507806A1 (en) 2019-07-10
US10998031B2 (en) 2021-05-04
SG11201901211XA (en) 2019-03-28
CN109643571A (zh) 2019-04-16
US10127965B2 (en) 2018-11-13
TWI668687B (zh) 2019-08-11
US10431283B2 (en) 2019-10-01
WO2018044487A8 (en) 2018-03-29
WO2018044487A1 (en) 2018-03-08
US20180061471A1 (en) 2018-03-01
KR20190035940A (ko) 2019-04-03
TW201820328A (zh) 2018-06-01
JP2019530945A (ja) 2019-10-24
US20200005853A1 (en) 2020-01-02
KR102188490B1 (ko) 2020-12-09
US20190013057A1 (en) 2019-01-10
EP3507806A4 (en) 2020-05-06
EP3507806B1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6737953B2 (ja) 強誘電体メモリを含む装置および強誘電体メモリにアクセスするための方法
JP6777369B2 (ja) 強誘電体メモリを含み、強誘電体メモリを動作するための装置及び方法
TWI667651B (zh) 鐵電記憶體單元
JP6964750B2 (ja) 強誘電体メモリセル及び誘電体メモリセルを含むメモリのための装置及び方法
CN109390008B (zh) 用于读取存储器单元的设备和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250