JP4035350B2 - 半導体装置及び半導体装置製造方法 - Google Patents

半導体装置及び半導体装置製造方法 Download PDF

Info

Publication number
JP4035350B2
JP4035350B2 JP2002074731A JP2002074731A JP4035350B2 JP 4035350 B2 JP4035350 B2 JP 4035350B2 JP 2002074731 A JP2002074731 A JP 2002074731A JP 2002074731 A JP2002074731 A JP 2002074731A JP 4035350 B2 JP4035350 B2 JP 4035350B2
Authority
JP
Japan
Prior art keywords
memory cell
contact
ferroelectric capacitor
line
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002074731A
Other languages
English (en)
Other versions
JP2003273327A (ja
Inventor
正樹 青木
敬三 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002074731A priority Critical patent/JP4035350B2/ja
Priority to US10/282,013 priority patent/US6807082B2/en
Priority to TW091132197A priority patent/TW569431B/zh
Priority to KR1020020072628A priority patent/KR100820013B1/ko
Priority to CNB021506000A priority patent/CN1282247C/zh
Publication of JP2003273327A publication Critical patent/JP2003273327A/ja
Application granted granted Critical
Publication of JP4035350B2 publication Critical patent/JP4035350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に関し、特に、強誘電体メモリとして用いられる半導体装置に関する。
【0002】
【従来の技術】
電源を切っても情報の記憶が可能な不揮発性メモリとして、強誘電体メモリ(FeRAM:Ferro-electric Random Access Memory )が知られている。従来の強誘電体メモリは、メモリセルトランジスタを覆う絶縁膜の上に形成されたプレーナ型の構造を有するものが多い。強誘電体メモリは電圧駆動される素子であり、消費電力が小さく、またフラッシュメモリやEEPROMに比べて非常に高速で動作することを特徴とする。
【0003】
また、学会等で発表されている強誘電体メモリは、DRAM(Dynamic Random Access Memory)で使用されているCOB(Capacitor Over Bit line )構造が採用されている。このCOB構造は、ビット線パターンの形成後、ビット線パターンよりも上に強誘電体キャパシタが形成される構造である。COB構造では、ビット線パターンがメモリセルキャパシタの形成前に形成されるため、ビット線パターンを平坦面上に形成でき、複雑な形状のメモリセルキャパシタを使って表面積を大きくする必要のあるDRAMにおいて、広く用いられている。
【0004】
【発明が解決しようとする課題】
ところで、FeRAMの市場は、スマートカード等のシステムLSI向けの用途が大きい。従って、形成プロセスとしてはCMOSプロセスを採用し、その上で、更なるメモリセルを縮小させ、高い集積密度を実現する必要がある。
【0005】
また、COB構造は、上述したように、強誘電体キャパシタのサイズを大きくした場合でもビット線パターンを平坦面上に形成することができるため、DRAMに適した構造であるが、製造プロセスにおいて、強誘電体キャパシタよりもビット線が先に形成される。このため、COB構造をFeRAMに採用した場合、強誘電体膜の結晶化や酸素欠損を補償するための酸化雰囲気中での熱処理時に、ビット線パターンの酸化や溶融を防止するための工夫を必要とする。例えば、Alパターンは、処理温度が500℃を超えると溶融してしまう。またポリシリコンパターンでは、酸化雰囲気中での熱処理により、酸化するおそれがある。
【0006】
そこで、本発明では、高い集積密度を実現でき、しかも製造の容易な半導体装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の半導体装置は、請求項1に記載されるように、基板と、前記基板上に形成され、各々第1及び第2の拡散領域を有し、前記基板上において第1の方向及び前記第1の方向とは異なる第2の方向に配列されてアレイを形成する複数のメモリセルトランジスタと、前記複数のメモリセルトランジスタの各々において、前記第1の拡散領域に第1のコンタクトプラグを介して接続される強誘電体キャパシタと、前記強誘電体キャパシタより上部に形成され、各々前記第1の方向に延在し、前記第2の方向に繰り返され、さらに各々は、前記第2の方向に配列した一群のメモリセルトランジスタの第2の拡散領域に、第2のコンタクトプラグを介して接続される複数のビット線と、各々前記メモリセルトランジスタの第1及び第2のコンタクトプラグの間に形成され、前記第2の方向に延在し、前記第1の方向に繰り返される複数のワード線と、各々前記第2の方向に延在し、前記第1の方向に繰り返され、さらに各々は、前記第1の方向に配列した一群の強誘電体キャパシタの上部電極に、コンタクトホールを介して接続される複数のプレート線と、を備え、前記各々のワード線は、前記第1及び第2のコンタクトプラグの近傍では、前記第2のコンタクトプラグを挟んで対向する他のワード線に対して離間し、前記第1及び第2のコンタクトプラグの近傍以外の領域では前記他のワード線に対して接近し、前記強誘電体キャパシタは、前記ワード線の延在方向に沿って互い違いに変位するように配置され、各々の前記複数のコンタクトホールは、前記プレート線の延在方向に、前記強誘電体キャパシタの位置に応じて、該プレート線の中心線から互い違いに変位して配置されてなることを特徴とする。
【0008】
このように、ワード線を、第1及び第2のコンタクトプラグの近傍では当該第2のコンタクトプラグを挟んで対向する他のワード線に対して離間し、第1及び第2のコンタクトプラグの近傍以外では他のワード線に対して接近するように形成するとともに、強誘電体キャパシタは、前記ワード線の延在方向に沿って互い違いに変位するように配置され、プレート線と強誘電体キャパシタの上部電極とを接続するコンタクトホールを、プレート線の延在方向に、強誘電体キャパシタの位置に応じて、該プレート線の中心線から互い違いに変位するように形成することにより、ワード線を直線状にし、第1及び第2のコンタクトプラグの近傍以外でも他のワード線に対して離間するように形成するとともに、コンタクトホールをプレート線の中心線上に形成する場合よりも、メモリセルを縮小させ、高い集積密度を実現することができる。
【0009】
また、FeRAMでは、DRAMと違って、強誘電体キャパシタのサイズあるいは表面積を大きくして、そのキャパシタンスを増加させる必要がないため、強誘電体キャパシタは比較的単純で、高さも低い構造を有する。そこで、FeRAMでは強誘電体キャパシタの上部にビット線パターンを形成する、いわゆるCUB(Capacitor Under Bit line )構造を採用しても、ビット線パターンの形成が困難になることはない。また、ビット線が強誘電体キャパシタよりも後に形成されるため、強誘電体膜の酸素欠損を抑止するための熱処理時に、ビット線が酸化したり溶融したりすることはない。従って、製造が容易になる。
【0010】
また、本発明の半導体装置は、請求項2に記載されるように、前記複数のワード線の各々は、前記第1及び第2のコンタクトプラグ近傍において、前記第2の方向に対して斜め方向に延在することを特徴とする。
【0011】
また、本発明の半導体装置は、請求項3に記載されるように、前記メモリセルトランジスタの拡散領域は矩形であることを特徴とする。
【0013】
また、本発明の半導体装置は、請求項4に記載されるように、1ビットの情報の記憶に2つのメモリセルトランジスタと2つの強誘電体キャパシタとを用いる2T/2C形式であることを特徴とする。
【0014】
また、本発明の半導体装置は、請求項5に記載されるように、1ビットの情報の記憶に1つのメモリセルトランジスタと1つの強誘電体キャパシタとを用いる1T/1C形式であることを特徴とする。
【0015】
また、本発明の半導体装置は、請求項6に記載されるように、前記プレート線は、前記複数のコンタクトホールの各々の表面と接触可能な幅を有することを特徴とする。
【0017】
また、本発明の半導体装置製造方法は、請求項7に記載されるように、基板上にメモリセルトランジスタと、該メモリセルトランジスタのゲート電極をその一部とするワード線を形成する工程と、
次いで、前記メモリセルトランジスタの拡散領域に接続した強誘電体キャパシタを形成する工程と、
次いで、前記強誘電体キャパシタ中の強誘電体膜を熱処理する工程と、
次いで、前記熱処理工程の後、前記メモリセルトランジスタに接続されるコンタクトプラグを形成する工程と、
次いで、前記強誘電体キャパシタの上部電極に電気的に接触するコンタクトホールを形成する工程と、
次いで、コンタクトホールを電気的に接触しつつ、ワード線が延在する方向に沿ってプレート線を形成する工程と、
次いで、前記強誘電体キャパシタより上部で、前記コンタクトプラグを介して前記メモリセルトランジスタに接続されるビット線を形成する工程と、を備え、
前記ワード線を形成する工程は、前記コンタクトプラグの近傍では該コンタクトプラグを挟んで対向する他のワード線に対して離間し、前記コンタクトプラグの近傍以外では前記他のワード線に対して接近するようにワード線を形成し、
前記強誘電体キャパシタを形成する工程は、強誘電体キャパシタをワード線の延在方向に沿ってシフトする位置に形成し、
前記コンタクトホールを形成する工程は、前記プレート線の延在方向に、強誘電体キャパシタの位置に応じて該プレート線の中心線から互い違いに変位した位置に複数のコンタクトホールの各々を形成することを特徴とする。
【0018】
【発明の実施の形態】
[第1実施例]
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1は、1T/1C形式のFeRAMの回路図を示す。図1において、メモリセルは、1ビットの情報の記憶に1つのトランジスタと1つのキャパシタとを用いる。同図に示すメモリセル301から情報が読み出される場合には、当該メモリセル301内のトランジスタ311がオン状態になり、当該メモリセル301内のキャパシタ312の分極電荷がビット線(BL)351に現れる。また、メモリセル301に対応するリファレンスセル303内のトランジスタ315がオン状態になり、当該リファレンスセル303内のキャパシタ316の分極電荷がビット線バー(/BL)352に現れる。センスアンプ360は、BL351及び/BL352の電圧を比較する。そして、センスアンプ360は、BL351の方が高い場合には、メモリセル301に記憶されていた情報が1であると認識し、BL351の方が低い場合には、メモリセル301に記憶されていた情報が0であると認識する。
【0020】
メモリセル302から情報が読み出される場合も同様である。即ち、メモリセル302内のトランジスタ313がオン状態になり、当該メモリセル302内のキャパシタ314の分極電荷がBL352に現れる。また、メモリセル302に対応するリファレンスセル304内のトランジスタ317がオン状態になり、当該リファレンスセル304内のキャパシタ318の分極電荷が/BL351に現れる。センスアンプ360は、BL352及び/BL351の電圧を比較する。そして、センスアンプ360は、BL352の方が高い場合には、メモリセル302に記憶されていた情報が1であると認識し、BL352の方が低い場合には、メモリセル302に記憶されていた情報が0であると認識する。
【0021】
図2は、本発明の第1実施例によるスタック型FeRAMの平面図(セルレイアウト)を、図3は図2のA−A´線断面図を示す。図2及び図3に示すスタック型FeRAMは、図1に示したような1ビットの情報の記憶に1つのメモリセルトランジスタと1つの強誘電体キャパシタとを用いる1T/1Cのメモリセル方式が採用されている。
【0022】
図2,3を参照するに、このスタック型FeRAMは、素子領域として拡散ウェル202を形成されたSi基板201上に形成されており、前記素子領域202中には、前記Si基板201の表面にはポリサイド構造のゲート電極104A,104B,104C,104Dが、図示を省略したゲート絶縁膜を介して、前記FeRAMのワード線(WL)として形成されている。図3のゲート電極104A,104B,104C,104Dは、図2に示す平面図では、相互に平行に延在するワード線WLを構成している。
【0023】
前記Si基板201中には、前記各々のゲート電極104A,104Bの両側に拡散領域109A,109B,109Cが形成されており、さらに前記ゲート電極104A,104B,104C,104Dは、層間絶縁膜203により覆われている。
【0024】
前記層間絶縁膜203上には、下部電極108aと強誘電体キャパシタ絶縁膜108bと上部電極108cとよりなる強誘電体キャパシタ108A,108Bが、前記拡散領域109Aあるいは109Cに対応して形成されており、前記強誘電体キャパシタ108Aは、前記拡散領域109Aに、前記層間絶縁膜203中に形成されたコンタクトプラグ204Aを介して接続されている。同様に、前記強誘電体キャパシタ108Bは、前記拡散領域109Cに、前記層間絶縁膜203中に形成されたコンタクトプラグ204Bを介して接続されている。
【0025】
前記強誘電体キャパシタ108A,108Bは次の層間絶縁膜208により覆われており、前記層間絶縁膜208上には、プレート線103A,103Bが、それぞれの強誘電体キャパシタ108A,108Bに対応して形成されており、前記プレート線103Aは、前記強誘電体キャパシタ108Aの上部電極108cに、前記層間絶縁膜208中に形成されたコンタクトホール106Aを介してコンタクトする。同様に、前記プレート線103Bは前記強誘電体キャパシタ108Bの上部電極108cに、前記層間絶縁膜208中に形成されたコンタクトホール106Bを介してコンタクトする。
【0026】
図1の平面図では、前記プレート線103A,103Bは、前記ワード線WLに平行に延在する。
【0027】
さらに前記層間絶縁膜208上には前記プレート線103A,103Bを覆うように次の層間絶縁膜211が形成され、前記層間絶縁膜211上には、ビット線101が形成されている。前記ビット線101は前記層間絶縁膜211中に形成されたコンタクトプラグ107、前記層間絶縁膜208上に形成された電極パターン103C,及び前記層間絶縁膜208及び203を貫通し、前記拡散領域109Bに至るコンタクトプラグ204Cを介して、前記拡散領域109Bにコンタクトする。
【0028】
図1の平面図では、前記ビット線101は、前記ワード線WLに直交する方向に延在するビット線BLを構成し、前記ビット線BLは、メモリセルトランジスタのアレイに対応して、前記ワード線WLの延在方向に繰り返し形成されている。
【0029】
さらに前記層間絶縁膜211上には、前記ビット線101を覆うように酸化膜213が形成され、前記酸化膜213上には窒化膜よりなるパッシベーション膜214が形成されている。
【0030】
図2,3の実施例では、前記ワード線WL及びプレート線PLは互いに平行に、直線状に延在している。また前記ビット線BLは、前記ワード線WLに直交する方向に、直線状に延在している。
【0031】
図2の平面図には、前記コンタクトホール106A,106Bは、プレート線PL上において一直線に整列している。
【0032】
図3の断面構造を有するFeRAM、すなわちCUB構造を有するFeRAMでは、強誘電体キャパシタ108A,108Bはプレート線103A,103Bより下、従ってビット線101よりも下に形成されており、従ってプレート線103A,103Bあるいはビット線101は、強誘電体キャパシタ108A,108Bが形成された後に形成される。従って、これらの電極を構成する導体パターンは強誘電体キャパシタ絶縁膜108bを結晶化させ、あるいは酸素欠損補償を行うための酸化雰囲気中での熱処理に曝されることがなく、酸化あるいは溶融の問題は生じない。
[第2実施例]
図4は、本発明の第2実施例によるスタック型FRAMの平面図(セルレイアウト)を、図5は、図4のB−B´線断面図を示す。図4及び図5に示すスタック型FeRAMは、図1に示したような1ビットの情報の記憶に1つのメモリセルトランジスタと1つの強誘電体キャパシタとを用いる1T/1Cのメモリセル方式が採用されている。
【0033】
このスタック型FRAMは、図2、3のスタック型FRAMとほぼ同様の構造を有するが、以下の点で異なる。
【0034】
即ち、図4のスタック型FRAMでは、ワード線WLは、コンタクトプラグ107を避けるように折り曲げられている。具体的には、ワード線WLは、コンタクトプラグ107の近傍では当該コンタクトプラグ107を挟んで対向する他のワード線WLに対して離間し、コンタクトプラグ107の近傍以外では他のワード線WLに対して近接するように形成される。なお、ワード線WLは、他のワード線WLから離間する際、及び、近接する際は、自身の伸長方向に対して45°の方向に配線されている。また、図4のスタック型FRAMでは、コンタクトホール106A,106Bがプレート線PLの中心線から左右にずれて形成されている。これは、ワード線WLが屈折するのに伴い、強誘電体キャパシタ108A,108Bの位置が、ワード線WLの延在方向に沿って交互にシフトするからである。
【0035】
ここで、図2のスタック型FRAMと図4のスタック型FRAMとを比較すると、図2のスタック型FRAMは、0.35μmのCMOSルールで設計された場合、1ビットの情報を記憶するメモリセルのサイズが1.5μm×3.0μm、強誘電体キャパシタ108のサイズが1.0μm×2.0μmとなる。一方、図4のスタック型FRAMは、0.35μmのCMOSルールで設計された場合、1ビットの情報を記憶するメモリセルのサイズが1.5μm×2.625μm、強誘電体キャパシタ108のサイズが1.0μm×1.625μmとなる。
【0036】
従って、図4のスタック型FRAMは、図2のスタック型FRAMよりもメモリセルを縮小させ、高い集積密度を実現することができる。一方、図2のスタック型FRAMは、強誘電体キャパシタ108A,108Bのサイズを大きくして、そのキャパシタンスを増加したい場合において、図4のスタック型FRAMよりも有利である。
[第3実施例]
図6は、2T/2C形式のFeRAMの回路図を示す。図6において、メモリセルは、1ビットの情報の記憶に2つのトランジスタと2つのキャパシタとを用いる。同図に示すメモリセル401において、キャパシタ412が「1」の情報を記憶した場合、キャパシタ414が反対の情報である「0」を記憶するという相補的な動作を行う。
【0037】
メモリセル401から情報が読み出される場合には、当該メモリセル401内のトランジスタ411がオン状態になり、当該メモリセル401内のキャパシタ412の分極電荷がビット線(BL)451に現れる。また、メモリセルメモリセル401内のトランジスタ413がオン状態になり、当該メモリセル401内のキャパシタ414の分極電荷がビット線バー(/BL)452に現れる。センスアンプ460は、BL451及び/BL452の電圧を比較する。そして、センスアンプ360は、BL451の方が高い場合には、メモリセル401に記憶されていた情報が1であると認識し、BL451の方が低い場合には、メモリセル401に記憶されていた情報が0であると認識する。
【0038】
図7は、本発明の第3実施例によるスタック型FRAMの平面図(セルレイアウト)を、図8は、図7のC−C´線断面図を示す。図7及び図8に示すスタック型FRAMは、1ビットの情報の記憶に2つのメモリセルトランジスタと2つの強誘電体キャパシタとを用いる2T/2Cのメモリセル方式が採用されている。
【0039】
このスタック型FRAMは、図2、3のスタック型FRAMとほぼ同様の断面構造を有し、ワード線WLが、CMOSプロセスにより形成されたメモリセルトランジスタ上に形成される。更に、強誘電体キャパシタ108Aが拡散領域109Aに接続されたコンタクトプラグ204Aの直上に形成され、且つ、その上部電極108cが一括エッチングで加工される。同様に、強誘電体キャパシタ108Bが拡散領域109Cに接続されたコンタクトプラグ204Bの直上に形成され、且つ、その上部電極108cが一括エッチングで加工される。即ち、これら強誘電体キャパシタ108A,108Bは、プレーナスタック強誘電体キャパシタ構造である。また、強誘電体キャパシタ108A,108Bは、その上部電極108cが層間絶縁膜208で覆われ、この層間絶縁膜208に形成されたコンタクトホール106A,106Bを介して、上部電極108cと、第一層配線であるプレート線103A,103Bとが接続される。
【0040】
更に、拡散領域109B上にコンタクトプラグ107が形成され、このコンタクトプラグ107を介して、強誘電体キャパシタ108A,108Bより上部に形成されたビット線101と拡散領域109Bとが接続される。従って、このスタック型FRAMは、通常のDRAMのようにビット線よりも上部に強誘電体キャパシタが形成されるCOB構造とは異なる構造を有する。
【0041】
図4のスタック型FRAMは、0.35μmのCMOSルールで設計された場合、1ビットの情報を記憶するメモリセルのサイズが3.0μm×3.0μm、強誘電体キャパシタ108のサイズが1.0μm×2.0μmとなる。
[第4実施例]
次に、本発明のスタック型FRAMの製造工程を説明する。ただし図9(A)〜(C)はスタック型FRAMの第1乃至第3工程、図10(D)〜(F)は第4乃至第6工程、図11(G),(H)は第7乃至第8工程、図12(I),(J)は第9乃至第10工程をそれぞれ示す。
【0042】
図9(A)に示す第1工程では、基板201に、CMOSプロセスにより素子領域202を形成し、この素子領域202の上部にワード線WLを構成するゲート電極104A,104B,104C,104Dが形成される。次に、素子領域202が形成された基板201の上面に層間絶縁膜203を形成した上で、素子領域202の拡散領域109A,109Cの上面に形成された層間絶縁膜203を除去してタングステンを堆積することにより、拡散領域109A,109Cと後述する強誘電体キャパシタ108A,108Bを接続するためのコンタクトプラグ204A,204Bを形成する。更に、層間絶縁膜203及びコンタクトプラグ204A,204Bの上面をCMP(Chemical and Mechanical Polishing )法により研磨する。
【0043】
図9(B)に示す第2工程では、研磨された層間絶縁膜203及びコンタクトプラグ204A,204Bの上面に、下部電極205、強誘電体膜206及び上部電極207を形成する。ここで、下部電極205は、下層から200nm厚のIr、30nm厚のIrO、20nm厚のTi、50nm厚のPtの順で堆積することにより得られる。また、強誘電体膜206は200nm厚のPZTからなり、上部電極207は200nm厚のIrOからなる。
【0044】
図9(C)に示す第3工程では、パターニング、エッチングの技術を用いて、コンタクトプラグ204A,204B上の下部電極205、強誘電体膜206及び上部電極207を残し、これらによって構成される強誘電体キャパシタ108A,108Bを形成する。
【0045】
図10(D)に示す第4工程では、層間絶縁膜203及び強誘電体キャパシタ108A,108Bの露出面に層間絶縁膜208をCVD(Chemical Vapor Deposition )法で堆積する。更に、堆積した層間絶縁膜208の上面をCMP法により研磨する。
【0046】
図10(E)に示す第5工程では、層間絶縁膜203及び層間絶縁膜208の一部を除去して、素子領域202の拡散領域109Bにコンタクトするためのコンタクト孔を開口する。更に、このコンタクト孔にWをCVD法で堆積し、堆積したWの上面をCMP法により研磨することによりコンタクトプラグ204Cを形成する。
【0047】
図10(F)に示す第6工程では、強誘電体キャパシタ108A,108Bの上部に堆積している層間絶縁膜208を除去してコンタクトホール106A,106Bを形成し、これらコンタクトホール106A,106Bの底面に露出した強誘電体キャパシタ108A,108Bの上部電極に、Alのメタル第一層を接続し、パターニングすることによってプレート線103A,103Bを形成する。また、コンタクトプラグ204CにAlのメタル第一層を接続し、パターニングすることによって電極パターン103Cを形成する。
【0048】
図11(G)に示す第7工程では、プレート線103A,103B及び電極パターン103Cを覆うように、CVD法により層間絶縁膜211を堆積し、この層間絶縁膜211の上面をCMPにより研磨する。次に、電極パターン103C上の層間絶縁膜211を除去してコンタクト孔を開口する。更に、このコンタクト孔にWをCVD法で堆積し、上面をCMP法により研磨することによりコンタクトプラグ107を形成する。
【0049】
図11(H)に示す第8工程では、コンタクトプラグ107及び層間絶縁膜211の上面にAlのメタル第二層を成膜し、パターニングすることによってビット線101を形成する。これにより、ビット線101と素子領域202とが電気的に接続される。
【0050】
図12(I)に示す第9工程では、ビット線101及び層間絶縁膜211の上面に、CVD法により酸化膜213を形成する。更に図12(J)に示す第10工程では、酸化膜213の上面に、CVD法によりパッシベーション膜214を形成する。
【0051】
このように、本実施形態のスタック型FRAMは、DRAMほど強誘電体キャパシタのサイズを大きくして、そのキャパシタンスを増加させる必要がないため、強誘電体キャパシタ108の上部にビット線101を形成する構造である、いわゆるCUB構造を採用しても、ビット線101を平坦に形成することが容易である。また、ビット線101が強誘電体キャパシタ108よりも後に形成されるため、強誘電体膜の酸素欠損を抑止するための熱処理時に、ビット線101の酸化や溶解を防止するための工夫が不必要である。従って、製造の容易化が可能になる。
【0052】
また、図4及び図5のスタック型FRAMのように、ワード線104を、コンタクトプラグ107の近傍では当該コンタクトプラグ107を挟んで対向する他のワード線104に対して離隔し、コンタクトプラグ107の近傍以外では他のワード線104に対して接近するように形成する場合には、ワード線104を直線状にし、コンタクトプラグ107の近傍以外でも他のワード線104に対して離隔するように形成することにより、他のワード線104との間に隙間ができる場合よりも、メモリセルを縮小させ、高い集積密度を実現することができる。
【0053】
以上、本発明を好ましい実施例について説明したが、本発明は上記の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において、様々な変形、変更が可能である。
【0054】
例えば、上述した実施形態では、下部電極205をIr、IrO、Ti及びPtの積層構造としたが、Irのみで形成しても良く、PtとTiの積層構造としてもよい。また、上述した実施形態では、強誘電体膜206の材料としてPZTを用いたが、PLZT、SBT、SBTN等の他の材料を用いることもできる。
【0055】
【発明の効果】
上述の如く、本発明によれば、ワード線を、第1及び第2のコンタクトプラグの近傍では当該第2のコンタクトプラグを挟んで対向する他のワード線に対して離間し、第1及び第2のコンタクトプラグの近傍以外では他のワード線に対して接近するように形成するとともに、プレート線と強誘電体キャパシタの上部電極とを接続するコンタクトホールを、プレート線の延在方向に、該プレート線の中心線から互い違いに変位するように形成することにより、ワード線を直線状にし、第1及び第2のコンタクトプラグの近傍以外でも他のワード線に対して離間するように形成するとともに、コンタクトホールをプレート線の中心線上に形成する場合よりも、メモリセルを縮小させ、高い集積密度を実現することができる。
【0056】
また、本発明によれば、強誘電体キャパシタの上部にビット線を形成する構造である、いわゆるCUB構造を採用しても、ビット線を平坦に形成することが容易である。また、ビット線が強誘電体キャパシタよりも後に形成されるため、強誘電体膜の酸素欠損を抑止するための熱処理時に、ビット線の酸化や溶解を防止するための工夫が不必要である。従って、製造の容易化が可能になる。
【図面の簡単な説明】
【図1】1T/1C形式のFeRAMの回路図である。
【図2】本発明の第1実施例によるスタック型FeRAMの平面図である。
【図3】図1のFeRAMの断面構造を示す図である。
【図4】本発明の第2実施例によるスタック型FeRAMの平面図である。
【図5】図4のFeRAMの断面構造を示す図である。
【図6】2T/2C形式のFeRAMの回路図である。
【図7】本発明の第3実施例によるスタック型FeRAMの平面図である。
【図8】図7のFeRAMの断面構造を示す図である。
【図9】本発明のスタック型FeRAMの第1乃至第3工程を示す図である。
【図10】本発明のスタック型FeRAMの第4乃至第6工程を示す図である。
【図11】本発明のスタック型FeRAMの第7乃至第8工程を示す図である。
【図12】本発明のスタック型FeRAMの第9乃至第10工程を示す図である。
【符号の説明】
101 ビット線
102 反転ビット線
103A,103B プレート線
203C 電極パターン
104A,104B ワード線(ゲート電極)
106A,106B コンタクトホール
107、204A,204B,204C コンタクトプラグ
108A,108B 強誘電体キャパシタ
109A,109B,109C 拡散領域
201 Si基板
202 素子領域
203、208、211 層間絶縁膜
205 下部電極
206 強誘電体膜
207 上部電極
213 酸化膜
214 パッシベーション膜

Claims (7)

  1. 基板と、
    前記基板上に形成され、各々第1及び第2の拡散領域を有し、前記基板上において第1の方向及び前記第1の方向とは異なる第2の方向に配列されてアレイを形成する複数のメモリセルトランジスタと、
    前記複数のメモリセルトランジスタの各々において、前記第1の拡散領域に第1のコンタクトプラグを介して接続される強誘電体キャパシタと、
    前記強誘電体キャパシタより上部に形成され、各々前記第1の方向に延在し、前記第2の方向に繰り返され、さらに各々は、前記第2の方向に配列した一群のメモリセルトランジスタの第2の拡散領域に、第2のコンタクトプラグを介して接続される複数のビット線と、
    各々前記メモリセルトランジスタの第1及び第2のコンタクトプラグの間に形成され、前記第2の方向に延在し、前記第1の方向に繰り返される複数のワード線と、
    各々前記第2の方向に延在し、前記第1の方向に繰り返され、さらに各々は、前記第1の方向に配列した一群の強誘電体キャパシタの上部電極に、コンタクトホールを介して接続される複数のプレート線と、を備え、
    前記各々のワード線は、前記第1及び第2のコンタクトプラグの近傍では、前記第2のコンタクトプラグを挟んで対向する他のワード線に対して離間し、前記第1及び第2のコンタクトプラグの近傍以外の領域では前記他のワード線に対して接近し、
    前記強誘電体キャパシタは、前記ワード線の延在方向に沿って互い違いに変位するように配置され、
    各々の前記複数のコンタクトホールは、前記プレート線の延在方向に、前記強誘電体キャパシタの位置に応じて、該プレート線の中心線から互い違いに変位して配置されてなることを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置において、
    前記複数のワード線の各々は、前記第1及び第2のコンタクトプラグ近傍において、前記第2の方向に対して斜め方向に延在することを特徴とする半導体装置。
  3. 請求項1又は2に記載の半導体装置において、
    前記メモリセルトランジスタの拡散領域は矩形であることを特徴とする半導体装置。
  4. 請求項1乃至3の何れかに記載の半導体装置において、
    1ビットの情報の記憶に2つのメモリセルトランジスタと2つの強誘電体キャパシタとを用いる2T/2C形式であることを特徴とする半導体装置。
  5. 請求項1乃至3の何れかに記載の半導体装置において、
    1ビットの情報の記憶に1つのメモリセルトランジスタと1つの強誘電体キャパシタとを用いる1T/1C形式であることを特徴とする半導体装置。
  6. 請求項1乃至5の何れかに記載の半導体装置において、
    前記プレート線は、前記複数のコンタクトホールの各々の表面と接触可能な幅を有することを特徴とする半導体装置。
  7. 基板上にメモリセルトランジスタと、該メモリセルトランジスタのゲート電極をその一部とするワード線を形成する工程と、
    次いで、前記メモリセルトランジスタの拡散領域に接続した強誘電体キャパシタを形成する工程と、
    次いで、前記強誘電体キャパシタ中の強誘電体膜を熱処理する工程と、
    次いで、前記熱処理工程の後、前記メモリセルトランジスタに接続されるコンタクトプ ラグを形成する工程と、
    次いで、前記強誘電体キャパシタの上部電極に電気的に接触するコンタクトホールを形成する工程と、
    次いで、コンタクトホールを電気的に接触しつつ、ワード線が延在する方向に沿ってプレート線を形成する工程と、
    次いで、前記強誘電体キャパシタより上部で、前記コンタクトプラグを介して前記メモリセルトランジスタに接続されるビット線を形成する工程と、を備え、
    前記ワード線を形成する工程は、前記コンタクトプラグの近傍では該コンタクトプラグを挟んで対向する他のワード線に対して離間し、前記コンタクトプラグの近傍以外では前記他のワード線に対して接近するようにワード線を形成し、
    前記強誘電体キャパシタを形成する工程は、強誘電体キャパシタをワード線の延在方向に沿ってシフトする位置に形成し、
    前記コンタクトホールを形成する工程は、前記プレート線の延在方向に、強誘電体キャパシタの位置に応じて該プレート線の中心線から互い違いに変位した位置に複数のコンタクトホールの各々を形成することを特徴とする半導体装置製造方法。
JP2002074731A 2002-03-18 2002-03-18 半導体装置及び半導体装置製造方法 Expired - Fee Related JP4035350B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002074731A JP4035350B2 (ja) 2002-03-18 2002-03-18 半導体装置及び半導体装置製造方法
US10/282,013 US6807082B2 (en) 2002-03-18 2002-10-29 Semiconductor device and method of manufacturing the same
TW091132197A TW569431B (en) 2002-03-18 2002-10-30 Semiconductor device and method of manufacturing the same
KR1020020072628A KR100820013B1 (ko) 2002-03-18 2002-11-21 반도체 장치 및 그 제조 방법
CNB021506000A CN1282247C (zh) 2002-03-18 2002-11-22 半导体器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074731A JP4035350B2 (ja) 2002-03-18 2002-03-18 半導体装置及び半導体装置製造方法

Publications (2)

Publication Number Publication Date
JP2003273327A JP2003273327A (ja) 2003-09-26
JP4035350B2 true JP4035350B2 (ja) 2008-01-23

Family

ID=28035321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074731A Expired - Fee Related JP4035350B2 (ja) 2002-03-18 2002-03-18 半導体装置及び半導体装置製造方法

Country Status (5)

Country Link
US (1) US6807082B2 (ja)
JP (1) JP4035350B2 (ja)
KR (1) KR100820013B1 (ja)
CN (1) CN1282247C (ja)
TW (1) TW569431B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172069B2 (ja) * 2004-04-27 2013-03-27 富士通セミコンダクター株式会社 半導体装置
KR100661094B1 (ko) 2004-05-20 2006-12-22 삼성전자주식회사 강유전체 기억 소자 및 그 제조방법
CN103680610A (zh) * 2012-09-03 2014-03-26 北京兆易创新科技股份有限公司 差分存储NAND Flash存储器写操作的方法及装置
WO2018044487A1 (en) 2016-08-31 2018-03-08 Micron Technology, Inc. Apparatuses and methods including ferroelectric memory and for accessing ferroelectric memory
KR102233267B1 (ko) 2016-08-31 2021-03-30 마이크론 테크놀로지, 인크. 강유전체 메모리를 포함하며 강유전체 메모리를 작동하기 위한 장치 및 방법
JP6980006B2 (ja) * 2016-08-31 2021-12-15 マイクロン テクノロジー,インク. 強誘電体メモリセル
EP3507807A4 (en) 2016-08-31 2020-04-29 Micron Technology, Inc. DEVICES AND METHOD WITH AND FOR ACCESS TO ITEMS
US10867675B2 (en) 2017-07-13 2020-12-15 Micron Technology, Inc. Apparatuses and methods for memory including ferroelectric memory cells and dielectric memory cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319437B2 (ja) * 1999-06-04 2002-09-03 ソニー株式会社 強誘電体メモリおよびそのアクセス方法
US6404667B1 (en) * 2000-09-11 2002-06-11 Samsung Electronics Co., Ltd. 2T-1C ferroelectric random access memory and operation method thereof
TW492006B (en) * 2001-01-20 2002-06-21 Macronix Int Co Ltd Sensing method of non-volatile ferroelectric memory

Also Published As

Publication number Publication date
JP2003273327A (ja) 2003-09-26
KR100820013B1 (ko) 2008-04-07
US20030173604A1 (en) 2003-09-18
TW200304696A (en) 2003-10-01
CN1445855A (zh) 2003-10-01
US6807082B2 (en) 2004-10-19
TW569431B (en) 2004-01-01
KR20030076182A (ko) 2003-09-26
CN1282247C (zh) 2006-10-25

Similar Documents

Publication Publication Date Title
JP3569112B2 (ja) 半導体集積回路およびその製造方法
US6617628B2 (en) Ferroelectric memory device and method of fabricating the same
US6700146B2 (en) Semiconductor memory device and method for producing the same
US6511877B2 (en) Semiconductor integrated circuit and method for manufacturing the same
JP4035350B2 (ja) 半導体装置及び半導体装置製造方法
JP2000031398A (ja) 半導体装置及びその製造方法
US5796134A (en) Memory cells with a reduced area capacitor interconnect and methods of fabrication therefor
US6800890B1 (en) Memory architecture with series grouped by cells
US6724026B2 (en) Memory architecture with memory cell groups
US20060214206A1 (en) Ferroelectric memory device and method of manufacturing the same
JP2005530355A (ja) 直列に接続されたメモリーセルを備えた強誘電体メモリー
US8257984B2 (en) Ferroelectric capacitor and method of manufacturing the same
US6720598B1 (en) Series memory architecture
KR100295568B1 (ko) 반도체 장치 및 그의 제조방법
KR100195262B1 (ko) 강유전체 메모리 장치 및 그 제조 방법
KR20010109615A (ko) 반도체 소자의 강유전체 캐패시터
TW202410037A (zh) 鐵電記憶體裝置
KR100200709B1 (ko) 반도체 장치의 고유전체 캐패시터 및 그 제조 방법
KR100427031B1 (ko) 강유전체 소자의 커패시터 제조 방법
KR100407379B1 (ko) 강유전체 메모리 소자 제조방법
KR20040059436A (ko) 강유전체 메모리 소자의 제조 방법
KR20020055105A (ko) 강유전체 메모리 소자의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4035350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees