JP6681508B1 - 決定方法、及び光検出装置 - Google Patents

決定方法、及び光検出装置 Download PDF

Info

Publication number
JP6681508B1
JP6681508B1 JP2019175941A JP2019175941A JP6681508B1 JP 6681508 B1 JP6681508 B1 JP 6681508B1 JP 2019175941 A JP2019175941 A JP 2019175941A JP 2019175941 A JP2019175941 A JP 2019175941A JP 6681508 B1 JP6681508 B1 JP 6681508B1
Authority
JP
Japan
Prior art keywords
apd
temperature compensating
voltage
bias voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019175941A
Other languages
English (en)
Other versions
JP2020096170A (ja
Inventor
弘典 園部
弘典 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to CN201980082092.3A priority Critical patent/CN113302462B/zh
Priority to EP19897203.6A priority patent/EP3988909B1/en
Priority to PCT/JP2019/046901 priority patent/WO2020121855A1/ja
Priority to US17/311,766 priority patent/US11561131B2/en
Priority to TW108144638A priority patent/TWI851628B/zh
Application granted granted Critical
Publication of JP6681508B1 publication Critical patent/JP6681508B1/ja
Publication of JP2020096170A publication Critical patent/JP2020096170A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0214Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】APDにおいて所望のゲインが得られる差分電圧の決定が容易な決定方法を提供する。【解決手段】決定方法は、APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧を決定する。温度補償部は、当該差分電圧に基づいてバイアス電圧を制御することでAPDのゲインの温度補償を行う。この決定方法では、バイアス電圧が“Vr”とされ、当該バイアス電圧が印加されたAPDのゲインが“M”とされる。バイアス電圧とゲインとの相関を示すデータにおける“(1/M)×(dM/dVr)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片が取得される。上記傾きを下記式(1)の“a”に、上記切片を下記式(1)の“b”に、光検出装置においてアバランシェフォトダイオードに設定するゲインを下記式(1)の“Md”に、代入することで演算された“ΔV”が、上記差分電圧として決定される。【選択図】図7

Description

本発明は、決定方法及び光検出装置に関する。
温度に対して安定した光検出を行うために、アバランシェフォトダイオードに印加するバイアス電圧を制御する構成が知られている(たとえば、特許文献1)。特許文献1では、温度補償用ダイオードのブレークダウン電圧に応じた電圧を、アバランシェフォトダイオードにバイアス電圧として印加する。以下、本明細書では、「アバランシェフォトダイオード」を「APD」と称する。
特開平07−27607号公報
APDのゲインは、APDがフォトンを検出したときの出力電荷量から算出される。APDのゲインは、APDに印加するバイアス電圧の変化に応じて変化する。一定のバイアス電圧がAPDに印加されていたとしても、環境温度が変化すればAPDのゲインは変化する。したがって、APDのゲインを一定にするには、環境温度に応じてAPDに印加するバイアス電圧を変化させることを要する。
APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧が一定に制御された場合、環境温度が変化してもAPDのゲインの変化は少ない。このため、温度に対して安定して所望のゲインを得るには、所望のゲインが得られる上記差分電圧を決定することが求められる。しかしながら、APDのブレークダウン電圧も環境温度によって変化するため、所望のゲインが得られる差分電圧の決定は困難であった。
本発明の一つの態様は、APDにおいて所望のゲインが得られる差分電圧の決定が容易な決定方法を提供することを目的とする。本発明の別の態様は、APDにおいて所望のゲインが容易に得られる光検出装置を提供することを目的とする。
本発明者らは、調査研究の結果、以下のような事実を新たに見出した。
APDに印加するバイアス電圧を“V”とし、当該バイアス電圧が所定の温度において印加されたAPDのゲインを“M”とした場合、下記の式(1)が成り立つことが知られている。
Figure 0006681508
本発明者らの鋭意研究によって、これらの式(1)における“a”,“b”は温度依存性が極めて低く、ゲインの温度補償に用いることができることが明らかになった。この場合、バイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの相関を示すデータが任意の温度において取得されれば、式(1)から上記“a”,“b”を取得できる。式(1)は“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線を示し、“a”はこの回帰直線の傾きであり“b”はこの回帰直線の切片である。
さらに、本願発明者らは、“a”及び“b”が決定されれば、所望のゲインにおける、APDのブレークダウン電圧とAPDに印加するバイス電圧との差分電圧が、下記の式(2)によって求まることを見出した。式(2)における“ΔV”は、上記差分電圧を示す。
Figure 0006681508
式(1)から取得された“a”及び“b”を式(2)の“a”及び“b”に代入し、所望のゲインを下記の式(2)の“M”に代入することで、所望のゲインにおける“ΔV”が導出される。すなわち、環境温度を厳密に考慮することなく、極めて容易に、所望のゲインが得られる“ΔV”が導出される。たとえば、APDのブレークダウン電圧の温度特性を考慮することなく、所望のゲインが得られる“ΔV”が決定される。
“ΔV”が決定されれば、所望のゲインが得られるバイアス電圧が制御され得る。たとえば、温度補償用ダイオードのブレークダウン電圧をAPDにバイアス電圧として印加する場合には、“ΔV”はAPDのブレークダウン電圧と温度補償用ダイオードのブレークダウン電圧との差分電圧を示す。このため、所望のゲインが得られる“ΔV”を導出し、導出された“ΔV”に合わせて、APD及び温度補償用ダイオードの不純物濃度を設計してもよい。
本発明の一つの態様に係る決定方法は、APDと温度補償部とを有する光検出装置において、APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧を決定する決定方法である。温度補償部は、当該差分電圧に基づいてバイアス電圧を制御することでAPDのゲインの温度補償を行う。この決定方法では、バイアス電圧が“V”とされ、当該バイアス電圧が印加されたAPDのゲインが“M”とされる。この場合に、バイアス電圧とゲインとの相関を示すデータにおける“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片が取得される。上記傾きを下記式(3)の“a”に、上記切片を下記式(3)の“b”に、光検出装置においてアバランシェフォトダイオードに設定するゲインを下記式(3)の“M”に、代入することで演算された“ΔV”が、上記差分電圧として決定される。
Figure 0006681508
上記一つの態様では、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片が取得される。取得された傾きを式(3)の“a”に、取得された切片を式(3)の“b”に代入することで所望のゲインが得られる上記差分電圧が決定される。このため、環境温度を厳密に考慮することなく、極めて容易に、所望のゲインが得られる上記差分電圧が決定される。
上記一つの態様では、APDに設定するゲインとして互いに異なる複数の値を式(3)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、上記複数の値のそれぞれに対応する差分電圧として決定されてもよい。この場合、環境温度を厳密に考慮することなく、極めて容易に、複数の値のそれぞれに対応する複数の上記差分電圧が決定される。
本発明の別の態様に係る光検出装置は、APDと、温度補償部と、を備える。温度補償部は、APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧に基づいてバイアス電圧を制御することで、APDの温度補償を行う。温度補償部は、上記差分電圧が“ΔV”となるように、バイアス電圧を制御する。バイアス電圧を“V”とし、当該バイアス電圧が印加されたAPDのゲインを“M”とする。“ΔV”は、バイアス電圧とゲインとの相関を示すデータについて、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを下記式(4)の“a”に、回帰直線の切片を下記式(4)の“b”に、APDに設定するゲインを下記式(4)の“M”に代入することで演算されている。
Figure 0006681508
上記別の態様では、温度補償部は、APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧が“ΔV”となるように、バイアス電圧を制御する。“ΔV”は、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを式(4)の“a”に、切片を式(4)の“b”に代入することで演算されている。このため、環境温度を厳密に考慮することなく、極めて容易に所望のゲインが得られる。
上記別の態様では、光検出装置は、設定部と配線部とをさらに備えていてもよい。設定部は、APDに設定するゲインに応じて、温度補償部を設定してもよい。配線部は、温度補償部とAPDとを電気的に接続してもよい。温度補償部は、複数の温度補償用ダイオードを有してもよい。複数の温度補償用ダイオードは、互いに異なるブレークダウン電圧を有してもよい。配線部は、各温度補償用ダイオードのブレークダウン電圧に応じた電圧をAPDにバイアス電圧として印加してもよい。設定部は、APDに設定するゲインを式(4)の“M”に代入することで演算される“ΔV”が差分電圧となるように、複数の温度補償用ダイオードからバイアス電圧の制御に用いる温度補償用ダイオードを設定してもよい。この場合、“ΔV”はAPDのブレークダウン電圧から温度補償用ダイオードのブレークダウン電圧に応じた電圧を減算した減算値を示す。このため、所望のゲインが得られる“ΔV”を導出し、上記減算値が導出された“ΔV”となるようにAPD及び温度補償用ダイオードの不純物濃度を設計できる。上記減算値が“ΔV”となるように、回路が設計されてもよい。この光検出装置では、設定部によって、複数の温度補償用ダイオードからバイアス電圧の制御に用いる温度補償用ダイオードが設定される。このため、環境温度を厳密に考慮することなく、状況に応じた所望のゲインを極めて容易に得ることができる。換言すれば、所望のゲインを容易に切り替えることができると共に温度に安定して所望のゲインが得られる。
本発明の一つの態様は、APDにおいて所望のゲインが得られる差分電圧の決定が容易な決定方法を提供できる。本発明の別の態様は、APDにおいて所望のゲインが容易に得られる光検出装置を提供できる。
本実施形態に係る光検出装置のブロック図である。 光検出装置の概略構成図である。 光検出部の概略断面図である。 APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータのグラフである。 回帰直線の傾き及び切片の温度依存性を示すグラフである。 設定部による設定に応じたAPDの出力特性を示すグラフである。 半導体基板の製造方法を示すフローチャートである。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有している要素には、同一符号を用いることとし、重複する説明は省略する。
まず、図1を参照して、本実施形態に係る光検出装置の概要を説明する。図1は、光検出装置のブロック図である。光検出装置1は、図1に示されているように、検出動作部2と回路部3と電源部4とを備えている。
検出動作部2は、受光部10と、温度補償部15とを有している。受光部10は、少なくとも1つのAPDを有している。本実施形態では、受光部10のAPDは、リニアモードで動作するアバランシェフォトダイオードである。温度補償部15は、受光部10のAPDのゲインの温度補償を行う。温度補償部15は、受光部10のAPDに印加するバイアス電圧を制御する。本実施形態では、温度補償部15は、少なくとも1つの温度補償用ダイオードを有している。
回路部3は、検出動作部2の受光部10及び温度補償部15に電圧を印加する。回路部3は、受光部10のAPD及び温度補償部15の温度補償用ダイオードの各電極に電気的に接続されている。本実施形態では、回路部3は、温度補償部15に含まれる温度補償用ダイオードがブレークダウン状態となる電圧を受光部10のAPDに印加する。
電源部4は、検出動作部2を動作させる起電力を発生する。電源部4は、回路部3を介して、検出動作部2における受光部10のAPD及び温度補償部15の温度補償用ダイオードに電位を印加する。電源部4は、温度補償部15に含まれる温度補償用ダイオードをブレークダウン状態とする。
温度補償部15の温度補償用ダイオードにブレークダウン電圧が印加されることで、当該ブレークダウン電圧に応じた電圧が受光部10のAPDにバイアス電圧として印加される。これらの温度補償用ダイオードとAPDとは、ゲインとバイアス電圧との関係について同等の温度特性を有している。この場合、環境温度が変化すると、温度補償用ダイオードに印加されるブレークダウン電圧が変化する。温度補償用ダイオードに印加されるブレークダウン電圧の当該変化によって、上記APDに印加されるバイアス電圧も上記APDのゲインが維持されるように環境温度に応じて変化する。すなわち、温度補償部15によって、受光部10のAPDのゲインの温度補償が行われる。
次に、図2を参照して、光検出装置1の物理的な構成の一例についてより詳細に説明する。図2は、光検出装置の概略構成図である。光検出装置1は、光検出部20と、起電力発生部31と、電流制限部32と、バイアス電圧安定化部33と、設定部40と、を備えている。光検出部20は、上述した受光部10と温度補償部15とを有している。起電力発生部31は、光検出部20を動作させる起電力を発生する。電流制限部32は、光検出部20に流れる電流を制限する。バイアス電圧安定化部33は、電流制限部32により制限される上限値以上の電流出力を可能とする。設定部40は、光検出部20の動作を制御する。光検出部20の一部は、検出動作部2に含まれる。光検出部20の一部とバイアス電圧安定化部33と設定部40とは、回路部3に含まれる。起電力発生部31と電流制限部32とは、電源部4に含まれる。
光検出部20は、図2に示されているように、APD11及び温度補償部15に加えて、温度補償部15とAPD11とを電気的に接続する配線部21と、複数の端子22,23,24,25と、を有している。たとえば、端子22が第二端子であり、複数の端子25が複数の第一端子である。本明細書において、「電気的に接続する」及び「電気的に接続される」は、スイッチ等によって一時的に経路が切断される構成も含む。本実施形態では、温度補償部15は、上述した少なくとも1つの温度補償用ダイオードとして、3つの温度補償用ダイオード26,27,28を含む。温度補償部15は、4つ以上の温度補償用ダイオードを含んでいてもよい。
APD11及び温度補償用ダイオード26,27,28は、検出動作部2に含まれる。配線部21及び複数の端子22,23,24,25は、回路部3に含まれる。APD11は、一対の電極19a,19bを有している。各温度補償用ダイオード26,27,28は、一対の電極29a,29bを有している。たとえば、電極29aが第一電極である場合、電極29bは第二電極である。たとえば、温度補償用ダイオード28は第一温度補償用ダイオードであり、温度補償用ダイオード26は第二温度補償用ダイオードであり、温度補償用ダイオード27は第三温度補償用ダイオードである。
温度補償用ダイオード26,27,28は、同一の環境温度において、それぞれ異なる電圧でブレークダウン状態となる。以下、温度補償用ダイオード26,27,28がブレークダウン状態となる際に当該温度補償用ダイオードに印加される電圧、及び、APD11がブレークダウン状態となる際にAPD11に印加される電圧を「ブレークダウン電圧」という。以降の説明において、ブレークダウン電圧を比較する場合は、同一の環境温度におけるブレークダウン電圧を比較したものとする。
複数の温度補償用ダイオード26,27,28は、互いに異なるブレークダウン電圧を有している。温度補償用ダイオード26は、温度補償用ダイオード27よりも高い電圧でブレークダウン電圧を有している。温度補償用ダイオード27は、温度補償用ダイオード26よりも低く温度補償用ダイオード28よりも高い電圧でブレークダウン電圧を有している。温度補償用ダイオード28は、温度補償用ダイオード26,27よりも低い電圧でブレークダウン電圧を有している。複数の温度補償用ダイオード26,27,28のブレークダウン電圧は、いずれもAPD11のブレークダウン電圧よりも低い。
配線部21は、端子22及び端子23の双方に対して、APD11の電極19aと温度補償用ダイオード26の電極29aと温度補償用ダイオード27の電極29aと温度補償用ダイオード28の電極29aとを並列に接続する。配線部21は、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。
端子22は、APD11の電極19a及び各温度補償用ダイオード26,27,28の電極29aと電源部4の電流制限部32とに電気的に接続される。端子23は、APD11の電極19a及び各温度補償用ダイオード26,27,28の電極29aとバイアス電圧安定化部33とに電気的に接続される。端子24は、APD11の電極19bと不図示の信号読出回路とに電気的に接続される。複数の端子25は、各温度補償用ダイオード26,27,28の電極29bと設定部40とに電気的に接続される。各端子25は、互いに異なる温度補償用ダイオード26,27,28の電極29bに接続される。本実施形態では、電極19aはAPD11のアノードであり、電極19bはAPD11のカソードである。電極29aは各温度補償用ダイオード26,27,28のアノードであり、電極29bは各温度補償用ダイオード26,27,28のカソードである。
起電力発生部31及び電流制限部32は、電源部4として、光検出部20に対して電圧を印加する。起電力発生部31と電流制限部32とは、端子22に電気的に接続される。本実施形態では、起電力発生部31の正極がグラウンド36に接続され、起電力発生部31の負極が電流制限部32を介して端子22に接続されている。
バイアス電圧安定化部33は、APD11から出力される検出信号の上限値を増加させる。バイアス電圧安定化部33は、光検出部20及び起電力発生部31に対して電流制限部32と並列に接続されている。バイアス電圧安定化部33は、たとえば、コンデンサである。本実施形態では、コンデンサの一方の電極が起電力発生部31の負極に接続され、他方の電極が端子23に接続されている。光の入射によってAPD11から出力されたパルス信号を検出する場合には、電流制限部32によって制限される電流値以上の強度の出力が当該コンデンサの容量に応じて得られる。
設定部40は、APD11に設定するゲインに応じて、温度補償部15を設定する。設定部40は、複数の温度補償用ダイオード26,27,28のうち動作させる温度補償用ダイオードを選択する。換言すれば、設定部40は、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを設定する。設定部40は、複数の温度補償用ダイオード26,27,28の通電状態を制御することで、動作させる温度補償用ダイオードを設定する。
設定部40は、少なくとも1つのスイッチ41を有している。少なくとも1つのスイッチ41は、対応する端子25に接続されている。本実施形態では、設定部40は、2つのスイッチ41を有している。一方のスイッチ41は、対応する端子25を通して、温度補償用ダイオード27に電気的に接続されている。他方のスイッチ41は、対応する端子25を通して、温度補償用ダイオード28に電気的に接続されている。スイッチ41は、対応する温度補償用ダイオード27,28が通電可能な状態と通電不可能な状態とを切り替える。設定部40は、スイッチ41のオンオフを制御する。
本実施形態では、光検出部20は、3つの端子25を有している。3つの端子25は、温度補償用ダイオード26,27,28に1つずつ接続されている。温度補償用ダイオード26に接続された端子25は、グラウンド46に接続されている。温度補償用ダイオード27に接続された端子25は、スイッチ41を介してグラウンド47に接続されている。温度補償用ダイオード28に接続された端子25は、スイッチ41を介してグラウンド48に接続されている。すなわち、1つの端子25のみがスイッチ41に接続されていない。グラウンド46,47,48は、互いに接続されていてもよい。本実施形態の変形例として、全ての端子25にスイッチ41が接続されていてもよい。
次に、図3を参照して、光検出装置1における光検出部20の構造について詳細に説明する。図3は、光検出部の概略断面図である。図3では、温度補償部15として、温度補償用ダイオード26,27,28のうち1つのみが示されている。本実施形態では、光検出部20は、図3に示されているように、半導体基板50を備える光学部材である。半導体基板50は、互いに対向する主面50a,50bを有している。APD11及び各温度補償用ダイオード26,27,28は、主面50aに直交する方向から見て、互いに離間して半導体基板50に形成されている。APD11は、主面50a側に光入射面51aを有している。温度補償用ダイオード26,27,28は、遮光されたAPDである。
半導体基板50は、半導体領域51及び半導体層52,53,54,55を含む。APD11及び各温度補償用ダイオード26,27,28は、それぞれ、半導体領域51及び半導体層52,53,55を含む。
半導体領域51及び半導体層53,54,55は第一導電型であり、半導体層52は第二導電型である。半導体の不純物は、たとえば拡散法又はイオン注入法によって添加される。本実施形態では、第一導電型はP型であり、第二導電型はN型である。半導体基板50がSiをベースとする場合、P型不純物としてはBなどの13族元素が用いられ、N型不純物としてはN、P又はAsなどの15族元素が用いられる。
半導体領域51は、半導体基板50の主面50a側に位置している。半導体領域51は、主面50aの一部を構成している。半導体領域51は、たとえばP型である。
半導体層52は、主面50aの一部を構成している。半導体層52は、主面50aに直交する方向から見て、半導体領域51に接し、半導体領域51に囲まれている。半導体層52は、たとえばN型である。本実施形態では、半導体層52は、APD11及び各温度補償用ダイオード26,27,28のそれぞれにおいてカソードを構成する。
半導体層53は、半導体領域51と半導体層52との間に位置している。換言すれば、半導体層53は、主面50a側で半導体層52に接し、主面50b側で半導体領域51に接している。半導体層53は、半導体領域51よりも不純物濃度が高い。半導体層53は、たとえばP型である。本実施形態では、各温度補償用ダイオード26,27,28の半導体層53の不純物濃度は、APD11の半導体層53の不純物濃度よりも高い。半導体層53は、APD11及び各温度補償用ダイオード26,27,28のそれぞれにおいてアバランシェ領域を構成する。
温度補償用ダイオード27の半導体層53の不純物濃度は、温度補償用ダイオード26の半導体層53の不純物濃度よりも高い。温度補償用ダイオード28の半導体層53の不純物濃度は、温度補償用ダイオード27の半導体層53の不純物濃度よりも高い。
半導体層54は、主面50aの一部を構成している。半導体層54は、主面50aに直交する方向から見て、半導体領域51に接し、半導体領域51に囲まれている。本実施形態では、半導体層54は、半導体領域51及び半導体層53よりも不純物濃度が高い。半導体層54は、たとえばP型である。半導体層54は、図示されていない部分で半導体層55に接続されている。半導体層54は、光検出装置1のアノードを構成する。半導体層54は、たとえば、APD11、及び各温度補償用ダイオード26,27,28のアノードを構成する。
半導体層55は、半導体領域51よりも半導体基板50の主面50b側に位置している。半導体層55は、主面50bの全面を構成している。半導体層55は、主面50a側で半導体領域51に接している。本実施形態では、半導体層55は、半導体領域51及び半導体層53よりも不純物濃度が高い。半導体層55は、たとえばP型である。半導体層55は、光検出装置1のアノードを構成する。半導体層55は、たとえば、APD11及び各温度補償用ダイオード26,27,28のアノードを構成する。
光検出装置1は、半導体基板50の主面50a上に設けられた、絶縁膜61と、電極62,63,64と、パッシベーション膜66と、反射防止膜67とをさらに備える。絶縁膜61は、半導体基板50の主面50a上に積層されている。絶縁膜61は、たとえばシリコン酸化膜である。電極62,63,64は、それぞれ絶縁膜61上に配置されている。パッシベーション膜66は、絶縁膜61及び電極62,63,64上に積層されている。反射防止膜67は、半導体基板50の主面50a上に積層されている。
電極62は、絶縁膜61を貫通して、APD11の半導体層52に接続されている。電極62の一部は、パッシベーション膜66から露出しており、APD11の端子24を構成する。電極62は、端子24においてAPD11からの信号を出力する。
電極63は、絶縁膜61を貫通して、各温度補償用ダイオード26,27,28の半導体層52に接続されている。電極63の一部は、パッシベーション膜66から露出しており、各温度補償用ダイオード26,27,28の端子25を構成する。
電極64は、絶縁膜61を貫通して、半導体層54に接続されている。すなわち、電極64は、APD11及び各温度補償用ダイオード26,27,28に対して接続されている。換言すれば、APD11及び各温度補償用ダイオード26,27,28は、電極64に対して互いに並列に接続されている。電極64の一部は、パッシベーション膜66から露出しており、たとえば、端子22を構成する。
本実施形態では、端子24は、APD11のカソード用のパッド電極である。端子25は、温度補償用ダイオード26,27,28のカソード用のパッド電極である。端子22は、APD11及び各温度補償用ダイオード26,27,28のアノード用のパッド電極である。
端子22には、APD11及び各温度補償用ダイオード26,27,28が互いに並列に接続されている。APD11及び各温度補償用ダイオード26,27,28に逆方向バイアスをかける場合には、カソード用のパッド電極に正電圧が印加され、アノード用のパッド電極には負電圧が印加される。
反射防止膜67は、APD11の半導体層52上に積層されている。反射防止膜67の一部は、パッシベーション膜66から露出している。このため、APD11の半導体層52には、反射防止膜67を透過した光が入射し得る。各温度補償用ダイオード26,27,28の半導体層52は、絶縁膜61で覆われており遮光されている。
次に、温度補償部15についてさらに詳細に説明する。温度補償部15の各温度補償用ダイオード26,27,28とAPD11とは、ゲインとバイアス電圧との関係について同等の温度特性を有している。光検出装置1では、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧がAPD11にバイアス電圧として印加される。
温度補償部15は、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧が一定となるように当該バイアス電圧を制御する。この差分電圧は、以下のように決定されている。
APDに印加するバイアス電圧を“V”とし、当該バイアス電圧が印加されたAPDのゲインを“M”とした場合、以下の関係式が成り立つ。
Figure 0006681508
“a”及び“b”は、定数である。式(5)から分かるように、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした場合に、APDにおけるバイアス電圧とゲインとの関係を示すデータについて、傾きが“a”であり、切片が“b”である回帰直線が成り立つ。図4及び図5に示されているように、傾き“a”と切片“b”とは温度依存性が極めて低い。図4は、APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータのグラフである。図4では、横軸はAPDのゲインを示し、縦軸は“(1/M)×(dM/dV)”の値を示している。複数の線は、それぞれ異なる環境温度のデータを示している。具体的には、図4は、100℃、80℃、60℃、40℃、20℃、0℃、−20℃、−40℃の8種の環境温度におけるデータを示している。図5は、取得された回帰直線の傾き“a”及び切片“b”の温度依存性を示すグラフである。図5では、横軸が環境温度を示し、縦軸が“a”及び“b”の値を示している。実線は“a”のデータを示し、破線は“b”のデータを示している。
APDに印加するバイアス電圧を“V”とし、当該バイアス電圧が印加されたAPDのゲインを“M”とし、APDのブレークダウン電圧を“Vbr”とした場合、以下の関係式が成り立つ。
Figure 0006681508
ここで、式(5)及び式(6)における“a”は、互いに同一の物理量を示している。式(5)及び式(6)における“b”は、互いに同一の物理量を示している。
したがって、式(5)から取得された“a”及び“b”を式(6)の“a”及び“b”に代入すれば、所望のゲインに対する“(Vbr−V)”の値が一意に求まる。“(Vbr−V)”は、APDのブレークダウン電圧からAPDに印加するバイアス電圧を減算した減算値である。すなわち、“(Vbr−V)”は、上述した差分電圧である。
上記差分電圧を“ΔV”とした場合、式(6)は式(7)のように表される。
Figure 0006681508
したがって、式(7)におけるAPDのゲイン“M”を所望のゲイン“M”とした式(8)を用いることで、所望のゲインに対応する“ΔV”が容易に演算される。
Figure 0006681508
具体的には、APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータを任意の温度において取得する。取得されたデータおいて“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを式(8)の“a”に、及び回帰直線の切片を式(8)の“b”に、APD11に設定する所望のゲインを式(8)の“M”に代入する。これによって、“ΔV”が演算される。温度補償部15は、上記差分電圧が演算された“ΔV”となるように、APD11に印加するバイアス電圧を制御する。ここで、取得されるバイアス電圧とゲインとの関係を示すデータは、APD11と同一の材料及び構造を有するAPDであれば、APD11と同一個体のAPDのデータでなくともよい。
本実施形態では、上記差分電圧は、APD11のブレークダウン電圧からブレークダウン状態となった温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧を減算した減算値である。温度補償部15では、ブレークダウン状態となった温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧がAPD11にバイアス電圧として印加される。
本実施形態では、APD11のブレークダウン電圧と各温度補償用ダイオード26,27,28のブレークダウン電圧とは互いに異なる値を有している。各温度補償用ダイオード26,27,28の半導体層53の不純物濃度とAPD11の半導体層53の不純物濃度とが調整されることで、APD11のブレークダウン電圧と温度補償用ダイオード26,27,28のブレークダウン電圧との差分電圧が調整されている。本実施形態の変形例として、回路構成によって、上記差分電圧が調整されてもよい。端子25に外部電圧を印加することで、上記差分電圧が調整されてもよい。これらの変形例の場合、APD11のブレークダウン電圧と各温度補償用ダイオード26,27,28のブレークダウン電圧とは同じでもよい。これらの複数の手法が組み合わされて、上記差分電圧が調整されてもよい。
本実施形態では、各温度補償用ダイオード26,27,28の半導体層53の不純物濃度は、APD11の半導体層53の不純物濃度よりも高い。この結果、APD11のブレークダウン電圧の方が、各温度補償用ダイオード26,27,28のブレークダウン電圧よりも“ΔV”だけ高い。3つの温度補償用ダイオード26,27,28は、それぞれ異なるブレークダウン電圧を有している。3つの温度補償用ダイオード26,27,28は、それぞれ異なるゲインを取得するものとして設計されている。式(8)によって温度補償用ダイオード26,27,28ごとに“ΔV”が演算され、演算された各々の“ΔV”に応じて各温度補償用ダイオード26,27,28の半導体層53の不純物濃度が設計されている。温度補償用ダイオード26,27,28のそれぞれについて“ΔV”を演算する際に、“a”には同一の値が代入される。同様に、温度補償用ダイオード26,27,28のそれぞれについて“ΔV”を演算する際に、“b”には同一の値が代入される。
光検出装置1では、温度補償用ダイオード26,27,28のブレークダウン電圧が印加されることで、当該ブレークダウン電圧がAPD11にバイアス電圧として印加される。本実施形態では、複数の温度補償用ダイオード26,27,28のブレークダウン電圧のうち1つのブレークダウン電圧が、APD11にバイアス電圧として印加される。複数の温度補償用ダイオード26,27,28のブレークダウン電圧のうちいずれのブレークダウン電圧がAPD11にバイアス電圧として印加されるかは、設定部40によって制御される。
次に、本実施形態における光検出装置の動作について説明する。
本実施形態では、端子22はP型の半導体層54に接続されており、半導体層54はP型の半導体層55に接続されている。したがって、APD11及び各温度補償用ダイオード26,27,28のアノードは、端子22に対して互いに並列に接続されている。この結果、APD11及び各温度補償用ダイオード26,27,28のアノードには、電源部4によってマイナスの電位が印加される。
回路部3は、複数の温度補償用ダイオード26,27,28のいずれかをブレークダウン状態とする。設定部40は、スイッチ41によって、複数の温度補償用ダイオード26,27,28のうち動作させる温度補償用ダイオードを選択する。設定部40は、スイッチ41のオンオフを切り替えることで、APD11にバイアス電圧としてブレークダウン電圧を印加する温度補償用ダイオードを選択する。設定部40は、APD11に設定するゲインを式(8)の“M”に代入することで演算される“ΔV”が差分電圧となるように、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを選択する。
選択された温度補償用ダイオードのブレークダウン電圧は、当該温度補償用ダイオードに対応する端子25に印加される電位と、端子22に印加される電位との電位差である。したがって、APD11のアノードには、選択された温度補償用ダイオードのブレークダウン電圧に応じた電位が印加される。この結果、APD11には、選択された温度補償用ダイオードのブレークダウン電圧に応じた電圧がバイアス電圧として印加される。
本実施形態では、設定部40は、温度補償用ダイオード28を動作させる場合には、温度補償用ダイオード26,27,28を全て通電可能な状態とする。すなわち、設定部40は、複数の端子25に接続されたスイッチ41の全てをオンとする。この場合、通電可能な状態にある温度補償用ダイオード26,27,28において、温度補償用ダイオード28が最も小さいブレークダウン電圧を有しているため、温度補償用ダイオード28が動作する。すなわち、温度補償用ダイオード28のブレークダウン電圧が、APD11にバイアス電圧として印加される。
設定部40は、温度補償用ダイオード27を動作させる場合には、温度補償用ダイオード26,27を通電可能な状態とし、温度補償用ダイオード28を通電不可能な状態とする。本実施形態では、設定部40は、温度補償用ダイオード27に対応する端子25に接続されたスイッチ41をオンとし、温度補償用ダイオード28に対応する端子25に接続されたスイッチ41をオフとする。温度補償用ダイオード26に対応する端子25にはスイッチ41が接続されていないため、通電可能な状態となっている。この場合、通電可能な状態にある温度補償用ダイオード26,27において、温度補償用ダイオード27が最も小さいブレークダウン電圧を有しているため、温度補償用ダイオード27が動作する。すなわち、温度補償用ダイオード27のブレークダウン電圧が、APD11にバイアス電圧として印加される。
設定部40は、温度補償用ダイオード26を動作させる場合には、温度補償用ダイオード26を通電可能な状態とし、温度補償用ダイオード27,28を通電不可能な状態とする。本実施形態では、設定部40は、温度補償用ダイオード27,28に対応する端子25に接続されたスイッチ41をオフとする。温度補償用ダイオード26に対応する端子25にはスイッチ41が接続されていないため、通電可能な状態となっている。この場合、通電可能な状態にある温度補償用ダイオード26が動作する。すなわち、温度補償用ダイオード26のブレークダウン電圧が、APD11にバイアス電圧として印加される。
以上の動作によれば、設定部40によって、APD11のゲインが選択される。図6は、設定部40による設定に応じたAPD11の出力特性を示すグラフである。図6では、縦軸がAPD11の出力電圧を示し、横軸が時間を示している。データ71,72,73は、それぞれ、同一の強度のパルス光がAPD11に入射したときのAPD11の出力特性を示している。データ71は、温度補償用ダイオード26が動作している状態におけるAPD11の出力特性を示している。データ72は、温度補償用ダイオード27が動作している状態におけるAPD11の出力特性を示している。データ73は、温度補償用ダイオード26が動作している状態におけるAPD11の出力特性を示している。
図6に示されているように、温度補償用ダイオード26が動作している状態におけるAPD11の出力ピークは、温度補償用ダイオード27が動作している状態におけるAPD11の出力ピークよりも大きい。温度補償用ダイオード27が動作している状態におけるAPD11の出力ピークは、温度補償用ダイオード28が動作している状態におけるAPD11の出力ピークよりも大きい。このように、設定部40によって動作する温度補償用ダイオード26,27,28を切り替えることで、APD11のゲインが選択されることが確認された。
本実施形態では、設定部40は、温度補償用ダイオード28が通電可能な状態であるか否かにかかわらず、温度補償用ダイオード26を通電可能な状態とする。設定部40は、温度補償用ダイオード28が通電不可能な状態において、スイッチ41によって、温度補償用ダイオード27を通電可能な状態と通電不可能な状態との間で切り替える。以下では、一例として、設定部40が動作させる温度補償用ダイオードとして、温度補償用ダイオード28を選択した場合について説明する。
本実施形態では、起電力発生部31と電流制限部32との組み合わせが端子22に接続されることによって、端子22に選択された温度補償用ダイオード28のブレークダウン電圧が印加される。本実施形態では、起電力発生部31の出力電圧は、APD11の動作電圧以上である。換言すれば、起電力発生部31の出力電圧は、各温度補償用ダイオード26,27,28のブレークダウン電圧の温度変動の上限以上である。たとえば、起電力発生部31の出力電圧は、300V以上である。電流制限部32は、たとえばカレントミラー回路又は抵抗などで構成される。
選択された温度補償用ダイオード28とAPD11とのブレークダウン電圧差に応じて、APD11のゲインは任意に設定され得る。APD11のゲインがS/N比の高い最適増倍率Moptに設定されれば、検出精度の向上を図られる。
本実施形態では、APD11及び各温度補償用ダイオード26,27,28のアノードは、半導体層55で一体に構成されている。たとえば、25℃の環境温度下において、端子25に印加される電位が0Vであり、かつ、選択された温度補償用ダイオード28のブレークダウン電圧が130Vである場合、APD11のアノードには−130Vの電位が印加される。したがって、APD11のブレークダウン電圧が25℃の環境温度下において150Vである場合、APD11はアノードとカソードとの電位差がブレークダウン電圧よりも20V低い状態で動作する。
上述したように、APD11と各温度補償用ダイオード26,27,28とは、ゲインとバイアス電圧との関係について同等の温度特性を有している。このため、APD11は、選択された温度補償用ダイオード28がブレークダウン状態となっている限り、25℃の環境温度下においてブレークダウン電圧よりも20V低いバイアス電圧がされた場合のゲインを維持して動作する。換言すれば、光検出装置1では、選択された温度補償用ダイオード28をブレークダウン状態とする電圧が当該温度補償用ダイオード28に印加されることで、APD11のゲインについて温度補償が実現される。
次に、上述した実施形態及び変形例における光検出装置の作用効果について説明する。従来、互いに同等の温度特性を有するAPDと温度補償用ダイオードとを備えた光検出装置を製造する場合、ゲインとバイアス電圧との関係について所望の温度特性を有するAPDを選定し組み合せるための検査が必要であった。このため、コスト削減は、困難であった。この点、光検出装置1では、同一の半導体基板50にAPD11及び各温度補償用ダイオード26,27,28がそれぞれ形成されている。この場合、ゲインとバイアス電圧とに関する温度特性が広い温度範囲で互いに同等の温度補償用ダイオード26,27,28とAPD11とが、各温度補償用ダイオード26,27,28とAPD11とがそれぞれ異なる半導体基板に形成される場合よりも容易に高い精度で形成される。したがって、製造コストが抑えられながら、APD11のゲインに対する温度補償が実現され得る。
半導体基板50は、第一導電型の半導体領域51を含んでいる。APD11及び各温度補償用ダイオード26,27,28は、それぞれ、半導体層52と半導体層53とを含んでいる。半導体基板50では、半導体層52は、第二導電型である。半導体層53は、半導体領域51よりも不純物濃度が高い第一導電型である。半導体層53は、半導体領域51と半導体層52との間に位置している。このように、各温度補償用ダイオード26,27,28は、APD11と同様の構成である。このため、ゲインとバイアス電圧とに関する温度特性がAPD11に酷似した複数の温度補償用ダイオード26,27,28を容易に形成できる。
半導体基板50では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より高い。この場合、光検出装置1では、たとえば、APD11のブレークダウン電圧の方が各温度補償用ダイオード26,27,28のブレークダウン電圧よりも大きくなる。この結果、リニアモードで動作するAPD11のゲインに対する温度補償が実現される。
光検出装置1では、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを式(8)の“a”に、切片を式(8)の“b”に代入することで所望のゲインが得られる上記差分電圧が決定されている。このため、環境温度を厳密に考慮することなく、極めて容易に所望のゲインが得られる。
温度補償部15は、温度補償用ダイオード26,27,28を有している。温度補償部15は、温度補償用ダイオード26,27,28のいずれかに印加されるブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。たとえば、温度補償用ダイオード28がブレークダウン状態とされる場合、差分電圧は、APD11のブレークダウン電圧から温度補償用ダイオード28のブレークダウン電圧に応じた電圧を減算した減算値である。このため、所望のゲインが得られる“ΔV”を導出し、上記減算値が“ΔV”となるように、APD11及び温度補償用ダイオード26,27,28の不純物濃度が設計され得る。上記減算値が“ΔV”となるように、温度補償用ダイオード26,27,28とAPD11との間の回路が設計されてもよい。
光検出装置1は、設定部40と配線部21とを備えている。設定部40は、APD11に設定するゲインに応じて、温度補償部15を設定する。配線部21は、温度補償部15とAPD11とを電気的に接続する。複数の温度補償用ダイオード26,27,28は、互いに異なるブレークダウン電圧を有している。配線部21は、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。設定部40は、APD11に設定するゲインを式(8)の“M”に代入することで演算される“ΔV”が差分電圧となるように、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを設定する。このため、設定部40によって、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードが設定される。したがって、環境温度を厳密に考慮することなく、状況に応じた所望のゲインを極めて容易に得ることができる。換言すれば、所望のゲインを容易に切り替えることができると共に温度に安定して所望のゲインが得られる。
回路部3は、端子22に対してAPD11と各温度補償用ダイオード26,27,28とを電気的に並列に接続する。この構成において、複数の温度補償用ダイオード26,27,28のいずれかがブレークダウン状態とされると、ブレークダウン状態となった温度補償用ダイオードのブレークダウン電圧がAPD11にバイアス電圧として印加される。この結果、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧が設定され、APD11は当該差分電圧に応じたゲインを有している。したがって、ブレークダウン状態とする温度補償用ダイオードに応じて、APD11において状況に応じた所望のゲインが温度に対して安定して得られる。
回路部3は、少なくとも1つのスイッチ41を有している。スイッチ41は、対応する温度補償用ダイオード27,28に電気的に接続されている。スイッチ41は、対応する温度補償用ダイオード27,28が通電可能な状態と通電不可能な状態とを切り替える。複数の温度補償用ダイオード26,27,28は、温度補償用ダイオード26と、温度補償用ダイオード28とを含んでいる。温度補償用ダイオード26は、温度補償用ダイオード28よりも高いブレークダウン電圧を有している。スイッチ41は、温度補償用ダイオード28に電気的に接続されている。この場合、温度補償用ダイオード28がスイッチ41によって通電可能な状態にされると、温度補償用ダイオード26が通電可能な状態であったとしても、温度補償用ダイオード28が優先してブレークダウン状態となる。このように、容易な制御でAPD11において状況に応じた所望のゲインを切り替えることができる。
少なくとも1つのスイッチ41は、対応する端子25に接続されている。各温度補償用ダイオード26,27,28の電極29aとAPD11との間には高電圧が印加される。このため、電極29aとAPD11との間にスイッチ41を配置するよりも、端子25を介して電極29bと電気的にスイッチ41を接続した方が容易な制御を実現できる。
回路部3は、温度補償用ダイオード28が通電可能な状態であるか否かに関わらず、温度補償用ダイオード26を通電可能な状態とする。この場合、温度補償用ダイオード28が損傷したり、温度補償用ダイオード28が配置されている付近で局所的な温度変化が起こったとしても、温度補償用ダイオード26がブレークダウン状態となる。このため、大きな電流がAPD11に流れることが防止され、光検出装置1の故障が防止される。
複数の温度補償用ダイオード26,27,28は、温度補償用ダイオード27をさらに含んでいる。温度補償用ダイオード27は、温度補償用ダイオード28のブレークダウン電圧よりも高くかつ温度補償用ダイオード26のブレークダウン電圧よりも低いブレークダウン電圧を有している。スイッチ41は、温度補償用ダイオード27に電気的に接続される。回路部3は、温度補償用ダイオード28が通電不可能な状態において、スイッチ41によって、温度補償用ダイオード27を通電可能な状態と通電不可能な状態との間で切り替える。この場合、温度補償用ダイオード28が通電可能な状態では、温度補償用ダイオード28がブレークダウン状態となる。温度補償用ダイオード28が通電不可能な状態において、温度補償用ダイオード27が通電可能な状態となれば温度補償用ダイオード27がブレークダウン状態となる。温度補償用ダイオード28が通電不可能な状態において、温度補償用ダイオード27が通電不可能な状態となれば温度補償用ダイオード26がブレークダウン状態となる。このように、容易な制御でAPD11において状況に応じた所望のゲインを切り替えることができる。
次に、図7を参照して、光検出装置の製造方法の一例について説明する。図7は、光検出装置1のうち半導体基板50の製造方法を示すフローチャートである。
まず、半導体ウエハを準備する(工程S1)。半導体ウエハは、半導体基板50として加工される前の基板であり、互いに対向する主面50a,50bを有している。半導体ウエハは、半導体領域51に対応する第一導電型の半導体領域を含む。当該半導体領域は、半導体ウエハの主面50a側に設けられ、主面50aの全面を構成する。たとえば、半導体ウエハの半導体領域は、P型である。本実施形態では、半導体ウエハには、主面50b側から不純物を添加することによって、半導体ウエハの半導体領域よりも不純物濃度が高い第一導電型の半導体層55が形成されている。たとえば、半導体層55は、P型である。
続いて、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧を決定する。決定方法は、以下の通りである。
まず、APDに印加するバイアス電圧と当該APDのゲインとの相関を示すデータにおける“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片を取得する(工程S2)。ここで、“V”はAPDに印加するバイアス電圧であり、“M”は当該バイアス電圧が印加されたAPDのゲインである。工程S2で用いられる上記データは、APD11と同一の材料及び構造からなる別個体である。
次に、工程S2における取得結果と式(8)とを用いて、所望のゲインが得られる上記差分電圧を決定する(工程S3)。上記差分電圧は、取得された上記傾きを式(8)の“a”に、取得された上記切片を式(8)の“b”に、APD11に設定する所望のゲインを式(8)の“M”に、代入することで演算された“ΔV”に相当する。本実施形態では、APD11に設定するゲインとして互いに異なる複数の値を決定し、これらの値について複数の上記差分電圧を決定する。互いに異なる複数の値を式(8)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、複数の値のそれぞれに対応する上記差分電圧として決定される。
続いて、第一のイオン注入工程(工程S4)として、イオン注入法により、主面50a側に不純物イオンを注入して不純物を添加することで、第二導電型の半導体層52及び第一導電型の半導体層53,54を形成する。たとえば、半導体層52はN型であり、半導体層53はP型であり、半導体層54はP型である。本実施形態では、半導体層52は、一回のイオン注入処理で、互いに離間した異なる箇所に第二導電型の不純物イオンを注入することによって形成される。半導体層53は、半導体層52が形成された後に、第一導電型の不純物イオンを注入することで形成される。半導体層53は、半導体層52が形成される前に、第一導電型の不純物イオンを注入することで形成されてもよい。
半導体層52,53は、主面50aに直交する方向から見て、互いに重なる位置に形成される。半導体層53は、主面50a側から見て半導体層52よりも深い位置に第一導電型の不純物を注入することで形成される。半導体層52,53は、1つの半導体基板50となる領域内において、主面50aと直交する方向から見て互いに離間した複数の箇所に形成される。当該複数の箇所は、APD11を配置する箇所と各温度補償用ダイオード26,27,28を配置する箇所とを含む。第一のイオン注入工程では、半導体層52の不純物濃度が同等となるように、第二導電型の不純物が各箇所に添加される。同様に、半導体層53の不純物濃度が同等となるように、第一導電型の不純物が各箇所に添加される。
続いて、第二のイオン注入工程(工程S5)として、イオン注入方法により、上述した複数の箇所のうち一部の箇所の半導体層53のみにさらに不純物を添加する。本実施形態では、各温度補償用ダイオード26,27,28を配置する箇所のみにおいて、半導体層53にさらに第一導電型の不純物が注入される。このため、光検出装置1では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より高い。この場合、光検出装置1は、APD11のブレークダウン電圧が各温度補償用ダイオード26,27,28のブレークダウン電圧よりも大きくなるように構成される。
工程S4及び工程S5において各温度補償用ダイオード26,27,28の半導体層53に注入される第一導電型の不純物が注入される量は、工程S3で決定された差分電圧に応じる。本実施形態では、温度補償用ダイオード28の半導体層53に注入される第一導電型の不純物の量は、温度補償用ダイオード27の半導体層53に注入される第一導電型の不純物の量よりも多い。これにより、温度補償用ダイオード27のブレークダウン電圧が温度補償用ダイオード28のブレークダウン電圧よりも大きくなるように構成される。温度補償用ダイオード27の半導体層53に注入される第一導電型の不純物の量は、温度補償用ダイオード26の半導体層53に注入される第一導電型の不純物の量よりも多い。これにより、温度補償用ダイオード26のブレークダウン電圧が温度補償用ダイオード27のブレークダウン電圧よりも大きくなるように構成される。
第二のイオン注入工程では、各温度補償用ダイオード26,27,28を配置する箇所ではなく、APD11を配置する箇所のみにおいて、半導体層53にさらに第一導電型の不純物が注入されてもよい。この場合、光検出装置1では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より低い。この場合の光検出装置1では、APD11のブレークダウン電圧は、各温度補償用ダイオード26,27,28のブレークダウン電圧よりも小さくなるように構成される。
以上の工程によって、光検出装置1の半導体基板50が形成される。工程S2及び工程S3は、工程S1の前に実行されてもよいし、工程S4の後に実行されてもよい。本実施形態では、既に半導体層55が形成された状態から半導体層52,53,54を形成した。しかし、半導体層52,53,54が形成された後に、半導体層55が形成されてもよい。
上記製造方法では、異なる複数の箇所にイオンを注入することで各箇所に半導体層52と半導体層53とが形成される。その後、さらに一部の箇所の半導体層53にイオンが注入される。このため、ゲインとバイアス電圧とに関する温度特性が同等でありながら、それぞれ所望のブレークダウン電圧に設定された、複数の温度補償用ダイオード26,27,28及びAPD11が容易に製造され得る。この場合、各温度補償用ダイオード26,27,28のブレークダウン電圧とAPD11のブレークダウン電圧との差分電圧に応じて、APD11のゲインが任意に設定され得る。このため、各温度補償用ダイオード26,27,28とAPD11とがそれぞれ所望のブレークダウン電圧に設定されれば、検出精度の向上が図られる。たとえば、上記差分電圧に応じて、APD11のゲインがS/N比の高い最適増倍率Moptに設定されれば、検出精度の向上が図られる。このように、上記製造方法では、製造コストが抑制されながら、APD11のゲインに対する温度補償が実現され、検出精度の向上が図られる。
上記差分電圧の決定方法では、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片が取得される。取得された傾きを式(8)の“a”に、取得された切片を式(8)の“b”に代入することで所望のゲインが得られる上記差分電圧が決定される。このため、環境温度を厳密に考慮することなく、極めて容易に、所望のゲインが得られる上記差分電圧が決定される。
上記決定方法では、APD11に設定するゲインとして互いに異なる複数の値を式(8)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、上記複数の値のそれぞれに対応する差分電圧として決定される。このため、環境温度を厳密に考慮することなく、極めて容易に、複数の値のそれぞれに対応する複数の上記差分電圧が決定される。
以上、本発明の実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
本実施形態では、いわゆるリーチスルー型のAPD11がリニアモードで動作する構成を説明した。光検出装置1は、リバース型のAPD11がリニアモードで動作する構成であってもよい。
本実施形態では、起電力発生部31、電流制限部32、バイアス電圧安定化部33、及び設定部40を有する光検出装置1を説明した。しかし、本実施形態にかかる光検出装置は、起電力発生部31、電流制限部32、バイアス電圧安定化部33、及び設定部40の少なくとも1つが含まれない構成を有していてもよい。この場合、光検出装置に接続された外部装置が、起電力発生部31、電流制限部32、バイアス電圧安定化部33、又は設定部40として機能してもよい。光検出装置1は、不図示の信号読出回路を含んでいてもよい。
本実施形態では、スイッチ41が光検出部20の端子25に接続され、このスイッチ41が設定部40によって制御される構成を説明した。しかし、スイッチ41は、光検出部20の内部に配置されてもよい。
本実施形態では、端子22,23,24,25は、パッド電極として説明された。しかし、端子22,23,24,25は、半導体基板50内の半導体によって構成されたものであってもよい。
各温度補償用ダイオード26,27,28とAPD11との電気的な接続を切り替えるスイッチ41が配線部21に配置され、配線部21内のスイッチ41のオンオフが設定部40によって制御されてもよい。この場合も、設定部40によって、APD11に対して印加されるバイアス電圧が制御される。APD11と各温度補償用ダイオード26,27,28との間には高電圧が印加されるため、配線部21に配置されたスイッチを制御する場合よりも、端子25に接続されたスイッチ41を制御する方が容易である。
温度補償部15には、互いに同一のブレークダウン電圧を有する複数の温度補償用ダイオードが含まれていてもよい。この構成によれば、温度補償用ダイオードの一部が損傷したり、温度補償用ダイオードの一部が配置されている付近で局所的な温度変化が起こったとしても、光検出装置1の正常な動作を実現できる。
1…光検出装置、11…APD、15…温度補償部、26,27,28…温度補償用ダイオード、21…配線部、40…設定部。

Claims (4)

  1. アバランシェフォトダイオードと、前記アバランシェフォトダイオードのブレークダウン電圧と前記アバランシェフォトダイオードに印加するバイアス電圧との差分電圧に基づいて前記バイアス電圧を制御することで前記アバランシェフォトダイオードのゲインの温度補償を行う温度補償部と、を有する光検出装置において、前記差分電圧を決定する決定方法であって、
    前記バイアス電圧を“V”とし、当該バイアス電圧が印加された前記アバランシェフォトダイオードのゲインを“M”とした場合に、前記バイアス電圧と前記ゲインとの相関を示すデータにおける“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片を取得することと、
    前記傾きを下記式(1)の“a”に、前記切片を下記式(1)の“b”に、前記アバランシェフォトダイオードに設定するゲインを下記式(1)の“M”に、代入することで演算された“ΔV”を、前記差分電圧として決定することと、
    Figure 0006681508

    を含む決定方法。
  2. 前記アバランシェフォトダイオードに設定するゲインとして互いに異なる複数の値を前記式(1)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、前記複数の値のそれぞれに対応する前記差分電圧として決定される、請求項1に記載の決定方法。
  3. アバランシェフォトダイオードと、
    前記アバランシェフォトダイオードのブレークダウン電圧と前記アバランシェフォトダイオードに印加するバイアス電圧との差分電圧に基づいて前記バイアス電圧を制御することで、前記アバランシェフォトダイオードの温度補償を行う温度補償部と、を備え、
    前記温度補償部は、前記バイアス電圧を“V”とし当該バイアス電圧が印加された前記アバランシェフォトダイオードのゲインを“M”とした場合に、前記差分電圧が、前記バイアス電圧と前記ゲインとの相関を示すデータについて、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを下記式(2)の“a”に、前記回帰直線の切片を下記式(2)の“b”に、前記アバランシェフォトダイオードに設定するゲインを下記式(2)の“M”に代入することで演算された“ΔV”となるように、前記バイアス電圧を制御する、
    Figure 0006681508

    光検出装置。
  4. 前記アバランシェフォトダイオードに設定するゲインに応じて、前記温度補償部を設定する設定部と、
    前記温度補償部と前記アバランシェフォトダイオードとを電気的に接続する配線部と、をさらに備え、
    前記温度補償部は、互いに異なるブレークダウン電圧を有する複数の温度補償用ダイオードを有し、
    前記配線部は、各前記温度補償用ダイオードのブレークダウン電圧に応じた電圧を前記アバランシェフォトダイオードにバイアス電圧として印加し、
    前記設定部は、前記アバランシェフォトダイオードに設定するゲインを前記式(2)の“M”に代入することで演算される“ΔV”が前記差分電圧となるように、前記複数の温度補償用ダイオードから前記バイアス電圧の制御に用いる前記温度補償用ダイオードを設定する、請求項3に記載の光検出装置。
JP2019175941A 2018-12-12 2019-09-26 決定方法、及び光検出装置 Active JP6681508B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980082092.3A CN113302462B (zh) 2018-12-12 2019-11-29 决定方法及光检测装置
EP19897203.6A EP3988909B1 (en) 2018-12-12 2019-11-29 Determination method and light detection device
PCT/JP2019/046901 WO2020121855A1 (ja) 2018-12-12 2019-11-29 決定方法、及び光検出装置
US17/311,766 US11561131B2 (en) 2018-12-12 2019-11-29 Determination method and light detection device
TW108144638A TWI851628B (zh) 2018-12-12 2019-12-06 決定方法及光檢測裝置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018232895 2018-12-12
JP2018232895 2018-12-12
JP2018232892 2018-12-12
JP2018232892 2018-12-12

Publications (2)

Publication Number Publication Date
JP6681508B1 true JP6681508B1 (ja) 2020-04-15
JP2020096170A JP2020096170A (ja) 2020-06-18

Family

ID=70166526

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2019111528A Active JP7454917B2 (ja) 2018-12-12 2019-06-14 光検出装置
JP2019111529A Active JP7455520B2 (ja) 2018-12-12 2019-06-14 光検出装置
JP2019175945A Active JP7475123B2 (ja) 2018-12-12 2019-09-26 光検出装置
JP2019175941A Active JP6681508B1 (ja) 2018-12-12 2019-09-26 決定方法、及び光検出装置
JP2019175948A Active JP6681509B1 (ja) 2018-12-12 2019-09-26 光検出装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2019111528A Active JP7454917B2 (ja) 2018-12-12 2019-06-14 光検出装置
JP2019111529A Active JP7455520B2 (ja) 2018-12-12 2019-06-14 光検出装置
JP2019175945A Active JP7475123B2 (ja) 2018-12-12 2019-09-26 光検出装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019175948A Active JP6681509B1 (ja) 2018-12-12 2019-09-26 光検出装置

Country Status (7)

Country Link
US (2) US11927478B2 (ja)
EP (3) EP3988909B1 (ja)
JP (5) JP7454917B2 (ja)
KR (2) KR20210098524A (ja)
CN (5) CN113167640B (ja)
DE (2) DE112019006173T5 (ja)
WO (2) WO2020121855A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121858A1 (ja) 2018-12-12 2020-06-18 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
WO2020121852A1 (ja) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 光検出装置
JP7454917B2 (ja) 2018-12-12 2024-03-25 浜松ホトニクス株式会社 光検出装置
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device
US20220020786A1 (en) * 2018-12-12 2022-01-20 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
CN117501149A (zh) * 2021-06-21 2024-02-02 索尼半导体解决方案公司 光接收元件

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1582850A (ja) 1968-03-29 1969-10-10
JPS5062389A (ja) 1973-10-01 1975-05-28
GB1535824A (en) 1976-02-11 1978-12-13 Standard Telephones Cables Ltd Avalanche photodetector biassing system
US4181863A (en) * 1976-04-03 1980-01-01 Ferranti Limited Photodiode circuit arrangements
GB1532262A (en) 1976-04-03 1978-11-15 Ferranti Ltd Photodiode circuit arrangements
GB1503088A (en) 1976-07-22 1978-03-08 Standard Telephones Cables Ltd Avalanche photodetector
JPS5341280A (en) * 1976-09-27 1978-04-14 Nippon Telegr & Teleph Corp <Ntt> Photodetecting system of multiplication constant control
JPS5916812Y2 (ja) * 1978-06-27 1984-05-17 キヤノン株式会社 カメラの測光回路
JPS6017051B2 (ja) 1978-11-20 1985-04-30 東京光学機械株式会社 アバランシェ・ダイオ−ドの温度補償方法
JPS55127082A (en) * 1979-03-23 1980-10-01 Nec Corp Bias voltage generating circuit of avalanche photodiode
SE417145B (sv) 1979-05-30 1981-02-23 Asea Ab Lavinfotodiodanordning med en lavindiod och med organ for styrning av diodens multiplikationsfaktor
US4464048A (en) 1981-03-25 1984-08-07 Barr & Stroud Limited Laser rangefinders
JPS60178673A (ja) 1984-02-24 1985-09-12 Nec Corp アバランシフオトダイオ−ド
JPS60180347A (ja) * 1984-02-28 1985-09-14 Fujitsu Ltd アバランシエフオトダイオ−ドの温度補償回路
JPS60211886A (ja) 1984-04-05 1985-10-24 Nec Corp アバランシフオトダイオ−ドの製造方法
JPS6138975U (ja) * 1984-08-09 1986-03-11 株式会社東芝 印刷配線板
JPH0799782B2 (ja) * 1985-06-18 1995-10-25 株式会社ニコン 半導体光検出装置
JPS62239727A (ja) 1986-04-11 1987-10-20 Nec Corp アバランシエホトダイオ−ドの利得制御方式
JPS62279671A (ja) * 1986-05-28 1987-12-04 Mitsubishi Electric Corp 固体撮像装置
JPH0828488B2 (ja) * 1987-07-07 1996-03-21 富士通株式会社 半導体装置
JPH01118714A (ja) 1987-10-30 1989-05-11 Omron Tateisi Electron Co 光学式位置検出センサ
US4948989A (en) 1989-01-31 1990-08-14 Science Applications International Corporation Radiation-hardened temperature-compensated voltage reference
JPH0321082A (ja) * 1989-06-19 1991-01-29 Fujitsu Ltd 光受信回路
JP2838906B2 (ja) * 1989-08-04 1998-12-16 キヤノン株式会社 光電変換装置
JPH04111477A (ja) * 1990-08-31 1992-04-13 Sumitomo Electric Ind Ltd 受光素子
JPH04256376A (ja) * 1991-02-08 1992-09-11 Hamamatsu Photonics Kk アバランシェホトダイオード及びその製造方法
JPH05235396A (ja) * 1992-02-24 1993-09-10 Sumitomo Electric Ind Ltd 半導体受光装置
JP3121100B2 (ja) 1992-03-25 2000-12-25 株式会社日立製作所 固体撮像装置
JPH06224463A (ja) * 1993-01-22 1994-08-12 Mitsubishi Electric Corp 半導体受光装置
JPH0763854A (ja) * 1993-06-16 1995-03-10 Kansei Corp レーザー送受光装置
JP2686036B2 (ja) 1993-07-09 1997-12-08 浜松ホトニクス株式会社 アバランシェフォトダイオードのバイアス回路
JP3421103B2 (ja) 1993-12-20 2003-06-30 浜松ホトニクス株式会社 アバランシェフォトダイオードを用いた光検出回路
JPH07263653A (ja) 1994-03-17 1995-10-13 Hamamatsu Photonics Kk 固体撮像装置
JPH08207281A (ja) * 1995-02-06 1996-08-13 Canon Inc インクジェット記録ヘッド
JPH10247717A (ja) * 1997-03-04 1998-09-14 Matsushita Electron Corp 半導体装置
JPH11275755A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd アバランシェフォトダイオード保護回路を有する光受信回路
JP2000171295A (ja) 1998-12-03 2000-06-23 Nec Corp Apdバイアス回路
JP3668926B2 (ja) 1999-08-27 2005-07-06 株式会社ルネサステクノロジ 光インタコネクション受信モジュール
US6313459B1 (en) * 2000-05-31 2001-11-06 Nortel Networks Limited Method for calibrating and operating an uncooled avalanche photodiode optical receiver
JP3509851B2 (ja) 2000-12-28 2004-03-22 サンケン電気株式会社 電子回路装置及びこれを使用したスィチング回路装置
US20030117121A1 (en) 2001-12-20 2003-06-26 Prescott Daniel C. High-side current-sense circuit for precision application
KR100566197B1 (ko) * 2003-01-02 2006-03-29 삼성전자주식회사 Apd 광수신기의 온도 보상 장치
JP2004281488A (ja) 2003-03-13 2004-10-07 Renesas Technology Corp 半導体装置及びその製造方法
JP4223304B2 (ja) * 2003-03-19 2009-02-12 三菱電機株式会社 光受信器
JP2004303878A (ja) 2003-03-31 2004-10-28 Nippon Sheet Glass Co Ltd 受光素子アレイ
JP3956923B2 (ja) 2003-09-19 2007-08-08 住友電気工業株式会社 アバランシェフォトダイオードのバイアス電圧制御回路
JP4399337B2 (ja) * 2004-09-13 2010-01-13 株式会社フューチャービジョン 平面パターンを有する基板およびそれを用いた表示装置
JP2007266251A (ja) * 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
EP3002794B1 (en) * 2006-07-03 2020-08-19 Hamamatsu Photonics K.K. Photodiode array
CN200950235Y (zh) * 2006-09-25 2007-09-19 深圳飞通光电子技术有限公司 雪崩光电二极管的温度补偿偏压电路
CN200959101Y (zh) 2006-10-12 2007-10-10 宁波中科集成电路设计中心有限公司 一种雪崩光电二极管的温度补偿装置
JP4791334B2 (ja) * 2006-12-11 2011-10-12 富士通オプティカルコンポーネンツ株式会社 光受信装置および光受信装置のバイアス電圧制御方法
JP4642047B2 (ja) 2007-06-15 2011-03-02 三洋電機株式会社 半導体装置
JP2009038157A (ja) * 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd 受光素子アレイ、一次元受光素子アレイおよび二次元受光素子アレイ
JP5483544B2 (ja) 2009-10-21 2014-05-07 住友電工デバイス・イノベーション株式会社 半導体受光装置
CN201601136U (zh) * 2010-01-13 2010-10-06 山东交通职业学院 一种用于激光接收电路的温度补偿电路
US20120101614A1 (en) 2010-10-22 2012-04-26 Allan Ghaemi System and Method for Manufacturing Optical Network Components
JP5844580B2 (ja) * 2011-09-05 2016-01-20 浜松ホトニクス株式会社 固体撮像素子及び固体撮像素子の実装構造
JP5791461B2 (ja) 2011-10-21 2015-10-07 浜松ホトニクス株式会社 光検出装置
JP5926921B2 (ja) 2011-10-21 2016-05-25 浜松ホトニクス株式会社 光検出装置
JP2013164263A (ja) 2012-02-09 2013-08-22 Mitsubishi Electric Corp 受光装置及び距離測定装置及び形状測定装置
JP5984617B2 (ja) 2012-10-18 2016-09-06 浜松ホトニクス株式会社 フォトダイオードアレイ
DE102013100696B3 (de) 2013-01-24 2013-11-07 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
KR101448393B1 (ko) * 2013-06-27 2014-10-08 단국대학교 천안캠퍼스 산학협력단 의료용 레이저 수신단의 apd 이득 안정화 방법
US9541656B2 (en) * 2013-12-20 2017-01-10 General Electric Company System and method for compensating temperature gain variation in radiation detectors
CN103728030A (zh) 2013-12-20 2014-04-16 中国科学院合肥物质科学研究院 Apd温度自适应近红外单光子探测装置
JP2016061729A (ja) * 2014-09-19 2016-04-25 株式会社東芝 光子検出素子、光子検出装置、及び放射線分析装置
CN106033225B (zh) 2015-03-16 2017-08-25 苏州旭创科技有限公司 低功耗apd偏压控制器与偏压控制方法及光电接收器
US10203400B2 (en) * 2015-07-31 2019-02-12 Avago Technologies International Sales Pte. Limited Optical measurement system incorporating ambient light component nullification
US9954124B1 (en) * 2016-01-08 2018-04-24 Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Thermo-compensated silicon photo-multiplier with on-chip temperature sensor
CN109478578B (zh) 2016-07-27 2022-01-25 浜松光子学株式会社 光检测装置
EP3339886B1 (de) * 2016-12-22 2019-02-13 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodiodenelementen und verfahren zur versorgung mit einer vorspannung
EP3573518A4 (en) 2017-01-30 2020-11-04 Medibeacon Inc. PROCEDURE FOR NON-INVASIVE MONITORING OF FLUORESCENT TRACER AGENTS WITH DIFFUSED REFLECTIVE CORRECTIONS
JP6696695B2 (ja) * 2017-03-16 2020-05-20 株式会社東芝 光検出装置およびこれを用いた被写体検知システム
JP6741703B2 (ja) 2017-03-31 2020-08-19 株式会社デンソー 光検出器
KR102544296B1 (ko) 2018-09-13 2023-06-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 표면발광레이저 소자 및 이를 구비한 표면발광레이저 장치
US20220020786A1 (en) 2018-12-12 2022-01-20 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
WO2020121858A1 (ja) 2018-12-12 2020-06-18 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
JP7454917B2 (ja) 2018-12-12 2024-03-25 浜松ホトニクス株式会社 光検出装置
US11513002B2 (en) * 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device
JP7063854B2 (ja) 2019-07-03 2022-05-09 本田技研工業株式会社 ソフトウェア更新装置、サーバ装置、ソフトウェア更新方法、およびプログラム
US20230083263A1 (en) 2021-09-15 2023-03-16 Kabushiki Kaisha Toshiba Light detector, light detection system, lidar device, and mobile body
JP7027607B1 (ja) 2021-10-01 2022-03-01 株式会社杉原クラフト ウエイトトレーニングマシン

Also Published As

Publication number Publication date
US20220026270A1 (en) 2022-01-27
DE112019006185T5 (de) 2021-09-02
DE112019006173T5 (de) 2021-09-16
US11561131B2 (en) 2023-01-24
JP6681509B1 (ja) 2020-04-15
CN113167637B (zh) 2024-05-28
CN113167640B (zh) 2024-07-19
WO2020121855A1 (ja) 2020-06-18
CN113167641B (zh) 2024-03-19
CN113302462A (zh) 2021-08-24
CN113167638A (zh) 2021-07-23
EP3988907A1 (en) 2022-04-27
EP3896412A4 (en) 2022-12-28
JP2020095015A (ja) 2020-06-18
US20220026269A1 (en) 2022-01-27
JP2020096170A (ja) 2020-06-18
EP3988909A1 (en) 2022-04-27
EP3988907A4 (en) 2022-12-14
JP2020095016A (ja) 2020-06-18
TW202044569A (zh) 2020-12-01
KR20210098523A (ko) 2021-08-10
EP3896412A1 (en) 2021-10-20
EP3988907B1 (en) 2023-09-20
CN113167638B (zh) 2024-06-11
CN113167640A (zh) 2021-07-23
KR20210098524A (ko) 2021-08-10
CN113167637A (zh) 2021-07-23
EP3988909B1 (en) 2024-10-23
JP2020096157A (ja) 2020-06-18
US11927478B2 (en) 2024-03-12
JP7455520B2 (ja) 2024-03-26
JP7475123B2 (ja) 2024-04-26
CN113302462B (zh) 2024-03-26
CN113167641A (zh) 2021-07-23
WO2020121859A1 (ja) 2020-06-18
EP3988909A4 (en) 2022-11-16
JP2020096158A (ja) 2020-06-18
JP7454917B2 (ja) 2024-03-25

Similar Documents

Publication Publication Date Title
JP6681508B1 (ja) 決定方法、及び光検出装置
WO2020121854A1 (ja) 光検出装置
US6858829B2 (en) Avalanche photodiode array biasing device and avalanche photodiode structure
US8274334B2 (en) Detection circuit with improved anti-blooming circuit
WO2020121858A1 (ja) 光検出装置及び光検出装置の製造方法
US20220020786A1 (en) Photodetector and method for manufacturing photodetector
US20160149068A1 (en) Multi-junction solar cell
TWI851628B (zh) 決定方法及光檢測裝置
US20230273299A1 (en) Photodetection device
JP2020150002A (ja) 受光回路、及びapdアレイ装置
US12087800B2 (en) Photodector including germanium layer and doped region
US11209308B2 (en) Semiconductor light detection device and method of detecting light of specific wavelength
JP2017228750A (ja) フォトダイオード並びにその製造方法
KR20200126274A (ko) 듀얼포토다이오드의 제조방법, 그에 따른 듀얼포토다이오드, 듀얼포토다이오드를 이용한 파장 및 세기 측정방법
JP2005191161A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250