WO2020121854A1 - 光検出装置 - Google Patents

光検出装置 Download PDF

Info

Publication number
WO2020121854A1
WO2020121854A1 PCT/JP2019/046900 JP2019046900W WO2020121854A1 WO 2020121854 A1 WO2020121854 A1 WO 2020121854A1 JP 2019046900 W JP2019046900 W JP 2019046900W WO 2020121854 A1 WO2020121854 A1 WO 2020121854A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature compensating
apd
diode
temperature
diodes
Prior art date
Application number
PCT/JP2019/046900
Other languages
English (en)
French (fr)
Inventor
弘典 園部
隆裕 近藤
和晃 前北
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019175945A external-priority patent/JP7475123B2/ja
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201980056994.XA priority Critical patent/CN113167640A/zh
Priority to EP19897484.2A priority patent/EP3896412A4/en
Priority to US17/311,756 priority patent/US11513002B2/en
Publication of WO2020121854A1 publication Critical patent/WO2020121854A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0252Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche

Definitions

  • the present invention relates to a light detection device.
  • Patent Document 1 A configuration is known in which a bias voltage applied to an avalanche photodiode is controlled in order to perform stable light detection with respect to temperature (for example, Patent Document 1).
  • Patent Document 1 a voltage corresponding to the breakdown voltage of the temperature compensating diode is applied to the avalanche photodiode as a bias voltage.
  • APD the "avalanche photodiode" is referred to as "APD”.
  • APDs are required to stably obtain a desired gain with respect to temperature.
  • the gain of the APD changes according to the change of the bias voltage applied to the APD.
  • Even if a constant bias voltage is applied to the APD the gain of the APD changes if the environmental temperature changes. Therefore, in order to keep the gain of the APD constant, it is necessary to change the bias voltage applied to the APD according to the environmental temperature.
  • the differential voltage between the breakdown voltage of the APD and the bias voltage applied to the APD is controlled to be constant, the change in the APD gain is small even if the environmental temperature changes.
  • the breakdown voltage of the APD also changes depending on the environmental temperature, it is very difficult to switch the gain so that a desired gain according to the situation can be obtained.
  • One aspect of the present invention is to provide a photodetector capable of stably obtaining a desired gain according to the situation in APD with respect to temperature.
  • a photodetector includes an APD, a plurality of temperature compensating diodes, and a circuit unit.
  • Each of the plurality of temperature compensating diodes has a first electrode and a second electrode.
  • the plurality of temperature compensating diodes have different breakdown voltages lower than that of the APD.
  • the circuit unit sets any one of the plurality of temperature compensating diodes in a breakdown state.
  • the circuit unit includes a plurality of first terminals and second terminals. Each of the plurality of first terminals is connected to the second electrodes of the temperature compensating diodes different from each other.
  • the second terminal is electrically connected to the APD and the first electrode of each temperature compensation diode.
  • the circuit portion electrically connects the APD and each temperature compensation diode in parallel to the second terminal.
  • a voltage according to the breakdown voltage of the temperature compensating diode in the breakdown state is applied to the APD as a bias voltage. ..
  • the differential voltage between the breakdown voltage of the APD and the bias voltage applied to the APD is set, and the APD has a gain according to the differential voltage. Therefore, depending on the temperature compensating diode that is in the breakdown state, a desired gain according to the situation can be stably obtained with respect to the temperature in the APD.
  • the circuit unit may include at least one switch. At least one switch may be electrically connected to the corresponding temperature compensating diode. At least one switch may switch between a state in which the corresponding temperature compensation diode can be energized and a state in which it cannot be energized.
  • the plurality of temperature compensating diodes may include a first temperature compensating diode and a second temperature compensating diode. The second temperature compensating diode may have a higher breakdown voltage than the first temperature compensating diode.
  • the switch may be electrically connected to the first temperature compensation diode.
  • the first temperature compensating diode when the first temperature compensating diode is turned on by the switch, the first temperature compensating diode takes precedence over the breakdown even if the second temperature compensating diode is turned on. It becomes a state. Therefore, the breakdown voltage applied to the APD can be selected from the two breakdown voltages only by switching the switch electrically connected to the first temperature compensation diode. Therefore, it is possible to switch a desired gain according to the situation in the APD with easy control.
  • At least one switch may be connected to the corresponding first terminal.
  • a high voltage is applied between the first electrode of each temperature compensation diode and the APD. Therefore, it is possible to realize easier control by electrically connecting the switch to the second electrode via the first terminal than by arranging the switch between the first electrode and the APD.
  • the circuit unit may be in a state in which the second temperature compensating diode can be energized regardless of whether or not the first temperature compensating diode is in a state energizable. In this case, even if the first temperature compensating diode is damaged or a local temperature change occurs near the first temperature compensating diode, the second temperature compensating diode is in a breakdown state. .. For this reason, a large current is prevented from flowing to the APD, and a failure of the photodetector is prevented.
  • the plurality of temperature compensating diodes may further include a third temperature compensating diode.
  • the third temperature compensating diode may have a breakdown voltage that is higher than the breakdown voltage of the first temperature compensating diode and lower than the breakdown voltage of the second temperature compensating diode.
  • the switch may be electrically connected to the third temperature compensation diode.
  • the circuit unit may switch between a state in which the third temperature compensating diode can be energized and a state in which the third temperature compensating diode cannot be energized by the switch in a state where the first temperature compensating diode cannot energize. In this case, when the first temperature compensating diode can be energized, the first temperature compensating diode is in the breakdown state.
  • the third temperature compensating diode is in the energizable state while the first temperature compensating diode is not energizable, the third temperature compensating diode is in the breakdown state.
  • the second temperature compensating diode is in a breakdown state. In this way, it is possible to switch the desired gain according to the situation in the APD with easy control.
  • One aspect of the present invention provides a photodetector in which a desired gain according to the situation in APD can be stably obtained with respect to temperature.
  • FIG. 1 is a block diagram of the photodetector according to this embodiment.
  • FIG. 2 is a schematic configuration diagram of the photodetector.
  • FIG. 3 is a schematic cross-sectional view of the light detection unit.
  • FIG. 4 is a graph of data showing the relationship between the bias voltage applied to the APD and the gain of the APD to which the bias voltage is applied.
  • FIG. 5 is a graph showing the temperature dependence of the slope and intercept of the regression line.
  • FIG. 6 is a graph showing the output characteristics of the APD according to the settings made by the setting unit.
  • FIG. 7 is a flowchart showing a method for manufacturing a semiconductor substrate.
  • FIG. 1 is a block diagram of the photodetector.
  • the photodetection device 1 includes a detection operation unit 2, a circuit unit 3, and a power supply unit 4.
  • the detection operation unit 2 has a light receiving unit 10 and a temperature compensation unit 15.
  • the light receiving unit 10 has at least one APD.
  • the APD of the light receiving unit 10 is an avalanche photodiode that operates in the linear mode.
  • the temperature compensation unit 15 performs temperature compensation of the gain in the APD of the light receiving unit 10.
  • the temperature compensation unit 15 controls the bias voltage applied to the APD of the light receiving unit 10.
  • the temperature compensator 15 has a plurality of temperature compensating diodes.
  • the circuit unit 3 applies a voltage to the light receiving unit 10 and the temperature compensating unit 15 of the detection operation unit 2.
  • the circuit section 3 is electrically connected to each electrode of the APD of the light receiving section 10 and the temperature compensating diode of the temperature compensating section 15.
  • the circuit unit 3 applies a voltage that causes the temperature compensating diode included in the temperature compensating unit 15 to be in the breakdown state to the APD of the light receiving unit 10.
  • the power supply unit 4 generates an electromotive force that operates the detection operation unit 2.
  • the power supply unit 4 applies a potential to the APD of the light receiving unit 10 and the temperature compensating diode of the temperature compensating unit 15 in the detecting operation unit 2 via the circuit unit 3.
  • the power supply unit 4 brings the temperature compensating diode included in the temperature compensating unit 15 into a breakdown state.
  • a voltage corresponding to the breakdown voltage is applied to the APD of the light receiving unit 10 as a bias voltage.
  • the temperature compensating diode and the APD have the same temperature characteristic with respect to the relationship between the gain and the bias voltage.
  • the breakdown voltage applied to the temperature compensating diode changes. Due to the change in the breakdown voltage applied to the temperature compensating diode, the bias voltage applied to the APD also changes according to the environmental temperature so that the gain of the APD is maintained. That is, the temperature compensation unit 15 performs temperature compensation of the gain in the APD of the light receiving unit 10.
  • FIG. 2 is a schematic configuration diagram of the photodetector.
  • the photodetector 1 includes a photodetector 20, an electromotive force generator 31, a current limiter 32, a bias voltage stabilizer 33, and a setting unit 40.
  • the light detection unit 20 includes the light receiving unit 10 and the temperature compensation unit 15 described above.
  • the electromotive force generator 31 generates an electromotive force that operates the photodetector 20.
  • the current limiter 32 limits the current flowing through the photodetector 20.
  • the bias voltage stabilizing unit 33 enables a current output equal to or higher than the upper limit value limited by the current limiting unit 32.
  • the setting unit 40 controls the operation of the light detection unit 20.
  • a part of the light detection unit 20 is included in the detection operation unit 2.
  • a part of the light detection unit 20, the bias voltage stabilization unit 33, and the setting unit 40 are included in the circuit unit 3.
  • the electromotive force generator 31 and the current limiter 32 are included in the power supply unit 4.
  • the light detection unit 20 includes, in addition to the APD 11 and the temperature compensation unit 15, a wiring unit 21 that electrically connects the temperature compensation unit 15 and the APD 11, and a plurality of terminals 22 and 23. , 24, and 25.
  • the terminal 22 is a second terminal and the plurality of terminals 25 are a plurality of first terminals.
  • “electrically connected” and “electrically connected” also include a configuration in which a path is temporarily cut by a switch or the like.
  • the temperature compensating unit 15 includes three temperature compensating diodes 26, 27, 28 as the plurality of temperature compensating diodes described above.
  • the temperature compensator 15 may include four or more temperature compensating diodes.
  • the APD 11 and the temperature compensating diodes 26, 27, 28 are included in the detection operation unit 2.
  • the wiring section 21 and the plurality of terminals 22, 23, 24, 25 are included in the circuit section 3.
  • the APD 11 has a pair of electrodes 19a and 19b.
  • Each temperature compensation diode 26, 27, 28 has a pair of electrodes 29a, 29b.
  • the electrode 29a is the first electrode
  • the electrode 29b is the second electrode.
  • the temperature compensating diode 28 is a first temperature compensating diode
  • the temperature compensating diode 26 is a second temperature compensating diode
  • the temperature compensating diode 27 is a third temperature compensating diode.
  • the temperature compensating diodes 26, 27, 28 are in a breakdown state at different voltages at the same environmental temperature.
  • the voltage applied to the temperature compensating diodes when the temperature compensating diodes 26, 27, 28 are in the breakdown state and the voltage applied to the APD 11 when the APD 11 is in the breakdown state are referred to as “breakdown”. Down voltage”.
  • Breakdown voltage Down voltage
  • the plurality of temperature compensating diodes 26, 27, 28 have different breakdown voltages.
  • the temperature compensating diode 26 has a higher breakdown voltage than the temperature compensating diode 27.
  • the temperature compensating diode 27 has a breakdown voltage at a voltage lower than that of the temperature compensating diode 26 and higher than that of the temperature compensating diode 28.
  • the temperature compensating diode 28 has a lower breakdown voltage than the temperature compensating diodes 26 and 27.
  • the breakdown voltages of the plurality of temperature compensating diodes 26, 27, 28 are all lower than the breakdown voltage of the APD 11.
  • the wiring portion 21 has the electrode 19a of the APD 11, the electrode 29a of the temperature compensating diode 26, the electrode 29a of the temperature compensating diode 27, and the electrode 29a of the temperature compensating diode 28 in parallel with respect to both the terminal 22 and the terminal 23. Connect to.
  • the wiring part 21 applies a voltage corresponding to the breakdown voltage of each temperature compensating diode 26, 27, 28 to the APD 11 as a bias voltage.
  • the terminal 22 is electrically connected to the electrode 19 a of the APD 11, the electrodes 29 a of the temperature compensating diodes 26, 27, 28 and the current limiting section 32 of the power supply section 4.
  • the terminal 23 is electrically connected to the electrode 19 a of the APD 11, the electrodes 29 a of the temperature compensating diodes 26, 27, 28 and the bias voltage stabilizing unit 33.
  • the terminal 24 is electrically connected to the electrode 19b of the APD 11 and a signal reading circuit (not shown).
  • the plurality of terminals 25 are electrically connected to the electrodes 29b of the temperature compensating diodes 26, 27, 28 and the setting unit 40. Each terminal 25 is connected to the electrodes 29b of the temperature compensating diodes 26, 27, 28 different from each other.
  • the electrode 19a is the anode of the APD 11
  • the electrode 19b is the cathode of the APD 11.
  • the electrode 29a is the anode of each temperature compensation diode 26, 27, 28, and the electrode 29b is the cathode of each temperature compensation diode 26, 27, 28.
  • the electromotive force generation unit 31 and the current limiting unit 32 apply a voltage to the photodetection unit 20.
  • the electromotive force generator 31 and the current limiter 32 are electrically connected to the terminal 22.
  • the positive electrode of the electromotive force generation unit 31 is connected to the ground 36, and the negative electrode of the electromotive force generation unit 31 is connected to the terminal 22 via the current limiting unit 32.
  • the bias voltage stabilizing unit 33 increases the upper limit value of the detection signal output from the APD 11.
  • the bias voltage stabilizing unit 33 is connected in parallel with the current limiting unit 32 with respect to the photodetecting unit 20 and the electromotive force generating unit 31.
  • the bias voltage stabilizing unit 33 is, for example, a capacitor.
  • one electrode of the capacitor is connected to the negative electrode of the electromotive force generator 31, and the other electrode is connected to the terminal 23.
  • the setting unit 40 sets the temperature compensation unit 15 according to the gain set in the APD 11.
  • the setting unit 40 selects a temperature compensating diode to be operated from among the plurality of temperature compensating diodes 26, 27, 28.
  • the setting unit 40 sets the temperature compensating diode used for controlling the bias voltage from the plurality of temperature compensating diodes 26, 27, 28.
  • the setting unit 40 sets the temperature compensating diodes to be operated by controlling the energization state of the plurality of temperature compensating diodes 26, 27, 28.
  • the setting unit 40 has at least one switch 41. At least one switch 41 is connected to the corresponding terminal 25. In the present embodiment, the setting unit 40 has two switches 41. One switch 41 is electrically connected to the temperature compensating diode 27 through the corresponding terminal 25. The other switch 41 is electrically connected to the temperature compensating diode 28 through the corresponding terminal 25. The switch 41 switches between a state in which the corresponding temperature compensating diodes 27 and 28 can be energized and a state in which they cannot be energized. The setting unit 40 controls ON/OFF of the switch 41.
  • the light detection unit 20 has three terminals 25.
  • the three terminals 25 are connected to the temperature compensating diodes 26, 27 and 28, respectively.
  • the terminal 25 connected to the temperature compensating diode 26 is connected to the ground 46.
  • the terminal 25 connected to the temperature compensating diode 27 is connected to the ground 47 via the switch 41.
  • the terminal 25 connected to the temperature compensating diode 28 is connected to the ground 48 via the switch 41. That is, only one terminal 25 is not connected to the switch 41.
  • the grounds 46, 47, 48 may be connected to each other.
  • the switches 41 may be connected to all the terminals 25.
  • FIG. 3 is a schematic cross-sectional view of the light detection unit.
  • the light detection unit 20 is an optical member including a semiconductor substrate 50, as shown in FIG.
  • the semiconductor substrate 50 has main surfaces 50a and 50b facing each other.
  • the APD 11 and the temperature compensating diodes 26, 27, 28 are formed on the semiconductor substrate 50 so as to be separated from each other when viewed from the direction orthogonal to the main surface 50a.
  • the APD 11 has a light incident surface 51a on the main surface 50a side.
  • the temperature compensating diodes 26, 27, 28 are APDs shielded from light.
  • the semiconductor substrate 50 includes a semiconductor region 51 and semiconductor layers 52, 53, 54 and 55.
  • the APD 11 and the temperature compensating diodes 26, 27, 28 include a semiconductor region 51 and semiconductor layers 52, 53, 55, respectively.
  • the semiconductor region 51 and the semiconductor layers 53, 54, 55 are of the first conductivity type, and the semiconductor layer 52 is of the second conductivity type.
  • the semiconductor impurities are added by, for example, a diffusion method or an ion implantation method.
  • the first conductivity type is P type and the second conductivity type is N type.
  • a group 13 element such as B is used as the P-type impurity
  • a group 15 element such as N, P, or As is used as the N-type impurity.
  • the semiconductor region 51 is located on the main surface 50a side of the semiconductor substrate 50.
  • the semiconductor region 51 constitutes a part of the main surface 50a.
  • the semiconductor region 51 is, for example, P ⁇ type.
  • the semiconductor layer 52 constitutes a part of the main surface 50a.
  • the semiconductor layer 52 is in contact with the semiconductor region 51 and is surrounded by the semiconductor region 51 when viewed from the direction orthogonal to the main surface 50 a.
  • the semiconductor layer 52 is, for example, N + type.
  • the semiconductor layer 52 constitutes a cathode in each of the APD 11 and each of the temperature compensating diodes 26, 27, 28.
  • the semiconductor layer 53 is located between the semiconductor region 51 and the semiconductor layer 52. In other words, the semiconductor layer 53 is in contact with the semiconductor layer 52 on the main surface 50a side and is in contact with the semiconductor region 51 on the main surface 50b side.
  • the semiconductor layer 53 has a higher impurity concentration than the semiconductor region 51.
  • the semiconductor layer 53 is, for example, P-type.
  • the impurity concentration of the semiconductor layer 53 of each temperature compensation diode 26, 27, 28 is higher than the impurity concentration of the semiconductor layer 53 of the APD 11.
  • the semiconductor layer 53 constitutes an avalanche region in each of the APD 11 and the temperature compensating diodes 26, 27, 28.
  • the impurity concentration of the semiconductor layer 53 of the temperature compensating diode 27 is higher than the impurity concentration of the semiconductor layer 53 of the temperature compensating diode 26.
  • the impurity concentration of the semiconductor layer 53 of the temperature compensating diode 28 is higher than the impurity concentration of the semiconductor layer 53 of the temperature compensating diode 27.
  • the semiconductor layer 54 constitutes a part of the main surface 50a.
  • the semiconductor layer 54 is in contact with the semiconductor region 51 and is surrounded by the semiconductor region 51 when viewed from the direction orthogonal to the main surface 50 a.
  • the semiconductor layer 54 has a higher impurity concentration than the semiconductor region 51 and the semiconductor layer 53.
  • the semiconductor layer 54 is, for example, a P + type.
  • the semiconductor layer 54 is connected to the semiconductor layer 55 at a portion not shown.
  • the semiconductor layer 54 constitutes the anode of the photodetector 1.
  • the semiconductor layer 54 constitutes, for example, the APD 11 and the anodes of the temperature compensating diodes 26, 27, 28.
  • the semiconductor layer 55 is located closer to the main surface 50b side of the semiconductor substrate 50 than the semiconductor region 51.
  • the semiconductor layer 55 constitutes the entire main surface 50b.
  • the semiconductor layer 55 is in contact with the semiconductor region 51 on the main surface 50a side.
  • the semiconductor layer 55 has a higher impurity concentration than the semiconductor region 51 and the semiconductor layer 53.
  • the semiconductor layer 55 is, for example, a P + type.
  • the semiconductor layer 55 constitutes the anode of the photodetector 1.
  • the semiconductor layer 55 constitutes, for example, the anodes of the APD 11 and the temperature compensating diodes 26, 27, 28.
  • the photodetector 1 further includes an insulating film 61, electrodes 62, 63, 64, a passivation film 66, and an antireflection film 67, which are provided on the main surface 50 a of the semiconductor substrate 50.
  • the insulating film 61 is laminated on the main surface 50a of the semiconductor substrate 50.
  • the insulating film 61 is, for example, a silicon oxide film.
  • the electrodes 62, 63, 64 are arranged on the insulating film 61, respectively.
  • the passivation film 66 is laminated on the insulating film 61 and the electrodes 62, 63, 64.
  • the antireflection film 67 is laminated on the main surface 50a of the semiconductor substrate 50.
  • the electrode 62 penetrates the insulating film 61 and is connected to the semiconductor layer 52 of the APD 11. A part of the electrode 62 is exposed from the passivation film 66 and constitutes the terminal 24 of the APD 11. The electrode 62 outputs the signal from the APD 11 at the terminal 24.
  • the electrode 63 penetrates through the insulating film 61 and is connected to the semiconductor layer 52 of each of the temperature compensating diodes 26, 27, 28. A part of the electrode 63 is exposed from the passivation film 66 and constitutes the terminal 25 of each of the temperature compensating diodes 26, 27 and 28.
  • the electrode 64 penetrates the insulating film 61 and is connected to the semiconductor layer 54. That is, the electrode 64 is connected to the APD 11 and the temperature compensating diodes 26, 27, 28. In other words, the APD 11 and the temperature compensating diodes 26, 27, 28 are connected to the electrode 64 in parallel with each other. A part of the electrode 64 is exposed from the passivation film 66 and constitutes, for example, the terminal 22.
  • the terminal 24 is a pad electrode for the cathode of the APD 11.
  • the terminal 25 is a pad electrode for the cathode of the temperature compensating diodes 26, 27, 28.
  • the terminal 22 is a pad electrode for the anode of the APD 11 and the temperature compensating diodes 26, 27, 28.
  • the terminal 22 is connected with the APD 11 and the temperature compensating diodes 26, 27, 28 in parallel with each other.
  • a positive voltage is applied to the cathode pad electrode and a negative voltage is applied to the anode pad electrode.
  • the antireflection film 67 is laminated on the semiconductor layer 52 of the APD 11. A part of the antireflection film 67 is exposed from the passivation film 66. Therefore, the light transmitted through the antireflection film 67 may enter the semiconductor layer 52 of the APD 11.
  • the semiconductor layer 52 of each of the temperature compensating diodes 26, 27, 28 is covered with an insulating film 61 and shielded from light.
  • the temperature compensating diodes 26, 27, 28 of the temperature compensating unit 15 and the APD 11 have the same temperature characteristic with respect to the relationship between the gain and the bias voltage.
  • a voltage corresponding to the breakdown voltage of each temperature compensating diode 26, 27, 28 is applied to the APD 11 as a bias voltage.
  • the temperature compensating unit 15 controls the bias voltage so that the difference voltage between the breakdown voltage of the APD 11 and the bias voltage applied to the APD 11 becomes constant.
  • This differential voltage is determined as follows.
  • FIG. 4 is a graph of data showing the relationship between the bias voltage applied to the APD and the gain of the APD to which the bias voltage is applied.
  • FIG. 4 shows data at eight environmental temperatures of 100° C., 80° C., 60° C., 40° C., 20° C., 0° C., ⁇ 20° C., and ⁇ 40° C.
  • FIG. 5 is a graph showing the temperature dependence of the slope “a” and the intercept “b” of the obtained regression line.
  • the horizontal axis represents the environmental temperature and the vertical axis represents the values of “a” and “b”.
  • the solid line shows the data of "a”
  • the broken line shows the data of "b”.
  • data indicating the relationship between the bias voltage applied to the APD and the gain of the APD to which the bias voltage is applied is acquired at an arbitrary temperature.
  • the slope of the regression line with “(1/M) ⁇ (dM/dV r )” as the objective variable and “M” as the explanatory variable is given as “a” in equation (4), and the regression line
  • the desired gain set in the APD 11 is substituted into “b” of the equation (4), and the intercept of “ 1 ” is substituted into the “M d ”of the equation (4).
  • “ ⁇ V” is calculated.
  • the temperature compensation unit 15 controls the bias voltage applied to the APD 11 so that the difference voltage becomes “ ⁇ V” calculated.
  • the acquired data indicating the relationship between the bias voltage and the gain may not be the data of the APD of the same individual as the APD 11 as long as it is the APD having the same material and structure as the APD 11.
  • the differential voltage is a subtraction value obtained by subtracting the voltage according to the breakdown voltage of the temperature compensating diodes 26, 27, 28 in the breakdown state from the breakdown voltage of the APD 11.
  • a voltage corresponding to the breakdown voltage of the temperature compensating diodes 26, 27, 28 in the breakdown state is applied to the APD 11 as a bias voltage.
  • the breakdown voltage of the APD 11 and the breakdown voltages of the temperature compensating diodes 26, 27, 28 have different values.
  • the impurity concentration of the semiconductor layer 53 of each of the temperature compensating diodes 26, 27 and 28 and the impurity concentration of the semiconductor layer 53 of the APD 11 are adjusted.
  • the voltage difference from the breakdown voltage is adjusted.
  • the differential voltage may be adjusted depending on the circuit configuration.
  • the differential voltage may be adjusted by applying an external voltage to the terminal 25.
  • the breakdown voltage of the APD 11 and the breakdown voltage of any one of the temperature compensating diodes 26, 27, 28 may be the same.
  • the impurity concentration of the semiconductor layer 53 of each temperature compensation diode 26, 27, 28 is higher than the impurity concentration of the semiconductor layer 53 of the APD 11.
  • the breakdown voltage of the APD 11 is higher than the breakdown voltages of the temperature compensating diodes 26, 27, 28 by " ⁇ V".
  • the three temperature compensating diodes 26, 27 and 28 have different breakdown voltages.
  • the three temperature compensating diodes 26, 27, 28 are designed to obtain different gains. “ ⁇ V” is calculated for each of the temperature compensating diodes 26, 27, 28 by the equation (4), and the impurity of the semiconductor layer 53 of each of the temperature compensating diodes 26, 27, 28 is calculated according to the calculated “ ⁇ V”.
  • the concentration is designed.
  • the breakdown voltage of the temperature compensating diodes 26, 27, 28 is applied, so that the breakdown voltage is applied to the APD 11 as a bias voltage.
  • one of the breakdown voltages of the plurality of temperature compensating diodes 26, 27, 28 is applied to the APD 11 as a bias voltage.
  • the setting unit 40 controls which of the breakdown voltages of the plurality of temperature compensating diodes 26, 27, 28 is applied to the APD 11 as a bias voltage.
  • the terminal 22 is connected to the P + type semiconductor layer 54, and the semiconductor layer 54 is connected to the P + type semiconductor layer 55. Therefore, the anodes of the APD 11 and the temperature compensating diodes 26, 27, 28 are connected to the terminal 22 in parallel with each other. As a result, the power supply unit 4 applies a negative potential to the anodes of the APD 11 and the temperature compensating diodes 26, 27, 28.
  • the circuit unit 3 brings any one of the plurality of temperature compensating diodes 26, 27, 28 into a breakdown state.
  • the setting unit 40 selects the temperature compensating diode to be operated from the plurality of temperature compensating diodes 26, 27, 28 by the switch 41.
  • the setting unit 40 selects the temperature compensating diode for applying the breakdown voltage as the bias voltage to the APD 11 by switching the switch 41 on and off.
  • the setting unit 40 sets a plurality of temperature compensating diodes 26, 27, 28 so that “ ⁇ V” calculated by substituting the gain set in the APD 11 into “M d ”in the equation (4) becomes a differential voltage.
  • the temperature compensating diode used to control the bias voltage is selected from.
  • the breakdown voltage of the selected temperature compensating diode is the potential difference between the potential applied to the terminal 25 corresponding to the temperature compensating diode and the potential applied to the terminal 22. Therefore, a potential corresponding to the breakdown voltage of the selected temperature compensating diode is applied to the anode of the APD 11. As a result, a voltage according to the breakdown voltage of the selected temperature compensating diode is applied to the APD 11 as a bias voltage.
  • the setting unit 40 when operating the temperature compensating diode 28, the setting unit 40 sets all of the temperature compensating diodes 26, 27, 28 to a conductive state. That is, the setting unit 40 turns on all the switches 41 connected to the plurality of terminals 25. In this case, of the temperature compensating diodes 26, 27, 28 which are in the energizable state, since the temperature compensating diode 28 has the smallest breakdown voltage, the temperature compensating diode 28 operates. That is, the breakdown voltage of the temperature compensation diode 28 is applied to the APD 11 as a bias voltage.
  • the setting unit 40 sets the temperature compensating diodes 26 and 27 in the energizable state and sets the temperature compensating diode 28 in the non-energizable state.
  • the setting unit 40 turns on the switch 41 connected to the terminal 25 corresponding to the temperature compensation diode 27 and turns off the switch 41 connected to the terminal 25 corresponding to the temperature compensation diode 28. .. Since the switch 41 is not connected to the terminal 25 corresponding to the temperature compensating diode 26, the energization is possible.
  • the temperature compensating diode 27 since the temperature compensating diode 27 has the smallest breakdown voltage, the temperature compensating diode 27 operates. That is, the breakdown voltage of the temperature compensating diode 27 is applied to the APD 11 as a bias voltage.
  • the setting unit 40 sets the temperature compensating diode 26 in the energizable state, and sets the temperature compensating diodes 27, 28 in the unenergizable state.
  • the setting unit 40 turns off the switch 41 connected to the terminal 25 corresponding to the temperature compensating diodes 27 and 28. Since the switch 41 is not connected to the terminal 25 corresponding to the temperature compensating diode 26, the energization is possible. In this case, the temperature compensating diode 26 in the energizable state operates. That is, the breakdown voltage of the temperature compensating diode 26 is applied to the APD 11 as a bias voltage.
  • FIG. 6 is a graph showing the output characteristic of the APD 11 according to the setting made by the setting unit 40.
  • the vertical axis represents the output voltage of the APD 11, and the horizontal axis represents time.
  • the data 71, 72, 73 respectively show the output characteristics of the APD 11 when the pulsed lights of the same intensity enter the APD 11.
  • the data 71 shows the output characteristics of the APD 11 in the state where the temperature compensating diode 26 is operating.
  • the data 72 shows the output characteristics of the APD 11 when the temperature compensating diode 27 is operating.
  • the data 73 shows the output characteristics of the APD 11 when the temperature compensating diode 26 is operating.
  • the output peak of the APD 11 when the temperature compensating diode 26 is operating is larger than the output peak of the APD 11 when the temperature compensating diode 27 is operating.
  • the output peak of the APD 11 when the temperature compensating diode 27 is operating is larger than the output peak of the APD 11 when the temperature compensating diode 28 is operating.
  • the setting unit 40 sets the temperature compensating diode 26 in the energizable state regardless of whether or not the temperature compensating diode 28 is in the energizable state.
  • the setting unit 40 switches the temperature compensating diode 27 between the energizable state and the non-energizable state by the switch 41.
  • the temperature compensating diode 28 is selected as the temperature compensating diode operated by the setting unit 40.
  • the combination of the electromotive force generator 31 and the current limiter 32 is connected to the terminal 22, so that the breakdown voltage of the selected temperature compensation diode 28 is applied to the terminal 22.
  • the output voltage of the electromotive force generator 31 is equal to or higher than the operating voltage of the APD 11.
  • the output voltage of the electromotive force generator 31 is equal to or higher than the upper limit of the temperature fluctuation of the breakdown voltage in each of the temperature compensating diodes 26, 27, 28.
  • the output voltage of the electromotive force generator 31 is 300 V or higher.
  • the current limiting unit 32 is composed of, for example, a current mirror circuit or a resistor.
  • the gain of the APD 11 can be arbitrarily set according to the breakdown voltage difference between the selected temperature compensating diode 28 and the APD 11. If the gain of the APD 11 is set to the optimum multiplication factor Mopt having a high S/N ratio, the detection accuracy can be improved.
  • the APD 11 and the anodes of the temperature compensating diodes 26, 27, 28 are integrally formed by the semiconductor layer 55.
  • the anode of the APD 11 has ⁇ 130 V. An electric potential is applied. Therefore, when the breakdown voltage of the APD 11 is 150 V under the environmental temperature of 25° C., the APD 11 operates in a state where the potential difference between the anode and the cathode is 20 V lower than the breakdown voltage.
  • the APD 11 and the temperature compensating diodes 26, 27, 28 have the same temperature characteristics with respect to the relationship between the gain and the bias voltage. Therefore, as long as the selected temperature compensating diode 28 is in the breakdown state, the APD 11 maintains the gain when the bias voltage 20 V lower than the breakdown voltage is applied under the environmental temperature of 25° C. Works. In other words, in the photodetector 1, a voltage that brings the selected temperature compensating diode 28 into the breakdown state is applied to the temperature compensating diode 28, so that the temperature compensation of the gain of the APD 11 is realized.
  • the temperature compensating diodes 26, 27, 28 and the APD 11 having the same temperature characteristics with respect to the gain and the bias voltage are equivalent to each other in a wide temperature range, and the temperature compensating diodes 26, 27, 28 and the APD 11 are different semiconductors. It is more easily and highly accurately formed than when it is formed on a substrate. Therefore, temperature compensation for the gain of the APD 11 can be realized while suppressing the manufacturing cost.
  • the semiconductor substrate 50 includes a semiconductor region 51 of the first conductivity type.
  • the APD 11 and each of the temperature compensating diodes 26, 27, 28 include a semiconductor layer 52 and a semiconductor layer 53, respectively.
  • the semiconductor layer 52 is of the second conductivity type.
  • the semiconductor layer 53 is of the first conductivity type having a higher impurity concentration than the semiconductor region 51.
  • the semiconductor layer 53 is located between the semiconductor region 51 and the semiconductor layer 52.
  • the temperature compensating diodes 26, 27, and 28 have the same configuration as the APD 11. Therefore, it is possible to easily form a plurality of temperature compensating diodes 26, 27, 28 whose temperature characteristics regarding gain and bias voltage are very similar to those of the APD 11.
  • the impurity concentration in the semiconductor layer 53 of each temperature compensation diode 26, 27, 28 is higher than the impurity concentration in the semiconductor layer 53 of the APD 11.
  • the breakdown voltage of the APD 11 is higher than the breakdown voltage of each of the temperature compensating diodes 26, 27, 28.
  • the slope of the regression line with “(1/M) ⁇ (dM/dV r )” as the objective variable and “M” as the explanatory variable is expressed as “a” in Equation (4) and the intercept is calculated as By substituting it into “b” in (4), the above-mentioned differential voltage with which a desired gain is obtained is determined. Therefore, a desired gain can be obtained extremely easily without strictly considering the environmental temperature.
  • the temperature compensator 15 has temperature compensating diodes 26, 27, 28.
  • the temperature compensator 15 applies a voltage corresponding to the breakdown voltage applied to any one of the temperature compensating diodes 26, 27, 28 to the APD 11 as a bias voltage.
  • the differential voltage is a subtraction value obtained by subtracting the voltage corresponding to the breakdown voltage of the temperature compensating diode 28 from the breakdown voltage of the APD 11. Therefore, it is possible to derive “ ⁇ V” that obtains a desired gain and design the impurity concentrations of the APD 11 and the temperature compensating diodes 26, 27, 28 so that the subtracted value becomes “ ⁇ V”.
  • the photodetector 1 includes a setting unit 40 and a wiring unit 21.
  • the setting unit 40 sets the temperature compensating unit 15 according to the gain set in the APD 11.
  • the wiring part 21 electrically connects the temperature compensating part 15 and the APD 11.
  • the plurality of temperature compensating diodes 26, 27, 28 have different breakdown voltages.
  • the wiring part 21 applies a voltage corresponding to the breakdown voltage of each temperature compensating diode 26, 27, 28 to the APD 11 as a bias voltage.
  • the setting unit 40 selects from the plurality of temperature compensating diodes 26, 27, 28 so that “ ⁇ V” calculated by substituting the gain set in the APD 11 into “Md” of the equation (4) becomes the differential voltage. Set the temperature compensation diode used to control the bias voltage.
  • the setting unit 40 sets the temperature compensating diodes used for controlling the bias voltage from the plurality of temperature compensating diodes 26, 27, 28. Therefore, it is possible to extremely easily obtain a desired gain according to the situation without strictly considering the environmental temperature. In other words, the desired gain can be easily switched, and the desired gain can be stably obtained at temperature.
  • the circuit unit 3 electrically connects the APD 11 and the temperature compensating diodes 26, 27, 28 to the terminal 22 in parallel.
  • the breakdown voltage of the temperature compensating diode in the breakdown state is applied to the APD 11 as a bias voltage. It As a result, the differential voltage between the breakdown voltage of the APD 11 and the bias voltage applied to the APD 11 is set, and the APD 11 has a gain according to the differential voltage. Therefore, depending on the temperature compensating diode that is brought into the breakdown state, the APD 11 can stably obtain a desired gain according to the situation.
  • the circuit unit 3 has at least one switch 41.
  • the switch 41 is electrically connected to the corresponding temperature compensating diodes 27 and 28.
  • the switch 41 switches between a state in which the corresponding temperature compensating diodes 27 and 28 can be energized and a state in which they cannot be energized.
  • the plurality of temperature compensating diodes 26, 27, 28 include a temperature compensating diode 26 and a temperature compensating diode 28.
  • the temperature compensating diode 26 has a higher breakdown voltage than the temperature compensating diode 28.
  • the switch 41 is electrically connected to the temperature compensating diode 28.
  • the temperature compensating diode 28 when the temperature compensating diode 28 is turned on by the switch 41, even if the temperature compensating diode 26 is in the energizable state, the temperature compensating diode 28 is preferentially set to the breakdown state. Become. Thus, the desired gain can be switched in the APD 11 according to the situation with easy control.
  • At least one switch 41 is connected to the corresponding terminal 25.
  • a high voltage is applied between the electrodes 29a of the temperature compensating diodes 26, 27, 28 and the APD 11. Therefore, easier control can be achieved by electrically connecting the switch 41 to the electrode 29b through the terminal 25 than by arranging the switch 41 between the electrode 29a and the APD 11.
  • the circuit unit 3 sets the temperature compensating diode 26 to the energizable state regardless of whether or not the temperature compensating diode 28 is energizable. In this case, even if the temperature compensating diode 28 is damaged or a local temperature change occurs near the temperature compensating diode 28, the temperature compensating diode 26 is in a breakdown state. Therefore, a large current is prevented from flowing to the APD 11, and the photodetector 1 is prevented from malfunctioning.
  • the plurality of temperature compensating diodes 26, 27, 28 further include a temperature compensating diode 27.
  • the temperature compensating diode 27 has a breakdown voltage higher than the breakdown voltage of the temperature compensating diode 28 and lower than the breakdown voltage of the temperature compensating diode 26.
  • the switch 41 is electrically connected to the temperature compensating diode 27.
  • the circuit unit 3 switches the temperature compensating diode 27 between the energizable state and the non-energizable state by the switch 41. In this case, when the temperature compensating diode 28 can be energized, the temperature compensating diode 28 is in the breakdown state.
  • the temperature compensating diode 27 becomes energizable while the temperature compensating diode 28 cannot energize, the temperature compensating diode 27 becomes in the breakdown state.
  • the temperature compensating diode 27 cannot be energized while the temperature compensating diode 28 cannot be energized, the temperature compensating diode 26 is in a breakdown state.
  • the desired gain can be switched in the APD 11 according to the situation with easy control.
  • FIG. 7 is a flowchart showing a method for manufacturing the semiconductor substrate 50 of the photodetector 1.
  • a semiconductor wafer is prepared (step S1).
  • the semiconductor wafer is a substrate before being processed as the semiconductor substrate 50, and has main surfaces 50a and 50b facing each other.
  • the semiconductor wafer includes a first conductivity type semiconductor region corresponding to the semiconductor region 51.
  • the semiconductor region is provided on the main surface 50a side of the semiconductor wafer and constitutes the entire main surface 50a.
  • the semiconductor region of a semiconductor wafer is P ⁇ type.
  • a semiconductor layer 55 of the first conductivity type having a higher impurity concentration than the semiconductor region of the semiconductor wafer is formed in the semiconductor wafer by adding impurities from the main surface 50b side.
  • the semiconductor layer 55 is a P + type.
  • the determination method is as follows.
  • step S2 the slope of the regression line with “(1/M) ⁇ (dM/dV r )” as the objective variable and “M” as the explanatory variable in the data showing the correlation between the bias voltage applied to the APD and the gain of the APD.
  • V r is a bias voltage applied to the APD
  • M is a gain of the APD to which the bias voltage is applied.
  • the data used in step S2 is a separate body made of the same material and structure as APD11.
  • the above-mentioned difference voltage with which a desired gain is obtained is determined using the acquisition result in step S2 and the equation (4) (step S3).
  • the obtained slope is used as “a” in equation (4)
  • the obtained intercept is used as “b” in equation (4)
  • the desired gain to be set in the APD 11 is given in equation (4). It corresponds to “ ⁇ V” calculated by substituting for “M d ”.
  • a plurality of mutually different values are determined as the gain set in the APD 11, and a plurality of differential voltages are determined for these values.
  • a plurality of “ ⁇ V” calculated by substituting a plurality of different values into “M d ”of the equation (4) is determined as the difference voltage corresponding to each of the plurality of values.
  • a first ion implantation step impurity ions are implanted into the main surface 50a side by an ion implantation method to add impurities, whereby the second conductivity type semiconductor layer 52 and the first conductivity type are formed.
  • the semiconductor layers 53 and 54 of the mold are formed.
  • the semiconductor layer 52 is N + type
  • the semiconductor layer 53 is P type
  • the semiconductor layer 54 is P + type.
  • the semiconductor layer 52 is formed by implanting impurity ions of the second conductivity type into different locations separated from each other in one ion implantation process.
  • the semiconductor layer 53 is formed by implanting impurity ions of the first conductivity type after the semiconductor layer 52 is formed.
  • the semiconductor layer 53 may be formed by implanting impurity ions of the first conductivity type before the semiconductor layer 52 is formed.
  • the semiconductor layers 52 and 53 are formed at positions overlapping with each other when viewed from the direction orthogonal to the main surface 50a.
  • the semiconductor layer 53 is formed by implanting an impurity of the first conductivity type at a position deeper than the semiconductor layer 52 when viewed from the main surface 50a side.
  • the semiconductor layers 52 and 53 are formed in a plurality of locations separated from each other when viewed from a direction orthogonal to the main surface 50a in a region that becomes one semiconductor substrate 50.
  • the plurality of places include a place where the APD 11 is arranged and a place where the temperature compensating diodes 26, 27, 28 are arranged.
  • the second conductivity type impurity is added to each part so that the semiconductor layer 52 has the same impurity concentration.
  • the first conductivity type impurities are added to the respective portions so that the semiconductor layers 53 have the same impurity concentration.
  • step S5 impurities are further added only to the semiconductor layer 53 at some of the plurality of locations described above by the ion implantation method.
  • impurities of the first conductivity type are further implanted into the semiconductor layer 53 only at the locations where the temperature compensating diodes 26, 27, 28 are arranged. Therefore, in the photodetector 1, the impurity concentration in the semiconductor layer 53 of each of the temperature compensating diodes 26, 27, 28 is higher than the impurity concentration in the semiconductor layer 53 of the APD 11.
  • the photodetector 1 is configured such that the breakdown voltage of the APD 11 is higher than the breakdown voltages of the temperature compensating diodes 26, 27, 28.
  • the amount of the first conductivity type impurity injected into the semiconductor layer 53 of each of the temperature compensating diodes 26, 27, 28 in steps S4 and S5 depends on the differential voltage determined in step S3.
  • the amount of the first conductivity type impurity implanted into the semiconductor layer 53 of the temperature compensating diode 28 is greater than the amount of the first conductivity type impurity implanted into the semiconductor layer 53 of the temperature compensating diode 27.
  • the breakdown voltage of the temperature compensating diode 27 is configured to be higher than the breakdown voltage of the temperature compensating diode 28.
  • the amount of the first conductivity type impurities implanted into the semiconductor layer 53 of the temperature compensation diode 27 is larger than the amount of the first conductivity type impurities implanted into the semiconductor layer 53 of the temperature compensation diode 26.
  • the breakdown voltage of the temperature compensating diode 26 is configured to be higher than the breakdown voltage of the temperature compensating diode 27.
  • the first conductivity type impurity may be further implanted into the semiconductor layer 53 only at the location where the APD 11 is disposed, not at the location where the temperature compensation diodes 26, 27 and 28 are disposed. ..
  • the impurity concentration in the semiconductor layer 53 of each of the temperature compensating diodes 26, 27, 28 is lower than the impurity concentration in the semiconductor layer 53 of the APD 11.
  • the breakdown voltage of the APD 11 is configured to be lower than the breakdown voltage of each of the temperature compensating diodes 26, 27, 28.
  • the semiconductor substrate 50 of the photodetector 1 is formed by the above steps. Steps S2 and S3 may be performed before step S1 or after step S4. In the present embodiment, the semiconductor layers 52, 53, 54 are formed from the state where the semiconductor layer 55 is already formed. However, the semiconductor layer 55 may be formed after the semiconductor layers 52, 53, 54 are formed.
  • the semiconductor layer 52 and the semiconductor layer 53 are formed at each of the locations by implanting ions at different locations. After that, ions are further implanted into the semiconductor layer 53 at some positions. Therefore, it is possible to easily manufacture the plurality of temperature compensating diodes 26, 27, 28 and the APD 11 that have the same temperature characteristics with respect to the gain and the bias voltage but are set to desired breakdown voltages.
  • the gain of the APD 11 can be arbitrarily set according to the difference voltage between the breakdown voltage of each of the temperature compensating diodes 26, 27, 28 and the breakdown voltage of the APD 11. Therefore, if the temperature compensating diodes 26, 27, 28 and the APD 11 are set to desired breakdown voltages, the detection accuracy can be improved.
  • the detection accuracy can be improved.
  • temperature compensation for the gain of the APD 11 is realized while suppressing the manufacturing cost, and the detection accuracy is improved.
  • the slope and intercept of the regression line with “(1/M) ⁇ (dM/dV r )” as the objective variable and “M” as the explanatory variable are acquired.
  • the obtained slope into “a” of the equation (4)
  • the obtained intercept into “b” of the equation (4)
  • the differential voltage with which a desired gain is obtained is determined. Therefore, the above-mentioned differential voltage with which a desired gain is obtained can be determined very easily without strictly considering the environmental temperature.
  • a plurality of “ ⁇ V” calculated by substituting a plurality of mutually different values as gains set in the APD 11 into “M d ”of the equation (4) corresponds to each of the plurality of values. Is determined as the differential voltage to be applied. Therefore, the plurality of difference voltages corresponding to the plurality of values can be determined very easily without strictly considering the environmental temperature.
  • the photodetector 1 may have a configuration in which the reverse APD 11 operates in the linear mode.
  • the photodetection device 1 having the electromotive force generating unit 31, the current limiting unit 32, the bias voltage stabilizing unit 33, and the setting unit 40 has been described.
  • the photodetector according to the present embodiment may have a configuration that does not include at least one of the electromotive force generator 31, the current limiter 32, the bias voltage stabilizer 33, and the setting unit 40.
  • an external device connected to the photodetector may function as the electromotive force generator 31, the current limiter 32, the bias voltage stabilizer 33, or the setting unit 40.
  • the photodetector 1 may include a signal read circuit (not shown).
  • the configuration has been described in which the switch 41 is connected to the terminal 25 of the light detection unit 20 and the switch 41 is controlled by the setting unit 40.
  • the switch 41 may be arranged inside the light detection unit 20.
  • the terminals 22, 23, 24, 25 have been described as pad electrodes.
  • the terminals 22, 23, 24, 25 may be made of the semiconductor in the semiconductor substrate 50.
  • the switch 41 that switches the electrical connection between the temperature compensating diodes 26, 27, 28 and the APD 11 may be arranged in the wiring section 21, and the setting section 40 may control the ON/OFF of the switch 41 in the wiring section 21. Also in this case, the setting unit 40 controls the bias voltage applied to the APD 11. Since a high voltage is applied between the APD 11 and the temperature compensating diodes 26, 27, 28, the switch 41 connected to the terminal 25 is controlled more than the case where the switch arranged in the wiring part 21 is controlled. It's easier to do.
  • the temperature compensator 15 may include a plurality of temperature compensating diodes having the same breakdown voltage. According to this configuration, even if a part of the temperature compensating diode is damaged or a local temperature change occurs in the vicinity of where the part of the temperature compensating diode is arranged, the photodetection device 1 does not normally operate. The operation can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

光検出装置1は、APD11と、複数の温度補償用ダイオード26,27,28と、回路部3とを備える。複数の温度補償用ダイオード26,27,28は、APD11よりも低い互いに異なるブレークダウン電圧を有する。回路部3は、複数の温度補償用ダイオード26,27,28のいずれか一つをブレークダウン状態とする。回路部3は、複数の端子25と端子22とを含む。複数の端子25の各々は、互いに異なる温度補償用ダイオード26,27,28の電極29bに接続される。端子22は、APD11と各温度補償用ダイオード26,27,28の電極29aとに電気的に接続される。

Description

光検出装置
 本発明は、光検出装置に関する。
 温度に対して安定した光検出を行うために、アバランシェフォトダイオードに印加するバイアス電圧を制御する構成が知られている(たとえば、特許文献1)。特許文献1では、温度補償用ダイオードのブレークダウン電圧に応じた電圧を、アバランシェフォトダイオードにバイアス電圧として印加する。以下、本明細書では、「アバランシェフォトダイオード」を「APD」と称する。
特開平07-27607号公報
 光検出装置では、APDにおいて温度に対して安定して所望のゲインを得ることが求められている。しかし、APDのゲインは、APDに印加するバイアス電圧の変化に応じて変化する。一定のバイアス電圧がAPDに印加されていたとしても、環境温度が変化すればAPDのゲインは変化する。したがって、APDのゲインを一定にするには、環境温度に応じてAPDに印加するバイアス電圧を変化させることを要する。
 APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧が一定に制御された場合、環境温度が変化してもAPDのゲインの変化は少ない。しかし、APDのブレークダウン電圧も環境温度によって変化するため、状況に応じた所望のゲインが得られるようにゲインを切り替えることは非常に困難であった。
 本発明の一つの態様は、APDにおいて状況に応じた所望のゲインが温度に対して安定して得られる光検出装置を提供することを目的とする。
 本発明の一つの態様に係る光検出装置は、APDと、複数の温度補償用ダイオードと、回路部とを備える。複数の温度補償用ダイオードの各々は、第一及び第二電極を有している。複数の温度補償用ダイオードは、APDよりも低い互いに異なるブレークダウン電圧を有している。回路部は、複数の温度補償用ダイオードのいずれか一つをブレークダウン状態とする。回路部は、複数の第一端子と第二端子とを含む。複数の第一端子の各々は、互いに異なる温度補償用ダイオードの第二電極に接続される。第二端子は、APDと各温度補償用ダイオードの第一電極とに電気的に接続される。
 上記一つの態様では、回路部は、第二端子に対してAPDと各温度補償用ダイオードとを電気的に並列に接続する。この構成において、複数の温度補償用ダイオードのいずれか一つがブレークダウン状態とされると、ブレークダウン状態となった温度補償用ダイオードのブレークダウン電圧に応じた電圧がAPDにバイアス電圧として印加される。この結果、APDのブレークダウン電圧とAPDに印加するバイアス電圧との差分電圧が設定され、APDは当該差分電圧に応じたゲインを有している。したがって、ブレークダウン状態とする温度補償用ダイオードに応じて、APDにおいて状況に応じた所望のゲインが温度に対して安定して得られる。
 上記一つの態様では、回路部は、少なくとも1つのスイッチを有してもよい。少なくとも1つのスイッチは、対応する温度補償用ダイオードに電気的に接続されていてもよい。少なくとも1つのスイッチは、対応する温度補償用ダイオードが通電可能な状態と通電不可能な状態とを切り替えてもよい。複数の温度補償用ダイオードは、第一温度補償用ダイオードと、第二温度補償用ダイオードとを含んでもよい。第二温度補償用ダイオードは、第一温度補償用ダイオードよりも高いブレークダウン電圧を有してもよい。スイッチは、第一温度補償用ダイオードに電気的に接続されていてもよい。この場合、第一温度補償用ダイオードがスイッチによって通電可能な状態にされると、第二温度補償用ダイオードが通電可能な状態であったとしても、第一温度補償用ダイオードが優先してブレークダウン状態となる。このため、第一温度補償用ダイオードに電気的に接続されたスイッチを切り替えるだけで、APDに印加されるブレークダウン電圧が2つのブレークダウン電圧から選択され得る。したがって、容易な制御でAPDにおいて状況に応じた所望のゲインを切り替えることができる。
 上記一つの態様では、少なくとも1つのスイッチは、対応する第一端子に接続されていてもよい。各温度補償用ダイオードの第一電極とAPDとの間には高電圧が印加される。このため、第一電極とAPDとの間にスイッチを配置するよりも、第一端子を介して第二電極と電気的にスイッチを接続した方が容易な制御を実現できる。
 上記一つの態様では、回路部は、第一温度補償用ダイオードが通電可能な状態であるか否かに関わらず、第二温度補償用ダイオードを通電可能な状態としてもよい。この場合、第一温度補償用ダイオードが損傷したり、第一温度補償用ダイオードが配置されている付近で局所的な温度変化が起こったとしても、第二温度補償用ダイオードがブレークダウン状態となる。このため、大きな電流がAPDに流れることが防止され、光検出装置の故障が防止される。
 上記一つの態様では、複数の温度補償用ダイオードは、第三温度補償用ダイオードをさらに含んでもよい。第三温度補償用ダイオードは、第一温度補償用ダイオードのブレークダウン電圧よりも高くかつ第二温度補償用ダイオードのブレークダウン電圧よりも低いブレークダウン電圧を有してもよい。スイッチは、第三温度補償用ダイオードに電気的に接続されてもよい。回路部は、第一温度補償用ダイオードが通電不可能な状態において、スイッチによって、第三温度補償用ダイオードを通電可能な状態と通電不可能な状態との間で切り替えてもよい。この場合、第一温度補償用ダイオードが通電可能な状態では、第一温度補償用ダイオードがブレークダウン状態となる。第一温度補償用ダイオードが通電不可能な状態において、第三温度補償用ダイオードが通電可能な状態となれば第三温度補償用ダイオードがブレークダウン状態となる。第一温度補償用ダイオードが通電不可能な状態において、第三温度補償用ダイオードが通電不可能な状態となれば第二温度補償用ダイオードがブレークダウン状態となる。このように、容易な制御でAPDにおいて状況に応じた所望のゲインを切り替えることができる。
 本発明の一つの態様は、APDにおいて状況に応じた所望のゲインが温度に対して安定して得られる光検出装置を提供する。
図1は、本実施形態に係る光検出装置のブロック図である。 図2は、光検出装置の概略構成図である。 図3は、光検出部の概略断面図である。 図4は、APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータのグラフである。 図5は、回帰直線の傾き及び切片の温度依存性を示すグラフである。 図6は、設定部による設定に応じたAPDの出力特性を示すグラフである。 図7は、半導体基板の製造方法を示すフローチャートである。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有している要素には、同一符号を用いることとし、重複する説明は省略する。
 まず、図1を参照して、本実施形態に係る光検出装置の概要を説明する。図1は、光検出装置のブロック図である。光検出装置1は、図1に示されているように、検出動作部2と回路部3と電源部4とを備えている。
 検出動作部2は、受光部10と、温度補償部15とを有している。受光部10は、少なくとも1つのAPDを有している。本実施形態では、受光部10のAPDは、リニアモードで動作するアバランシェフォトダイオードである。温度補償部15は、受光部10のAPDにおけるゲインの温度補償を行う。温度補償部15は、受光部10のAPDに印加するバイアス電圧を制御する。温度補償部15は、複数の温度補償用ダイオードを有している。
 回路部3は、検出動作部2の受光部10及び温度補償部15に電圧を印加する。回路部3は、受光部10のAPD及び温度補償部15の温度補償用ダイオードの各電極に電気的に接続されている。本実施形態では、回路部3は、温度補償部15に含まれる温度補償用ダイオードがブレークダウン状態となる電圧を受光部10のAPDに印加する。
 電源部4は、検出動作部2を動作させる起電力を発生する。電源部4は、回路部3を介して、検出動作部2における受光部10のAPD及び温度補償部15の温度補償用ダイオードに電位を印加する。電源部4は、温度補償部15に含まれる温度補償用ダイオードをブレークダウン状態とする。
 温度補償部15の温度補償用ダイオードのいずれか一つにブレークダウン電圧が印加されることで、当該ブレークダウン電圧に応じた電圧が受光部10のAPDにバイアス電圧として印加される。これらの温度補償用ダイオードとAPDとは、ゲインとバイアス電圧との関係について同等の温度特性を有している。この場合、環境温度が変化すると、温度補償用ダイオードに印加されるブレークダウン電圧が変化する。温度補償用ダイオードに印加されるブレークダウン電圧の当該変化によって、上記APDに印加されるバイアス電圧も上記APDのゲインが維持されるように環境温度に応じて変化する。すなわち、温度補償部15によって、受光部10のAPDにおけるゲインの温度補償が行われる。
 次に、図2を参照して、光検出装置1の物理的な構成の一例についてより詳細に説明する。図2は、光検出装置の概略構成図である。光検出装置1は、光検出部20と、起電力発生部31と、電流制限部32と、バイアス電圧安定化部33と、設定部40と、を備えている。光検出部20は、上述した受光部10と温度補償部15とを有している。起電力発生部31は、光検出部20を動作させる起電力を発生する。電流制限部32は、光検出部20に流れる電流を制限する。バイアス電圧安定化部33は、電流制限部32により制限される上限値以上の電流出力を可能とする。設定部40は、光検出部20の動作を制御する。光検出部20の一部は、検出動作部2に含まれる。光検出部20の一部とバイアス電圧安定化部33と設定部40とは、回路部3に含まれる。起電力発生部31と電流制限部32とは、電源部4に含まれる。
 光検出部20は、図2に示されているように、APD11及び温度補償部15に加えて、温度補償部15とAPD11とを電気的に接続する配線部21と、複数の端子22,23,24,25と、を有している。たとえば、端子22が第二端子であり、複数の端子25が複数の第一端子である。本明細書において、「電気的に接続する」及び「電気的に接続される」は、スイッチ等によって一時的に経路が切断される構成も含む。本実施形態では、温度補償部15は、上述した複数の温度補償用ダイオードとして、3つの温度補償用ダイオード26,27,28を含む。温度補償部15は、4つ以上の温度補償用ダイオードを含んでいてもよい。
 APD11及び温度補償用ダイオード26,27,28は、検出動作部2に含まれる。配線部21及び複数の端子22,23,24,25は、回路部3に含まれる。APD11は、一対の電極19a,19bを有している。各温度補償用ダイオード26,27,28は、一対の電極29a,29bを有している。たとえば、電極29aが第一電極である場合、電極29bは第二電極である。たとえば、温度補償用ダイオード28は第一温度補償用ダイオードであり、温度補償用ダイオード26は第二温度補償用ダイオードであり、温度補償用ダイオード27は第三温度補償用ダイオードである。
 温度補償用ダイオード26,27,28は、同一の環境温度において、それぞれ異なる電圧でブレークダウン状態となる。以下、温度補償用ダイオード26,27,28がブレークダウン状態となる際に当該温度補償用ダイオードに印加される電圧、及び、APD11がブレークダウン状態となる際にAPD11に印加される電圧を「ブレークダウン電圧」という。以降の説明において、ブレークダウン電圧を比較する場合は、同一の環境温度におけるブレークダウン電圧を比較したものとする。
 複数の温度補償用ダイオード26,27,28は、互いに異なるブレークダウン電圧を有している。温度補償用ダイオード26は、温度補償用ダイオード27よりも高い電圧でブレークダウン電圧を有している。温度補償用ダイオード27は、温度補償用ダイオード26よりも低く温度補償用ダイオード28よりも高い電圧でブレークダウン電圧を有している。温度補償用ダイオード28は、温度補償用ダイオード26,27よりも低い電圧でブレークダウン電圧を有している。複数の温度補償用ダイオード26,27,28のブレークダウン電圧は、いずれもAPD11のブレークダウン電圧よりも低い。
 配線部21は、端子22及び端子23の双方に対して、APD11の電極19aと温度補償用ダイオード26の電極29aと温度補償用ダイオード27の電極29aと温度補償用ダイオード28の電極29aとを並列に接続する。配線部21は、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。
 端子22は、APD11の電極19aと各温度補償用ダイオード26,27,28の電極29aと電源部4の電流制限部32とに電気的に接続される。端子23は、APD11の電極19a及び各温度補償用ダイオード26,27,28の電極29aとバイアス電圧安定化部33とに電気的に接続される。端子24は、APD11の電極19bと不図示の信号読出回路とに電気的に接続される。複数の端子25は、各温度補償用ダイオード26,27,28の電極29bと設定部40とに電気的に接続される。各端子25は、互いに異なる温度補償用ダイオード26,27,28の電極29bに接続される。本実施形態では、電極19aはAPD11のアノードであり、電極19bはAPD11のカソードである。電極29aは各温度補償用ダイオード26,27,28のアノードであり、電極29bは各温度補償用ダイオード26,27,28のカソードである。
 起電力発生部31及び電流制限部32は、電源部4として、光検出部20に対して電圧を印加する。起電力発生部31と電流制限部32とは、端子22に電気的に接続される。本実施形態では、起電力発生部31の正極がグラウンド36に接続され、起電力発生部31の負極が電流制限部32を介して端子22に接続されている。
 バイアス電圧安定化部33は、APD11から出力される検出信号の上限値を増加させる。バイアス電圧安定化部33は、光検出部20及び起電力発生部31に対して電流制限部32と並列に接続されている。バイアス電圧安定化部33は、たとえば、コンデンサである。本実施形態では、コンデンサの一方の電極が起電力発生部31の負極に接続され、他方の電極が端子23に接続されている。光の入射によってAPD11から出力されたパルス信号を検出する場合には、電流制限部32によって制限される電流値以上の強度の出力が当該コンデンサの容量に応じて得られる。
 設定部40は、APD11に設定するゲインに応じて、温度補償部15を設定する。設定部40は、複数の温度補償用ダイオード26,27,28のうち動作させる温度補償用ダイオードを選択する。換言すれば、設定部40は、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを設定する。設定部40は、複数の温度補償用ダイオード26,27,28の通電状態を制御することで、動作させる温度補償用ダイオードを設定する。
 設定部40は、少なくとも1つのスイッチ41を有している。少なくとも1つのスイッチ41は、対応する端子25に接続されている。本実施形態では、設定部40は、2つのスイッチ41を有している。一方のスイッチ41は、対応する端子25を通して、温度補償用ダイオード27に電気的に接続されている。他方のスイッチ41は、対応する端子25を通して、温度補償用ダイオード28に電気的に接続されている。スイッチ41は、対応する温度補償用ダイオード27,28が通電可能な状態と通電不可能な状態とを切り替える。設定部40は、スイッチ41のオンオフを制御する。
 本実施形態では、光検出部20は、3つの端子25を有している。3つの端子25は、温度補償用ダイオード26,27,28に1つずつ接続されている。温度補償用ダイオード26に接続された端子25は、グラウンド46に接続されている。温度補償用ダイオード27に接続された端子25は、スイッチ41を介してグラウンド47に接続されている。温度補償用ダイオード28に接続された端子25は、スイッチ41を介してグラウンド48に接続されている。すなわち、1つの端子25のみがスイッチ41に接続されていない。グラウンド46,47,48は、互いに接続されていてもよい。本実施形態の変形例として、全ての端子25にスイッチ41が接続されていてもよい。
 次に、図3を参照して、光検出装置1における光検出部20の構造について詳細に説明する。図3は、光検出部の概略断面図である。図3では、温度補償部15として、温度補償用ダイオード26,27,28のうち1つのみが示されている。本実施形態では、光検出部20は、図3に示されているように、半導体基板50を備える光学部材である。半導体基板50は、互いに対向する主面50a,50bを有している。APD11及び各温度補償用ダイオード26,27,28は、主面50aに直交する方向から見て、互いに離間して半導体基板50に形成されている。APD11は、主面50a側に光入射面51aを有している。温度補償用ダイオード26,27,28は、遮光されたAPDである。
 半導体基板50は、半導体領域51及び半導体層52,53,54,55を含む。APD11及び各温度補償用ダイオード26,27,28は、それぞれ、半導体領域51及び半導体層52,53,55を含む。
 半導体領域51及び半導体層53,54,55は第一導電型であり、半導体層52は第二導電型である。半導体の不純物は、たとえば拡散法又はイオン注入法によって添加される。本実施形態では、第一導電型はP型であり、第二導電型はN型である。半導体基板50がSiをベースとする場合、P型不純物としてはBなどの13族元素が用いられ、N型不純物としてはN、P又はAsなどの15族元素が用いられる。
 半導体領域51は、半導体基板50の主面50a側に位置している。半導体領域51は、主面50aの一部を構成している。半導体領域51は、たとえばP型である。
 半導体層52は、主面50aの一部を構成している。半導体層52は、主面50aに直交する方向から見て、半導体領域51に接し、半導体領域51に囲まれている。半導体層52は、たとえばN型である。本実施形態では、半導体層52は、APD11及び各温度補償用ダイオード26,27,28のそれぞれにおいてカソードを構成する。
 半導体層53は、半導体領域51と半導体層52との間に位置している。換言すれば、半導体層53は、主面50a側で半導体層52に接し、主面50b側で半導体領域51に接している。半導体層53は、半導体領域51よりも不純物濃度が高い。半導体層53は、たとえばP型である。本実施形態では、各温度補償用ダイオード26,27,28の半導体層53の不純物濃度は、APD11の半導体層53の不純物濃度よりも高い。半導体層53は、APD11及び各温度補償用ダイオード26,27,28のそれぞれにおいてアバランシェ領域を構成する。
 温度補償用ダイオード27の半導体層53の不純物濃度は、温度補償用ダイオード26の半導体層53の不純物濃度よりも高い。温度補償用ダイオード28の半導体層53の不純物濃度は、温度補償用ダイオード27の半導体層53の不純物濃度よりも高い。
 半導体層54は、主面50aの一部を構成している。半導体層54は、主面50aに直交する方向から見て、半導体領域51に接し、半導体領域51に囲まれている。本実施形態では、半導体層54は、半導体領域51及び半導体層53よりも不純物濃度が高い。半導体層54は、たとえばP型である。半導体層54は、図示されていない部分で半導体層55に接続されている。半導体層54は、光検出装置1のアノードを構成する。半導体層54は、たとえば、APD11、及び各温度補償用ダイオード26,27,28のアノードを構成する。
 半導体層55は、半導体領域51よりも半導体基板50の主面50b側に位置している。半導体層55は、主面50bの全面を構成している。半導体層55は、主面50a側で半導体領域51に接している。本実施形態では、半導体層55は、半導体領域51及び半導体層53よりも不純物濃度が高い。半導体層55は、たとえばP型である。半導体層55は、光検出装置1のアノードを構成する。半導体層55は、たとえば、APD11及び各温度補償用ダイオード26,27,28のアノードを構成する。
 光検出装置1は、半導体基板50の主面50a上に設けられた、絶縁膜61と、電極62,63,64と、パッシベーション膜66と、反射防止膜67とをさらに備える。絶縁膜61は、半導体基板50の主面50a上に積層されている。絶縁膜61は、たとえばシリコン酸化膜である。電極62,63,64は、それぞれ絶縁膜61上に配置されている。パッシベーション膜66は、絶縁膜61及び電極62,63,64上に積層されている。反射防止膜67は、半導体基板50の主面50a上に積層されている。
 電極62は、絶縁膜61を貫通して、APD11の半導体層52に接続されている。電極62の一部は、パッシベーション膜66から露出しており、APD11の端子24を構成する。電極62は、端子24においてAPD11からの信号を出力する。
 電極63は、絶縁膜61を貫通して、各温度補償用ダイオード26,27,28の半導体層52に接続されている。電極63の一部は、パッシベーション膜66から露出しており、各温度補償用ダイオード26,27,28の端子25を構成する。
 電極64は、絶縁膜61を貫通して、半導体層54に接続されている。すなわち、電極64は、APD11及び各温度補償用ダイオード26,27,28に対して接続されている。換言すれば、APD11及び各温度補償用ダイオード26,27,28は、電極64に対して互いに並列に接続されている。電極64の一部は、パッシベーション膜66から露出しており、たとえば、端子22を構成する。
 本実施形態では、端子24は、APD11のカソード用のパッド電極である。端子25は、温度補償用ダイオード26,27,28のカソード用のパッド電極である。端子22は、APD11及び各温度補償用ダイオード26,27,28のアノード用のパッド電極である。
 端子22には、APD11及び各温度補償用ダイオード26,27,28が互いに並列に接続されている。APD11及び各温度補償用ダイオード26,27,28に逆方向バイアスをかける場合には、カソード用のパッド電極に正電圧が印加され、アノード用のパッド電極には負電圧が印加される。
 反射防止膜67は、APD11の半導体層52上に積層されている。反射防止膜67の一部は、パッシベーション膜66から露出している。このため、APD11の半導体層52には、反射防止膜67を透過した光が入射し得る。各温度補償用ダイオード26,27,28の半導体層52は、絶縁膜61で覆われており遮光されている。
 次に、温度補償部15についてさらに詳細に説明する。温度補償部15の各温度補償用ダイオード26,27,28とAPD11とは、ゲインとバイアス電圧との関係について同等の温度特性を有している。光検出装置1では、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧がAPD11にバイアス電圧として印加される。
 温度補償部15は、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧が一定となるように当該バイアス電圧を制御する。この差分電圧は、以下のように決定されている。
 APDに印加するバイアス電圧を“V”とし、当該バイアス電圧が印加されたAPDのゲインを“M”とした場合、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 “a”及び“b”は、定数である。式(1)から分かるように、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした場合に、APDにおけるバイアス電圧とゲインとの関係を示すデータについて、傾きが“a”であり、切片が“b”である回帰直線が成り立つ。図4及び図5に示されているように、傾き“a”と切片“b”とは温度依存性が極めて低い。図4は、APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータのグラフである。図4では、横軸はAPDのゲインを示し、縦軸は“(1/M)×(dM/dV)”の値を示している。複数の線は、それぞれ異なる環境温度のデータを示している。具体的には、図4は、100℃、80℃、60℃、40℃、20℃、0℃、-20℃、-40℃の8種の環境温度におけるデータを示している。図5は、取得された回帰直線の傾き“a”及び切片“b”の温度依存性を示すグラフである。図5では、横軸が環境温度を示し、縦軸が“a”及び“b”の値を示している。実線は“a”のデータを示し、破線は“b”のデータを示している。
 APDに印加するバイアス電圧を“V”とし、当該バイアス電圧が印加されたAPDのゲインを“M”とし、APDのブレークダウン電圧を“Vbr”とした場合、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)及び式(2)における“a”は、互いに同一の物理量を示している。式(1)及び式(2)における“b”は、互いに同一の物理量を示している。
 したがって、式(1)から取得された“a”及び“b”を式(2)の“a”及び“b”に代入すれば、所望のゲインに対する“(Vbr-V)”の値が一意に求まる。“(Vbr-V)”は、APDのブレークダウン電圧からAPDに印加するバイアス電圧を減算した減算値である。すなわち、“(Vbr-V)”は、上述した差分電圧である。
 上記差分電圧を“ΔV”とした場合、式(2)は式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 したがって、式(3)におけるAPDのゲイン“M”を所望のゲイン“M”とした式(4)を用いることで、所望のゲインに対応する“ΔV”が容易に演算される。
Figure JPOXMLDOC01-appb-M000004
 具体的には、APDに印加するバイアス電圧と当該バイアス電圧が印加されたAPDのゲインとの関係を示すデータを任意の温度において取得する。取得されたデータおいて“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを式(4)の“a”に、及び回帰直線の切片を式(4)の“b”に、APD11に設定する所望のゲインを式(4)の“M”に代入する。これによって、“ΔV”が演算される。温度補償部15は、上記差分電圧が演算された“ΔV”となるように、APD11に印加するバイアス電圧を制御する。ここで、取得されるバイアス電圧とゲインとの関係を示すデータは、APD11と同一の材料及び構造を有するAPDであれば、APD11と同一個体のAPDのデータでなくともよい。
 本実施形態では、上記差分電圧は、APD11のブレークダウン電圧からブレークダウン状態となった温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧を減算した減算値である。温度補償部15では、ブレークダウン状態となった温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧がAPD11にバイアス電圧として印加される。
 本実施形態では、APD11のブレークダウン電圧と各温度補償用ダイオード26,27,28のブレークダウン電圧とは互いに異なる値を有している。各温度補償用ダイオード26,27,28の半導体層53の不純物濃度とAPD11の半導体層53の不純物濃度とが調整されることで、APD11のブレークダウン電圧と温度補償用ダイオード26,27,28のブレークダウン電圧との差分電圧が調整されている。本実施形態の変形例として、回路構成によって、上記差分電圧が調整されてもよい。端子25に外部電圧を印加することで、上記差分電圧が調整されてもよい。これらの変形例の場合、APD11のブレークダウン電圧と温度補償用ダイオード26,27,28のいずれか一つのブレークダウン電圧とは同じでもよい。これらの複数の手法が組み合わされて、上記差分電圧が調整されてもよい。
 本実施形態では、各温度補償用ダイオード26,27,28の半導体層53の不純物濃度は、APD11の半導体層53の不純物濃度よりも高い。この結果、APD11のブレークダウン電圧の方が、各温度補償用ダイオード26,27,28のブレークダウン電圧よりも“ΔV”だけ高い。3つの温度補償用ダイオード26,27,28は、それぞれ異なるブレークダウン電圧を有している。3つの温度補償用ダイオード26,27,28は、それぞれ異なるゲインを取得するものとして設計されている。式(4)によって温度補償用ダイオード26,27,28ごとに“ΔV”が演算され、演算された各々の“ΔV”に応じて各温度補償用ダイオード26,27,28の半導体層53の不純物濃度が設計されている。温度補償用ダイオード26,27,28のそれぞれについて“ΔV”を演算する際に、“a”には同一の値が代入される。同様に、温度補償用ダイオード26,27,28のそれぞれについて“ΔV”を演算する際に、“b”には同一の値が代入される。
 光検出装置1では、温度補償用ダイオード26,27,28のブレークダウン電圧が印加されることで、当該ブレークダウン電圧がAPD11にバイアス電圧として印加される。本実施形態では、複数の温度補償用ダイオード26,27,28のブレークダウン電圧のうち1つのブレークダウン電圧が、APD11にバイアス電圧として印加される。複数の温度補償用ダイオード26,27,28のブレークダウン電圧のうちいずれのブレークダウン電圧がAPD11にバイアス電圧として印加されるかは、設定部40によって制御される。
 次に、本実施形態における光検出装置の動作について説明する。
 本実施形態では、端子22はP型の半導体層54に接続されており、半導体層54はP型の半導体層55に接続されている。したがって、APD11及び各温度補償用ダイオード26,27,28のアノードは、端子22に対して互いに並列に接続されている。この結果、APD11及び各温度補償用ダイオード26,27,28のアノードには、電源部4によってマイナスの電位が印加される。
 回路部3は、複数の温度補償用ダイオード26,27,28のいずれか一つをブレークダウン状態とする。設定部40は、スイッチ41によって、複数の温度補償用ダイオード26,27,28のうち動作させる温度補償用ダイオードを選択する。設定部40は、スイッチ41のオンオフを切り替えることで、APD11にバイアス電圧としてブレークダウン電圧を印加する温度補償用ダイオードを選択する。設定部40は、APD11に設定するゲインを式(4)の“M”に代入することで演算される“ΔV”が差分電圧となるように、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを選択する。
 選択された温度補償用ダイオードのブレークダウン電圧は、当該温度補償用ダイオードに対応する端子25に印加される電位と、端子22に印加される電位との電位差である。したがって、APD11のアノードには、選択された温度補償用ダイオードのブレークダウン電圧に応じた電位が印加される。この結果、APD11には、選択された温度補償用ダイオードのブレークダウン電圧に応じた電圧がバイアス電圧として印加される。
 本実施形態では、設定部40は、温度補償用ダイオード28を動作させる場合には、温度補償用ダイオード26,27,28を全て通電可能な状態とする。すなわち、設定部40は、複数の端子25に接続されたスイッチ41の全てをオンとする。この場合、通電可能な状態にある温度補償用ダイオード26,27,28において、温度補償用ダイオード28が最も小さいブレークダウン電圧を有しているため、温度補償用ダイオード28が動作する。すなわち、温度補償用ダイオード28のブレークダウン電圧が、APD11にバイアス電圧として印加される。
 設定部40は、温度補償用ダイオード27を動作させる場合には、温度補償用ダイオード26,27を通電可能な状態とし、温度補償用ダイオード28を通電不可能な状態とする。本実施形態では、設定部40は、温度補償用ダイオード27に対応する端子25に接続されたスイッチ41をオンとし、温度補償用ダイオード28に対応する端子25に接続されたスイッチ41をオフとする。温度補償用ダイオード26に対応する端子25にはスイッチ41が接続されていないため、通電可能な状態となっている。この場合、通電可能な状態にある温度補償用ダイオード26,27において、温度補償用ダイオード27が最も小さいブレークダウン電圧を有しているため、温度補償用ダイオード27が動作する。すなわち、温度補償用ダイオード27のブレークダウン電圧が、APD11にバイアス電圧として印加される。
 設定部40は、温度補償用ダイオード26を動作させる場合には、温度補償用ダイオード26を通電可能な状態とし、温度補償用ダイオード27,28を通電不可能な状態とする。本実施形態では、設定部40は、温度補償用ダイオード27,28に対応する端子25に接続されたスイッチ41をオフとする。温度補償用ダイオード26に対応する端子25にはスイッチ41が接続されていないため、通電可能な状態となっている。この場合、通電可能な状態にある温度補償用ダイオード26が動作する。すなわち、温度補償用ダイオード26のブレークダウン電圧が、APD11にバイアス電圧として印加される。
 以上の動作によれば、設定部40によって、APD11のゲインが選択される。図6は、設定部40による設定に応じたAPD11の出力特性を示すグラフである。図6では、縦軸がAPD11の出力電圧を示し、横軸が時間を示している。データ71,72,73は、それぞれ、同一の強度のパルス光がAPD11に入射したときのAPD11の出力特性を示している。データ71は、温度補償用ダイオード26が動作している状態におけるAPD11の出力特性を示している。データ72は、温度補償用ダイオード27が動作している状態におけるAPD11の出力特性を示している。データ73は、温度補償用ダイオード26が動作している状態におけるAPD11の出力特性を示している。
 図6に示されているように、温度補償用ダイオード26が動作している状態におけるAPD11の出力ピークは、温度補償用ダイオード27が動作している状態におけるAPD11の出力ピークよりも大きい。温度補償用ダイオード27が動作している状態におけるAPD11の出力ピークは、温度補償用ダイオード28が動作している状態におけるAPD11の出力ピークよりも大きい。このように、設定部40によって動作する温度補償用ダイオード26,27,28を切り替えることで、APD11のゲインが選択されることが確認された。
 本実施形態では、設定部40は、温度補償用ダイオード28が通電可能な状態であるか否かにかかわらず、温度補償用ダイオード26を通電可能な状態とする。設定部40は、温度補償用ダイオード28が通電不可能な状態において、スイッチ41によって、温度補償用ダイオード27を通電可能な状態と通電不可能な状態との間で切り替える。以下では、一例として、設定部40が動作させる温度補償用ダイオードとして、温度補償用ダイオード28を選択した場合について説明する。
 本実施形態では、起電力発生部31と電流制限部32との組み合わせが端子22に接続されることによって、端子22に選択された温度補償用ダイオード28のブレークダウン電圧が印加される。本実施形態では、起電力発生部31の出力電圧は、APD11の動作電圧以上である。換言すれば、起電力発生部31の出力電圧は、各温度補償用ダイオード26,27,28におけるブレークダウン電圧の温度変動の上限以上である。たとえば、起電力発生部31の出力電圧は、300V以上である。電流制限部32は、たとえばカレントミラー回路又は抵抗などで構成される。
 選択された温度補償用ダイオード28とAPD11とのブレークダウン電圧差に応じて、APD11のゲインは任意に設定され得る。APD11のゲインがS/N比の高い最適増倍率Moptに設定されれば、検出精度の向上を図られる。
 本実施形態では、APD11及び各温度補償用ダイオード26,27,28のアノードは、半導体層55で一体に構成されている。たとえば、25℃の環境温度下において、端子25に印加される電位が0Vであり、かつ、選択された温度補償用ダイオード28のブレークダウン電圧が130Vである場合、APD11のアノードには-130Vの電位が印加される。したがって、APD11のブレークダウン電圧が25℃の環境温度下において150Vである場合、APD11はアノードとカソードとの電位差がブレークダウン電圧よりも20V低い状態で動作する。
 上述したように、APD11と各温度補償用ダイオード26,27,28とは、ゲインとバイアス電圧との関係について同等の温度特性を有している。このため、APD11は、選択された温度補償用ダイオード28がブレークダウン状態となっている限り、25℃の環境温度下においてブレークダウン電圧よりも20V低いバイアス電圧が印加された場合のゲインを維持して動作する。換言すれば、光検出装置1では、選択された温度補償用ダイオード28をブレークダウン状態とする電圧が当該温度補償用ダイオード28に印加されることで、APD11のゲインについて温度補償が実現される。
 次に、上述した実施形態及び変形例における光検出装置の作用効果について説明する。従来、互いに同等の温度特性を有するAPDと温度補償用ダイオードとを備えた光検出装置を製造する場合、ゲインとバイアス電圧との関係について所望の温度特性を有するAPDを選定し組み合せるための検査が必要であった。このため、コスト削減は、困難であった。この点、光検出装置1では、同一の半導体基板50にAPD11及び各温度補償用ダイオード26,27,28がそれぞれ形成されている。この場合、ゲインとバイアス電圧とに関する温度特性が広い温度範囲で互いに同等の温度補償用ダイオード26,27,28とAPD11とが、各温度補償用ダイオード26,27,28とAPD11とがそれぞれ異なる半導体基板に形成される場合よりも容易に高い精度で形成される。したがって、製造コストが抑えられながら、APD11のゲインに対する温度補償が実現され得る。
 半導体基板50は、第一導電型の半導体領域51を含んでいる。APD11及び各温度補償用ダイオード26,27,28は、それぞれ、半導体層52と半導体層53とを含んでいる。半導体基板50では、半導体層52は、第二導電型である。半導体層53は、半導体領域51よりも不純物濃度が高い第一導電型である。半導体層53は、半導体領域51と半導体層52との間に位置している。このように、各温度補償用ダイオード26,27,28は、APD11と同様の構成である。このため、ゲインとバイアス電圧とに関する温度特性がAPD11に酷似した複数の温度補償用ダイオード26,27,28を容易に形成できる。
 半導体基板50では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より高い。この場合、光検出装置1では、たとえば、APD11のブレークダウン電圧の方が各温度補償用ダイオード26,27,28のブレークダウン電圧よりも大きくなる。この結果、リニアモードで動作するAPD11のゲインに対する温度補償が実現される。
 光検出装置1では、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾きを式(4)の“a”に、切片を式(4)の“b”に代入することで所望のゲインが得られる上記差分電圧が決定されている。このため、環境温度を厳密に考慮することなく、極めて容易に所望のゲインが得られる。
 温度補償部15は、温度補償用ダイオード26,27,28を有している。温度補償部15は、温度補償用ダイオード26,27,28のいずれか一つに印加されるブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。たとえば、温度補償用ダイオード28がブレークダウン状態とされる場合、差分電圧は、APD11のブレークダウン電圧から温度補償用ダイオード28のブレークダウン電圧に応じた電圧を減算した減算値である。このため、所望のゲインが得られる“ΔV”を導出し、上記減算値が“ΔV”となるように、APD11及び温度補償用ダイオード26,27,28の不純物濃度が設計され得る。
 光検出装置1は、設定部40と配線部21とを備えている。設定部40は、APD11に設定するゲインに応じて、温度補償部15を設定する。配線部21は、温度補償部15とAPD11とを電気的に接続する。複数の温度補償用ダイオード26,27,28は、互いに異なるブレークダウン電圧を有している。配線部21は、各温度補償用ダイオード26,27,28のブレークダウン電圧に応じた電圧をAPD11にバイアス電圧として印加する。設定部40は、APD11に設定するゲインを式(4)の“Md”に代入することで演算される“ΔV”が差分電圧となるように、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードを設定する。このため、設定部40によって、複数の温度補償用ダイオード26,27,28からバイアス電圧の制御に用いる温度補償用ダイオードが設定される。したがって、環境温度を厳密に考慮することなく、状況に応じた所望のゲインを極めて容易に得ることができる。換言すれば、所望のゲインを容易に切り替えることができると共に温度に安定して所望のゲインが得られる。
 回路部3は、端子22に対してAPD11と各温度補償用ダイオード26,27,28とを電気的に並列に接続する。この構成において、複数の温度補償用ダイオード26,27,28のいずれか一つがブレークダウン状態とされると、ブレークダウン状態となった温度補償用ダイオードのブレークダウン電圧がAPD11にバイアス電圧として印加される。この結果、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧が設定され、APD11は当該差分電圧に応じたゲインを有している。したがって、ブレークダウン状態とする温度補償用ダイオードに応じて、APD11において状況に応じた所望のゲインが温度に対して安定して得られる。
 回路部3は、少なくとも1つのスイッチ41を有している。スイッチ41は、対応する温度補償用ダイオード27,28に電気的に接続されている。スイッチ41は、対応する温度補償用ダイオード27,28が通電可能な状態と通電不可能な状態とを切り替える。複数の温度補償用ダイオード26,27,28は、温度補償用ダイオード26と、温度補償用ダイオード28とを含んでいる。温度補償用ダイオード26は、温度補償用ダイオード28よりも高いブレークダウン電圧を有している。スイッチ41は、温度補償用ダイオード28に電気的に接続されている。この場合、温度補償用ダイオード28がスイッチ41によって通電可能な状態にされると、温度補償用ダイオード26が通電可能な状態であったとしても、温度補償用ダイオード28が優先してブレークダウン状態となる。このように、容易な制御でAPD11において状況に応じた所望のゲインを切り替えることができる。
 少なくとも1つのスイッチ41は、対応する端子25に接続されている。各温度補償用ダイオード26,27,28の電極29aとAPD11との間には高電圧が印加される。このため、電極29aとAPD11との間にスイッチ41を配置するよりも、端子25を介して電極29bと電気的にスイッチ41を接続した方が容易な制御を実現できる。
 回路部3は、温度補償用ダイオード28が通電可能な状態であるか否かに関わらず、温度補償用ダイオード26を通電可能な状態とする。この場合、温度補償用ダイオード28が損傷したり、温度補償用ダイオード28が配置されている付近で局所的な温度変化が起こったとしても、温度補償用ダイオード26がブレークダウン状態となる。このため、大きな電流がAPD11に流れることが防止され、光検出装置1の故障が防止される。
 複数の温度補償用ダイオード26,27,28は、温度補償用ダイオード27をさらに含んでいる。温度補償用ダイオード27は、温度補償用ダイオード28のブレークダウン電圧よりも高くかつ温度補償用ダイオード26のブレークダウン電圧よりも低いブレークダウン電圧を有している。スイッチ41は、温度補償用ダイオード27に電気的に接続される。回路部3は、温度補償用ダイオード28が通電不可能な状態において、スイッチ41によって、温度補償用ダイオード27を通電可能な状態と通電不可能な状態との間で切り替える。この場合、温度補償用ダイオード28が通電可能な状態では、温度補償用ダイオード28がブレークダウン状態となる。温度補償用ダイオード28が通電不可能な状態において、温度補償用ダイオード27が通電可能な状態となれば温度補償用ダイオード27がブレークダウン状態となる。温度補償用ダイオード28が通電不可能な状態において、温度補償用ダイオード27が通電不可能な状態となれば温度補償用ダイオード26がブレークダウン状態となる。このように、容易な制御でAPD11において状況に応じた所望のゲインを切り替えることができる。
 次に、図7を参照して、光検出装置の製造方法の一例について説明する。図7は、光検出装置1のうち半導体基板50の製造方法を示すフローチャートである。
 まず、半導体ウエハを準備する(工程S1)。半導体ウエハは、半導体基板50として加工される前の基板であり、互いに対向する主面50a,50bを有している。半導体ウエハは、半導体領域51に対応する第一導電型の半導体領域を含む。当該半導体領域は、半導体ウエハの主面50a側に設けられ、主面50aの全面を構成する。たとえば、半導体ウエハの半導体領域は、P型である。本実施形態では、半導体ウエハには、主面50b側から不純物を添加することによって、半導体ウエハの半導体領域よりも不純物濃度が高い第一導電型の半導体層55が形成されている。たとえば、半導体層55は、P型である。
 続いて、APD11のブレークダウン電圧とAPD11に印加するバイアス電圧との差分電圧を決定する。決定方法は、以下の通りである。
 まず、APDに印加するバイアス電圧と当該APDのゲインとの相関を示すデータにおける“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片を取得する(工程S2)。ここで、“V”はAPDに印加するバイアス電圧であり、“M”は当該バイアス電圧が印加されたAPDのゲインである。工程S2で用いられる上記データは、APD11と同一の材料及び構造からなる別個体である。
 次に、工程S2における取得結果と式(4)とを用いて、所望のゲインが得られる上記差分電圧を決定する(工程S3)。上記差分電圧は、取得された上記傾きを式(4)の“a”に、取得された上記切片を式(4)の“b”に、APD11に設定する所望のゲインを式(4)の“M”に、代入することで演算された“ΔV”に相当する。本実施形態では、APD11に設定するゲインとして互いに異なる複数の値を決定し、これらの値について複数の上記差分電圧を決定する。互いに異なる複数の値を式(4)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、複数の値のそれぞれに対応する上記差分電圧として決定される。
 続いて、第一のイオン注入工程(工程S4)として、イオン注入法により、主面50a側に不純物イオンを注入して不純物を添加することで、第二導電型の半導体層52及び第一導電型の半導体層53,54を形成する。たとえば、半導体層52はN型であり、半導体層53はP型であり、半導体層54はP型である。本実施形態では、半導体層52は、一回のイオン注入処理で、互いに離間した異なる箇所に第二導電型の不純物イオンを注入することによって形成される。半導体層53は、半導体層52が形成された後に、第一導電型の不純物イオンを注入することで形成される。半導体層53は、半導体層52が形成される前に、第一導電型の不純物イオンを注入することで形成されてもよい。
 半導体層52,53は、主面50aに直交する方向から見て、互いに重なる位置に形成される。半導体層53は、主面50a側から見て半導体層52よりも深い位置に第一導電型の不純物を注入することで形成される。半導体層52,53は、1つの半導体基板50となる領域内において、主面50aと直交する方向から見て互いに離間した複数の箇所に形成される。当該複数の箇所は、APD11を配置する箇所と各温度補償用ダイオード26,27,28を配置する箇所とを含む。第一のイオン注入工程では、半導体層52の不純物濃度が同等となるように、第二導電型の不純物が各箇所に添加される。同様に、半導体層53の不純物濃度が同等となるように、第一導電型の不純物が各箇所に添加される。
 続いて、第二のイオン注入工程(工程S5)として、イオン注入方法により、上述した複数の箇所のうち一部の箇所の半導体層53のみにさらに不純物を添加する。本実施形態では、各温度補償用ダイオード26,27,28を配置する箇所のみにおいて、半導体層53にさらに第一導電型の不純物が注入される。このため、光検出装置1では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より高い。この場合、光検出装置1は、APD11のブレークダウン電圧が各温度補償用ダイオード26,27,28のブレークダウン電圧よりも大きくなるように構成される。
 工程S4及び工程S5において各温度補償用ダイオード26,27,28の半導体層53に注入される第一導電型の不純物が注入される量は、工程S3で決定された差分電圧に応じる。本実施形態では、温度補償用ダイオード28の半導体層53に注入される第一導電型の不純物の量は、温度補償用ダイオード27の半導体層53に注入される第一導電型の不純物の量よりも多い。これにより、温度補償用ダイオード27のブレークダウン電圧が温度補償用ダイオード28のブレークダウン電圧よりも大きくなるように構成される。温度補償用ダイオード27の半導体層53に注入される第一導電型の不純物の量は、温度補償用ダイオード26の半導体層53に注入される第一導電型の不純物の量よりも多い。これにより、温度補償用ダイオード26のブレークダウン電圧が温度補償用ダイオード27のブレークダウン電圧よりも大きくなるように構成される。
 第二のイオン注入工程では、各温度補償用ダイオード26,27,28を配置する箇所ではなく、APD11を配置する箇所のみにおいて、半導体層53にさらに第一導電型の不純物が注入されてもよい。この場合、光検出装置1では、各温度補償用ダイオード26,27,28の半導体層53における不純物濃度は、APD11の半導体層53における不純物濃度より低い。この場合の光検出装置1では、APD11のブレークダウン電圧は、各温度補償用ダイオード26,27,28のブレークダウン電圧よりも小さくなるように構成される。
 以上の工程によって、光検出装置1の半導体基板50が形成される。工程S2及び工程S3は、工程S1の前に実行されてもよいし、工程S4の後に実行されてもよい。本実施形態では、既に半導体層55が形成された状態から半導体層52,53,54を形成した。しかし、半導体層52,53,54が形成された後に、半導体層55が形成されてもよい。
 上記製造方法では、異なる複数の箇所にイオンを注入することで各箇所に半導体層52と半導体層53とが形成される。その後、さらに一部の箇所の半導体層53にイオンが注入される。このため、ゲインとバイアス電圧とに関する温度特性が同等でありながら、それぞれ所望のブレークダウン電圧に設定された、複数の温度補償用ダイオード26,27,28及びAPD11が容易に製造され得る。この場合、各温度補償用ダイオード26,27,28のブレークダウン電圧とAPD11のブレークダウン電圧との差分電圧に応じて、APD11のゲインが任意に設定され得る。このため、各温度補償用ダイオード26,27,28とAPD11とがそれぞれ所望のブレークダウン電圧に設定されれば、検出精度の向上が図られる。たとえば、上記差分電圧に応じて、APD11のゲインがS/N比の高い最適増倍率Moptに設定されれば、検出精度の向上が図られる。このように、上記製造方法では、製造コストが抑制されながら、APD11のゲインに対する温度補償が実現され、検出精度の向上が図られる。
 上記差分電圧の決定方法では、“(1/M)×(dM/dV)”を目的変数とし“M”を説明変数とした回帰直線の傾き及び切片が取得される。取得された傾きを式(4)の“a”に、取得された切片を式(4)の“b”に代入することで所望のゲインが得られる上記差分電圧が決定される。このため、環境温度を厳密に考慮することなく、極めて容易に、所望のゲインが得られる上記差分電圧が決定される。
 上記決定方法では、APD11に設定するゲインとして互いに異なる複数の値を式(4)の“M”にそれぞれ代入することで演算された複数の“ΔV”が、上記複数の値のそれぞれに対応する差分電圧として決定される。このため、環境温度を厳密に考慮することなく、極めて容易に、複数の値のそれぞれに対応する複数の上記差分電圧が決定される。
 以上、本発明の実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 本実施形態では、いわゆるリーチスルー型のAPD11がリニアモードで動作する構成を説明した。光検出装置1は、リバース型のAPD11がリニアモードで動作する構成であってもよい。
 本実施形態では、起電力発生部31、電流制限部32、バイアス電圧安定化部33、及び設定部40を有する光検出装置1を説明した。しかし、本実施形態にかかる光検出装置は、起電力発生部31、電流制限部32、バイアス電圧安定化部33、及び設定部40の少なくとも1つが含まれない構成を有していてもよい。この場合、光検出装置に接続された外部装置が、起電力発生部31、電流制限部32、バイアス電圧安定化部33、又は設定部40として機能してもよい。光検出装置1は、不図示の信号読出回路を含んでいてもよい。
 本実施形態では、スイッチ41が光検出部20の端子25に接続され、このスイッチ41が設定部40によって制御される構成を説明した。しかし、スイッチ41は、光検出部20の内部に配置されてもよい。
 本実施形態では、端子22,23,24,25は、パッド電極として説明された。しかし、端子22,23,24,25は、半導体基板50内の半導体によって構成されたものであってもよい。
 各温度補償用ダイオード26,27,28とAPD11との電気的な接続を切り替えるスイッチ41が配線部21に配置され、配線部21内のスイッチ41のオンオフが設定部40によって制御されてもよい。この場合も、設定部40によって、APD11に対して印加されるバイアス電圧が制御される。APD11と各温度補償用ダイオード26,27,28との間には高電圧が印加されるため、配線部21に配置されたスイッチを制御する場合よりも、端子25に接続されたスイッチ41を制御する方が容易である。
 温度補償部15には、互いに同一のブレークダウン電圧を有する複数の温度補償用ダイオードが含まれていてもよい。この構成によれば、温度補償用ダイオードの一部が損傷したり、温度補償用ダイオードの一部が配置されている付近で局所的な温度変化が起こったとしても、光検出装置1の正常な動作を実現できる。
 1…光検出装置、3…回路部、11…APD、22,25…端子、26,27,28…温度補償用ダイオード、41…スイッチ。

Claims (5)

  1.  光検出装置であって、
     アバランシェフォトダイオードと、
     各々が第一及び第二電極を有すると共に、前記アバランシェフォトダイオードよりも低い互いに異なるブレークダウン電圧を有する複数の温度補償用ダイオードと、
     前記複数の温度補償用ダイオードのいずれか一つをブレークダウン状態とする回路部と、を備え、
     前記回路部は、各々が互いに異なる前記温度補償用ダイオードの前記第二電極に接続される複数の第一端子と、前記アバランシェフォトダイオードと各前記温度補償用ダイオードの前記第一電極とに電気的に接続される第二端子とを含む。
  2.  請求項1に記載の光検出装置であって、
     前記回路部は、対応する前記温度補償用ダイオードに電気的に接続されている共に、前記対応する温度補償用ダイオードが通電可能な状態と通電不可能な状態とを切り替える少なくとも1つのスイッチを有し、
     前記複数の温度補償用ダイオードは、第一温度補償用ダイオードと、前記第一温度補償用ダイオードよりも高いブレークダウン電圧を有する第二温度補償用ダイオードと、を含み、
     前記スイッチは、前記第一温度補償用ダイオードに電気的に接続されている。
  3.  請求項2に記載の光検出装置であって、
     前記少なくとも1つのスイッチは、対応する前記第一端子に接続されている。
  4.  請求項2又は3に記載の光検出装置であって、
     前記回路部は、前記第一温度補償用ダイオードが通電可能な状態であるか否かに関わらず、前記第二温度補償用ダイオードを通電可能な状態とする。
  5.  請求項4に記載の光検出装置であって、
     前記複数の温度補償用ダイオードは、前記第一温度補償用ダイオードのブレークダウン電圧よりも高くかつ前記第二温度補償用ダイオードのブレークダウン電圧よりも低いブレークダウン電圧を有する第三温度補償用ダイオードをさらに含み、
     前記スイッチは、前記第三温度補償用ダイオードに電気的に接続されており、
     前記回路部は、前記第一温度補償用ダイオードが通電不可能な状態において、前記スイッチによって、前記第三温度補償用ダイオードを通電可能な状態と通電不可能な状態との間で切り替える。
PCT/JP2019/046900 2018-12-12 2019-11-29 光検出装置 WO2020121854A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980056994.XA CN113167640A (zh) 2018-12-12 2019-11-29 光检测装置
EP19897484.2A EP3896412A4 (en) 2018-12-12 2019-11-29 LIGHT DETECTION DEVICE
US17/311,756 US11513002B2 (en) 2018-12-12 2019-11-29 Light detection device having temperature compensated gain in avalanche photodiode

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-232895 2018-12-12
JP2018232892 2018-12-12
JP2018-232892 2018-12-12
JP2018232895 2018-12-12
JP2019175945A JP7475123B2 (ja) 2018-12-12 2019-09-26 光検出装置
JP2019-175945 2019-09-26

Publications (1)

Publication Number Publication Date
WO2020121854A1 true WO2020121854A1 (ja) 2020-06-18

Family

ID=71076023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046900 WO2020121854A1 (ja) 2018-12-12 2019-11-29 光検出装置

Country Status (2)

Country Link
US (1) US11513002B2 (ja)
WO (1) WO2020121854A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121852A1 (ja) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 光検出装置
JP7455520B2 (ja) * 2018-12-12 2024-03-26 浜松ホトニクス株式会社 光検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127082A (en) * 1979-03-23 1980-10-01 Nec Corp Bias voltage generating circuit of avalanche photodiode
JPH0321082A (ja) * 1989-06-19 1991-01-29 Fujitsu Ltd 光受信回路
JPH0727607A (ja) 1993-07-09 1995-01-31 Hamamatsu Photonics Kk アバランシェフォトダイオードのバイアス回路
JP2002204149A (ja) * 2000-12-28 2002-07-19 Sanken Electric Co Ltd 電子回路装置及びこれを使用したスィチング回路装置
US9954124B1 (en) * 2016-01-08 2018-04-24 Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Thermo-compensated silicon photo-multiplier with on-chip temperature sensor

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062389A (ja) 1973-10-01 1975-05-28
GB1503088A (en) 1976-07-22 1978-03-08 Standard Telephones Cables Ltd Avalanche photodetector
JPS5341280A (en) 1976-09-27 1978-04-14 Nippon Telegr & Teleph Corp <Ntt> Photodetecting system of multiplication constant control
JPS5916812Y2 (ja) 1978-06-27 1984-05-17 キヤノン株式会社 カメラの測光回路
SE417145B (sv) 1979-05-30 1981-02-23 Asea Ab Lavinfotodiodanordning med en lavindiod och med organ for styrning av diodens multiplikationsfaktor
US4464048A (en) 1981-03-25 1984-08-07 Barr & Stroud Limited Laser rangefinders
JPS60178673A (ja) 1984-02-24 1985-09-12 Nec Corp アバランシフオトダイオ−ド
JPS60180347A (ja) 1984-02-28 1985-09-14 Fujitsu Ltd アバランシエフオトダイオ−ドの温度補償回路
JPS60211886A (ja) 1984-04-05 1985-10-24 Nec Corp アバランシフオトダイオ−ドの製造方法
JPS6138975U (ja) 1984-08-09 1986-03-11 株式会社東芝 印刷配線板
JPH0799782B2 (ja) 1985-06-18 1995-10-25 株式会社ニコン 半導体光検出装置
JPS62239727A (ja) 1986-04-11 1987-10-20 Nec Corp アバランシエホトダイオ−ドの利得制御方式
JPS62279671A (ja) 1986-05-28 1987-12-04 Mitsubishi Electric Corp 固体撮像装置
JPH0828488B2 (ja) 1987-07-07 1996-03-21 富士通株式会社 半導体装置
US4948989A (en) * 1989-01-31 1990-08-14 Science Applications International Corporation Radiation-hardened temperature-compensated voltage reference
JP2838906B2 (ja) 1989-08-04 1998-12-16 キヤノン株式会社 光電変換装置
JPH04111477A (ja) 1990-08-31 1992-04-13 Sumitomo Electric Ind Ltd 受光素子
JPH04256376A (ja) 1991-02-08 1992-09-11 Hamamatsu Photonics Kk アバランシェホトダイオード及びその製造方法
JPH05235396A (ja) 1992-02-24 1993-09-10 Sumitomo Electric Ind Ltd 半導体受光装置
JP3121100B2 (ja) 1992-03-25 2000-12-25 株式会社日立製作所 固体撮像装置
JPH06224463A (ja) 1993-01-22 1994-08-12 Mitsubishi Electric Corp 半導体受光装置
JP3421103B2 (ja) * 1993-12-20 2003-06-30 浜松ホトニクス株式会社 アバランシェフォトダイオードを用いた光検出回路
JPH08207281A (ja) 1995-02-06 1996-08-13 Canon Inc インクジェット記録ヘッド
JPH10247717A (ja) 1997-03-04 1998-09-14 Matsushita Electron Corp 半導体装置
US6313459B1 (en) 2000-05-31 2001-11-06 Nortel Networks Limited Method for calibrating and operating an uncooled avalanche photodiode optical receiver
JP2004281488A (ja) 2003-03-13 2004-10-07 Renesas Technology Corp 半導体装置及びその製造方法
JP4223304B2 (ja) 2003-03-19 2009-02-12 三菱電機株式会社 光受信器
JP2004303878A (ja) 2003-03-31 2004-10-28 Nippon Sheet Glass Co Ltd 受光素子アレイ
JP4399337B2 (ja) 2004-09-13 2010-01-13 株式会社フューチャービジョン 平面パターンを有する基板およびそれを用いた表示装置
JP2007266251A (ja) 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置
JP4791334B2 (ja) 2006-12-11 2011-10-12 富士通オプティカルコンポーネンツ株式会社 光受信装置および光受信装置のバイアス電圧制御方法
JP4642047B2 (ja) 2007-06-15 2011-03-02 三洋電機株式会社 半導体装置
JP2009038157A (ja) 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd 受光素子アレイ、一次元受光素子アレイおよび二次元受光素子アレイ
US20120101614A1 (en) 2010-10-22 2012-04-26 Allan Ghaemi System and Method for Manufacturing Optical Network Components
JP2013164263A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp 受光装置及び距離測定装置及び形状測定装置
US9541656B2 (en) 2013-12-20 2017-01-10 General Electric Company System and method for compensating temperature gain variation in radiation detectors
JP2016061729A (ja) * 2014-09-19 2016-04-25 株式会社東芝 光子検出素子、光子検出装置、及び放射線分析装置
EP3339886B1 (de) 2016-12-22 2019-02-13 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodiodenelementen und verfahren zur versorgung mit einer vorspannung
KR102306048B1 (ko) 2017-01-30 2021-09-29 메디비콘 아이엔씨. 확산 반사 보정을 갖는 형광 추적제의 비침습 모니터링 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127082A (en) * 1979-03-23 1980-10-01 Nec Corp Bias voltage generating circuit of avalanche photodiode
JPH0321082A (ja) * 1989-06-19 1991-01-29 Fujitsu Ltd 光受信回路
JPH0727607A (ja) 1993-07-09 1995-01-31 Hamamatsu Photonics Kk アバランシェフォトダイオードのバイアス回路
JP2002204149A (ja) * 2000-12-28 2002-07-19 Sanken Electric Co Ltd 電子回路装置及びこれを使用したスィチング回路装置
US9954124B1 (en) * 2016-01-08 2018-04-24 Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Thermo-compensated silicon photo-multiplier with on-chip temperature sensor

Also Published As

Publication number Publication date
US11513002B2 (en) 2022-11-29
US20220026268A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6681508B1 (ja) 決定方法、及び光検出装置
US6858829B2 (en) Avalanche photodiode array biasing device and avalanche photodiode structure
US8274334B2 (en) Detection circuit with improved anti-blooming circuit
WO2020121854A1 (ja) 光検出装置
US20220020786A1 (en) Photodetector and method for manufacturing photodetector
US20160149068A1 (en) Multi-junction solar cell
JP2020150001A (ja) 受光回路、受光素子及びapdアレイ装置
WO2020121858A1 (ja) 光検出装置及び光検出装置の製造方法
US20230273299A1 (en) Photodetection device
JP2020150002A (ja) 受光回路、及びapdアレイ装置
WO2001071383A1 (fr) DETECTEUR DE RAYONNEMENT A JONCTION SEMI-CONDUCTRICE POUR LA MESURE DE FORTS DEBITS DE DOSE DE RAYONNEMENT X OU $g(g)
US20220077219A1 (en) Photodetector
US11209308B2 (en) Semiconductor light detection device and method of detecting light of specific wavelength
JP7081508B2 (ja) 光検出器
JP2017228750A (ja) フォトダイオード並びにその製造方法
JP2024086953A (ja) 光検出装置及び光検出装置の製造方法
KR20200126274A (ko) 듀얼포토다이오드의 제조방법, 그에 따른 듀얼포토다이오드, 듀얼포토다이오드를 이용한 파장 및 세기 측정방법
JP2005191161A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897484

Country of ref document: EP

Effective date: 20210712