JP2005191161A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2005191161A
JP2005191161A JP2003428613A JP2003428613A JP2005191161A JP 2005191161 A JP2005191161 A JP 2005191161A JP 2003428613 A JP2003428613 A JP 2003428613A JP 2003428613 A JP2003428613 A JP 2003428613A JP 2005191161 A JP2005191161 A JP 2005191161A
Authority
JP
Japan
Prior art keywords
impurity region
voltage
semiconductor device
voltage control
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003428613A
Other languages
English (en)
Inventor
Yasushi Igarashi
泰史 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003428613A priority Critical patent/JP2005191161A/ja
Priority to US10/848,170 priority patent/US20050139917A1/en
Publication of JP2005191161A publication Critical patent/JP2005191161A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 所望の電圧値を得ることができる半導体装置を提供する。
【解決手段】 SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域13とカソード不純物領域14とを有する半導体装置10であって、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域15を形成することを特徴とする半導体装置。
【選択図】 図1

Description

本発明は、半導体装置に関するものであり、特にSOI技術を適用したダイオードに関する。
シリコンなどの半導体基板にp型およびn型の不純物領域を形成することにより、ツェナーダイオードを半導体装置として形成することができる。
このツェナーダイオードの両端子に逆バイアスで電圧(電界)を印加すると、ツェナー効果によるバンド間トンネリングにより、該ダイオードの両端子間のインピーダンスが低下する。ツェナー効果は、所定の一定電圧値以上で生じることから、この一定電圧を利用して、ツェナーダイオードの両端子間の電圧を一定に保つことができる。一定電圧は、不純物領域における不純物や不純物濃度などで設定される。
ところが、酸化膜の上に薄膜のシリコン結晶(シリコン膜)を形成したSOI(Silicon On Insulator)と称される半導体基板にツェナーダイオードを形成すると、シリコン膜に設けたp型およびn型の不純物領域の接触面積は、薄いシリコン膜の厚さ寸法に制限されて接触面が小さくなる。これによりp型の不純物領域およびn型の不純物領域の接合面(境界面)で充分な接触を得ることができず所望の性能、すなわち所望の一定電圧を得ることができず、これが問題となっていた。
従って、本発明の目的は、所望の電圧値を得ることができる半導体装置を提供することにある。
本発明は、以上の点を解決するために、次の構成を採用する。
半導体基板にアノード不純物領域とカソード不純物領域とを有する半導体装置であって、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を形成することを特徴とする。
前記電圧制御用不純物領域の不純物濃度は、前記アノード不純物領域および前記カソード不純物領域の不純物濃度より低く設定することができる。
前記アノード不純物領域および前記カソード不純物領域の不純物濃度は、1E17/cm〜1E21/cmに設定することができる。
前記電圧制御用不純物領域の不純物濃度は、1E10/cm〜1E18/cmに設定することができる。
前記電圧制御用不純物領域は、複数の半導体装置で共有されることを特徴とする請求項1記載の半導体装置。
入力端子から印加された電圧に制御を加え出力端子から出力する電圧制御回路において、
前記入力端子および前記出力端子間に、SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域とカソード不純物領域とを有し、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を有する半導体装置のアノードを接続することを特徴とする。
抵抗が入力端子と出力端子との間に接続されている過電圧保護回路において、SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域とカソード不純物領域とを有し、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を有する一対の半導体装置の各カソード同士を接続し、一方の前記半導体装置のアノードを前記抵抗の出力端子側に接続し、他方の前記半導体装置のアノードを接地し、前記一対の半導体装置の前記各電圧制御用不純物領域に前記入力端子からの電圧をそれぞれ印加するための配線を接続することを特徴とする。
本発明の半導体装置によれば、半導体基板に設けたアノード不純物領域とカソード不純物領域とのチャネル間に電圧制御用不純物領域を形成することにより、該電圧制御用不純物領域に電圧を印加するとチャネルの電界を高くすることができ、価電子帯と導電帯との間でバンド間トンネリングを生じさせることができる。従って、本発明の半導体装置によれば、高電界を発生させる電圧制御用不純物領域に印加する電圧を制御することにより、バンド間トンネリングを生じさせて降伏電圧を自由に変化させて、所望の一定電圧を容易に得ることができる。
以下、本発明の実施形態を図を用いて詳細に説明する。
本発明の半導体装置は半導体基板に形成されており、該半導体基板は絶縁膜としての酸化膜上に半導体であるシリコン結晶が薄膜で形成された構造であり、SOI(Silicon On Insulator)と称されている。
このような半導体基板に形成される本発明の半導体装置10の断面図が図1に示されている。半導体装置10は、酸化膜11上のシリコン膜12にアノードのためのn型の不純物領域13(図にnと示す)と、カソードのためのp型の不純物領域14(図にpと示す)と、対向するn型不純物領域13およびp型不純物領域14間のチャネルで低濃度の不純物を含む電圧制御用不純物領域15と、該電圧制御用不純物領域15上のゲート酸化膜16と、該ゲート酸化膜上にゲート電極17とを備えている。
シリコン膜12は、ゲートでチャネルを制御することができる、いわゆる完全空乏化可能の膜厚であり、例えば100nmの厚さ寸法を有している。
ゲート電極17は、例えば燐(P)を1E19/cm含むポリシリコンであり、堆積中ガス添加法により、例えば150nmの厚さ寸法で形成される。
形成されたゲート電極17には、電圧を印加するための配線が接続される。
n型不純物領域13およびp型不純物領域14には、図示しない電極が形成されており、該各電極にも配線が接続されている。
n型不純物領域13は、1E17/cm〜1E21/cmの濃度でn型の不純物である燐(P)や砒素(As)などを含んでいる。一方、p型不純物領域14は、1E17/cm〜1E21/cmの濃度でp型の不純物である硼素(B)やガリウム(Ga)などを含んでいる。
電圧制御用不純物領域15は、p型もしくはn型の何れか一方の不純物を含んでおり、前記したn型不純物領域13およびp型不純物領域14の不純物濃度より低い濃度、すなわち1E10/cm〜1E18/cmの不純物濃度で形成されている。本実施例では、電圧制御用不純物領域15にp型不純物を含む例で以降の説明を行う。
次に、半導体装置10の電圧印加方法を図2を用いて説明する。
図2(a)は順方向バイアスの接続図であり、p型不純物領域14に正の電圧を印加し、n型不純物領域13に負の電圧を印加する。図2(b)は逆方向バイアスの接続図であり、p型不純物領域14に負の電圧を印加し、n型不純物領域13に正の電圧を印加する。
ゲート電極17には、電圧(以降、ゲート電圧と称す)が印加されている。
また、電圧制御用不純物領域15は低濃度のp型不純物で形成されている例で以降の説明を行う。
順方向バイアスおよび逆方向バイアス接続された半導体装置10の特性が図3に示されている。該図は縦軸が電流、横軸が電圧を示すグラフである。
順方向バイアス接続された半導体装置10は、p型不純物領域14に正の電圧が印加されると、p型不純物領域14の正孔がn型不純物領域13に向かって順次移動する。一方、n型不純物領域13に負の電圧が印加されると、n型不純物領域13に存在する電子がプラス電圧が印加されている方向、すなわちp型不純物領域14の電極に向かって移動する。ところで、n型不純物領域13およびp型不純物領域14の間には、電圧制御用不純物領域15が設けられていることから、p型不純物領域14からの正孔と、n型不純物領域13からの電子とが電圧制御用不純物領域15で再結合する。
これは、通常のpn接合におけるダイオードの順方向バイアスと同様である。従って、ゲート電極に電圧を印加しても、特性の変化は小さい。すなわち、p型不純物領域14とn型不純物領域13とのエネルギーレベルの差はゲート電圧に依存しないため、電子と正孔とが再結合する位置が変わる程度の特性変化である。この再結合の位置変化は電圧制御用不純物領域15内で起きることから、電流の増減に影響をおよぼす可能性が低い。
一方、逆方向バイアス接続された半導体装置10において、ゲート電圧を印加しないときは、通常のpn接合ダイオードの逆バイアス特性と同様に降伏電圧まで電流を流さない。ところが、負のゲート電圧をゲート電極に印加すると、チャネルすなわち電圧制御用不純物領域15内におけるゲート酸化膜16側でホールの濃度が高くなり、該電圧制御用不純物領域15におけるp型不純物領域14近傍に高電界が生じる。この高電界によって、図4に示すように、エネルギーバンドの価電子帯から伝導帯へ電子が禁制帯をトンネリングする、いわゆるバンド間トンネリングが生じる。これにより、降伏電圧の値を、ゲート電圧の値と対応させて変化させることができる。
ところで、図4の(a)は低いゲート電圧が印加されたときのエネルギーバンド図であり、図4(b)は高いゲート電圧が印加されたときのエネルギーバンド図である。これらの図が示すように、ゲート電極に高い負電圧が印加されると、チャネルの価電子帯および導電帯のエネルギーレベルが下降してp型不純物領域14の価電子帯とチャネルの伝導帯とが図4(b)における地点cにおいて接近し、p型不純物領域14の価電子帯とチャネルの伝導帯との間にある禁制帯の幅が狭くなり、バンド間トンネリングが生じ易くなる。これにより、p型不純物領域14の電子を該p型不純物領域14から電圧制御用不純物領域15へ容易に移動させることができる。
正のゲート電圧をゲート電極に印加すると、電圧制御用不純物領域15のエネルギーレベルが高くなり、n型不純物領域13側の近傍に高電界が生じる。この高電界によって、図5に示すように、エネルギーのn型不純物領域13の伝導帯からチャネルの価電子帯へ正孔がトンネリングし、いわゆるバンド間トンネリングを発生させ、ゲート電圧の値と対応させて降伏電圧の値を変化させることができる。
図5の(a)は低いゲート電圧が印加されたときのエネルギーバンド図であり、図5(b)は高い正ゲート電圧が印加されたときのエネルギーバンド図である。これらの図が示すように、ゲート電極に高い正電圧が印加されると、チャネルの価電子帯および伝導帯のエネルギーレベルが上昇してチャネルの価電子帯とn型不純物領域13の伝導帯とが図5(b)における地点cにおいて接近し、価電子帯と伝導帯との間にある禁制帯の幅が狭くなり、バンド間トンネリングが発生し易い状態になることから、ゲート電極に高い電圧を印加すると、正孔をn型不純物領域13から電圧制御用不純物領域15へ容易に移動させることができる。
ところで、バンド間トンネリングは電圧制御用不純物領域15における電界強度に対応して状態が遷移する。すなわち、図3に示すように、逆方向バイアス接続された半導体装置10のゲート電極17に印加する電圧値を次第に増加させると、電圧値の増加に伴って、降伏電圧値が高くなる。従って実施例1の半導体装置10によれば、SOI構造の半導体基板にゲート電極17を設けることにより、該ゲート電極17を介して電圧制御用不純物領域15にゲート電圧が印加され、該ゲート電圧の値に応じた強電界が生じてバンド間トンネリングが生じることから、ゲート電圧に対応して降伏電圧を制御することができる。
ところで、pn接合を用いた電圧制御素子の場合、順方向バイアスの拡散電位を利用した時に最も小さな電圧が得られる。すなわち通常0.6V程度である。従って、従来の電圧制御素子を用いた場合、該拡散電位の値以上で電圧の制御が可能である。
一方本発明の半導体装置10では、ゲート電圧を制御することで、電圧制御用不純物領域15のエネルギーバンドのエネルギーレベルに変化を生じさせる。従って、本発明の半導体装置10は、拡散電位以下すなわち0.6V以下でも電圧を制御することができる。
上記で説明したように、実施例1における電圧制御用不純物領域15は、低濃度のn型不純物で形成してもよいし、p型不純物で電圧制御用不純物領域15を形成してもよい。
次に、実施例1の半導体装置を用いた電圧制御回路を説明する。
電圧制御回路20は、図6に示すように、入力端子と出力端子との間に設けられて抵抗と、該抵抗における前記出力端子側にアノードが接続している、すなわち逆バイアス接続された半導体装置10と、該半導体装置のゲート電極に接続する制御端子とを備えている。
前記抵抗は、半導体装置の保護抵抗であり、該半導体装置の抵抗値が小さくなったときに、電力を消費する。
入力端子に印加される電圧をVin、出力端子から出力される電圧をVout、制御端子に印加される電圧をVcと称して以降の説明を行う。
入力端子から印加されたVinは、本発明の半導体装置の制御端子より印加されたVcによりアノードおよびカソード間の電圧が制御され、この電圧制御の影響を受けてVoutとして出力される。
これにより、本発明の電圧制御回路20は、Vcによる制御を行うことにより入力した電圧値を所望の電圧値に変更して出力することができる。
次に、実施例1の半導体装置を用いた過電圧保護回路30を説明する。
過電圧保護回路30は、図7に示すように、入力端子と出力端子との間に設けられた抵抗と、該抵抗における前記出力端子側にアノードが接続する第1の半導体装置21と、該半導体装置21のカソードに対向してカソードが接続する第2の半導体装置22とを備えており、前記第1の半導体装置21および前記第2の半導体装置の各ゲート電極には、前記入力端子からの電圧が印加されるための配線が接続されている。
ところで、第1の半導体装置21のカソードとしてのp型不純物領域14と、第2の半導体装置22のカソードとしてのp型不純物領域14とを配線で電気的に接続してもよいし、p型不純物領域14を第1の半導体装置21と第2の半導体装置22で共用してもよい。このように一対の半導体装置、すなわち第1の半導体装置および第2の半導体装置を用いるのは、正の電圧若しくは負の電圧に対しても動作させるためである。
過電圧保護回路30は、ICなどのパッドと称される入出力端子から許容量以上のVinが入力すると、半導体装置21および半導体装置22の抵抗値が小さくなり、前記抵抗を介してパッドからの電圧を接地することができる。
ところで、実施例2の過電圧保護回路では、第1の半導体装置および第2の半導体装置の互いのカソード側すなわちp型不純物領域14側で接続したが、アノード側であるn型不純物領域13側で第1の半導体装置および第2の半導体装置を接続してもよい。
本発明の半導体装置10は、実施例では完全空乏型のSOI構造の半導体基板に形成する例で説明したが、部分空乏型の半導体基板に適用してもよい。
本発明の半導体装置の構造を示す断面図である。 本発明の半導体装置の電圧の印加方法を示す図である。 本発明の半導体装置の特性を示す図である。 正のゲート電圧を印加したときのエネルギーバンドを示す図である。 負のゲート電圧を印加したときのエネルギーバンドを示す図である。 本発明の電圧制御装置を用いた電圧制御回路である。 本発明の電圧制御装置を用いた過電圧保護回路である。
符号の説明
10 半導体装置
11 酸化膜
12 シリコン膜
13 n型不純物領域
14 p型不純物領域
15 電圧制御用不純物領域
16 ゲート酸化膜
17 ゲート電極

Claims (7)

  1. SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域とカソード不純物領域とを有する半導体装置であって、
    前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を形成することを特徴とする半導体装置。
  2. 前記電圧制御用不純物領域の不純物濃度は、前記アノード不純物領域および前記カソード不純物領域の不純物濃度より低いことを特徴とする請求項1記載の半導体装置。
  3. 前記アノード不純物領域および前記カソード不純物領域の不純物濃度は、1E17/cm〜1E21/cmであることを特徴とする請求項2記載の半導体装置。
  4. 前記電圧制御用不純物領域の不純物濃度は、1E10/cm〜1E18/cmであることを特徴とする請求項2記載の半導体装置。
  5. 前記電圧制御用不純物領域は、複数の半導体装置で共有されることを特徴とする請求項1記載の半導体装置。
  6. 入力端子から印加された電圧に制御を加え出力端子から出力する電圧制御回路において、
    前記入力端子および前記出力端子間に、SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域とカソード不純物領域とを有し、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を有する半導体装置のアノードを接続することを特徴とする電圧制御回路。
  7. 抵抗が入力端子と出力端子との間に接続されている過電圧保護回路において、
    SOI(Silicon On Insulator)構造の半導体基板にアノード不純物領域とカソード不純物領域とを有し、前記アノード不純物領域と前記カソード不純物領域との間に電圧制御用不純物領域を有する一対の半導体装置の各カソード同士を接続し、一方の前記半導体装置のアノードを前記抵抗の出力端子側に接続し、他方の前記半導体装置のアノードを接地し、前記一対の半導体装置の前記各電圧制御用不純物領域に前記入力端子からの電圧をそれぞれ印加するための配線を接続することを特徴とする過電圧保護回路。
JP2003428613A 2003-12-25 2003-12-25 半導体装置 Abandoned JP2005191161A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003428613A JP2005191161A (ja) 2003-12-25 2003-12-25 半導体装置
US10/848,170 US20050139917A1 (en) 2003-12-25 2004-05-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428613A JP2005191161A (ja) 2003-12-25 2003-12-25 半導体装置

Publications (1)

Publication Number Publication Date
JP2005191161A true JP2005191161A (ja) 2005-07-14

Family

ID=34697527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428613A Abandoned JP2005191161A (ja) 2003-12-25 2003-12-25 半導体装置

Country Status (2)

Country Link
US (1) US20050139917A1 (ja)
JP (1) JP2005191161A (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037243A (en) * 1974-07-01 1977-07-19 Motorola, Inc. Semi conductor memory cell utilizing sensing of variations in PN junction current conrolled by stored data
DE2531846C2 (de) * 1974-07-16 1989-12-14 Nippon Electric Co., Ltd., Tokyo Schutzschaltungsanordnung für einen Isolierschicht-Feldeffekttransistor
US5047815A (en) * 1988-08-18 1991-09-10 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device having a trench-stacked capacitor
JP2510710B2 (ja) * 1988-12-13 1996-06-26 三菱電機株式会社 絶縁体基板上の半導体層に形成されたmos型電界効果トランジスタ
US5874768A (en) * 1994-06-15 1999-02-23 Nippondenso Co., Ltd. Semiconductor device having a high breakdown voltage
US5936265A (en) * 1996-03-25 1999-08-10 Kabushiki Kaisha Toshiba Semiconductor device including a tunnel effect element
JP4054093B2 (ja) * 1997-10-09 2008-02-27 株式会社ルネサステクノロジ 半導体装置
US6239662B1 (en) * 1998-02-25 2001-05-29 Citizen Watch Co., Ltd. Mis variable capacitor and temperature-compensated oscillator using the same
US6657240B1 (en) * 2002-01-28 2003-12-02 Taiwan Semiconductoring Manufacturing Company Gate-controlled, negative resistance diode device using band-to-band tunneling
US6617643B1 (en) * 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device

Also Published As

Publication number Publication date
US20050139917A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US7715159B2 (en) ESD protection circuit
US7615802B2 (en) Semiconductor structure comprising a highly doped conductive channel region and method for producing a semiconductor structure
US10153275B2 (en) Method of operating an IGBT having switchable and non-switchable diode cells
CN102165693B (zh) 电气电路的开关装置
US8378390B2 (en) Silicon carbide bipolar junction transistor (BJT) having a surface electrode disposed on top of a dielectric layer formed at a region between emitter contact and base contact
US11444155B2 (en) Silicon carbide semiconductor device
JP2009065026A (ja) 電気回路のスイッチング装置
US20020163021A1 (en) Low voltage transient voltage suppressor and method of making
TW201342582A (zh) 積體電路及製作積體電路的方法
US8188568B2 (en) Semiconductor integrated circuit
US10396071B2 (en) Semiconductor device having a sense diode portion
JP3163758B2 (ja) 双方向過電圧保護装置
JP3472476B2 (ja) 半導体装置及びその駆動方法
US10297590B1 (en) Electro-static discharge protection device and method of making
CN110867440A (zh) 非对称双向可控硅静电防护器件及其制作方法
US11233158B2 (en) Semiconductor power device and method for manufacture
CN210224032U (zh) 一种soi横向恒流二极管
JP2005191161A (ja) 半導体装置
JP5271694B2 (ja) ダイオード
US9500805B2 (en) Optical waveguide to be carried by a semiconductor material including a plurality of parallel strips of alternating conductivity types and related methods
US9523815B2 (en) ESD protection thyristor adapted to electro-optical devices
WO2022085151A1 (ja) 半導体装置
US20210391452A1 (en) Semiconductor device
JP4506424B2 (ja) 保護回路
JP2002176347A (ja) 過電流制限型半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070525