JP6172405B2 - チタン複合材および熱間加工用チタン材 - Google Patents

チタン複合材および熱間加工用チタン材 Download PDF

Info

Publication number
JP6172405B2
JP6172405B2 JP2016567887A JP2016567887A JP6172405B2 JP 6172405 B2 JP6172405 B2 JP 6172405B2 JP 2016567887 A JP2016567887 A JP 2016567887A JP 2016567887 A JP2016567887 A JP 2016567887A JP 6172405 B2 JP6172405 B2 JP 6172405B2
Authority
JP
Japan
Prior art keywords
titanium
surface layer
thickness
layer portion
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016567887A
Other languages
English (en)
Other versions
JPWO2017018522A1 (ja
Inventor
知之 北浦
知之 北浦
善久 白井
善久 白井
藤井 秀樹
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2017018522A1 publication Critical patent/JPWO2017018522A1/ja
Application granted granted Critical
Publication of JP6172405B2 publication Critical patent/JP6172405B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/18Titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)
  • Wrappers (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、チタン複合材および熱間加工用チタン材に関する。
チタン材は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などの特性に優れている。これらの特性は、チタンに様々な合金元素を添加することにより達成することができる。
チタン材は、例えば、軽量で耐食性に優れるため、発電プラントにおける海水冷却復水器、海水淡水化用プラント用熱交換器、化学プラントの反応器、さらには冷却器等に利用されている。
工業用純チタンは、特に、硝酸、クロム酸などを含む環境、海水、塩化物イオンを含む環境などでは、優れた耐食性を示す。しかし、塩酸、硫酸などを含む環境では、高い耐食性が期待できず、また、塩素イオンなどを含む環境では、隙間腐食が生じることがある。
このため、Ti−0.2Pd(ASTM Grade7,11)などのように、チタンに白金族元素(Ru、Rh、Pd、Os、Ir、Ptなど)を微量添加した各種合金が開発されている。また、Pdを、NiおよびRuで代替したTi−0.5Ni−0.05Ruなど、安価でかつ耐食性に優れる耐食性チタン合金も開発されている。
チタン材料は、その優れた比強度および耐食性から、航空機分野での利用が進んでおり、さらには、自動車および二輪車の排気装置にも多く使用されている。特に、従来のステンレス素材に代わり、車両軽量化の観点から、二輪車を中心としてJIS2種の工業用純チタン材が使われている。さらに、近年では、JIS2種の工業用純チタン材に代わって、より耐熱性が高い耐熱チタン合金が使用されている。また、排気ガスの有害成分除去のため、高温で使用する触媒を搭載したマフラーも使用されている。
排気ガスの温度は700℃を超え、一時的には800℃にまで達することがある。そのため、排気装置に用いられる素材には、800℃前後の温度における強度、耐酸化性等が要求され、さらに600〜700℃におけるクリープ速度の高温耐熱性の指標が重要視されるようになってきている。
その一方で、こうした耐熱チタン合金は高温強度を向上させるため、Al、CuおよびNbといった高温強度および耐酸化性を向上させる元素を添加する必要があり、工業用純チタンに比べ高コストである。
特開2001−234266号公報(特許文献1)には、Al:0.5〜2.3%(本明細書では特に断りがない限り化学成分に関する「%」は「質量%」を意味する。)を含む冷間加工性および高温強度に優れたチタン合金が開示されている。
特開2001−89821号公報(特許文献2)には、Fe:1%超5%以下、O(酸素):0.05〜0.75%を含み、さらにSi:0.01・e0.5[Fe]〜5・e―0.5[Fe]を含む耐酸化性および耐食性に優れたチタン合金([Fe]は合金中の含有率(質量%)を示し、eは自然対数の定数を示す。)が開示されている。
特開2005−290548号公報(特許文献3)には、Al:0.30〜1.50%、Si:0.10〜1.0%を含有する冷間加工性に優れる耐熱チタン合金板およびその製造方法が開示されている。
特開2009−68026号公報(特許文献4)には、Cu:0.5〜1.8%、Si:0.1〜0.6%、O:0.1%以下を含有し、必要に応じ、Nb:0.1〜1.0%を含有し、残部がTi及び不可避的不純物からなる表面に保護膜を被覆したチタン合金が開示されている。
さらに、特開2013−142183号公報(特許文献5)には、Si:0.1〜0.6%、Fe:0.04〜0.2%、O:0.02〜0.15%を含有し、FeとOの含有量総量が0.1〜0.3%であり、残部Tiおよび不可避不純物元素からなる700℃における高温強度、および800℃における耐酸化性に優れるチタン合金が開示されている。
工業用チタン冷延板材(例えば、工業用純チタン冷延板材)は、板式熱交換器、FCセパレータなどのように、板材を所定の形状に成形加工して用いられるほか、その用途は拡大している。このため、工業用チタン冷延板材には、成形性に加えて、疲労強度の向上による薄手化、高付加環境(高荷重下)も要求されている。
一方、他の金属材同様に純チタンでも成形性を支配する延性と強度(疲労強度)とは相反する関係にある。
特開2008−195994号公報(特許文献6)には、純チタン、α型チタン合金、β型チタン合金またはα+β型チタン合金のいずれかからなるチタン製品を処理対象としてプラズマ窒化を行い、処理対象の表面に硬化層を形成するプラズマ窒化処理と、プラズマ窒化処理後の処理対象に対して1種または2種以上の微粒子を衝突させる微粒子衝突処理とを行うことにより硬化層の表面に存在する化合物層を除去することによって、チタン製品の表面改質を行って疲労強度を向上させる方法が開示されている。
特開2013−76110号公報(特許文献7)には、チタン合金およびチタンからなる基体の表面に微粒子ピーニング処理を行う工程Aと、温度帯域T1において第一の熱処理を行う工程Bと、温度帯域T2において第二の熱処理を行う工程Cと、温度帯域T3において第三の熱処理を行う工程Dと、を順に備え、T1>T2>T3の関係を満足するとともに、T1を900〜1000℃とする、チタン合金およびチタンからなる基体の表面処理方法が開示されている。すなわち、この表面処理方法は、チタン材の表面の近傍領域に、表面側から順に、非晶質層、微細粒層(α相,粒径:約300nm)、サブミクロン粒層(α相,粒径:約500nmミクロン粒層(β相,粒径:約3000nm)を形成することによって、疲労強度を向上させる。
工業用純チタンはhcp(稠密六方格子)構造のα相を主体としており、α相に水素を多量に吸収すると水素化物を形成して脆化することが知られている。このため使用環境によっては、水素を吸収して脆化し、破断する事故が起きる場合がある。「チタンの加工技術」(非特許文献1)では、例えば、非酸化性の酸を扱うプラント、または、尿素・アンモニア環境、水素ガス環境での、水素吸収による事故が報告されている。このため、耐水素脆化性に優れるチタン合金材が提案されている。
特開2013−163840号公報(特許文献8)には、50体積%以上のβ相を含み、水素を500〜6000ppm含む破断伸びが大きいチタン合金が開示されており、水素を多量に含んでも脆化しない例が示されている。
原子力発電関連設備などの放射性廃棄物を取り扱う設備では、熱中性子を遮蔽可能な中性子線遮蔽板が使用される。中性子遮蔽効果は、天然のBの中に19.9%存在するボロン10(10B)が最も高い。Bを含有するステンレス鋼などが中性子線遮蔽板の素材として一般的に使用されている。
特公昭58−6704号公報(特許文献9)には、クーナコパイト(2MgO・3B・13HO)、メーヤホツフェライト(3CaO・3B・7HO)、コレマナイト(2CaO・3B・5HO)などの結晶水を含有するボレート骨材と半水石膏、カルシウムアルミネート系セメントなどの無機接着剤を水と混練成型した硬化成形体であって、Bを5質量%以上含有する中性子線遮断材が開示されている。しかし、特許文献9により開示された中性子線遮蔽材はセメントからなるため、耐食性、製造性さらには加工性の点で問題がある。
ステンレス鋼よりも耐食性の優れるB含有チタン合金を中性子線遮断材に用いることも検討されている。例えば、特公平1−168833号公報(特許文献10)には、質量%でBを0.1〜10%含有し、残部がチタン及び不可避的不純物からなるボロン含有チタン合金の熱延板を用いることが開示されている。
さらに、特開平5−142392号公報(特許文献11)には、中空状金属ケーシング内に、ホウ素含有物(NaB、BやPbO、Feなど)の流動物とその中に混入した金属酸化物とを充填して、固化状態とした放射線遮蔽材が開示されている。特許文献11によれば、ボロンや水素によって主として中性子線を遮断し、かつ、ケーシングおよびその中の金属などによってガンマ線を遮断する。
チタン材は、通常、以下に示す方法により製造される。まず、クロール法によって、原料である酸化チタンを塩素化して四塩化チタンとした後、マグネシウムまたはナトリウムで還元することにより、塊状でスポンジ状の金属チタン(スポンジチタン)を製造する。このスポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造する。この際必要に応じて合金元素が添加されて、チタン合金インゴットが製造される。この後、チタン合金インゴットを分塊、鍛造、圧延してチタンスラブとし、さらに、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延、および真空熱処理してチタン薄板が製造される。
また、チタン薄板の製造方法として、チタンインゴットを分塊、水素化粉砕、脱水素、粉末解砕、および分級してチタン粉末を製造し、チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られる。
特開2011−42828号公報(特許文献12)には、チタンインゴットではなくスポンジチタンから直接チタン粉末を製造し、得られるチタン粉末からチタン薄板を製造すべく、チタン金属粉、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形した焼結前成形体を焼結して焼結薄板を製造し、焼結薄板を圧密して焼結圧密薄板を製造し、焼結圧密薄板を再焼結するチタン薄板の製造方法において、焼結薄板の破断伸びを0.4%以上、密度比を80%以上とし、焼結圧密板の密度比を90%以上とする方法が開示されている。
特開2014−19945号公報(特許文献13)には、チタン合金スクラップまたはチタン合金インゴットを原料としたチタン合金粉に、鉄粉、クロム粉または銅粉を適量添加して複合粉とし、複合粉を炭素鋼カプセル押出し、得られた丸棒の表面のカプセルを溶解除去した後、さらに溶体化処理あるいは、溶体化処理および時効処理を行うことにより、粉末法により品質の優れたチタン合金を製造する方法が開示されている。
特開2001−131609号公報(特許文献14)には、スポンジチタン粉末を銅製カプセルに充填した後で押出比1.5以上、押出温度700℃以下で温間押出加工を施して成形し、外側の銅を除く外周加工を施し、成形体の粒界の全長の内20%以上が金属接触しているチタン成形体を製造する方法が開示されている。
熱間圧延素材を熱間圧延するに際し、熱間圧延素材が純チタンまたはチタン合金のように熱間での延性不足で熱間変形抵抗値が高い、いわゆる難加工材である場合、これらを薄板に圧延する技術としてパック圧延方法が知られている。パック圧延方法とは、加工性の悪いチタン合金などのコア材を加工性の良い安価な炭素鋼などのカバー材で被覆し、熱間圧延する方法である。
具体的には、例えば、コア材の表面に剥離剤を塗布し、少なくともその上下2面をカバー材で被覆するか、または、上下面の他に四周面をスペーサー材により覆い、周りを溶接して組み立て、熱間圧延する。パック圧延では、被圧延材であるコア材をカバー材で覆って熱間圧延する。そのため、コア材表面は冷えた媒体(大気またはロール)に直接触れることがなく、コア材の温度低下を抑制できるため、加工性の悪いコア材でも薄板の製造が可能になる。
特開昭63−207401号公報(特許文献15)には、密閉被覆箱の組み立て方法が開示され、特開平09−136102号公報(特許文献16)には、10−3torrオーダー以上の真空度にしてカバー材を密封して密閉被覆箱を製造する方法が開示され、さらに、特開平11−057810号公報(特許文献17)には、炭素鋼(カバー材)で覆って10−2torrオーダー以下の真空下で高エネルギー密度溶接によって密封し、密閉被覆箱を製造する方法が開示されている。
一方、耐食性の高い素材を安価に製造する方法として、チタン材を母材となる素材表面に接合する方法が知られている。
特開平08−141754号公報(特許文献18)には、母材として鋼材を用いるとともに合わせ材としてチタンまたはチタン合金を用い、母材と合わせ材の接合面を真空排気した後に溶接して組み立てた圧延用組立スラブを、熱間圧延で接合するチタンクラッド鋼板の製造方法が開示されている。
特開平11−170076号公報(特許文献19)には、0.03質量%以上の炭素を含有する母材鋼材の表面上に、純ニッケル、純鉄および炭素含有量が0.01質量%以下の低炭素鋼のうちのいずれかからなる厚さ20μm以上のインサート材を介在させてチタン箔材を積層配置した後、その積層方向のいずれか一方側からレーザビームを照射し、チタン箔材の少なくとも縁部近傍を全周にわたって母材鋼材と溶融接合させることによりチタン被覆鋼材を製造する方法が開示されている。
さらに、特開2015−045040号公報(特許文献20)では、鋳塊状に成形された多孔質チタン原料(スポンジチタン)の表面を、真空下で電子ビームを用いて溶解して表層部を稠密なチタンとしたチタン鋳塊を製造し、これを熱間圧延および冷間圧延することにより、多孔質チタン原料が鋳塊状に成形された多孔質部と、稠密なチタンで構成されて多孔質部の全表面を被覆する稠密被覆部とを備える稠密なチタン素材(チタン鋳塊)を非常に少ないエネルギーで製造する方法が例示されている。
特開2001−234266号公報 特開2001−89821号公報 特開2005−290548号公報 特開2009−68026号公報 特開2013−142183号公報 特開2008−195994号公報 特開2013−76110号公報 特開2013−163840号公報 特公昭58−6704号公報 特公平1−168833号公報 特開平5−142392号公報 特開2011−42828号公報 特開2014−19945号公報 特開2001−131609号公報 特開昭63−207401号公報 特開平09−136102号公報 特開平11−057810号公報 特開平08−141754号公報 特開平11−170076号公報 特開2015−045040号公報
チタンの加工技術、(社)日本チタン協会編、日刊工業新聞社、p.214〜230、1992年11月発行
前述のように、耐食性を向上させたチタン合金は、希少かつ高価な白金族元素を含有することから、その製造コストが大幅に上昇している。
特許文献1により開示されたチタン合金は、Alを添加しているため、成形加工性、特に肉厚が減じる方向で加工が起こる張り出し成形性に悪影響を与える。
特許文献2により開示されたチタン合金では、FeとO合計含有量が多いため、室温における強度が800N/mmを超えて強すぎ、伸びも20%以下と成形性に乏しい。
特許文献3により開示されたチタン合金では、上記と同様にAlが添加されているため冷間加工性、特に肉厚が減じる方向で加工が起こる張り出し成形性に悪影響を及ぼすおそれがある。
特許文献4により開示されたチタン合金は、十分な加工性および耐酸化特性を有しているものの、高価なNbを多量に含有しているため、合金コストが高くなってしまう。
さらに、特許文献5により開示されたチタン合金も十分な高温酸化特性を有しているものの、板全面が合金化しているため、合金コストが高くなってしまう。
特許文献6により開示された方法によれば、硬化層の形成に固溶強化能の高いCおよびNを用いるためにこれらを固溶させると硬くなり疲労強度を向上できるものの、急激な延性低下を招き、成形性が劣る。
また、本発明者らの検討結果によれば、特許文献7により開示されたこの表面処理方法では成形性を向上することは容易ではない。
さらに、特許文献6および7により開示された発明は、チタン材に特殊な表面処理を行う必要があり、製造コストの上昇は避けられない。
水素による脆化への対策として、一般に製品に加工後に耐水素吸収性のある表面処理を施すか、または、電気防食を施すことが行われている。しかし、いずれも製品加工または施工の工数が増加するなどして、コスト高になることが避けられず、耐水素脆化性に優れたチタン材を低コストで提供することはできない。
また、特許文献8により開示された方法のように、素材全体の50体積%以上をβ相にするためには、高価な添加元素を多量に含有する必要があるためにコストが上昇する。
特許文献10により開示された熱延板は、B含有量が高いためにコストの上昇は否めないとともに、加工性も良好ではなく、中性子線遮蔽板として用いることが実際には難しい。
さらに、特許文献12により開示された放射線遮蔽材は、金属製のケーシング材の中にホウ素含有物を充填したものであり、ホウ素含有物を充填した後の加工が難しい。
従来、熱間加工を経てチタン材を製造するに際しては、スポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造し、さらにチタンインゴットを分塊、鍛造、圧延してチタンスラブとし、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延することによって製造されていた。
この場合、チタンを溶解してチタンインゴットを製造する工程が必ず加えられていた。チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られているが、チタンインゴットからチタン粉末を製造する方法では、やはりチタンを溶解する工程が加えられていた。
チタン粉末からチタン材を製造する方法においては、たとえ溶解工程を経ないとしても、高価なチタン粉末を原料として用いるので、得られたチタン材は非常に高価になる。特許文献15および16に開示された方法でも同様である。
パック圧延においては、カバー材で被覆されるコア材はあくまでスラブまたはインゴットであって、溶解工程を経ているか、高価なチタン粉末を原料としており、製造コストを低減することはできない。
さらに、特許文献20では、非常に少ないエネルギーで稠密なチタン素材を製造することができるものの、鋳塊状に成形されたスポンジチタンの表面を溶解して稠密なチタン表層部および内部の成分は同種の純チタンまたはチタン合金と規定されており、例えば、表層部のみにチタン合金層を均一かつ広範囲に亘って形成することにより製造コストの低下を図ることはできない。
一方、安価な耐食素材を製造できる、母材の表面にチタンまたはチタン合金を接合させた素材では、その多くが母材として鋼を選択している。そのため、表面のチタン層が失われると耐食性は損なわれてしまう。仮に、母材にもチタン材を採用したとしても、通常の製造工程を経て製造されるチタン材を用いる限り、抜本的なコスト改善は期待できない。
本発明は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などのチタン材に求められる様々な特性を向上させるために添加する合金元素の含有量(目標特性を発現する特定の合金元素の使用量)を低減し、かつ、チタン材の製造コストを抑制することにより、安価に所望の特性を有するチタン材を得ることを目的としている。
本発明は、上記課題を解決するためになされたものであり、下記のチタン複合材および熱間加工用チタン材を要旨とする。
(1)第一表層部と、
内層部と、
第二表層部と、を備えるチタン複合材であって、
前記第一表層部および前記第二表層部がチタン合金からなり、
前記内層部が、空隙を有する工業用純チタンからなり、
前記第一表層部および前記第二表層部の少なくとも一方の厚さが、2μm以上であり、かつ、前記チタン複合材の全厚さに占める割合が40%以下であり、
前記空隙の板厚方向に垂直な断面における体積率が、0%を超えて30%以下である、
チタン複合材。
(2)前記第一表層部および前記第二表層部の少なくとも一方の化学組成が、質量%で、
白金族元素:0.01〜0.25%、
希土類元素:0〜0.2%、
Co:0〜0.8%、
Ni:0〜0.6%、
残部:Tiおよび不純物である、
上記(1)に記載のチタン複合材。
(3)前記白金族元素が、Pdおよび/またはRuである、
上記(2)に記載のチタン複合材。
(4)前記化学組成が、質量%で、
希土類元素:0.001〜0.2%、を含有する、
上記(2)または(3)に記載のチタン複合材。
(5)前記化学組成が、質量%で、
Co:0.05〜0.8%、および、
Ni:0.05〜0.6%、
から選択される1種以上を含有する、
上記(2)から(4)までのいずれかに記載のチタン複合材。
(6)前記工業用純チタンの化学組成が、質量%で、
C:0.1%以下、
H:0.015%以下、
O:0.4%以下、
N:0.07%以下、
Fe:0.5%以下、
残部:Tiおよび不純物である、
上記(1)から(5)までのいずれかに記載のチタン複合材。
(7)筐体と、
前記筐体内に充填された、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上と、を備え、
前記筐体の一部であって、熱間加工後に表層を構成する部分が、チタン合金からなり、
内部の真空度が10Pa以下である、
熱間加工用チタン材。
(8)前記チタン合金の化学組成が、質量%で、
白金族元素:0.01〜0.25%、
希土類元素:0〜0.2%、
Co:0〜0.8%、
Ni:0〜0.6%、
残部:Tiおよび不純物である、
上記(7)に記載の熱間加工用チタン材。
本発明に係るチタン複合材は、その表層部がチタン合金からなり、その内層部が工業用純チタンからなるものであるから、全体が同一のチタン合金からなるチタン材と比較して、同等の特性を有するが、安価に製造することができる。
図1は、本発明に係るチタン複合材の構成の一例を示す説明図である。 図2は、本発明に係るチタン複合材の熱間加工用素材であるチタン材の構造を示す説明図である。 図3は、平面曲げ疲労試験材を示す説明図である。 図4は、本明細書で示す方法により作製した場合の組織写真の一例を示す。 図5は、Ti−B合金板を組み立ててスラブ状にした筐体の中にスポンジチタンおよびスクラップを充填したチタン材の模式図である。
本発明者らは、上記課題を解決するために鋭意検討を重ね、最終製品のチタン板の表層部のみを合金化することにより、目標特性を発現する特定の合金元素の使用量を低減し、かつ、チタン材の製造コストを抑制するべく、鋭意検討を行った結果、チタン合金材からなる筐体中に、比較的安価なスポンジチタンなどの材料を減圧下で充填・封入しておき、このチタン材を熱間加工してチタン複合材とする方法を見出した。
本発明は上記の知見に基づいてなされたものである。以下、本発明に係るチタン複合材およびその熱間加工用のチタン材を、図面を参照しながら説明する。なお、以降の説明では、各元素の含有量に関する「%」は特にことわりがない限り「質量%」を意味する。
1.チタン複合材
1−1.全体構成
図1に示すように、本発明に係るチタン複合材1は、第一表層部2と、内層部4と、第二表層部3とを備えるチタン複合材1であって、第一表層部2および第二表層部3がチタン合金からなり、内層部4が、空隙が存在する工業用純チタンからなる。このように、このチタン複合材における耐食性その他の特性は、外部環境に接する表層部(第一表層部2、第二表層部3)によって担保される。そして、第一表層部2および第二表層部3は、工業用純チタンよりも各種性能に優れるチタン合金で構成されている。
このチタン複合材1全体が同一のチタン合金からなるチタン材と比較して、同等の特性を有するが、安価に製造することができる。
1−2.第一表層部および第二表層部
第一表層部2および第二表層部3は、前述のように、チタン合金である。チタン合金の化学組成について特に制限は設けない。チタン合金は一般にα型、α+β型およびβ型に分類されることが知られている。そして、α安定化元素として、Al、OおよびN等があり、β安定化元素として、V、Mo、Cr、Fe、NbおよびTa等があり、どちらにも属さない中性元素として、Zr、SnおよびHf等があることが知られている。
表1に、チタン合金に含有されることによって、その特性の向上に寄与することが知られている元素を示す。本発明に係るチタン合金は、例えば、質量%で、O:0〜0.5%、N:0〜0.2%、C:0〜2.0%、Al:0〜8.0%、Sn:0〜10.0%、Zr:0〜20.0%、Mo:0〜25.0%、Ta:0〜5.0%、V:0〜30.0%、Nb:0〜40.0%、Si:0〜2.0%、Fe:0〜5.0%、Cr:0〜10.0%、Cu:0〜3.0%、Co:0〜3.0%、Ni:0〜2.0%、白金族元素:0〜0.5%、希土類元素:0〜0.5%、B:0〜5.0%、および、Mn:0〜10.0%から選択される1種以上を、0%を超えて含有させることによって、チタン材の表面に目標とする機能を付与することができる。
上記以外の元素でチタンに含有させることができる元素は、金属材料の一般常識として固溶強化、析出強化(固溶しない場合と析出物を形成させる場合とがある)による強度向上や含有させる元素によってはクリープ特性を向上させることができる。これらの元素は、原子番号で水素(1)からアスタチン(85)までの元素(但し、第18族元素である貴ガス元素を除く)が例示され、合計で5%程度まで許容される。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主に原料やスクラップから混入する不純物元素及び製造中に混入する元素があり、例としてC、N、O、Fe、H等が代表的な元素で、その他にMg、Cl等原料から混入する元素やSi、Al、S等製造中に混入する元素等がある。これらの元素は、2%程度以下であれば本願の目標特性を阻害しない範囲と考えられる。
また、表1に示すように、本発明に係るチタン合金は、質量%で、O:0.01〜0.5%、N:0.01〜0.2%、C:0.01〜2.0%、Al:0.1〜8.0%、Sn:0.1〜10.0%、Zr:0.5〜20.0%、Mo:0.1〜25.0%、Ta:0.1〜5.0%、V:1.0〜30.0%、Nb:0.1〜40.0%、Si:0.1〜2.0%、Fe:0.01〜5.0%、Cr:0.1〜10.0%、Cu:0.3〜3.0%、Co:0.05〜3.0%、Ni:0.05〜2.0%、白金族元素:0.01〜0.5%、希土類元素:0.001〜0.5%、B:0.01〜5.0%、および、Mn:0.1〜10.0%、から選択される1種以上を含有するのが好ましい。
本発明に係るチタン合金は、O:0.02〜0.4%、N:0.01〜0.15%、C:0.01〜1.0%、Al:0.2〜6.0%、Sn:0.15〜5.0%、Zr:0.5〜10.0%、Mo:0.2〜20.0%、Ta:0.1〜3.0%、V:2.0〜25.0%、Nb:0.15〜5.0%、Si:0.1〜1.0%、Fe:0.05〜2.0%、Cr:0.2〜5.0%、Cu:0.3〜2.0%、Co:0.05〜2.0%、Ni:0.1〜1.0%、白金族元素:0.02〜0.4%、希土類元素:0.001〜0.3%、B:0.1〜5.0%、および、Mn:0.2〜8.0%、から選択される1種以上を含有するのがより好ましく、O:0.03〜0.3%、N:0.01〜0.1%、C:0.01〜0.5%、Al:0.4〜5.0%、Sn:0.2〜3.0%、Zr:0.5〜5.0%、Mo:0.5〜15.0%、Ta:0.2〜2.0%、V:5.0〜20.0%、Nb:0.2〜2.0%、Si:0.15〜0.8%、Fe:0.1〜1.0%、Cr:0.2〜3.0%、Cu:0.3〜1.5%、Co:0.1〜1.0%、Ni:0.1〜0.8%、白金族元素:0.03〜0.2%、希土類元素:0.001〜0.1%、B:0.2〜3.0%、および、Mn:0.2〜5.0%、から選択される1種以上を含有するのがさらに好ましい。
Figure 0006172405
また、例えば、下記に示すJIS規格で定められたチタン合金を用いることができる。
JIS11種〜JIS23種(JIS4600(2012年)チタン及びチタン合金−板及び条):Pd、Ru、Ni、Co等を含み、耐食性および耐隙間腐食性に優れる。
JIS50種(JIS4600(2012年)チタン及びチタン合金−板及び条):Ti−1.5Alであり、耐食性に優れ、耐水素吸収性および耐熱性に優れる。
JIS60種(JIS4600(2012年)チタン及びチタン合金−板及び条):Ti−6Al−4Vであり、高強度で汎用性が高い。
JIS61種(JIS4600(2012年)チタン及びチタン合金−板及び条):Ti−3Al−2.5Vであり、溶接性、成形性が良好で、切削性が良好である。
JIS80種(JIS4600(2012年)チタン及びチタン合金−板及び条):Ti−4Al−22Vであり、高強度で冷間加工性に優れる。
さらに、上記以外にJISに規定されていない化学成分を有するチタン合金を用いることもできる。例えば、以下に列記のとおりである。
耐熱性を有するチタン合金:Ti−6Al−2Sn−4Zr−2Mo−0.08Si、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−8Al−1Mo−1V等。
低合金で高強度のチタン合金:Ti−1〜1.5Fe−0.3〜0.5O−0.01〜0.04N等。
低合金で耐熱性のあるチタン合金:Ti−1Cu、Ti−1Cu−0.5Nb、Ti−1Cu−1Sn−0.35Si−0.5Nb等。
耐クリープ性に優れるチタン合金:Ti−6Al−2Sn−4Zr−6Mo等。
高強度で冷間加工性の良いチタン合金:Ti−15V−3Cr−3Sn−3Al、Ti−20V−4Al−1Sn等。
高強度高靭性を有するチタン合金:Ti−10V−2Fe−3Al等。
耐摩耗性に優れるチタン合金:Ti−6Al−4V−10Cr−1.3C等。
第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)は、目標特性を発現する合金元素を含有し、残部はTiおよび不純物であることが好ましい。目標特性を発現する合金元素としては、下記のものが例示されるが、この限りではない。
(a)耐食性を発現する合金元素:質量%で、0.01〜0.25%の白金族元素(Pdおよび/またはRu)、必要に応じて、0.2%以下の希土類元素、さらに、Co:0.8%以下、Ni:0.6%以下から選択される1種以上など。
(b)耐酸化性を発現する合金元素:0.10〜0.60%のSi、0.1〜2.0%のNb、0.3〜1.0%のTaおよび0.3〜1.5%のAlから選択される1種以上、必要に応じて、1.5%以下のSn、1.5%以下のCuおよび0.5%以下のFeから選択される1種以上(ただし、合計で2.5%以下)。
(c)耐疲労性を発現する合金元素:合計で0.08〜1.0%のFe、Cr、Ni、AlおよびZrから選択される1種以上。
(d)耐水素脆化性を発現する合金元素:8.0<Mo当量<20.0の範囲のMo、VおよびNbから選択される1種以上(ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。)。
(e)中性子遮断性を発現する合金元素:0.1〜3.0%のB。
上記(a)〜(e)のそれぞれの場合について、個別に説明する。
(a)耐食性を発現する合金元素を含む場合
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、耐食性が十分に得られない。第一表層部2および第二表層部3の厚さは製造に用いる素材の厚さ、またはその後の加工率によって変化するが、2μm以上あれば十分効果を発揮する。そのため、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、2μm以上であることが望ましく、5μm以上であることがより望ましい。
一方、第一表層部2および第二表層部3が厚い場合には耐食性には問題はないが、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。このため、チタン複合材1の全厚さに対する第一表層部2および第二表層部3の厚さは、それぞれ40%以下であることが望ましく、30%以下であることがより望ましい。
チタン複合材1の第一表層部2および第二表層部3の厚さは、後述の筐体6を構成するチタン合金材の厚さ、その後に実施される熱間加工時の加工率に依存する。例えば、10mm厚のチタン材で構成される筐体6を用いた厚さ75mmの熱間加工用チタン材5(以降の説明において、単に「チタン材5」ともいう。)を熱間加工して、厚さ5mmのチタン複合材1を製造した場合、チタン複合材1中の第一表層部2および第二表層部3の厚さは、それぞれ約667μmとなり、チタン複合材1の全厚さの約13%を占める。
(化学成分)
本発明に係るチタン複合材1では、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の耐食性を高めるために、以下に掲げる各種合金元素を含有させてもよい。
白金族元素:0.01〜0.25%
白金族元素は、チタン合金の水素化電圧を低下させ、自然電位を不動帯域に維持する効果を有し、耐食性を発現する合金元素として含有させることができる。白金族元素の含有量(複数の白金族元素を含有する場合には合計含有量)が0.01%未満であると耐食性が不十分となり、0.25%を超えても耐食性の向上があまり期待できないだけでなく、原料コストの高騰を招く要因となる。白金族元素を含有させる場合には、その含有量を0.01〜0.25%とする。白金族元素の含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましく、0.20%以下であるのが好ましく、0.15%以下であるのがより好ましい。
本発明で用いられる白金族元素は、いずれの元素もチタン合金の耐食性を高める効果があり有用であるが、特に、含有率あたりの耐食性向上効果が高いPdを含有させるのが望ましい。また、比較的安価なRuもPdの代替として使用できる。
白金族元素を含有するチタン合金中に希土類元素が添加されると、腐食環境に晒された際に、Tiおよび白金族元素が速やかに溶出し、チタン合金近傍の溶液中の白金族元素の濃度が高くなる。この結果、チタン合金での白金族元素の析出が促進され、チタン合金の溶解量が少なくても白金族元素を効率的に析出させることができ、耐食性の向上につながる。
希土類元素:0〜0.2%
希土類元素には、Sc、Y、軽希土類元素(La〜Eu)および重希土類元素(Gd〜Lu)があり、いずれの希土類元素を添加した場合にも、上記の効果が期待できる。また、分離精製前の混合希土類元素(ミッシュメタル、Mm)またはジジム合金(Nd−Pr合金)のような希土類の混合物または化合物を用いた場合も、同様の効果が期待できる。
以上のことを考慮すると、添加する希土類元素は、1種類である必要はなく、複数の元素を同時に含有しても、上記の効果により耐食性が向上すると考えられる。その場合、希土類元素の合計含有量は上記の元素の合計含有量を意味する。
希土類元素の含有量が過剰な場合、上記の効果は飽和するため、それ以上の耐食性向上効果は得られないだけでなく、経済性が劣化する。このため、希土類元素を含有させる場合の含有量は、0.2%以下が好ましく、0.02%以下がより好ましい。一方、チタン合金の活性態域でTiと白金族元素とを溶出させ、合金表面への白金族元素の析出を促進させる効果を十分に得るためには、希土類元素を0.001%以上含有させるのが好ましい。
Co:0〜0.8%
Ni:0〜0.6%
CoおよびNiは、水素化電圧を変化させることによりチタン合金の耐食性を向上させる元素であり、白金族元素および/または希土類元素と複合添加されることで、極めて高い耐食性が得られる。しかし、Coは0.8%を超えて、Niは0.6%を超えて含有されても、その効果は飽和してしまい、また、経済性の観点からも好ましくない。このため、これらの元素を含有させる場合には、Co含有量は0.8%以下、Ni含有量は0.6%以下とする。Co含有量は0.7%以下であるのが好ましく、Ni含有量は0.5%以下であるのが好ましい。上記効果を確実に得るためには、Co、Niともに0.05%以上含有させることが好ましく、0.2%以上含有させることがより好ましい。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてCr、Ta、Al、V、Cr、Nb、Si、Sn、Mn、MoおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で0.5%以下であれば許容される。
(b)耐酸化性を発現する合金元素を含む場合
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、耐酸化性が十分に得られない。第一表層部2および第二表層部3の厚さは製造に用いる素材の厚さ、またはその後の加工率によって変化するが、5μm以上あれば十分効果を発揮する。そのため、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、5μm以上であることが望ましく、10μm以上であることがより望ましい。
一方、第一表層部2および第二表層部3が厚い場合には耐酸化性には問題はないが、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。このため、チタン複合材1の全厚さに対する第一表層部2および第二表層部3の厚さは、それぞれ40%以下であることが望ましく、30%以下であることがより望ましい。
チタン複合材1の第一表層部2および第二表層部3の厚さは、後述の筐体6を構成するチタン合金材の厚さ、その後に実施される熱間加工時の加工率に依存する。例えば、1mm厚のチタン材で構成される筐体6を用いた厚さ250mmの熱間加工用チタン材5を熱間加工して、厚さ5mmのチタン複合材1を製造した場合、チタン複合材1中の第一表層部2および第二表層部3のチタン合金層の厚さは、それぞれ約20μmとなり、チタン複合材1の全厚さの約0.4%を占める。
(化学成分)
チタンの酸化は、酸化膜中を酸素が拡散して表面のチタンと結びつくことにより起こる、いわゆる内方拡散と呼ばれる酸化形態をとる。そのため、酸素の拡散が抑制されれば酸化が抑制される。チタン合金では、高温の600〜800℃における耐酸化性を向上させる場合、SiおよびNbといった合金元素を添加する。
Siを添加した場合、高温の雰囲気に晒された際にシリコン酸化物を表層に形成してバリアーとなるため、酸素のチタン内部への拡散が抑制され耐酸化性を向上させる。また、Tiが4価であるのに対し、Nbは5価である。そのため、Nbがチタンの酸化被膜中に固溶することによって、酸化膜中の酸素の空孔濃度が低下し、酸化膜中の酸素の拡散が抑制される。
本発明に係るチタン複合材1では、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の耐酸化性を高めるために、以下に掲げる各種合金元素を含有させてもよい。
Si:0.10〜0.60%
Siは、600〜800℃における高温での耐酸化性を向上させる作用を有する。Si含有量が0.10%未満であると、耐酸化性の向上代が少ない。一方、Si含有量が0.60%を超えると、耐酸化性への影響が飽和するとともに、室温のみならず高温での加工性が著しく低下する。よって、Siを含有させる場合にはその含有量を0.10〜0.60%とする。Si含有量は0.15%以上であるのが好ましく、0.20%以上であるのがより好ましく、0.50%以下であるのが好ましく、0.40%以下であるのがより好ましい。
Nb:0.1〜2.0%
Nbも、高温での耐酸化性を向上させる作用を有する。耐酸化性を向上させるために、Nb含有量は0.1%以上とする。一方、Nb含有量が2.0%を超えて含有させても効果が飽和するうえ、Nbは高価な添加元素であるため、合金コストの増加に繋がる。よって、Nbを含有させる場合にはその含有量は0.1〜2.0%とする。Nb含有量は0.3%以上であるのが好ましく、0.5%以上であるのがより好ましく、1.5%以下であるのが好ましく、1.2%以下であるのがより好ましい。
Ta:0.3〜1.0%
Taも、高温での耐酸化性を向上させる作用を有する。耐酸化性を向上させるために、Ta含有量は0.3%以上とする。一方、Ta含有量が1.0%を超えて含有させても、Taは高価な添加元素であるため、合金コストの増加に繋がるだけでなく、熱処理温度によってはβ相の生成が懸念される。よって、Taを含有させる場合にはその含有量は0.3〜1.0%とする。Ta含有量は0.4%以上であるのが好ましく、0.5%以上であるのがより好ましく、0.9%以下であるのが好ましく、0.8%以下であるのがより好ましい。
Al:0.3〜1.5%
Alも高温での耐酸化性を向上させる元素である。その一方で、Alは多量に含有すると室温での延性を著しく低下させる。Al含有量が0.3%以上であれば十分に耐酸化特性を発現する。また、Al含有量が1.5%以下であれば、冷間での加工を十分に担保できる。よって、Alを含有させる場合にはその含有量を0.3〜1.5%とする。Al含有量は0.4%以上であるのが好ましく、0.5%以上であるのがより好ましく、1.2%以下であるのが好ましい。
なお、Si、Nb、TaおよびAlは、それぞれ単独でも含有すれば耐酸化性は向上するが、複合して含有することにより、耐高温酸化性をさらに向上させることができる。
上記の元素に加え、Sn、CuおよびFeから選択される1種以上を含有させてもよい。
Sn:0〜1.5%
Snは、α相安定化元素であり、かつ、Cuと同様に、高温強度を高める元素である。しかしながら、Sn含有量が1.5%を超えると、双晶変形を抑止し、室温での加工性を低下させる。そのため、Snを含有させる場合にはその含有量は1.5%以下とする。Sn含有量は1.2%以下であるのが好ましい。上記の効果を得たい場合には、Sn含有量は0.2%以上であるのが好ましく、0.4%以上であるのがより好ましい。
Cu:0〜1.5%
Cuは、高温強度を高める元素である。また、α相に一定程度固溶するため、高温で使用した際にもβ相を生成しない。しかしながら、Cu含有量が1.5%を超えると、温度によってはβ相を生成してしまう。そのため、Cuを含有させる場合にはその含有量は1.5%以下とする。Cu含有量は1.4%以下であるのが好ましく、1.2%以下であるのがより好ましい。上記の効果を得たい場合には、Cu含有量は0.2%以上であるのが好ましく、0.4%以上であるのがより好ましい。
Fe:0〜0.5%
Feは、β相安定化元素であるが、少量であればβ相の生成が少なく、耐酸化性に大きな影響を与えない。しかしながら、Fe含有量が0.5%を超えるとβ相の生成量が多くなり、耐酸化性を劣化させる。そのため、Feを含有させる場合にはその含有量は0.5%以下とする。Fe含有量は0.4%以下であるのが好ましく、0.3%以下であるのがより好ましい。
Sn、CuおよびFeの合計含有量が2.5%を超えると、室温での加工性を低下させ、温度によってはβ相が生成するようになる。このため、Sn、CuおよびFeから選択される1種以上を含有させる場合には、その合計含有量を2.5%以下とするのが好ましい。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてCr、V、Cr、MnおよびMo等があり、一般的な不純物元素であるC、N、OおよびHと併せて、総量で5%以下であれば許容される。
(c)耐疲労性を発現する合金元素を含む場合
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、耐疲労性が十分に得られない。第一表層部2および第二表層部3の厚さは製造に用いる素材の厚さ、またはその後の加工率によって変化するが、5μm以上あれば十分効果を発揮する。そのため、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、5μm以上であることが望ましく、10μm以上であることがより望ましい。また、チタン複合材1の全厚さに対する第一表層部2および第二表層部3の厚さは、それぞれ1%以上であることが望ましい。
一方、第一表層部2および第二表層部3が厚い場合には耐疲労性には問題はないが、成形性が低下する。また、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。このため、第一表層部2および第二表層部3の厚さは、それぞれ100μm以下であることが望ましく、50μm以下であることがより望ましい。また、チタン複合材1の全厚さに対する第一表層部2および第二表層部3の厚さは、それぞれ20%以下であることが望ましく、10%以下であることがより望ましい。
(化学成分)
本発明に係るチタン複合材1では、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の耐疲労性を高めるために、以下に掲げる各種合金元素を含有させてもよい。
Fe、Cr、Ni、AlおよびZrから選択される1種以上:0.08〜1.0%
疲労破壊の起点は板材の表面であることから、成形性を維持したまま高い耐疲労性を得るためには、α相の結晶粒径を15μm以下とすることが好ましい。α相の結晶粒径は10μm以下とするのがより好ましく、5μm以下とするのがさらに好ましい。
α相の結晶粒径を15μm以下とし、高い耐疲労性を得るためには、Fe、Cr、Ni、AlおよびZrの合計含有量を0.08%以上とする。一方、これらの元素の合計含有量が1.0%を超えると伸びまたは成形性などの延性を大きく低下させる場合がある。そのため、Fe、Cr、Ni、AlおよびZrから選択される1種以上の合計含有量を0.08〜1.0%とする。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてSn、Mo、V、Mn、Nb、Si、Cu、Co、Pd、Ru、Ta、Y、LaおよびCe等があり、一般的な不純物元素であるC、N、OおよびHと併せて、総量で5%以下であれば許容される。
(機械特性)
チタン複合材1は、優れた成形性を維持したまま高い疲労強度を兼ね備え、疲労強度比(107回疲労強度/引張強度)が0.65以上である。疲労強度比が高いほど疲労特性に優れる材料であり、チタン材は一般的にこの数値が0.5〜0.6であることから、0.65以上であれば一般的なチタン材と比較して疲労特性が優れているといえ、0.70以上であればさらに優れているといえる。
加えて、チタン複合材1は、圧延方向に垂直方向の破断伸びが25%以上である。成形加工では伸びが大きく影響し、伸びが大きいほど優れた成形性を示す。
(d)耐水素脆化性を発現する合金元素を含む場合
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、耐水素吸収性が十分に得られない。一方、第一表層部2および第二表層部3のチタン合金が厚い場合には耐水素吸収性には問題はないが、素材全体に占める第一表層部2および第二表層部3のチタン合金の割合が増すため、製造コストが嵩む。このため、チタン複合材1の全厚に対する第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、2〜20%とする。
チタン複合材1の第一表層部2および第二表層部3の厚さは、後述の筐体6を構成するチタン合金材の厚さ、その後に実施される熱間加工時の加工率に依存する。例えば、5mm厚のチタン材で構成される筐体6を用いた厚さ60mmの熱間加工用チタン材5を熱間加工して、厚さ5mmのチタン複合材1を製造した場合、チタン複合材1中の第一表層部2および第二表層部3のチタン合金層の厚さは、それぞれ約0.4mmとなり、チタン複合材1の全厚さの約8%を占める。
(化学成分)
本発明に係るチタン複合材1では、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の耐水素吸収性を高めるために、以下に掲げる各種合金元素を含有させてもよい。
8.0<Mo当量<20.0
ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
耐水素吸収性を得る層は、β安定化元素を一定範囲含有するチタン合金層である。β相を形成することを規定する理由は、チタンのα相はわずか数10ppmの水素濃度でも水素化物を形成するのに対し、チタン合金のβ相はおおよそ1000ppm以上の水素を固溶できるため、水素起因による脆化を生じ難い特徴を有するためである。
Fe、Crなどの共析型のβ安定化元素を含む場合には、チタンとそれらの元素が化合物を形成して、脆化を招くおそれがある。しかし、β安定化元素のうち、Mo、VおよびNbを「8.0<Mo当量<20.0」を満たす範囲で含有する場合には、FeおよびCrなどが同時に存在していてもβ相が安定し、化合物相を形成しないため脆化を生じない。
ここで、Mo当量の下限は、充分な量のβ相を得るために必要な合金量である。上限は、合金添加量が多いチタン合金は価格が高いため、コスト面から使用に適さないことから定めた。なお、筐体6として用いるチタン合金材は、必ずしも完全にβ相である必要はなく、β相中にα相が析出していてもα相の周囲をβ相が覆っていればよい。
第一表層部2および第二表層部3の合金層の形成には、下記の筐体6に既存のβ型チタン合金を利用することができる。例えば、Ti−15V−3Cr−3Al−3Sn、Ti−8V−3Al−6Cr−4Mo−4Zr(BetaC)、Ti−11.5Mo−6Zr−4.5Sn(BetaIII)である。このような既存のβ型チタン合金を筐体6に用いた場合、上記元素以外のCr、Sn、Al、Zrなどの添加元素の含有も、総量が15%以下であれば許容される。これらの元素は、既存のβ型チタン合金において熱処理性、強度および冷間加工性を調整するために含まれる元素であり、本発明で定義するMo当量を下げないからである。また、例えば、Si、Fe等をさらに含有してもよい。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてTa、Si、MnおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で5%以下許容される。
(e)中性子遮断性を発現する合金元素を含む場合
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、中性子線遮蔽効果を十分に得られない。一方、第一表層部2および第二表層部3が厚い場合には中性子線遮蔽効果は向上するものの、素材全体に占めるチタン合金の割合が増すため、製造コストが上昇する。このため、チタン複合材1の全厚に対する第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、5〜40%とする。
中性子線遮蔽効果は、上記のチタン複合材1の全厚さに対する第一表層部2および第二表層部3の厚さおよび加工率と相関する。例えば、20mm厚の筐体6を用いた100mm厚の熱間加工用チタン材5を熱間加工して、10mm厚のチタン複合材1を製造した場合、チタン複合材1中の第一表層部2および第二表層部3のチタン合金層の厚さは、それぞれ2mmでチタン複合材1の全厚の20%(両面合わせると40%)を占める。
なお、第一表層部2および第二表層部3の厚さを厚くするためには、筐体6を製造する際に貼り合わせる合金板の板厚を厚くすればよい。しかしながら、合金板の板厚があまりに大きくなり過ぎると、合金板を溶接して筐体6にすることが困難になる。そのため、もともとの熱間加工用チタン材5の厚さを小さくすることにより、チタン材5の全厚さに対する合金板の割合を相対的に高くすればよい。
(化学成分)
本発明に係るチタン複合材1では、第一表層部2および第二表層部3に中性子線遮蔽効果を具備させるために、合金元素が含有される。以下に、添加元素の選択理由と、その添加量範囲を限定する理由を詳しく説明する。
B:0.1〜3.0%
Bの中には、10Bが19.9%存在するが、この10Bは、熱中性子の吸収断面積が大きく、中性子線の遮蔽効果が大きい。B含有量が0.1%未満では中性子線遮蔽効果を十分得られず、B含有量が3.0%を超えると熱間圧延時の割れおよび加工性の劣化を引き起こすおそれがある。
ここで、Bを含有するチタン合金は、チタンにBまたはTiBなどの硼化物を添加することで作製可能である。この他、H 10BO1010Cなどの10B濃縮ほう素含有素材(10B含有量が概ね90%以上)を用いると、B含有量が少なくても中性子線遮蔽効果が大きいため、極めて有効である。
10BO10O、10Cを使用する場合、合金層にHおよびOも濃化することになるが、Hは真空焼鈍などの熱処理時に素材から抜けるため問題とならず、OおよびCは、工業用純チタンに含まれる上限以下の0.4質量%O以下、0.1質量%C以下であれば問題なく製造が可能である。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてCr、Ta、Al、V、Cr、Nb、Si、Sn、Mn、MoおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で5%以下であれば許容される。
(用途)
粒子線治療、BNCT(ホウ素中性子捕捉療法)などの放射線療法の施設に、B含有量が3.0〜4.0質量%、板厚が10〜100mmであるポリエチレン材料が用いられている。また、原子力関連設備では、核燃料保管用ラックに、B含有量が0.5〜1.5質量%、板厚が4.0〜6.0mmであるステンレス鋼板が用いられている。第一表層部2および第二表層部3のB含有量および厚さ(B濃化層厚さ)を調整したチタン複合材1を用いることにより、上記の材料と同等またはそれ以上の特性を発揮することが可能である。
1−3.内層部
(化学成分)
チタン複合材1の内層部4の純チタンの成分は、後述するように、製造する際に使用するスポンジチタンの成分に依存する。本発明に係るチタン複合材1では、JISに規定される純チタンのうち、JIS1種、JIS2種、JIS3種またはJIS4種の工業用純チタンを用いることができる。すなわち、0.1%以下のC、0.015%以下のH、0.4%以下のO、0.07%以下のN、0.5%以下のFeを含有し、残部がTiである工業用純チタンである。
これらJIS1〜4種の工業用純チタンを使用すれば、十分な加工性を有しており、割れなどが発生せず、熱間加工後に表面のチタン合金と一体化したチタン材が得られる。ただし、チタンは活性な金属であるため、スポンジチタンの平均粒径が0.1mm以下の微粉になると質量当たりの表面積が大きくなり、実操業下においてOのキャッチアップ(濃化)が不可避となることに留意が必要である。
チタン複合材の内層部のO含有率は所望の機械的特性に応じて調整することが可能であり、高い強度を必要とする場合には最大0.4%まで含有してもよい。O含有量が0.4%を超えると、割れなどが発生し、熱間加工後に表面のチタン合金と一体化したチタン材が得られなくなるおそれがある。一方、強度よりも延性が要求される場合には、O含有量をより低くすることが好ましく、0.1%以下であるのが好ましく、0.05%以下であるのがより好ましい。
(空隙率)
本発明に係るチタン複合材1は、後述するチタン材5を素材として、熱間加工および冷間加工により製造される。この際、チタン材5中の純チタン部分に形成される空隙は、熱間加工および冷間加工にともない圧着されていくが、完全には除去されず一部は内層部4中に残存する。この内層部4中の空隙が多すぎると、バルク金属としての機械的特性(強度および延性)が低下するため、空隙は少ないほど望ましい。
ただし、空隙を完全に圧着させるためには大圧下が必要となり、製造されるチタン複合材1の形状(厚さ)が制限され、さらには、製造コスト高騰の要因となりうる。一方、チタン複合材1としての構造を維持するのに十分な機械的特性(強度および延性など)を有する程度に空隙が含有される場合には、内部チタンの密度が低くなるため、製造されるチタン複合材1の軽量化が期待できる。
この際、内層部4中の空隙率が30%以下であれば、内層部4と第一表層部2および第二表層部3とが一体化したチタン複合材1として製造される。チタン複合材1を効率的に製造するためには、一定量を超えて熱間および冷間加工することが望ましく、この際の空隙率は10%以下となる。
以上のように、バルク金属としての機械的特性が重要な場合には空隙率を低くし、素材の軽量化を優先する場合には空隙率を高くするなど、用途に応じて、空隙率を選択することが可能である。この際の内層部4中の空隙率は0%超30%以下であることが望ましく、より望ましくは、0%超10%以下である。
(空隙率の算出方法)
チタン複合材1の内層部4中に残存する空隙の割合(空隙率)は、次のように算出される。チタン材の断面が観察できるように樹脂に埋め込んだ後、ダイヤモンドまたはアルミナ研濁液を用いて観察面をバフ研磨して鏡面化仕上げする。この鏡面化仕上げした観察用試料を用いて、倍率500倍で板厚中心部の光学顕微写真を撮影する。撮影した光学顕微鏡写真にて観察される空隙の面積割合を測定し、20枚の測定結果を平均して、空隙率として算出する。観察に用いる顕微鏡は、通常の光学顕微鏡でも問題ないが、偏光観察が可能な微分干渉顕微鏡を用いることでより明瞭に観察できるため、使用することが望ましい。
2.チタン複合材の熱間加工用素材
図2は、チタン複合材1の熱間加工用素材である熱間加工用チタン材5の構造を示す説明図である。第一表層部2および第二表層部3がチタン合金からなるとともに、内層部4が純チタンからなるチタン複合材1は、例えば、図2に示すような、各種の特性を有するチタン合金材で全周を密封して筐体6とし、筐体6の内部にチタン塊7を充填し、筐体6の内部を減圧してチタン材5とし、このチタン材5を熱間加工用素材として熱間加工することにより、製造される。以下で、素材の各構成の詳細を説明する。
2−1.チタン塊
(化学成分)
本発明に係る熱間加工用チタン材5に充填するチタン塊7は、従来のクロール法等の製錬工程で製造された通常のチタン塊であり、その成分は、JIS1種、JIS2種、JIS3種またはJIS4種に相当する工業用純チタンを用いることができる。
(形状)
チタン塊7は、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上を含むものである。チタン塊7の大きさは、平均粒径で30mm以下が好ましい。平均粒径が30mmより大きいと、搬送する際に取り扱いにくい、チタン材に入れにくいなどハンドリング時に問題があり、その結果、作業効率が悪くなる。また、筐体6中に充填した際の充填率が低くなる可能性があり、熱間加工により製造されるチタン複合材1の密度が低くなって、延性などの特性低下を招く要因となり得る。
一方、チタン塊7の大きさが小さすぎると、筐体6中に充填する際に粉塵が問題となって作業に支障をきたすおそれがあるだけでなく、質量当たりの表面積が大きくなり、ハンドリング中にOの濃化が生じるおそれがある。このため、チタン塊7の平均粒径は0.1mm以上であることが好ましく、1mm以上であることがより好ましい。
なお、平均粒径が0.1mm以下の非常に細かい粉末として、MM(Mechanical Milling)処理を施した純チタン粉末を用いることが考えられる。MM処理とは、粉末および硬質ボールをポット内に入れて封入し、ポットミルを振動させることによって、粉末を微細化する処理である。MM処理後の微粉末の表面は活性な状態となっているため、ポット内から純チタン粉末を回収する際に大気中のOおよびNを吸収しないよう、不活性ガス化で取り扱う必要がある。
また、OおよびNの濃度の低い純チタンをMM処理すると、高延性であるため粉末同士が圧着したり、硬質ボールまたはポット表面に純チタンが圧着したりする。そのため、MM処理して得られる純チタン粉末の歩留が悪いという問題が生じる。このような理由により、MM処理による純チタン粉末の作製は多大な労力と費用とを必要とし、大量生産には不向きである。
チタン微粉末をスポンジチタンから水素化脱水素法で製造する方法もある。しかし、質量あたりの表面積が増加し、表面酸化によりO濃度が上昇しやすくなるため、材質の制御が難しくなる。したがって、スポンジチタンをそのまま使用する本発明の方が、品質・コストの面で優れている。
なお、スポンジチタンをプレス成形によりブリケットとして使用する場合には、スポンジチタンの一部または全てを、スクラップ(純チタンスクラップ)またはチタン粉末で代替してもよい。
2−2.筐体
(化学成分)
最終製品であるチタン複合材1の第一表層部2および第二表層部3のチタン合金をなすように、上述した合金成分のチタン合金を用いる。
(形状)
筐体6として用いるチタン合金材の形状は、熱間加工用素材として用いられるチタン材5の形状に依存するため、特に定形はなく、板材または管材などを用いることができる。ただし、熱間加工、冷間加工および焼鈍などの製造工程を経て製造されるチタン複合材1に、表層の合金化による高機能化および優れた表面性状を具備させるためには、筐体6に用いるチタン合金材の厚さが重要となる。
厚さが1mm未満と薄い場合、塑性変形に伴い熱間加工の途中で筐体6が破断して真空が破れて、内部のチタン塊7の酸化を招く。また、チタン材5の内部に充填されたチタン塊7の起伏がチタン材5の表面に転写されて、熱間加工中にチタン材5の表面で大きな表面起伏を生じる。これらの結果、製造されるチタン複合材1の表面性状および延性などの機械的特性、さらには所望の特性に悪影響を及ぼす。
また、仮に、熱間加工および冷間加工中に表面欠陥が発生しない場合においても、製造されるチタン複合材1中でチタン合金部分の厚みが局所的に薄くなって十分な特性を発揮できない可能性がある。また、筐体6が過度に薄くなると内部に充填したチタン塊7の重量を支え切れないため、室温または熱間での保持中または加工中にチタン材5の剛性が不足して変形してしまう。
筐体6に用いるチタン合金材の厚さが1mm以上であれば、これら問題が発生することなく熱間加工を行うことができ、優れた表面性状と所望の特性を具備したチタン複合材1を製造できる。なお、チタン合金材の厚さを2mm以上とするとより好ましい。
一方、チタン合金材の厚さが厚くなり過ぎると、製造される熱間加工用チタン材5に占める筐体6の割合が増大し、相対的に、チタン材5に占めるチタン塊7の割合が低下するため、歩留りが低下してコスト高になる。
2−3.熱間加工用チタン材
次に、前記のチタン塊7と筐体6とを用いて製造される、チタン材5について説明する。
(形状)
チタン材5の形状は、特定の形状に限られるものではないが、製造されるチタン複合材1の形状によって決められる。板材の製造を目的とする場合は直方体形状のチタン材5が製造され、丸棒、線材または押出材の製造を目的とする場合には円柱形または八角柱等多角柱形状のチタン材5が製造される。チタン材5の大きさは、製品の大きさ(厚さ、幅、長さ)および製造量(重量)により決められる。
(内部)
筐体6で全周を密封して囲まれたチタン材5の内部には、チタン塊7が充填される。チタン塊7は塊状の粒であるため、粒と粒との間には空間(隙間)がある。チタン塊7のハンドリング性向上およびこれら隙間を少なくするために、予めチタン塊7を圧縮成形してからチタン材5に入れてもよい。チタン材5内の隙間に空気が残存していると、熱間加工前の加熱時にチタン塊7が酸化・窒化してしまい、製造されるチタン複合材1の延性が低下する。このため、チタン材5内を減圧して高真空度とする。
(真空度)
熱間加工時のチタン塊7の酸化・窒化を防止するためには、チタン材5の内部の真空度を10Pa以下、好ましくは1Pa以下にする。チタン材5の内部圧力(絶対圧)が10Paより大きいと、残留している空気によりチタン塊7が酸化または窒化してしまう。下限は特に定めるものではないものの、真空度を極端に小さくするには、装置の気密性向上および真空排気装置の増強など製造コストの上昇に繋がるため、1×10−3Pa未満にする必要はない。
(溶接)
筐体6を溶接する方法としては、TIG溶接もしくはMIG溶接等のアーク溶接、電子ビーム溶接またはレーザー溶接等を用いることができ、特に限定されない。ただし、チタン塊7および筐体6の面が酸化または窒化されないように、溶接雰囲気は、真空雰囲気または不活性ガス雰囲気とする。筐体6のつなぎ目を最後に溶接する場合は、チタン材5を真空雰囲気の容器(チャンバー)に入れて溶接を行い、チタン材5の内部を真空に保つのが好ましい。
3.チタン複合材の製造方法
次に、上記本発明のチタン材5を熱間加工用素材として熱間加工を行うチタン複合材1の製造方法について説明する。
チタン複合材(製品)1は、チタン材5を熱間加工用素材として、熱間加工を施して形成される。熱間加工の方法は、製品の形状によって選択することができる。
板材を製造する場合は、直方体形状(スラブ)のチタン材5を加熱して、熱間圧延を行いチタン板とする。必要に応じて、従来工程と同様に、熱間圧延後に表面の酸化層を酸洗などで除去した後、冷間圧延を行い、さらに薄く加工してもよい。
丸棒または線材を製造する場合は、円柱または多角形形状(ビレット)のチタン材5を加熱して、熱間圧延または熱間押出を行い、チタン丸棒または線材とする。また、必要に応じて、従来工程と同様に、熱間加工後に酸化層を酸洗などで除去した後、冷間圧延を行い、さらに細く加工してもよい。
さらに、押出形材を製造する場合は、円柱または多角形形状(ビレット)のチタン材5を加熱して、熱間押出を行い、種々の断面形状のチタン形材とする。
熱間加工前の加熱温度としては、通常のチタンスラブまたはビレットを熱間加工する場合と同様の加熱温度とすればよい。チタン材5の大きさまたは熱間加工の度合い(加工率)によって異なるが、600℃以上1200℃以下とすることが好ましい。加熱温度が低過ぎるとチタン材5の高温強度が高くなり過ぎるため、熱間加工中に割れの原因となり、また、チタン塊7および筐体(チタン合金部)6の接合が不十分となる。一方、加熱温度が高過ぎると得られたチタン複合材1の組織が粗くなるため、十分な材料特性が得られず、また、酸化により表面の筐体(チタン合金部)6が減肉されてしまう。加熱温度を600〜1200℃とすればこのような問題が発生することなく熱間加工を行うことができる。
熱間加工の際の加工の度合い、すなわち加工率は、チタン複合材1の内部の空隙率を制御するために選択することができる。ここでいう加工率は、チタン材5の断面積と熱間加工後のチタン複合材1の断面積の差を、チタン材5の断面積で除した割合(百分率)である。
加工率が低い場合には、チタン材5の内部のチタン塊7間の隙間が十分に圧着されないため、熱間加工後に空隙として残存する。このような空隙を多く含むチタン複合材1は、含有する空隙の分だけ、軽量となる。ただし、内部に存在する空隙が多いため、機械的特性が十分に発揮されない。一方、加工率が増大するとともに、空隙率は低下して機械的特性が向上する。このため、製造されるチタン複合材1の機械的特性が重要視される場合には、加工率は高い方が好ましい。
具体的には、加工率が90%以上では、チタン材5の内部のチタン塊7の粒界の隙間を十分に圧着することができ、チタン複合材1の空隙を少なくすることができる。加工率は高いほど、チタン複合材1の空隙を確実に消滅させるために好ましいものの、チタン材5の断面積を大きくしなければならず、また、熱間加工を繰り返して何回も行わなければならなくなる。その結果、長い製造時間を要するなどの問題が生じるため、加工率は99.9%以下にすることが好ましい。
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1−1)
チタン材に充填するチタン塊として、クロール法により製造したスポンジチタン(JIS1種、2種、3種、粒度=0.25〜19mm)および純チタンスクラップ(JIS1種、2種、3種)を用いた。また、筐体として、Ti−0.06Pd合金板材(厚さ0.5〜20mm)を用いて、厚さ50〜100mm、幅100mm、長さ120mmの直方体を製作した。
チタン材の作製に際して、まず、チタン板5枚を仮組みして箱形状とした後、この中にスポンジチタンを充填し、仮組みした箱の開口部をチタン板で蓋をした。一部のチタン材では、ブリケット状に成形したスポンジチタン(スポンジブリケット)またはスポンジチタンと純チタンスクラップを混合してブリケットにしたものをスポンジチタンの替わりに用いた。仮組みされたチタン材は、真空チャンバー内にいれて、所定の圧力になるまで減圧(真空)にした後、筐体の継ぎ目を全周電子ビームで溶接して密封した。このときのチャンバー内の真空度は表2に示すように、8.7×10−3〜7.6×10−2Paとした。
一部のチタン材(表2の試験No.16および17)では、板中央に穴をあけて内径6mmのチタン管をティグ溶接した筐体1枚を準備して、この筐体が圧延時に後端面になるようにチタン材を仮組立した。
この後、仮組立したチタン材を全周電子ビームで溶接した後、チタン管を通して、チタン材内部を所定の真空度(6.9×10−1〜1.2Pa)になるまで減圧し、減圧後にチタン管を圧着して、チタン材内部の真空度を保った。
以上の工程により、チタン合金製の板で全周を密封した筐体が形成され、筐体の内部がチタン塊で充填されており、筐体の内部が所定の真空度に減圧されることとなった。
作製したチタン材は、大気雰囲気で850℃に加熱した後、熱間圧延を行い、厚さ5mmの熱延板とした。この後、ショットブラストおよび硝ふっ酸を用いて表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空または不活性ガス雰囲気中で600〜750℃まで加熱し、240分間保持する熱処理を行うことにより、本発明の供試材を作製した。
この熱延板から、厚さ1mm×幅30mm×長さ40mmの試験片を切り出し、切断面および耐食チタン合金板を張り付けていない面が腐食環境に晒されないように防食テープで被覆した後、3%沸騰塩酸(常温でpH≒0)中に96時間浸漬後、腐食試験前後の重量変化から、腐食速度を算出した。
また、製造したチタン複合材を、断面観察できるように樹脂に埋め込み、研磨・腐食したのちに、光学顕微鏡にて観察して、表層部チタン合金層の厚さを測定した。この測定した表層部チタン合金層の厚さをチタン複合材の全厚で除して、表層部の比率として算出した。
チタン複合材の純チタン部分に残存する空隙の割合(以下、空隙率)を算出するため、試料断面が観察できるように樹脂埋め後、研磨して鏡面仕上げしたのち、倍率500倍にて光学顕微写真を撮影した。撮影した光学顕微鏡写真から空隙の面積割合を算出し、5枚の測定結果を平均して、空隙率として算出した。製造されたチタン複合材の表面性状は、目視による観察において、疵の有無で評価を行った。
本発明に係るチタン複合材との比較のため、市販の純チタン(JIS1〜3種)および耐食チタン合金(Ti−0.06%Pd、ASTM Gr17)の1mm板材を用いて、前述の腐食試験を行った。
以上の結果をまとめて、表2に示す。
Figure 0006172405
比較例である試験No.1〜4は、それぞれ、溶解・分解・鍛造工程を経て製造された市販の、純チタン材(JIS1〜3種)および、耐食チタン材(Ti−0.06Pd、ASTM Gr.17)であり、これらの結果は、後述する本発明のチタン複合材の性能を評価する指標となる。
本発明例である試験No.5〜14および16〜19は、いずれも、前述の表2中の、試験No.1〜3に示した溶解・分解・鍛造工程を経て製造された市販の純チタン材より優れた耐食性を示し、試験No.4に示した溶解・分解・鍛造工程を経て製造された市販の耐食チタン材と同等の耐食性を有している。
ただし、試験No.5は、腐食速度に問題はないものの、表層部含有率が大きくなっており、チタン合金部が占める割合が相対的に大きくなるため、素材コストが高くなる。
試験No.15は、表層部の厚さが薄いため、耐食性は純チタンよりは良好であるものの、耐食チタン合金よりは劣る結果となった。
試験No.18および19は、チタン材内部の純チタンとして、スポンジブリケットまたはスポンジチタンの一部に純チタンスクラップを利用した純チタンスクラップ含有スポンジブリケットを用いて製造されたチタン複合材である。これらは、内部にスポンジチタンを用いた場合と同様に、耐食チタン合金と同等の優れた耐食性を有している。
(実施例1−2)
チタン材に充填するチタン塊として、クロール法により製造したスポンジチタン(JIS1種、粒度=0.25mm以上19mm以下)を用いた。また、筐体として、所定の成分を含有するチタン合金(厚さ10mm)を用いて、厚さ75mm、幅100mm、長さ120mmの直方体を製作した。
チタン材の作製に際して、まず、チタン板5枚を仮組みして箱形状とした後、この中にスポンジチタンを充填し、仮組みした箱の開口部をチタン板で蓋をした。仮組みされたチタン材は、真空チャンバー内にいれて、8.7×10−3Paになるまで減圧にした後、筐体の継ぎ目を全周電子ビームで溶接して密封した。
以上の工程により、チタン合金製の板材で全周を密封した筐体が形成され、筐体の内部がスポンジチタンで充填されており、筐体の内部が所定の真空度に減圧されることとなった。
作製したチタン材は、大気雰囲気で850℃に加熱した後、熱間圧延を行い、厚さ5mmの熱延板とした。この供試材から、厚さ5mm×幅30mm×長さ40mmの試験片を切り出し、この後、実施例1−1と同様の評価を行った。
本発明に係るチタン複合材との比較のため、市販の純チタン(JIS1種)および耐食チタン合金(Ti−0.06%Pd、ASTM Gr17)の5mm板材を用いて、前述の腐食試験を行った。
これらの結果をまとめて、表3に示す。
Figure 0006172405
溶解・分解・鍛造工程を経て製造された市販の純チタン材(JIS1種)、比較例である試験No.20〜23は、溶解・分解・鍛造工程を経て製造された市販の耐食チタン材であり、これらの結果は、後述する本発明に係るチタン複合材の性能を評価する指標となる。
本発明例である試験No.24〜48は、いずれも、試験No.21〜23に示した溶解・分解・鍛造工程を経て製造された市販の耐食チタン材と同等の耐食性を有しており、また、試験No.20に示す溶解・分解・鍛造工程を経て製造された市販の純チタン材より優れた耐食性を示す。
試験No.24〜27は、表層部チタン合金に白金族元素であるPdが含有されることにより優れた耐食性が付与されている。
試験No.28は、表層部チタン合金に白金族元素であるPdおよびRuが含有されることにより優れた耐食性が付与されている。
試験No.29および30は、表層部チタン合金に白金族元素であるPdに加えて、Coが含有されることにより優れた耐食性が付与されている。
試験No.31〜41は、表層部チタン合金に白金族元素であるPdまたはRuに加えて、希土類元素であるY、Dy、La、ジジム、Pr、Ce、Mmが含有されることにより優れた耐食性が付与されている。
試験No.42および43は、表層部チタン合金に白金族元素であるPdに加えて、希土類元素であるNdおよびSmが含有され、さらにCoが含有されることにより優れた耐食性が付与されている。
試験No.44および45は、表層部チタン合金に白金族元素であるRuに加えて、Niが含有されることにより優れた耐食性が付与されている。
試験No.46は、表層部チタン合金に白金族元素であるPdに加え、希土類元素であるY、さらに、Niが含有されることにより、優れた耐食性が付与されている。
試験No.47は、表層部チタン合金に白金族元素であるPdに加え、CoおよびNiが添加されることにより、優れた耐食性が付与されている。
さらに、試験No.48は、表層部チタン合金に白金族元素であるPdに加え、希土類元素であるY、さらには、CoおよびNiが添加されることにより、優れた耐食性が付与されている。
(実施例1−3)
チタン材に充填するチタン塊として、クロール法により製造したスポンジチタン(JIS1種、粒度=0.25mm以上19mm以下)を用いた。また、筐体として、Ti−0.06Pd合金板材を用いて、厚さ25〜75mm、幅100mm、長さ120mmの直方体を製作した。
チタン材の作製に際して、まず、チタン板5枚を仮組みして箱形状とした後、この中にスポンジチタンを充填し、仮組みした箱の開口部をチタン板で蓋をした。仮組みされたチタン材は、真空チャンバー内にいれて、8.7×10−3Paになるまで減圧にした後、筐体の継ぎ目を全周電子ビームで溶接して密封した。
以上の工程により、チタン合金製の板で全周を密封した筐体が形成され、筐体の内部がスポンジチタンで充填されており、筐体の内部が所定の真空度に減圧されることとなった。
作製したチタン材は、大気雰囲気で850℃に加熱した後、熱間圧延を行い、厚さ20mmの熱延板とした。得られた熱延酸洗板を725℃で真空焼鈍した後、ショットブラスト加工および硝沸酸による酸洗仕上げを行ってチタン複合材とした。この供試材から、厚さ20mm×幅50mm×長さ50mmの試験片を切り出し、この後、実施例1−1および1−2と同様の評価を行った。
これらの結果をまとめて、表4に示す。
Figure 0006172405
本発明例である試験No.51〜55は、いずれも、試験No.49に示した溶解・分解・鍛造工程を経て製造された市販の純チタン材より優れた耐食性を示し、試験No.50に示した溶解・分解・鍛造工程を経て製造された市販の耐食チタン材と同等の耐食性を有している。
(実施例2−1)
表5に示す試験No.1〜18において、Si、Nb、TaおよびAlを少なくとも1種以上を含有するチタン合金板からなる厚さ250mm×幅1000mm×長さ4500mmの角型の筐体6を作製した後、内部に工業用純チタンから成るチタン塊7(ブリケット、スクラップおよびスポンジチタンから選択される1種以上)を充填し、約8×10−2Paの真空雰囲気下で密閉してチタン材5とし、熱間圧延用素材とした。
この後、このチタン材5を820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。
さらに、冷間圧延を行って、厚さ1mmのチタン複合材1とし、焼鈍処理として、真空または不活性ガス雰囲気中で600〜750℃まで加熱し、240分間保持する熱処理を行った。
これらの供試材から20mm×20mmの試験片を表面と端部を#400のサンドペーパーで研磨した後、700、750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。
Figure 0006172405
比較例である試験No.1は、内層部4が工業用純チタンJIS2種であり、第一表層部2および第二表層部3を有さない。そのため、700℃における200時間の加熱での酸化増量は40g/m以上、750℃における200時間の加熱での酸化増量は100g/m以上と非常に高い。
試験No.2は、内層部4が工業用純チタンJIS1種からなり、第一表層部2および第二表層部3がSiを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。また、空隙率も1%未満であり、機械的性質も良好である。
試験No.3は、内層部4が工業用純チタンJIS2種からなり、第一表層部2および第二表層部3がSiを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。また、空隙率も1%未満であり、機械的性質も良好である。
試験No.4は、内層部4が工業用純チタンJIS3種からなり、第一表層部2および第二表層部3がSiを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。また、空隙率も1%未満であり、機械的性質も良好である。
試験No.5〜18は、内層部4が工業用純チタンJIS2種であり、第一表層部2および第二表層部3がSi、Nb、Ta、Alから選択される1種類以上を含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。また、空隙率も1%未満であり、機械的性質も良好である。
(実施例2−2)
表6の試験No.19および20においては、Nbを含有するチタン合金板からなる厚さ50mm×幅1000mm×長さ4000mmの筐体6を作製した後、内部に工業用純チタンから成るチタン塊7(ブリケットおよびスポンジチタン)を充填し、約8×10−2Paの真空雰囲気下で密閉してチタン材5とし、熱間圧延用素材とした。
このチタン材5を820℃に加熱し、厚さ20mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに、焼鈍処理として、真空または不活性ガス雰囲気中で600〜700℃まで加熱し、240分間保持する熱処理を行った。
Figure 0006172405
試験No.19および20は、内層部4が工業用純チタンJIS2種であり、第一表層部2および第二表層部3がNbを含有するチタン合金からなる。また、内層部4の空隙率も30%未満である。さらに、第一表層部2および第二表層部3の厚みも5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
(実施例2−3)
表7に示すように、試験No.21にはTi−1.0Cu−1.0Sn−0.35Si−0.25Nbから成るチタン合金板、No.22にはTi−1.0Cu−0.5Nbから成るチタン合金板、No.23にはTi−0.25Fe−0.45Siから成るチタン合金板を用い、厚さ250mm×幅1000mm×長さ4500mmの筐体6を作製した後、内部に工業用純チタンから成るチタン塊7(ブリケットおよびスポンジチタン)を充填し、約8×10−2Paの真空雰囲気下で密閉してチタン材5とし、熱間圧延用素材とした。
その後、820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面とも片面あたり約40μm(両面で80μm)を除去するデスケーリング処理を行った。
さらに冷間圧延を行い、厚さ1mmのチタン複合材1とし、焼鈍処理として、真空または不活性ガス雰囲気中で600〜700℃まで加熱し、240分間保持する熱処理を行った。
Figure 0006172405
試験No.21〜23はいずれも、第一表層部2および第二表層部3がSiおよびNbのいずれか1種類以上を含有している。また、内層部4の空隙率も0.1%未満と低い。さらに、第一表層部2および第二表層部3の厚みも5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
(実施例3−1)
図1および2に示すように、チタン合金板の筐体6の内部にチタン塊7を充填してチタン材5とし、このチタン材5を圧延する方法を行い、試験片作製を行った。
なお、チタン材5の全体の厚みを125mm、筐体6のFe、Cr、Ni、Al、Zrの合計含有量が0.03〜1.1%、内部のチタン塊7の化学成分は、O:0.030〜0.33%、Fe:0.028〜0.086%の範囲で、C:0.01%以下、H:0.003以下、N:0.006%以下である。一部、熱間圧延率の影響を比較するために、全体の厚みが25mm、50mmのチタン材5も作製した。
具体的には、外周に、Fe、Cr、Ni、Al、Zr濃度および厚さを調整したチタン合金板を使用して筐体6を作製し、この筐体6の内部にスポンジチタンを圧縮成形した圧縮体(ブリケット)を充填し、その後、チタン材5の蓋を溶接した。
一部、ブリケットを形成せずスポンジチタンのままで充填したチタン材5、スポンジチタンと組成が同等の純チタン板を約25mm角にカットしたスクラップを10%または30%混合したブリケットを作製して充填したチタン材5を作製した。
溶接方法は、熱間加工時のチタン塊7の酸化・窒化を防止するためには、チタン材5の内部の真空度が10Pa以下となる真空雰囲気で、電子ビーム溶接した。
その後、厚さ5mmまで熱間圧延した後、脱スケール(ショットブラストと酸洗)、冷間圧延および焼鈍を施して、チタン複合材1とした。なお、元素濃化領域(チタン合金)をなす第一表層部2および第二表層部3の厚みは、外側のチタン合金板6の厚みと脱スケール時の表面除去量とによって、調整した。
チタン複合材1である各試験材について、各位置でのα相結晶粒径、引張強度、伸び、疲労強度、成形性を以下に示す条件で評価した。
(α相結晶粒径)
第一表層部2および第二表層部3の厚みはEPMAで測定した。光学顕微鏡により撮影した組織写真において、JIS G 0551(2005)に準拠した切断法により、内層部および表層部において、板厚1〜10%の位置のα相の平均結晶粒径を算出した。
(引張強度、伸び)
平行部6.25×32mm、標点間25mm、チャック部10mm幅、全長80mmの引張試験材(JIS13−B引張試験材の半分のサイズ)を作製し、0.2%耐力測定までは標点間0.5%/minで、耐力以降は30%/minの引張速度で引張試験を行った。ここでは、圧延方向に垂直方向の引張強度、全伸びを評価した。
(疲労強度)
図3に示す平面曲げ疲労試験材と、東京衡機製平面曲げ試験機を用いて、応力比R=−1、周波数25Hzの条件で疲労試験を行った。ここでは各応力振幅における破断までの繰り返し数を求めて応力疲労曲線を作成し、10回繰り返し曲げを行っても破断しない疲労限度(疲労強度)を評価した。
(成形性)
東京試験機製、型番SAS−350Dの深絞り試験機にてφ40mmの球頭ポンチを用いて、90mm×90m×0.5mmの形状に加工したチタン板に対して球頭張出し試験を行った。張出し試験は、日本工作油(株)製高粘性油(#660)を塗布し、この上にポリシートを乗せ、ポンチとチタン板が直接触れないようにし、試験材が破断した時の張出し高さを比較することで評価した。
球頭張出し試験での張出し高さは、酸素濃度の影響を強く受けることから、JIS1種では21.0mm以上、JIS2種では19.0mm以上、JIS3種では13.0mm以上を成形性が良好(表中の○印)と判定した。これ未満の場合には不芳(表中の×印)とした。
(金属組織)
図4に、上記の方法で作製した場合の組織写真の一例を示す。図4(a)は試験No.1(比較例、一般的なチタン材料)の組織写真であり、図4(b)は試験No.5(本発明例)の組織写真であり、図4(c)は試験No.12(本発明例)の組織写真であり、図4(d)は試験No.17(本発明例)の組織写真である。
なお、図4(b)〜図4(d)は、本発明例であり、第一表層部2および第二表層部3の厚さが異なっている。
試験結果を表8および9にまとめて示す。表8はチタン塊7としてJIS1種に相当する工業用純チタンを用いた場合であり、表9はチタン塊7としてJIS2,3種に相当する工業用純チタンを用いた場合である。また、表8および9における「筐体内部に使用した素材形態の水準」の欄の記号N1〜N4は、以下の種類と比率を示す。
N1:スポンジチタンを100%使用したブリケット
N2:スポンジチタンままを100%
N3:スポンジチタン90%と組成が同等のスクラップ10%を混合したブリケット
N4:スポンジチタン70%と組成が同等のスクラップ30%を混合したブリケット
Figure 0006172405
表8における試験No.4〜33は本発明で規定する条件を全て満足する本発明例であり、試験No.1〜3は本発明で規定する条件を満足しない比較例である。
試験No.1〜3は、JIS1種相当のチタン合金板であり、本発明例の成形性および疲労強度を評価する際の基準となる成形性および疲労強度を有する。試験No.1〜3の疲労強度比はそれぞれ0.63、0.63および0.55であり、一般的な値である。
試験No.4〜33は、伸び:30〜46%、引張強さ:295〜341MPa、疲労強度:197〜251MPa、疲労強度比:0.67〜0.78、張出し高さ:21.0〜21.7mmの機械特性を得られており、成形性と疲労強度との双方に優れることがわかる。
Figure 0006172405
表9における試験No.36〜43および46〜53は本発明で規定する条件を全て満足する本発明例であり、試験No.34、35、44および45は本発明で規定する条件を満足しない比較例である。
試験No.34および35は、JIS2種相当のチタン合金板であり、試験No.44および45は、JIS3種相当のチタン合金板である。試験No.34、35、44および45は、いずれも、本発明例の成形性および疲労強度を評価する際の基準となる成形性および疲労強度を有する。試験No.34および35の疲労強度比はそれぞれ0.58および0.59であり、試験No.44および45の疲労強度比はそれぞれ0.59および0.58である。いずれも、一般的な値である。
試験No.36〜43および46〜53は、伸び:25〜33%、引張強さ:341〜614MPa、疲労強度:255〜421MPa、疲労強度比:0.65〜0.77、張出し高さ:10.0〜20.6mmの機械特性を得られており、成形性と疲労強度との双方に優れることがわかる。
(実施例4−1)
筐体に充填するチタン塊として、クロール法により製造したスポンジチタン(JIS2種、粒度=0.25〜19mm)を用いた。また、筐体として、β型チタン合金Ti−15V−3Cr−3Sn−3Al板材(厚さ1〜15mm)を用いて、厚さ45〜80mm、幅100mm、長さ120mmの直方体を製作した。
筐体の作製に際して、まず、チタン板5枚を仮組みして箱形状とした後、この中にスポンジチタンを充填し、仮組みした箱の開口部をチタン板で蓋をした。仮組みされたチタン材は、真空チャンバー内にいれて、所定の圧力になるまで減圧(真空)にした後、継ぎ目を全周電子ビームで溶接して密封した。このときのチャンバー内の真空度は表10に示すように、8.7×10−3〜2.2×10−2Paである。
以上の工程により、β型チタン合金で全周を密封した筐体が形成され、筐体の内部がスポンジチタンで充填されており、チタン材の内部が所定の真空度に減圧されることとなった。
作製した筐体は、大気雰囲気で850℃に加熱した後、表10に示すように92〜97%の加工率で熱間圧延を行い、厚さ4.8〜5.0mmの熱延板とした。次いで、真空雰囲気で、600〜650℃、4〜10時間の焼鈍を施した。さらに、ショットブラスト、酸洗を行い、スケール層を除去した。
また、製造したチタン複合材を、断面観察できるように樹脂に埋め込み、研磨・腐食したのちに、光学顕微鏡にて観察して、表層部の厚さを測定した。この測定した表層部の厚さをチタン複合材の全厚で除して、表層部の比率として算出した。
チタン複合材の純チタン部分に残存する空隙の割合(以下、空隙率)を算出するため、試料断面が観察できるように樹脂埋め後、研磨して鏡面仕上げしたのち、倍率500倍にて光学顕微写真を撮影した。撮影した光学顕微鏡写真から空隙の面積割合を算出し、5枚の測定結果を平均して、空隙率として算出した。
本発明に係るチタン複合材との比較のため、市販の純チタン(JIS2種)の5mm板材を用いた。
本発明のチタン複合材と比較例の各チタン板を、水素吸収環境である1体積%H+99体積%Ar雰囲気で500℃、5時間暴露した。
暴露後に、4.8〜5mm×10mm×55mm、2mmVノッチの衝撃試験片を、試験片長手方向を圧延方向とし、ノッチの方向を板厚貫通方向として作製した。次いで、シャルピー衝撃試験の衝撃吸収エネルギーを試験片断面積で割った値である衝撃値で水素脆化を評価した。ここで、水素吸収環境に暴露する前の純チタン2種材の衝撃値は2.5×10J/cmであったことから、そこから20%以上低下する2.0J/cm未満となる場合に、水素脆化を生じたとした。
以上の結果をまとめて表10に示す。
Figure 0006172405
試験No.1は、筐体を用いないで製造された工業用純チタン2種材の例である。水素環境に暴露された影響で、衝撃値が2.0×10J/cm未満と低い。
これに対して、本発明の規定を満足する試験No.2〜6は、衝撃値が2.0×10J/cm以上と高い結果となった。
(実施例4−2)
実施例4−1に対し、筐体の合金種を変えた例を示す。筐体に用いたチタン板の板厚は3mm、チタン材の全厚は60mm、熱延後の板厚は4.8〜5.0mmであり、その他の試料作製も実施例4−1と同様の方法で行った。表11にその例を示す。
Figure 0006172405
試験No.7〜9は、本発明の規定を満足するため、衝撃値が2.0×10J/cm以上と高い結果となった。
(実施例4−3)
実施例4−1に対し、充填するスポンジチタンの品種をJIS3種に変えた例を示す。筐体に用いたチタン板の板厚は3mm、チタン材の全厚は60mm、熱延後の板厚は4.8〜5.0mmであり、その他の試料作製も実施例4−1と同様の方法で行った。
ここで使用したJIS3種の衝撃値は、0.5×10J/cmであり、そこから20%以上低下した0.4×10J/cm以下を水素による脆化と判定した。表12にその例を示す。
Figure 0006172405
No.10は、筐体を用いないで製造された工業用純チタン3種材の例である。水素環境に暴露された影響で、衝撃値が0.5×10J/cm未満と低い。
No.11は、本発明の規定を満足するため、衝撃値が0.5×10J/cmと高い結果となった。
(実施例5−1)
表13に示す試験No.1〜24の中性子線遮蔽板は次の方法で製造される。
Figure 0006172405
まず、筐体6のTi−B合金板は、事前に、TiBまたは10B濃縮ほう素(H 10BO1010C)によりBを添加して溶解したインゴットを熱間圧延することで作製した。熱間圧延後は、硝フッ酸からなる連続酸洗ラインを通板し、熱延板表面の酸化スケールを除去した。
このTi−B合金板を、約8×10−3Paの真空雰囲気下で電子ビーム溶接にて、スラブの5面に対応する位置に合金板を溶接することで中空の筐体6を作製した。
その筐体6の内部に、スポンジチタン、スポンジチタンを圧縮したブリケットおよび30mm×30mm×30mm以下に細かく裁断したチタンスクラップから選択される1種以上を入れ、残り1面を同様に電子ビーム溶接することで、内部が真空の100mm厚のチタン材5を作製した。
なお、合金板の厚みを変えることで、熱延板の全厚に対する表層部の比率を調整することができる。
図5は、このようにTi−B合金板を組み立ててスラブ状にした筐体6の中にチタン塊7を充填したチタン材5の模式図である。
このチタン材5について、鉄鋼設備を用い、800℃で240分間加熱した後、熱間圧延を行い、厚さ約4〜20mmの帯状コイルを製造した。
熱間圧延後の帯状コイルは、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削し、その後、割れの発生状況について目視観察を行った。なお、表層部(B濃化層)の深さの測定方法は、酸洗後の熱延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対する表層部の割合と表層部のB含有量とを求めた(観察箇所の中の平均値を採用した)。
また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。
また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×4〜20mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種(4mm厚)と試験片(4〜20mm厚)で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。
結果を表13にまとめて示す。
試験No.1〜10の比較例および本発明例は、母材の品種を純チタンJIS1種とした場合である。
比較例である試験No.1は、筐体6としてTi−B合金板ではなくBを含有していない工業用純チタンを使用した場合である。熱延板には割れなど発生せず、曲げ試験でも割れが発生しなかった。
本発明例である試験No.2は、100mm厚のチタン材5を20mm厚まで熱間圧延した場合である。第一表層部2および第二表層部3の比率が5%であり、かつ、第一表層部2および第二表層部3のB含有量が0.5%であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.3〜7は、100mm厚のチタン材5を10mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率、B含有量、空隙率を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.8〜10は、100mm厚のチタン材5を4mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率やB含有量を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.11〜17に示す本発明例は、母材の品種を純チタンJIS2種とした場合である。
試験No.11は、100mm厚のチタン材5を20mm厚まで熱間圧延した場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.12〜14は、100mm厚のチタン材5を10mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率またはB含有量を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.15〜17は、100mm厚のチタン材5を4mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率またはB含有量を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.18〜24の本発明例は、母材の品種を純チタンJIS3種とした場合である。
試験No.18は、100mm厚のチタン材5を20mm厚まで熱間圧延した場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.19〜21は、100mm厚のチタン材5を10mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率またはB含有量を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.22〜24は、100mm厚のチタン材5を4mm厚まで熱間圧延しており、第一表層部2および第二表層部3の比率またはB含有量を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
さらに、上述した手法による評価の結果、比較例である試験No.1では中性子線遮蔽効果を確認できなかったが、本発明例であるNo.2〜24では、いずれの場合でも、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。
なお、核燃料保管用ラックに使用されているB含有量が0.5%であるステンレス鋼板(4mm厚)では、中性子遮蔽効果は23.7である。試験No.4〜7、10、13、14、17、20および21は、このステンレス鋼板よりも高い中性子線遮蔽効果が得られた。
(実施例5−2)
表14に示す試験No.25〜34の中性子線遮蔽板は次の方法で製造される。
Figure 0006172405
実施例5−1と同様の手順で、異なる板厚および化学組成のTi−B筐体6を組合せ、内部にスポンジチタンおよび裁断したスクラップを充填した100mm厚のチタン材5を作製した。
このチタン材5について、鉄鋼設備を用い、800℃で240分間加熱した後、熱間圧延を行い、厚さ約5mmの帯状コイルを製造した。
熱間圧延後の帯状コイルは、硝フッ酸からなる連続酸洗ラインを通板し、さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空または不活性ガス雰囲気中で600〜750℃まで加熱し、240分間保持する熱処理を行って、チタン複合材1とした。
冷延板であるチタン複合材1は、焼鈍後の表面検査工程で、目視にて割れの発生状況を観察した。なお、第一表層部2および第二表層部3(B濃化層)の深さの測定方法は、チタン複合材1の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、チタン複合材1の板厚に対する第一表層部2および第二表層部3の割合と第一表層部2および第二表層部3のB含有量を求めた(観察箇所の中の平均値を採用した)。
また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。
また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×1mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種(1mm厚)と試験片(1mm厚)で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。
結果を表14にまとめて示す。
試験No.25〜28の比較例および本発明例は、母材の品種を純チタンJIS1種とした場合である。
比較例である試験No.25は、筐体6としてTi−B合金板ではなくBを含有していない工業用純チタンを使用した場合である。冷延板には割れなど発生せず、曲げ試験でも割れが発生しなかった。
本発明例である試験No.26〜28は、第一表層部2および第二表層部3の比率、B含有量、空隙率を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
試験No.29〜31の本発明例は、母材の品種を純チタンJIS2種とし、第一表層部2および第二表層部3の比率、B含有量、空隙率を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
No.32〜34の本発明例は、母材の品種を純チタンJIS3種とし、第一表層部2および第二表層部3の比率、B含有量、空隙率を変化させた場合である。第一表層部2および第二表層部3の比率が5〜40%の範囲内であり、かつ、第一表層部2および第二表層部3のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。
さらに、上述した手法による評価の結果、比較例である試験No.25では中性子線遮蔽効果を確認できなかったが、本発明例である試験No.26〜34では、いずれの場合でも、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。
1.チタン複合材
2.第一表層部
3.第二表層部
4.内層部
5.熱間加工用チタン材
6.筐体
7.チタン塊

Claims (8)

  1. 第一表層部と、
    内層部と、
    第二表層部と、を備えるチタン複合材であって、
    前記第一表層部および前記第二表層部がチタン合金からなり、
    前記内層部が、空隙を有する工業用純チタンからなり、
    前記第一表層部および前記第二表層部の少なくとも一方の厚さが、2μm以上であり、かつ、前記チタン複合材の全厚さに占める割合が40%以下であり、
    前記空隙の板厚方向に垂直な断面における体積率が、0%を超えて30%以下である、
    チタン複合材。
  2. 前記第一表層部および前記第二表層部の少なくとも一方の化学組成が、質量%で、
    白金族元素:0.01〜0.25%、
    希土類元素:0〜0.2%、
    Co:0〜0.8%、
    Ni:0〜0.6%、
    残部:Tiおよび不純物である、
    請求項1に記載のチタン複合材。
  3. 前記白金族元素が、Pdおよび/またはRuである、
    請求項2に記載のチタン複合材。
  4. 前記化学組成が、質量%で、
    希土類元素:0.001〜0.2%、を含有する、
    請求項2または請求項3に記載のチタン複合材。
  5. 前記化学組成が、質量%で、
    Co:0.05〜0.8%、および、
    Ni:0.05〜0.6%、
    から選択される1種以上を含有する、
    請求項2から請求項4までのいずれかに記載のチタン複合材。
  6. 前記工業用純チタンの化学組成が、質量%で、
    C:0.1%以下、
    H:0.015%以下、
    O:0.4%以下、
    N:0.07%以下、
    Fe:0.5%以下、
    残部:Tiおよび不純物である、
    請求項1から請求項5までのいずれかに記載のチタン複合材。
  7. 筐体と、
    前記筐体内に充填された、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上と、を備え、
    前記筐体の一部であって、熱間加工後に表層を構成する部分が、チタン合金からなり、
    内部の真空度が10Pa以下である、
    熱間加工用チタン材。
  8. 前記チタン合金の化学組成が、質量%で、
    白金族元素:0.01〜0.25%、
    希土類元素:0〜0.2%、
    Co:0〜0.8%、
    Ni:0〜0.6%、
    残部:Tiおよび不純物である、
    請求項7に記載の熱間加工用チタン材。
JP2016567887A 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材 Active JP6172405B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149388 2015-07-29
JP2015149388 2015-07-29
PCT/JP2016/072344 WO2017018522A1 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材

Publications (2)

Publication Number Publication Date
JPWO2017018522A1 JPWO2017018522A1 (ja) 2017-07-27
JP6172405B2 true JP6172405B2 (ja) 2017-08-02

Family

ID=57884521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016567887A Active JP6172405B2 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材

Country Status (8)

Country Link
US (2) US11066727B2 (ja)
EP (1) EP3330077B1 (ja)
JP (1) JP6172405B2 (ja)
KR (1) KR101920602B1 (ja)
CN (2) CN113844114A (ja)
RU (1) RU2724272C2 (ja)
TW (1) TWI637065B (ja)
WO (1) WO2017018522A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988832B2 (en) 2014-10-08 2021-04-27 Nippon Steel Corporation Titanium-containing structure and titanium product
SI3712282T1 (sl) * 2018-02-07 2023-11-30 Nippon Steel Corporation Material iz titanove zlitine
JP6927418B2 (ja) * 2018-04-10 2021-08-25 日本製鉄株式会社 チタン合金およびその製造方法
CN111251691A (zh) * 2018-11-30 2020-06-09 哈尔滨工业大学 一种多尺度结构钛合金材料的制备方法
CN112048638B (zh) * 2020-07-29 2022-04-22 北京科技大学 钛基合金粉末及制备方法、钛基合金制件的制备方法
CN113231469B (zh) * 2021-05-10 2023-04-18 贵州大学 一种锌基复合材料用铝合金材料包套热轧的方法
KR102646078B1 (ko) * 2021-11-18 2024-03-11 한국생산기술연구원 고내식성 타이타늄 합금 및 이를 포함하는 박막 제조용 음극 드럼
CN114589307B (zh) * 2022-03-09 2023-06-30 西部金属材料股份有限公司 一种高硬度钛合金复合板材及其制备方法和应用
CN114606408B (zh) * 2022-04-09 2023-07-25 中国科学院金属研究所 一种700~800℃用高强钛合金的制备方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867895A (en) * 1955-08-19 1959-01-13 Mallory Sharon Metals Corp Titanium scrap recovery and electrode manufacture
US3626578A (en) * 1968-07-02 1971-12-14 Hoover Ball & Bearing Co Conversion of metal scrap to useful products
SU469574A1 (ru) * 1973-05-18 1975-05-05 Предприятие П/Я Г-4774 Способ получени гор чекатанного титанового листа
JPS50146557A (ja) 1974-05-16 1975-11-25
JPS5229407A (en) 1975-09-02 1977-03-05 Miyamoto Kogyo Kk Process for production of titanium bars
JPS5919761B2 (ja) 1981-07-03 1984-05-08 住友金属工業株式会社 極厚鋼材用鋼塊の分塊圧延方法およびその装置
US4681627A (en) * 1985-06-03 1987-07-21 Mitsubishi Kinzoku Kabushiki Kaisha Process for preparing an ingot from metal scrap
JPS6380904A (ja) 1986-09-22 1988-04-11 Nippon Steel Corp チタン基合金の熱間加工法
JPS63207401A (ja) 1987-02-23 1988-08-26 Nkk Corp パツク圧延素材の組立方法
JPH01168833A (ja) 1987-12-25 1989-07-04 Nippon Steel Corp ボロン含有チタン合金
JPH02187282A (ja) * 1989-01-17 1990-07-23 Nippon Steel Corp 両面クラッド板の製造法
US4966816A (en) * 1989-06-07 1990-10-30 Titanium Metals Corporation Of America (Timet) Pack assembly for hot rolling
US5074907A (en) * 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
JP3308283B2 (ja) 1991-08-29 2002-07-29 野末 章 水素脆性感受性の低いβ型チタン合金およびβ型チタン合金の熱処理方法
JPH05142392A (ja) 1991-11-15 1993-06-08 Ishikawajima Harima Heavy Ind Co Ltd 放射線遮蔽材
ATE156393T1 (de) 1992-05-08 1997-08-15 Sulzer Innotec Ag Herstellung von dünnwandigen, bei erhöhter temperatur korrosionsanfälligen metallteilen
JP3047752B2 (ja) 1994-11-17 2000-06-05 住友金属工業株式会社 チタンクラッド鋼板の製造方法
US5564064A (en) 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
US5579988A (en) * 1995-06-09 1996-12-03 Rmi Titanium Company Clad reactive metal plate product and process for producing the same
JPH09136102A (ja) 1995-11-14 1997-05-27 Nkk Corp α+β型チタン合金シート材の製造方法
US6085965A (en) * 1997-02-04 2000-07-11 Mcdonnel & Douglas Corporation Pressure bonding and densification process for manufacturing low density core metal parts
JPH1157810A (ja) 1997-08-14 1999-03-02 Nkk Corp チタン合金シート材の製造方法
JPH11170076A (ja) 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd チタン被覆鋼材の製造方法
US5972521A (en) * 1998-10-01 1999-10-26 Mcdonnell Douglas Corporation Expanded metal structure and method of making same
JP2001089821A (ja) 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd 耐高温大気酸化性に優れた高強度、高延性チタン合金
JP2001131609A (ja) 1999-10-28 2001-05-15 Sanyo Special Steel Co Ltd Ti成形体の製造方法
JP2001170780A (ja) 1999-12-16 2001-06-26 Daido Steel Co Ltd チタン板またはチタンクラッド板の製造方法
JP3967515B2 (ja) 2000-02-16 2007-08-29 株式会社神戸製鋼所 マフラー用チタン合金材およびマフラー
US20040134574A1 (en) * 2003-01-09 2004-07-15 Kaibyshev Oskar Akramovich Method for working billets of metals and alloys
JP2006528515A (ja) * 2003-07-24 2006-12-21 テコメット・インコーポレーテッド 海綿状の構造体
KR101237122B1 (ko) * 2003-12-11 2013-02-25 오하이오 유니버시티 티타늄 합금의 미세구조 정련 방법 및 티타늄 합금의 고온-고변형률 초가소성 성형방법
JP4516440B2 (ja) 2004-03-12 2010-08-04 株式会社神戸製鋼所 耐高温酸化性および耐食性に優れたチタン合金
EP1574589B1 (en) 2004-03-12 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy having excellent high-temperature oxidation and corrosion resistance
JP4414983B2 (ja) 2006-06-15 2010-02-17 新日本製鐵株式会社 チタン材の製造方法および熱間圧延用素材
KR100726817B1 (ko) * 2006-09-07 2007-06-11 한국생산기술연구원 티타늄 수소화물 분말의 제조방법
JP4850662B2 (ja) 2006-11-02 2012-01-11 新日本製鐵株式会社 加工性に優れた排気系部品用α型チタン合金材およびその製造方法ならびに該合金を用いた排気装置部材
JP2008195994A (ja) 2007-02-09 2008-08-28 Kyoto Institute Of Technology チタン製品の表面改質方法及び表面改質チタン製品
JP5176445B2 (ja) 2007-09-10 2013-04-03 新日鐵住金株式会社 耐酸化性および成形性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置
JP5476855B2 (ja) * 2009-08-20 2014-04-23 三菱マテリアル株式会社 チタン薄板の製造方法
JP5888540B2 (ja) 2010-09-30 2016-03-22 国立大学法人九州工業大学 ホウ素含有純チタン材および同純チタン材の製造方法
RU2478448C2 (ru) 2011-05-03 2013-04-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления тонких листов из труднодеформируемых титановых сплавов
CN103717766B (zh) 2011-07-26 2016-11-23 新日铁住金株式会社 钛合金
JP2013076110A (ja) 2011-09-29 2013-04-25 Yokohama National Univ チタン合金およびチタンからなる基体とその表面処理方法
JP5862314B2 (ja) 2012-01-12 2016-02-16 新日鐵住金株式会社 耐酸化性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置
JP2013163840A (ja) 2012-02-10 2013-08-22 Toyota Central R&D Labs Inc チタン合金およびその製造方法
JP5759426B2 (ja) 2012-07-24 2015-08-05 東邦チタニウム株式会社 チタン合金及びその製造方法
CN104520456A (zh) 2012-08-10 2015-04-15 新日铁住金株式会社 钛合金材料
JP2016128171A (ja) 2013-04-01 2016-07-14 新日鐵住金株式会社 表面疵の発生し難いチタン熱間圧延用スラブおよびその製造方法
JP2016128172A (ja) 2013-04-01 2016-07-14 新日鐵住金株式会社 表面疵の発生し難いチタン熱間圧延用インゴットおよびその製造方法
JP2014233753A (ja) * 2013-06-05 2014-12-15 新日鐵住金株式会社 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた工業用純チタンインゴットおよびその製造方法
JP6052805B2 (ja) 2013-08-27 2016-12-27 株式会社神戸製鋼所 チタン鋳塊の製造方法

Also Published As

Publication number Publication date
EP3330077B1 (en) 2021-05-05
RU2018106442A (ru) 2019-08-28
TWI637065B (zh) 2018-10-01
US11814703B2 (en) 2023-11-14
RU2018106442A3 (ja) 2019-10-16
EP3330077A1 (en) 2018-06-06
WO2017018522A1 (ja) 2017-02-02
CN107848258A (zh) 2018-03-27
TW201718894A (zh) 2017-06-01
KR20180027614A (ko) 2018-03-14
US11066727B2 (en) 2021-07-20
CN113844114A (zh) 2021-12-28
EP3330077A4 (en) 2018-12-26
RU2724272C2 (ru) 2020-06-22
KR101920602B1 (ko) 2018-11-20
US20210292871A1 (en) 2021-09-23
JPWO2017018522A1 (ja) 2017-07-27
US20180216210A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6172405B2 (ja) チタン複合材および熱間加工用チタン材
JP6658756B2 (ja) チタン複合材および熱間圧延用チタン材
JP6787418B2 (ja) 熱間圧延用チタン材
JP6515358B2 (ja) チタン複合材および熱間圧延用チタン材
WO2017018520A1 (ja) チタン複合材および熱間圧延用チタン材
JP6094724B1 (ja) チタン複合材および熱間加工用チタン材
JP6756362B2 (ja) チタン複合材および梱包体
JP6515357B2 (ja) 熱間圧延用チタン材
JP6137424B1 (ja) チタン複合材および熱間加工用チタン材

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6172405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350