JP6137424B1 - チタン複合材および熱間加工用チタン材 - Google Patents

チタン複合材および熱間加工用チタン材 Download PDF

Info

Publication number
JP6137424B1
JP6137424B1 JP2016568070A JP2016568070A JP6137424B1 JP 6137424 B1 JP6137424 B1 JP 6137424B1 JP 2016568070 A JP2016568070 A JP 2016568070A JP 2016568070 A JP2016568070 A JP 2016568070A JP 6137424 B1 JP6137424 B1 JP 6137424B1
Authority
JP
Japan
Prior art keywords
titanium
surface layer
layer portion
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016568070A
Other languages
English (en)
Other versions
JPWO2017018518A1 (ja
Inventor
森 健一
健一 森
藤井 秀樹
秀樹 藤井
善久 白井
善久 白井
知之 北浦
知之 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6137424B1 publication Critical patent/JP6137424B1/ja
Publication of JPWO2017018518A1 publication Critical patent/JPWO2017018518A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Abstract

第一表層部2と、内層部4と、第二表層部3とを備えるチタン複合材1であって、第一表層部2および第二表層部3がチタン合金からなり、内層部4が、空隙を有する工業用純チタンからなり、第一表層部2および第二表層部3の少なくとも一方の化学組成が、[8.0<Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6<20.0]を満足し、第一表層部2および第二表層部3の少なくとも一方の厚さが、チタン複合材1の全厚さに占める割合が2〜20%であり、空隙の板厚方向に垂直な断面における体積率が、0%を超えて30%以下である、チタン複合材。

Description

本発明は、チタン複合材および熱間加工用チタン材に関する。
チタン材は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などの特性に優れている。これらの特性は、チタンに様々な合金元素を添加することにより達成することができる。
工業用純チタンはhcp(稠密六方格子)構造のα相を主体としており、α相に水素を多量に吸収すると水素化物を形成して脆化することが知られている。このため使用環境によっては、水素を吸収して脆化し、破断する事故が起きる場合がある。「チタンの加工技術」(非特許文献1)では、例えば、非酸化性の酸を扱うプラント、または、尿素・アンモニア環境、水素ガス環境での、水素吸収による事故が報告されている。このため、耐水素脆化性に優れるチタン合金材が提案されている。
特開2013−163840号公報(特許文献1)には、50体積%以上のβ相を含み、水素を500〜6000ppm含む破断伸びが大きいチタン合金が開示されており、水素を多量に含んでも脆化しない例が示されている。
特開2013−163840号公報
チタンの加工技術、(社)日本チタン協会編、日刊工業新聞社、p.214〜230、1992年11月発行
水素による脆化への対策として、一般に製品に加工後に耐水素吸収性のある表面処理を施すか、または、電気防食を施すことが行われている。しかし、いずれも製品加工または施工の工数が増加するなどして、コスト高になることが避けられず、耐水素脆化性に優れたチタン材を低コストで提供することはできない。
また、特許文献1により開示された方法のように、素材全体の50体積%以上をβ相にするためには、高価な添加元素を多量に含有する必要があるためにコストが上昇する。
本発明は、耐水素脆化性を向上させるために添加する合金元素の含有量(目標特性を発現する特定の合金元素の使用量)を低減し、かつ、チタン材の製造コストを抑制することにより、安価に所望の特性を有するチタン材を得ることを目的としている。
本発明は、上記課題を解決するためになされたものであり、下記のチタン複合材および熱間加工用チタン材を要旨とする。
(1)第一表層部と、
内層部と、
第二表層部と、を備えるチタン複合材であって、
前記第一表層部および前記第二表層部がチタン合金からなり、
前記内層部が、空隙を有する工業用純チタンからなり、
前記第一表層部および前記第二表層部の少なくとも一方の化学組成が、下記(i)式を満足し、
前記第一表層部および前記第二表層部の前記少なくとも一方の厚さが、前記チタン複合材の全厚さに占める割合が2〜20%であり、
前記空隙の板厚方向に垂直な断面における体積率が、0%を超えて30%以下である、
チタン複合材。
8.0<Mo当量<20.0 ・・・(i)
ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
(2)前記化学組成が、質量%で、
Cr、Zr、AlおよびSnから選択される1種以上の合計:15.0%以下、
残部:Tiおよび不純物である、
上記(1)に記載のチタン複合材。
(3)前記工業用純チタンの化学組成が、質量%で、
C:0.1%以下、
H:0.015%以下、
O:0.4%以下、
N:0.07%以下、
Fe:0.5%以下、
残部:Tiおよび不純物である、
上記(1)または(2)に記載のチタン複合材。
(4)筐体と、
前記筐体内に充填された、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上と、を備え、
前記筐体の一部であって、熱間加工後に表層を構成する部分が、チタン合金からなり、
前記チタン合金の化学組成が、下記(i)式を満足する、
熱間加工用チタン材。
8.0<Mo当量<20.0 ・・・(i)
ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
(5)前記化学組成が、質量%で、
Cr、Zr、AlおよびSnから選択される1種以上の合計:15.0%以下、
残部:Tiおよび不純物である、
上記(4)に記載の熱間加工用チタン材。
本発明に係るチタン複合材は、その表層部がチタン合金からなり、その内層部が工業用純チタンからなるものであるから、全体が同一のチタン合金からなるチタン材と比較して、同等の耐水素脆化性を有するが、安価に製造することができる。
図1は、本発明に係るチタン複合材の構成の一例を示す説明図である。 図2は、本発明に係るチタン複合材の熱間加工用素材であるチタン材の構造を示す説明図である。
本発明者らは、上記課題を解決するために鋭意検討を重ね、最終製品のチタン板の表層部のみを合金化することにより、目標特性を発現する特定の合金元素の使用量を低減し、かつ、チタン材の製造コストを抑制するべく、鋭意検討を行った結果、チタン合金材からなる筐体中に、比較的安価なスポンジチタンなどの材料を減圧下で充填・封入しておき、このチタン材を熱間加工してチタン複合材とする方法を見出した。
本発明は上記の知見に基づいてなされたものである。以下、本発明に係るチタン複合材およびその熱間加工用のチタン材を、図面を参照しながら説明する。なお、以降の説明では、各元素の含有量に関する「%」は特にことわりがない限り「質量%」を意味する。
1.チタン複合材
1−1.全体構成
図1に示すように、本発明に係るチタン複合材1は、第一表層部2と、内層部4と、第二表層部3とを備えるチタン複合材1であって、第一表層部2および第二表層部3がチタン合金からなり、内層部4が、空隙が存在する工業用純チタンからなる。このように、このチタン複合材における耐水素脆化性は、外部環境に接する表層部(第一表層部2、第二表層部3)によって担保される。そして、第一表層部2および第二表層部3は、工業用純チタンよりも各種性能に優れるチタン合金で構成されている。
このチタン複合材1全体が同一のチタン合金からなるチタン材と比較して、同等の特性を有するが、安価に製造することができる。
1−2.第一表層部および第二表層部
(厚さ)
第一表層部2および第二表層部3のうち外部環境に接する表層部の厚さが薄過ぎると、耐水素吸収性が十分に得られない。一方、第一表層部2および第二表層部3のチタン合金が厚い場合には耐水素吸収性には問題はないが、素材全体に占める第一表層部2および第二表層部3のチタン合金の割合が増すため、製造コストが嵩む。このため、チタン複合材1の全厚に対する第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の厚さは、2〜20%とする。
チタン複合材1の第一表層部2および第二表層部3の厚さは、後述の筐体6を構成するチタン合金材の厚さ、その後に実施される熱間加工時の加工率に依存する。例えば、5mm厚のチタン材で構成される筐体6を用いた厚さ60mmの熱間加工用チタン材5を熱間加工して、厚さ5mmのチタン複合材1を製造した場合、チタン複合材1中の第一表層部2および第二表層部3のチタン合金層の厚さは、それぞれ約0.4mmとなり、チタン複合材1の全厚さの約8%を占める。
(化学成分)
本発明に係るチタン複合材1では、第一表層部2および第二表層部3の少なくとも一方(少なくとも外部環境に接する表層部)の耐水素吸収性を高めるために、以下に掲げる各種合金元素を含有させる必要がある。
8.0<Mo当量<20.0
ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
耐水素吸収性を得る層は、β安定化元素を一定範囲含有するチタン合金層である。β相を形成することを規定する理由は、チタンのα相はわずか数10ppmの水素濃度でも水素化物を形成するのに対し、チタン合金のβ相はおおよそ1000ppm以上の水素を固溶できるため、水素起因による脆化を生じ難い特徴を有するためである。
Fe、Crなどの共析型のβ安定化元素を含む場合には、チタンとそれらの元素が化合物を形成して、脆化を招くおそれがある。しかし、β安定化元素のうち、Mo、VおよびNbを「8.0<Mo当量<20.0」を満たす範囲で含有する場合には、FeおよびCrなどが同時に存在していてもβ相が安定し、化合物相を形成しないため脆化を生じない。
ここで、Mo当量の下限は、充分な量のβ相を得るために必要な合金量である。上限は、合金添加量が多いチタン合金は価格が高いため、コスト面から使用に適さないことから定めた。なお、筐体6として用いるチタン合金材は、必ずしも完全にβ相である必要はなく、β相中にα相が析出していてもα相の周囲をβ相が覆っていればよい。
第一表層部2および第二表層部3の合金層の形成には、下記の筐体6に既存のβ型チタン合金を利用することができる。例えば、Ti−15V−3Cr−3Al−3Sn、Ti−8V−3Al−6Cr−4Mo−4Zr(BetaC)、Ti−11.5Mo−6Zr−4.5Sn(BetaIII)である。このような既存のβ型チタン合金を筐体6に用いた場合、上記元素以外のCr、Sn、Al、Zrなどの添加元素の含有も、総量が15.0%以下であれば許容される。これらの元素は、既存のβ型チタン合金において熱処理性、強度および冷間加工性を調整するために含まれる元素であり、本発明で定義するMo当量を下げないからである。また、例えば、Si、Fe等をさらに含有してもよい。
上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてTa、Si、MnおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で5%以下許容される。
1−3.内層部
(化学成分)
チタン複合材1の内層部4の純チタンの成分は、後述するように、製造する際に使用するスポンジチタンの成分に依存する。本発明に係るチタン複合材1では、JISに規定される純チタンのうち、JIS1種、JIS2種、JIS3種またはJIS4種の工業用純チタンを用いることができる。すなわち、0.1%以下のC、0.015%以下のH、0.4%以下のO、0.07%以下のN、0.5%以下のFeを含有し、残部がTiである工業用純チタンである。
これらJIS1〜4種の工業用純チタンを使用すれば、十分な加工性を有しており、割れなどが発生せず、熱間加工後に表面のチタン合金と一体化したチタン材が得られる。ただし、チタンは活性な金属であるため、スポンジチタンの平均粒径が0.1mm以下の微粉になると質量当たりの表面積が大きくなり、実操業下においてOのキャッチアップ(濃化)が不可避となることに留意が必要である。
チタン複合材の内層部のO含有率は所望の機械的特性に応じて調整することが可能であり、高い強度を必要とする場合には最大0.4%まで含有してもよい。O含有量が0.4%を超えると、割れなどが発生し、熱間加工後に表面のチタン合金と一体化したチタン材が得られなくなるおそれがある。一方、強度よりも延性が要求される場合には、O含有量をより低くすることが好ましく、0.1%以下であるのが好ましく、0.05%以下であるのがより好ましい。
(空隙率)
本発明に係るチタン複合材1は、後述するチタン材5を素材として、熱間加工および冷間加工により製造される。この際、チタン材5中の純チタン部分に形成される空隙は、熱間加工および冷間加工にともない圧着されていくが、完全には除去されず一部は内層部4中に残存する。この内層部4中の空隙が多すぎると、バルク金属としての機械的特性(強度および延性)が低下するため、空隙は少ないほど望ましい。
ただし、空隙を完全に圧着させるためには大圧下が必要となり、製造されるチタン複合材1の形状(厚さ)が制限され、さらには、製造コスト高騰の要因となりうる。一方、チタン複合材1としての構造を維持するのに十分な機械的特性(強度および延性など)を有する程度に空隙が含有される場合には、内部チタンの密度が低くなるため、製造されるチタン複合材1の軽量化が期待できる。
この際、内層部4中の空隙率が30%以下であれば、内層部4と第一表層部2および第二表層部3とが一体化したチタン複合材1として製造される。チタン複合材1を効率的に製造するためには、一定量を超えて熱間および冷間加工することが望ましく、この際の空隙率は10%以下となる。
以上のように、バルク金属としての機械的特性が重要な場合には空隙率を低くし、素材の軽量化を優先する場合には空隙率を高くするなど、用途に応じて、空隙率を選択することが可能である。この際の内層部4中の空隙率は0%超30%以下であることが望ましく、より望ましくは、0%超10%以下である。
(空隙率の算出方法)
チタン複合材1の内層部4中に残存する空隙の割合(空隙率)は、次のように算出される。チタン材の断面が観察できるように樹脂に埋め込んだ後、ダイヤモンドまたはアルミナ研濁液を用いて観察面をバフ研磨して鏡面化仕上げする。この鏡面化仕上げした観察用試料を用いて、倍率500倍で板厚中心部の光学顕微写真を撮影する。撮影した光学顕微鏡写真にて観察される空隙の面積割合を測定し、20枚の測定結果を平均して、空隙率として算出する。観察に用いる顕微鏡は、通常の光学顕微鏡でも問題ないが、偏光観察が可能な微分干渉顕微鏡を用いることでより明瞭に観察できるため、使用することが望ましい。
2.チタン複合材の熱間加工用素材
図2は、チタン複合材1の熱間加工用素材である熱間加工用チタン材5の構造を示す説明図である。第一表層部2および第二表層部3がチタン合金からなるとともに、内層部4が純チタンからなるチタン複合材1は、例えば、図2に示すような、各種の特性を有するチタン合金材で全周を密封して筐体6とし、筐体6の内部にチタン塊7を充填し、筐体6の内部を減圧してチタン材5とし、このチタン材5を熱間加工用素材として熱間加工することにより、製造される。以下で、素材の各構成の詳細を説明する。
2−1.チタン塊
(化学成分)
本発明に係る熱間加工用チタン材5に充填するチタン塊7は、従来のクロール法等の製錬工程で製造された通常のチタン塊であり、その成分は、JIS1種、JIS2種、JIS3種またはJIS4種に相当する工業用純チタンを用いることができる。
(形状)
チタン塊7は、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上を含むものである。チタン塊7の大きさは、平均粒径で30mm以下が好ましい。平均粒径が30mmより大きいと、搬送する際に取り扱いにくい、チタン材に入れにくいなどハンドリング時に問題があり、その結果、作業効率が悪くなる。また、筐体6中に充填した際の充填率が低くなる可能性があり、熱間加工により製造されるチタン複合材1の密度が低くなって、延性などの特性低下を招く要因となり得る。
一方、チタン塊7の大きさが小さすぎると、筐体6中に充填する際に粉塵が問題となって作業に支障をきたすおそれがあるだけでなく、質量当たりの表面積が大きくなり、ハンドリング中にOの濃化が生じるおそれがある。このため、チタン塊7の平均粒径は0.1mm以上であることが好ましく、1mm以上であることがより好ましい。
なお、平均粒径が0.1mm以下の非常に細かい粉末として、MM(Mechanical Milling)処理を施した純チタン粉末を用いることが考えられる。MM処理とは、粉末および硬質ボールをポット内に入れて封入し、ポットミルを振動させることによって、粉末を微細化する処理である。MM処理後の微粉末の表面は活性な状態となっているため、ポット内から純チタン粉末を回収する際に大気中のOおよびNを吸収しないよう、不活性ガス化で取り扱う必要がある。
また、OおよびNの濃度の低い純チタンをMM処理すると、高延性であるため粉末同士が圧着したり、硬質ボールまたはポット表面に純チタンが圧着したりする。そのため、MM処理して得られる純チタン粉末の歩留が悪いという問題が生じる。このような理由により、MM処理による純チタン粉末の作製は多大な労力と費用とを必要とし、大量生産には不向きである。
チタン微粉末をスポンジチタンから水素化脱水素法で製造する方法もある。しかし、質量あたりの表面積が増加し、表面酸化によりO濃度が上昇しやすくなるため、材質の制御が難しくなる。したがって、スポンジチタンをそのまま使用する本発明の方が、品質・コストの面で優れている。
なお、スポンジチタンをプレス成形によりブリケットとして使用する場合には、スポンジチタンの一部または全てを、スクラップ(純チタンスクラップ)またはチタン粉末で代替してもよい。
2−2.筐体
(化学成分)
最終製品であるチタン複合材1の第一表層部2および第二表層部3のチタン合金をなすように、上述した合金成分のチタン合金を用いる。
(形状)
筐体6として用いるチタン合金材の形状は、熱間加工用素材として用いられるチタン材5の形状に依存するため、特に定形はなく、板材または管材などを用いることができる。ただし、熱間加工、冷間加工および焼鈍などの製造工程を経て製造されるチタン複合材1に、表層の合金化による高機能化および優れた表面性状を具備させるためには、筐体6に用いるチタン合金材の厚さが重要となる。
厚さが1mm未満と薄い場合、塑性変形に伴い熱間加工の途中で筐体6が破断して真空が破れて、内部のチタン塊7の酸化を招く。また、チタン材5の内部に充填されたチタン塊7の起伏がチタン材5の表面に転写されて、熱間加工中にチタン材5の表面で大きな表面起伏を生じる。これらの結果、製造されるチタン複合材1の表面性状および延性などの機械的特性、さらには耐水素脆化性に悪影響を及ぼす。
また、仮に、熱間加工および冷間加工中に表面欠陥が発生しない場合においても、製造されるチタン複合材1中でチタン合金部分の厚みが局所的に薄くなって十分な耐水素脆化性を発揮できない可能性がある。また、筐体6が過度に薄くなると内部に充填したチタン塊7の重量を支え切れないため、室温または熱間での保持中または加工中にチタン材5の剛性が不足して変形してしまう。
筐体6に用いるチタン合金材の厚さが1mm以上であれば、これら問題が発生することなく熱間加工を行うことができ、優れた表面性状と耐水素脆化性を具備したチタン複合材1を製造できる。なお、チタン合金材の厚さを2mm以上とするとより好ましい。
一方、チタン合金材の厚さが厚くなり過ぎると、製造される熱間加工用チタン材5に占める筐体6の割合が増大し、相対的に、チタン材5に占めるチタン塊7の割合が低下するため、歩留りが低下してコスト高になる。
2−3.熱間加工用チタン材
次に、前記のチタン塊7と筐体6とを用いて製造される、チタン材5について説明する。
(形状)
チタン材5の形状は、特定の形状に限られるものではないが、製造されるチタン複合材1の形状によって決められる。板材の製造を目的とする場合は直方体形状のチタン材5が製造され、丸棒、線材または押出材の製造を目的とする場合には円柱形または八角柱等多角柱形状のチタン材5が製造される。チタン材5の大きさは、製品の大きさ(厚さ、幅、長さ)および製造量(重量)により決められる。
(内部)
筐体6で全周を密封して囲まれたチタン材5の内部には、チタン塊7が充填される。チタン塊7は塊状の粒であるため、粒と粒との間には空間(隙間)がある。チタン塊7のハンドリング性向上およびこれら隙間を少なくするために、予めチタン塊7を圧縮成形してからチタン材5に入れてもよい。チタン材5内の隙間に空気が残存していると、熱間加工前の加熱時にチタン塊7が酸化・窒化してしまい、製造されるチタン複合材1の延性が低下する。このため、チタン材5内を減圧して高真空度とする。
(真空度)
熱間加工時のチタン塊7の酸化・窒化を防止するためには、チタン材5の内部の真空度を10Pa以下、好ましくは1Pa以下にする。チタン材5の内部圧力(絶対圧)が10Paより大きいと、残留している空気によりチタン塊7が酸化または窒化してしまう。下限は特に定めるものではないものの、真空度を極端に小さくするには、装置の気密性向上および真空排気装置の増強など製造コストの上昇に繋がるため、1×10−3Pa未満にする必要はない。
(溶接)
筐体6を溶接する方法としては、TIG溶接もしくはMIG溶接等のアーク溶接、電子ビーム溶接またはレーザー溶接等を用いることができ、特に限定されない。ただし、チタン塊7および筐体6の面が酸化または窒化されないように、溶接雰囲気は、真空雰囲気または不活性ガス雰囲気とする。筐体6のつなぎ目を最後に溶接する場合は、チタン材5を真空雰囲気の容器(チャンバー)に入れて溶接を行い、チタン材5の内部を真空に保つのが好ましい。
3.チタン複合材の製造方法
次に、上記本発明のチタン材5を熱間加工用素材として熱間加工を行うチタン複合材1の製造方法について説明する。
チタン複合材(製品)1は、チタン材5を熱間加工用素材として、熱間加工を施して形成される。熱間加工の方法は、製品の形状によって選択することができる。
板材を製造する場合は、直方体形状(スラブ)のチタン材5を加熱して、熱間圧延を行いチタン板とする。必要に応じて、従来工程と同様に、熱間圧延後に表面の酸化層を酸洗などで除去した後、冷間圧延を行い、さらに薄く加工してもよい。
丸棒または線材を製造する場合は、円柱または多角形形状(ビレット)のチタン材5を加熱して、熱間圧延または熱間押出を行い、チタン丸棒または線材とする。また、必要に応じて、従来工程と同様に、熱間加工後に酸化層を酸洗などで除去した後、冷間圧延を行い、さらに細く加工してもよい。
さらに、押出形材を製造する場合は、円柱または多角形形状(ビレット)のチタン材5を加熱して、熱間押出を行い、種々の断面形状のチタン形材とする。
熱間加工前の加熱温度としては、通常のチタンスラブまたはビレットを熱間加工する場合と同様の加熱温度とすればよい。チタン材5の大きさまたは熱間加工の度合い(加工率)によって異なるが、600℃以上1200℃以下とすることが好ましい。加熱温度が低過ぎるとチタン材5の高温強度が高くなり過ぎるため、熱間加工中に割れの原因となり、また、チタン塊7および筐体(チタン合金部)6の接合が不十分となる。一方、加熱温度が高過ぎると得られたチタン複合材1の組織が粗くなるため、十分な材料特性が得られず、また、酸化により表面の筐体(チタン合金部)6が減肉されてしまう。加熱温度を600〜1200℃とすればこのような問題が発生することなく熱間加工を行うことができる。
熱間加工の際の加工の度合い、すなわち加工率は、チタン複合材1の内部の空隙率を制御するために選択することができる。ここでいう加工率は、チタン材5の断面積と熱間加工後のチタン複合材1の断面積の差を、チタン材5の断面積で除した割合(百分率)である。
加工率が低い場合には、チタン材5の内部のチタン塊7間の隙間が十分に圧着されないため、熱間加工後に空隙として残存する。このような空隙を多く含むチタン複合材1は、含有する空隙の分だけ、軽量となる。ただし、内部に存在する空隙が多いため、機械的特性が十分に発揮されない。一方、加工率が増大するとともに、空隙率は低下して機械的特性が向上する。このため、製造されるチタン複合材1の機械的特性が重要視される場合には、加工率は高い方が好ましい。
具体的には、加工率が90%以上では、チタン材5の内部のチタン塊7の粒界の隙間を十分に圧着することができ、チタン複合材1の空隙を少なくすることができる。加工率は高いほど、チタン複合材1の空隙を確実に消滅させるために好ましいものの、チタン材5の断面積を大きくしなければならず、また、熱間加工を繰り返して何回も行わなければならなくなる。その結果、長い製造時間を要するなどの問題が生じるため、加工率は99.9%以下にすることが好ましい。
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
筐体に充填するチタン塊として、クロール法により製造したスポンジチタン(JIS2種、粒度=0.25〜19mm)を用いた。また、筐体として、β型チタン合金Ti−15V−3Cr−3Sn−3Al板材(厚さ1〜15mm)を用いて、厚さ45〜80mm、幅100mm、長さ120mmの直方体を製作した。
筐体の作製に際して、まず、チタン板5枚を仮組みして箱形状とした後、この中にスポンジチタンを充填し、仮組みした箱の開口部をチタン板で蓋をした。仮組みされたチタン材は、真空チャンバー内にいれて、所定の圧力になるまで減圧(真空)にした後、継ぎ目を全周電子ビームで溶接して密封した。このときのチャンバー内の真空度は表1に示すように、8.7×10−3〜2.2×10−2Paである。
以上の工程により、β型チタン合金で全周を密封した筐体が形成され、筐体の内部がスポンジチタンで充填されており、チタン材の内部が所定の真空度に減圧されることとなった。
作製した筐体は、大気雰囲気で850℃に加熱した後、表1に示すように89〜97%の加工率で熱間圧延を行い、厚さ4.8〜5.0mmの熱延板とした。次いで、真空雰囲気で、600〜650℃、4〜10時間の焼鈍を施した。さらに、ショットブラスト、酸洗を行い、スケール層を除去した。
また、製造したチタン複合材を、断面観察できるように樹脂に埋め込み、研磨・腐食したのちに、光学顕微鏡にて観察して、表層部の厚さを測定した。この測定した表層部の厚さをチタン複合材の全厚で除して、表層部の比率として算出した。
チタン複合材の純チタン部分に残存する空隙の割合(以下、空隙率)を算出するため、試料断面が観察できるように樹脂埋め後、研磨して鏡面仕上げしたのち、倍率500倍にて光学顕微写真を撮影した。撮影した光学顕微鏡写真から空隙の面積割合を算出し、5枚の測定結果を平均して、空隙率として算出した。
本発明に係るチタン複合材との比較のため、市販の純チタン(JIS2種)の5mm板材を用いた。
本発明のチタン複合材と比較例の各チタン板を、水素吸収環境である1体積%H+99体積%Ar雰囲気で500℃、5時間暴露した。
暴露後に、4.8〜5mm×10mm×55mm、2mmVノッチの衝撃試験片を、試験片長手方向を圧延方向とし、ノッチの方向を板厚貫通方向として作製した。次いで、シャルピー衝撃試験の衝撃吸収エネルギーを試験片断面積で割った値である衝撃値で水素脆化を評価した。ここで、水素吸収環境に暴露する前の純チタン2種材の衝撃値は2.5×10J/cmであったことから、そこから20%以上低下する2.0J/cm未満となる場合に、水素脆化を生じたとした。
以上の結果をまとめて表1に示す。
Figure 0006137424
試験No.1は、筐体を用いないで製造された工業用純チタン2種材の例である。水素環境に暴露された影響で、衝撃値が2.0×10J/cm未満と低い。
試験No.2は、筐体を用いて製造された例であるが、表層部の比率が2%未満と本発明の範囲よりも低いため、衝撃値が2.0×10J/cm未満と低い。
試験No.6は、表層部の比率が25%と本発明の範囲よりも高く、衝撃値は2.0×10J/cm未満と低い。
試験No.10は、空隙率が35%と本発明の範囲よりも高く、衝撃値は2.0×10J/cm未満と低い。
これに対して、本発明の規定を満足する試験No.3〜5および7〜9は、衝撃値が2.0×10J/cm以上と高い結果となった。
(実施例2)
実施例1に対し、筐体の合金種を変えた例を示す。筐体に用いたチタン板の板厚は3mm、チタン材の全厚は60mm、熱延後の板厚は4.8〜5.0mmであり、その他の試料作製も実施例1と同様の方法で行った。表2にその例を示す。
Figure 0006137424
試験No.11〜13は、本発明の規定を満足するため、衝撃値が2.0×10J/cm以上と高い結果となった。
試験No.14は、表層部の組成がMo当量で6.7と本発明の範囲を外れており、衝撃値が2.0×10J/cm未満と小さい。
(実施例3)
実施例1に対し、充填するスポンジチタンの品種をJIS3種に変えた例を示す。筐体に用いたチタン板の板厚は3mm、チタン材の全厚は60mm、熱延後の板厚は4.8〜5.0mmであり、その他の試料作製も実施例1と同様の方法で行った。
ここで使用したJIS3種の衝撃値は、0.5×10J/cmであり、そこから20%以上低下した0.4×10J/cm以下を水素による脆化と判定した。表3にその例を示す。
Figure 0006137424
No.15は、筐体を用いないで製造された工業用純チタン3種材の例である。水素環境に暴露された影響で、衝撃値が0.5×10J/cm未満と低い。
No.16は、本発明の規定を満足するため、衝撃値が0.5×10J/cmと高い結果となった。
1.チタン複合材
2.第一表層部
3.第二表層部
4.内層部
5.熱間加工用チタン材
6.筐体
7.チタン塊

Claims (3)

  1. 第一表層部と、
    内層部と、
    第二表層部と、を備えるチタン複合材であって、
    前記第一表層部および前記第二表層部がチタン合金からなり、
    前記内層部が、空隙を有する工業用純チタンからなり、
    前記第一表層部および前記第二表層部の少なくとも一方の化学組成が、下記(i)式を満足する範囲でMo、VおよびNbから選択される1種以上を含有し、さらに、質量%で、
    Cr、Zr、AlおよびSnから選択される1種以上の合計:15.0%以下を含有し、
    残部:Tiおよび不純物であり、
    前記第一表層部および前記第二表層部の前記少なくとも一方の厚さが、前記チタン複合材の全厚さに占める割合が2〜20%であり、
    前記空隙の板厚方向に垂直な断面における体積率が、0%を超えて30%以下である、
    チタン複合材。
    8.0<Mo当量<20.0 ・・・(i)
    ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
  2. 前記工業用純チタンの化学組成が、質量%で、
    C:0.1%以下、
    H:0.015%以下、
    O:0.4%以下、
    N:0.07%以下、
    Fe:0.5%以下、
    残部:Tiおよび不純物である、
    請求項1に記載のチタン複合材。
  3. 筐体と、
    前記筐体内に充填された、スポンジチタン、スポンジチタンを圧縮したブリケットおよび工業用純チタンスクラップから選択される1種以上と、を備え、
    前記筐体の一部であって、熱間加工後に表層を構成する部分が、チタン合金からなり、
    前記チタン合金の化学組成が、下記(i)式を満足する範囲でMo、VおよびNbから選択される1種以上を含有し、さらに、質量%で、
    Cr、Zr、AlおよびSnから選択される1種以上の合計:15.0%以下を含有し、
    残部:Tiおよび不純物である、
    熱間加工用チタン材。
    8.0<Mo当量<20.0 ・・・(i)
    ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
JP2016568070A 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材 Active JP6137424B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149400 2015-07-29
JP2015149400 2015-07-29
PCT/JP2016/072340 WO2017018518A1 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材

Publications (2)

Publication Number Publication Date
JP6137424B1 true JP6137424B1 (ja) 2017-05-31
JPWO2017018518A1 JPWO2017018518A1 (ja) 2017-08-03

Family

ID=57884559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568070A Active JP6137424B1 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間加工用チタン材

Country Status (3)

Country Link
JP (1) JP6137424B1 (ja)
TW (1) TWI589703B (ja)
WO (1) WO2017018518A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229407A (en) * 1975-09-02 1977-03-05 Miyamoto Kogyo Kk Process for production of titanium bars
JPH05125508A (ja) * 1991-08-29 1993-05-21 Akira Nozue 水素脆性感受性の低いβ型チタン合金およびβ型チタン合金の熱処理方法
US5564064A (en) * 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
JP2015045040A (ja) * 2013-08-27 2015-03-12 株式会社神戸製鋼所 チタン鋳塊及びチタン鋳塊の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229407A (en) * 1975-09-02 1977-03-05 Miyamoto Kogyo Kk Process for production of titanium bars
JPH05125508A (ja) * 1991-08-29 1993-05-21 Akira Nozue 水素脆性感受性の低いβ型チタン合金およびβ型チタン合金の熱処理方法
US5564064A (en) * 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
JP2015045040A (ja) * 2013-08-27 2015-03-12 株式会社神戸製鋼所 チタン鋳塊及びチタン鋳塊の製造方法

Also Published As

Publication number Publication date
WO2017018518A1 (ja) 2017-02-02
JPWO2017018518A1 (ja) 2017-08-03
TW201809306A (zh) 2018-03-16
TWI589703B (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
CN107847994B (zh) 钛复合材料以及热轧用钛材
US11814703B2 (en) Titanium material for hot working
WO2017018511A1 (ja) 熱間圧延用チタン材
JP6835036B2 (ja) チタン素材
WO2017018513A1 (ja) チタン複合材および熱間圧延用チタン材
JP6128289B1 (ja) チタン複合材および熱間圧延用チタン材
JP6156596B2 (ja) チタン複合材および熱間加工用チタン材
JP6137424B1 (ja) チタン複合材および熱間加工用チタン材
JP6094725B1 (ja) チタン複合材および熱間加工用チタン材
JP6756364B2 (ja) チタン複合材および梱包体
JP6756362B2 (ja) チタン複合材および梱包体
JP6137423B1 (ja) チタン複合材および熱間圧延用チタン材
JP6094724B1 (ja) チタン複合材および熱間加工用チタン材
JPWO2017018521A1 (ja) 熱間圧延用チタン材
JPWO2017018523A1 (ja) 熱間圧延用チタン材

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6137424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350